
February 1972

ROBOT RESEARCH AT STANORD RESEARCH INSTITTIE

Bertram Raphael

Second of two lectures for JITA (Japan Industrial Technology
Association International Symposium on Pattern Information

Processing Systems, Tokyo, March 6-17, 1972.

Artificial Intelligence Center

Technical Note 64

SRI Proj ect 1530

This lecture is based upon research supported at SRI by the
Advanced Research Projects Agency of the Department of Defense,
monitored by the U. S. Army Research Office-Durham under

Contract DAHC04 72 C 0008.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 1972 2. REPORT TYPE

3. DATES COVERED
 00-02-1972 to 00-02-1972

4. TITLE AND SUBTITLE
Robot Research at Stanford Research Institute

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Center,SRI International,333 Ravenswood
Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

This paper begins by reviewing briefly the history of research in

pattern recognition J problem solving, and robot systems. Then the evolution

of "Shakey, " the SRI robot system, is described. The first version of Shakey
used a. theorem prover for solving problems J a separate complex scene-analysis

program, duel symbolic and geometric models of the world, and a simple, error-

prone executive system. The second version, recently completed, consists of

a. more integrated software structure with new mechanisms for planning, learn-

ing, and recovering from errors. After discussing some problems for future

versions of the Shakey system, the paper concludes with a brief discussion of

potential industrial applications of robot research.

Background

People have been fascinated by the idea of robots--intelligent

artificial mechanisms--throughout history. According to Jewish folklore,
in the 15th Century the chief Rabbi of Prague created the Go1em, a man he

built out of clay which God helped him imbue with a limited form of life

so that it could perform for many years as his servant. I have heard it
rumored that many contemporary computer scientists, including John Yon

Neuman, Norbert Weiner, and Marvin Minsky all claim to be direct descendants

of that Rabbi.

In the late 17th Century Baron Yon Kempeln toured Europe exhibiting

his Chess automaton--a wooden model of a man with a movable arm that would

reach out and play chess with all comers. This device attracted wide atten-

tion and performed before many of the courts of Europe--until one day the

midget inside sneezed during a game.

The first modern robot is probably the system built by Henry Ernst

at MIT about ten years ago. Ernst took a remote manipulator designed for
manual control and connected it to a small computer. He then developed a
programing language for commanding the arm to move about, and attached some
sensors--touch and crude photo sensors for the "finger tips " wi th which the
arm could perceive certain facets of its environment. The most complex

task this system could do was grope about a table top and pick up any obj ect
tha t it bumped in to .

Current work in the development of robot systems is being pursued in

three major laboratories in the United States, one in Great Britain, and

several in Japan. The goal of all of these projects seems to be to bring
together results from a variety of disciplines and integrate them into a

single robot system. This system should then be able to perceive its

environment through appropriate sensors, decide what actions to take based

on complex . problem-solving procedures, and finally actually carry out

physical events in the real world by controlling appropriate manipulators

or vehicles.

The major theoretical bases for these systems come from two research

areas--perceptual pattern-recognition systems and automatic problem-solving

systems. In addition, advances in various other technologies have helped
form an appropriate platform for this current work. These include e1ectro-

mechanical devices, both for industrial materials-handling use and for

prosthetic devices; and increases in computer power and advances in computer

software such as the development of powerful list-processing languages and

multi-access time-shared systems.

Pattern Recognition

A robot must be able to perceive its environment. The most effective

sensory dimension--the one that seems capable of capturing the most infor-

mation in the shortest time--seems to be vision. Therefore the major robot

projects have concentrated, until now, on using visual input as the system

principal source of information about the environment. Let us review
briefly the history of picture-processing programs.

The first visual perception programs were aimed at recognition of

hand-drawn or machine-printed characters. Considerable effort went into
the design of trainable machines, such as the Perceptron, which could be

taught to discriminate between different classes of inputs. Unfortunately

the capabilities of such adaptive systems are severely limi ted in both

practical and theoretical senses, as shown by Minsky and Papert in their

recent book.

References are listed at the end of this paper.

Current interest in visual-perception systems is focussed on

analysis rather than pattern recogni tion--that is, programs that extract

descriptions from pictures of three-dimensional scenes, rather than programs

that classify two-dimensional patterns. One of the first systems of this

kind was developed by Roberts in the early 1960s. s system took as its
input a photograph of a simple geometric object. By a sequence of local

operations on a digitized version of the picture, his program was able to

extract from the picture an outline drawing of the object. Higher-level

programs could then identify the object type. Thus the scene-analysis
problem was factored into two phases: a translation from the raw data into

an idealized drawing, and then a recognition or interpretation phase that

described the drawing. More recent projects indicate that when the data
is derived from typical noisey sources, this sharp division of the problem

into two phases is neither possible nor particularly desirable. Still, it
is a useful separation for expository purposes.

The first phase of Roberts ' process consisted of looking for short
line segments--sections of the edges of objects--and then trying to connect

them into longer lines to form a complete outline. An alternative approach,

implemented by Brice and Fennema, begins with regions rather than lines.
The process consists of first dividing the complete picture into elementary

regions of uniform intensity and then deciding which regions should be

merged together, until the regions approximate the actual surfaces of

objects in the scene.

In the mid-1960s Guzman worked on the second phase of the problem:

Beginning with a perfect line drawing, how can one divide the scene into

its component objects? His system uses an impressive set of heuristics
based on the topological structure of edges and surfaces in the scene.

Recent work by Clowes - and Huffman approach a similar problem in a much

more rigorous, mathematical manner.

The more information a viewer, or a computer program, has about the

scene being analyzed, the simpler and more effective the analysis procedure

can be. We have become increas ing1y aware of the necessi ty for including
considerable amounts of "knowledge" in all of our computer programs. Much

more information can be extracted from a picture and added to a data base

if the data base already contains considerable background information about

what it expects to see in the picture. In the extreme, the program may
expect to be viewing a picture that contains one of only a small number of

possible objects and therefore the recognition process of what particular

object is in that scene can consist of a decision tree of simple tests.

For example, if a scene is known to contain either a rectangular object or

a triangular object, then the scene-analysis program need merely look for
pairs of parallel lines in the picture in order to determine what type of

object it contains. This was the approach we took at SRI for the first

version of the robot system to be discussed below.

Problem Solving

In order to write computer programs that "solve problems
It we must

develop some clear definition of what we mean by a problem. One approach

is to say that a problem is well defined only when we have a clear test

for its solution. For example, in Chess the problem is to produce a position
in which, according to the rules of the game, the opponent is in Checkmate.

In calculus, an integration "problem" is to produce an expression whose

derivative is the initially given expression; a proposed solution can be

tested easily by the simple algorithmic process of differentiation.

Following this approach, we define a "problem" for a robot system by

describing a desired state of the world. The implicit problem for the robot

is to transform the initial state of the world into the desired one. Of

course, in order to carry out such a transformation the robot must have

available and be aware of certain physical capabili ties--the legal moves
or rules--that it can exercise to change states of the world.

One approach to solving problems was proposed by Newell and his

colleagues as a model of human problem-solving behavior. This general
problem-solving system contained a problem-independent part consisting of

rules for manipulating abstract obj ects and operators, and a part, depend-

ent upon the problem domain, that defined the nature of the particular

objects and operators of interest. At SRI we felt that a more rigorous

formal approach might be more effective, easier to apply to new situations,
and more logically complete , although it certainly would not be as close

a model of human problem-solving behavior.

However, it is certainly not obvious how to encode the necessary

information about the world into a formal logical language. Suppose we
represent the fact that a robot is at a position P by an atomic formula

At (P). If this is an axiom of logic in the usual sense, then it is an

assertion that must be true for all time. What then should we do when the

robot rolls to another posi tion? We cannot have axioms arbitrarily changing

from true to false or appearing and vanishing.

Green s technique for handling this problem was to add another

argument to each predicate that depended upon the state of the world. This

argument, then, explici tly showed the state dependence. Thus, At (P J S) means

the robot is at position P in state S. When the robot moves to another
posi tion, the state is no longer S, so the fact that the robot was at P

when the state was S is true for all time.

We may represent actions in this "situation calculus " by functions

that map states into new states--the states produced by carrying out the

We shall assume familiarity with the ideas discussed in the previous

lecture, "The Role of Formal Theorem Proving in Artificial Intelligence.

actions. For example, let go(x,y, s) be the state produced after the robot,
who happens to be at position x when the state is s, goes to position y.

Then, the effect of going from one place to another can be described once

and for all by the axiom, (lx) (Vy) (Vs) (At(x,s) :) At(y,go(x,y,s)) J. Plans

of action may now be generated by an ordinary theorem prover as follows:

The theorem to be proved is simply an assertion that a state having desired

properties exists ' If that theorem can be proved then the answer-extraction
mechanism mentioned in our discussion of predicate-calculus proof procedures

will produce a plan for achieving the desired state. For example, suppose

we know that the robot is at posi tion A in the initial state of the world

Suppose further that we know that there is a window W at position

that W is initially open, and that the robot may close the window if he is

at its position. Figure 1 shows a set of axioms representing all of this

information. If we wish the robot to close the window we merely assert
the existence of a state in which' the window is closed:

(3:s) Closed (W, s) .

Figure 2 shows the resolution proof that such a state exists. The extracted
answer asserts that the window W is closed in the state gotten to by shutting

it, after the robot has gone from A to B, starting from state S

Axiom 6 in Figure 1 and Figure 2 needs some further explanation. We

know that the window is open in state S . We know further that when the robot

goes from A to B the world. will be in a new state, namely Sl = go(A,

) .

Now, do we know whether the window is open or closed in state S Only

implicitly, because we know that going from place to place does not close

windows; however, how can the system know that? Only by having an explicit

axiom, axiom 6, that asserts that the act of going does not change the

property of openness. The need for such property-maintaining axioms is one
ramification of the "frame problem a perennial bookkeeping problem i'

FIGURE 1

Axioms for the Window Problem

At (A , S)

Open (W, S

Place(W,

The robot is at posi tion A in state S

W is an open window in state S

W is at position B (independent of states,
e. its location in the room is not

changeable) .

0fx) (Vy)(Vs)(At(x,s) :) At(y,go(x,y,s))J
The robot will be at whatever position

it may " " to.

(Vu) (Vv) (Vs) (At(u,s) A Place(v,u) A Open(v,s) :) closed(v,shut(v,s)))
If the robot is at the same location as

a window that is open, then the window

will be closed after the "shut " operation
is performed.

(Jx) (Vy) (Vz) (Vs) (Open(x,s) :) Open(x,go(y' z,s))
An open window remains open when the

robot moves.

FIGURE 2

How to Shut the Window

At (A, S

'" At (u, s) '" Place(v, u) '" Open (v, s) closed(v, shut (v s))

'" Open(W, S closed(W, shut (W ,go (A, B, S

))

0os ,shut(W,gO(A,

6.

'"

Open (x, s) Open (x, go (y, s))

7. "'Closed(W,s) lOsed(W,s0

8. At(u, a) Place(W , u) Open(W , a) C2::' ahut(W ,a

9. At(B, a) Open(W,a) oaed (W ,a ut (W ,as)
10. At(x, a) Open(W ,go (x, B, a))

0oaed(W, ahut (w
,go(x ' B,a

22J

11. '" Open(W ,go (A, B, S

))

Closed (W, shut (W ,go(A, B, S

)))

Open(W, S)

12.

13.

Place (W ,

4 . '" A t (x, s) At

(y ,

go (x, y , s))
Axioms

Negated Theorem

From 5 & 7

From 3 & 8

From 4 & 9

From 1 & 10

From 6 &

From 2 &

state-dependent problem solving. This problem has led to our eventual

rejection of the situation calculus as a general means for solving robot

problems (see the second version of Shakey below) .

Control Language

The immediate input to a formal problem-solving system such as the

one discussed above must be statements in a formal language such as

predicate calculus. However, we recognize that experimentation with the

system would be more convenient if the control language were closer to

the natural language of the experimenter--ordinary English. Therefore,

one of our staff members, Coles, has developed a system that translates

a small but interesting subset of ordinary English into predicate calculus.

This system contains a transformational gramar that recognizes a variety
of syntactic constructs. In addition, certain semantic information is
embedded in those rules: namely, what predicate-calculus constructs and

" .

relations should be generated as the corresponding mean~ng of the input

sentence.

Another project that has just gotten underway at SRI is aimed at a

complete speech understanding system. Eventually we hope to be able to

direct the robot system in ordinary English through a microphone and,

perhaps, carry on a conversation wi th it about its knowledge and its goals.

Shakey the Robot: First Version

Late in 1969 we completed the first version of a complete robot system.

This system was documented in a film entitled "Shakey: A First Generation

Robot. " It demonstrated a complete, if somewhat crude, combination of the

abilities in the component fields discussed above. The control language

was limited ordinary English which was translated by the system into first-

order predicate calculus. The problem solver, then, was a resolution-type

theorem-proving program that used the situation-calculus and answer-

construction mechanisms discussed above. The scene-analysis component

started with television pictures, applied Roberts ' methods to reduce the

pictures to line drawings, and then used decision trees to identify

significant areas or objects in the scene. Typical problems solved by this
system were "00 TO POSITION (X, Y) " and "PUSH THE THREE OBJECTS TOGETHER.

The exercise of assembling Shakey, a complete robot system, was

worthwhile for several reasons. First, we discovered major weaknesses
wi th various component systems--the pattern-recognition system, the problem

solver, etc. Second, we discovered the immense scale of the computing

requirements necessary to. assemble such a complex of programs. Our XDS-940

computer (64, 000 24-bi t words of 1.75 microsecond core memory) was just

barely large enough for the simplest problems. The housekeeping problems

of fitting all the components into that sized computer and enabling them

to communicate with each other were becoming more effort than the basic

research program. Third, and perhaps most important, we discovered some
research areas that were necessary components of any complete system but

that had naturally been overlooked in the course of doing research on the

major components separately. These areas were the problem of data repre-

sentation and the problem of an executive program that could monitor the

execution of robot tasks.

Representations

This first robot system had multiple representat ions of the world.

TV pictures were stored and processed in data arrays. The representation
of the floor plan of the room was a grid-- FORTRA array--that indicated

occupied, unoccupied, and unknown regions of the room. This grid was

useful for geometric calculations such as route planning but could not

contain symbolic descriptive information. Finally, the communications

language, theorem-proving, and problem-solving systems contained their own

description of the world in the form of symbolic axioms.

These multiple models were awkward to coordinate and update.

Changes could not be made simultaneously in all models because of the

1imi tations of space in the computer memo.ry. On the other hand, the

boo.kkeeping required to. remember when the mo.de1s had gotten out of step

soan became intractable.

Executive System

The other difficult area was the design of an executive for the

system. In this version of the ro.bot system a trivial program translated

the results of a planning process--the sequence of actions needed to

accomplish a task--directly into. a sequence o.f calls to subro.utines that

actually mo.ved the robo.t about. Nowhere in this sequence' was there any

opportuni ty for feedback or other means of checking progress. Executio.n

o.f a plan was a completely open-loo.p pro.cedure. Therefore, any long

complicated plan had virtually no. chance of being successful, even if the

plan were essentially correct; the slightest inaccuracy or erro.r anywhere

during execution would cause the whole system to fall apart.

Shakey the Rabat: Second Version

We have just completed the second complete version of a robo.t system.

The hardware of the robo.t vehicle i tself--a mobile, radio-controlled cart
carrying a TV camera and some bumper swi tches--is virtually unchanged from

the first version. However, practically every other compo.nent of the entire
system is completely new.

The controlling computer system now consists of a PDP-lO with abo.ut

200, 000 36-bi t words of 1 microsecond core memo.ry and a peripheral computer

(PDP-15) for control of the robot, an on-line display, a connection to a

nation-wide computer network, and other devices.

The software contains four major levels. At the lowest level we have

what we call Law-Level Actions or "LIAs. These are the lowest-level

robot-control programs that can be called from user programs that are wri tten
in the LISP language, our principal programming tool. The LIAs are pro-

gramatic handles an the robot' s physical capabilities such as "roll " and
tilt

. "

So. that it can exhibit interesting behavior, our robot system has

been equipped with a library of Intermediate-Level Actions or "IIAs.

These second-level elements are preprogramed packages of LLAs embedded
in a special interpretative-language framework with vario.us control and

error correction features. Each IIA represents built-in expertise in some
significant physical capability such as push or go to. The ILAs might

be tho.ught of as instinctive abilities of the rabat analogous to. such

buil t-in complex animal abilities as "walk" or "eat.

The issue of tradeoffs between preprogramed expertise and general

problem-solving capability is a concern in any Artificial Intelligence

system. A specia1-purpo.se hand-coded program can certainly salve one we1l-

defined problem better than any general problem-salving routine. On the

other hand, a single, general problem salver can solve many different

problems, al tho.ugh at the present state of our capabilities each of those

problems would have to be rather simple and the solutions might not be

very efficient. We have drawn the line between expertise and generality

at the ILA level. Each ILA may be hand coded and may contain as much

tricky cleverness as the programer wishes to design into it. On the
other hand, it should be intended to solve a well-defined and generally

useful problem. At higher levels in the system (discussed below), we have
general planning mechanisms for assembling arbi trary sequences and combina-
tions of ILAs to perform a wide variety of possible tasks.

The principal sensor of the perceptual system is a TV camera. Programs

" .

for processing picture data have been restricted to a few special v~s~on

routines which are incorporated into the system at either the IIA or

level.

Abo.ve the ILAs we have the third level, which is concerned with

planning the solutions to problems. The basic planning mechanism is a
system called STRIPS--a problem solver that uses a co.mbination of heuristic
and formal theorem-proving methods. STRIPS co.nstructs sequences of ILAs

needed to carry out specified tasks. Such a sequence along with its

expected effect can be represented by a triangular table called a macro

operation or MACROP.

Finally, the fourth, or top-level of the system, is the executive--

the program that actually invokes and mo.ni tars execution of the ILAs

specified in a MACROP. The current executive program is called PLAEX.

Shakey t S World and Model

Shakey now lives in a 1abo.ratory environment consisting of a

netwo.rk of rooms connected by doo.rways and po.pulated with a variety o.f

boxes of different sizes. The computer representation of this environment

is expressed in the form of axioms of first-order predicate calculus (but

not including any explicit state argument). It is the responsibility of
each LL that causes changes in the physical world, e.g. "roll, " to update
the mo.del by making appropriate changes to the axioms, e.g. by mo.difying

the At predicate. Higher-level programs may then always assume that the
madel, i. e. this set of logical axioms, always describes the present state
of the world.

The STRIPS System

STRIPS is a system for planning sequences of actions that will

bring abo.ut a desired state of the wo.rld. It resembles GPS in the sense
that it performs a heuristic-search procedure in order to find a sequence

of operators (actions) that will transfo.rm the initial object (state of the

wo.rld) into a desired object (a state having required properties). However,

it uses formal theorem-proving techniques to. deduce all the logical conse-

quences of anything it knows about any given state. The theorem prover is

also used to test the applicability of operators to states, and to determine

the principal differences between states, so that STRIPS can select appro-

priate operators.

Correspo.nding to each po.ssible physical action of the rob at , an
operator is available to the STRIPS system. Each opera tar is described

to. STRIPS by: precondition statement , a delete list , and an add list

The precondition statement is a logical theorem that must be provable in

the current state of the world in o.rder for the operator to be usable on

that state. The delete list and add list contain changes that must be

made to the axioms representing the current state in order to transform it

into the state that will be produced after the operator is carried out.

For example, one IIA available in the current system is NA VT--
a program that first computes the sho.rtest path between any two. points in
a room while avoiding known obstacles in that roam, and then calls the

appro.priate LLAs to actually mo.ve the robot along that path to its desired
target posi tion. The purpose of NA VT, then, is to enable Shakey to. navi-

gate from any paint to any other point, in the same roo.m whose coordinates

are specified. The corresponding STRIPS operator, also called NAVTO, has

as its only precondition that the robo.t be in the same room as the desired

destinatio.n point. The delete list specifies that the current location

of the robo.t, if known, and the po.ssible fact that the robo.t is next to

any kno.wn object in the room, must be deleted from the state of the world.

The add list specifies that the assertio.n that the robot is at its desti-

nation position must be added. Such descriptions provide STRIPS with just

the information it needs to determine the effects of various actions and,

therefore, to plan a sequence of actions that will bring about the desired

state of the wo.r1d. The details of haw each action is accomplished may

be left to the ILAs and LIAs that will actually carry out the actions.

An important feature of our current system is the ability to

generalize and save plans pro.duced by STRIPS. Far example, suppo.se the

robo.t is in roam A and STRIPS is given the problem, "produce a state of the

world in which the robot is in room B. The specific solution that STRIPS

wo.uld produce, given o.ur present set o.f ILAs and correspo.nding operators,

is the two.-step plan: "Go. to the do.o.r between room A and roam B, and then

go through that door into ro.om B. Observe, however, that this plan has

extremely limited utility. Suppose so.metime in the future we ask the robo.t

to go fro.m ro.o.m C to roam D, or even to. go back from roam B to roam A.

Al tho. ugh the particular plan we have just derived would no.t be useful for
these new tasks, clearly all these tasks are equivalent and a single plan

sho.uld work for any of them. We have recently modified STRIPS so that when

asked to solve the problem of getting the ro.bot from ro.om A to roam

STRIPS wo.uld actually construct a plan for getting the robot from roam x to

roam y for any two adj acent roams. That plan would then be stored away as
a macro operation, or MAcROP, for future reference.

One proposal has been that each MACROP should be stored and avail-

able to the system in exactly the same farm as all other operators. This

is no.t done, however, because a MACROP is generally considerably richer

than a single operator. Far example, suppose STRIPS generates a MACROP

consisting of a sequence of five operators. As a side effect of the

planning process, STRIPS has computed the purpose and effect of each of

the five operators separately when they are used in that sequence. This

auxiliary information is stored as part of the MACROP (in a particular

format called "triangle table

).

Now this complete five-operator generalized

plan is available for use in future problems. But also, STRIPS can use
the auxiliary informatio.n to calculate the effects of various subsequences

of the five operators and, in fact, such subsequences can be extracted

from the plan when appropriate. Therefore, the MAcROP is a concise rep-

resentatio.n for a family of operators each of which can be described and

used by STRIPS as needed.

PLA

When STRIPS completes a plan--a new MAcROP--for accomplishing

a desired task, it turns the MACROP over to PIANE--the executive for
carrying out plans. Now, PLAEX has available to. it all the info.rmation

in a MACROP. This co.nsists not only of the names of the action routines
to be called in sequence, but also the expected effects of each routine.

PLAEX calls one routine at a time and, after each routine has finished

its task, control returns to PLANE to decide what to do. next. PLAEX

does not call the next routine in sequence until it has verified bath that

the previo.us routine has acco.mp1ished its mission and that the next routine
is still required. If for any reason some routine does not accomplish its

intended purpo.se or accomplishes so.mething different, PLAEX is free to

rearrange the order in which actio.n routines are called in order to achieve

the desired result mare efficiently. PLAEX can also. notice, at an appro-
priate early point, that the plan is no.t working and either call STRIPS

again or abandon the entire project and ask for help from a' human at

Teletype.

Error Recovery

As just mentioned, PLAEX monitors executions of plans and can

attempt to. adjust progress and recover from errors at the highest level.
In addition, each IIA may have a variety of mechanisms for predict ing,

testing, and recovering fro.m errors that may be produced while that ILA

is operating. Such errors are invisible to higher-level routines and

PLAEX, far example, wo.uld never be aware of them, provided the ILA that

detected the error was capable of correcting it. One example of this type
of error occurs when an unkno.wn object is bumped into by the rabat.

NAVT has planned a route avoiding all kno.wn obstacles and in the course

of traversing that route the robot bumps into a new object, NAVTO can be

smart eno.ugh to back up, add the newly disco.vered object to the model,

and plan a new route to the goal by going around that object.

Information from the camera can also be very useful for recover-

ing from or avoiding errors. The present system keeps in the robot t s

mo.de1 an estimate of the error in the robot' s knowledge of its po.si tion.
Every time an LL moves the robo.t, that error estimate is increased. Any

LLA that makes use of the information specifying the robo.t t s current

posi tion first checks that the error estimate of that po.si tio.n is wi thin
an allowable tolerance. I f it is no.t, the visual-process ing routine,
LADMA, is called. LAMA is a special-purpo.se vision ro.utine that

takes a picture of the closest "landmark --that is, an easily recognizable

point in the roam such as a corner or the edge of a do.or jamb--and uses

measurements made in that picture to update the robot' s current position

and then to reduce the error estimate of the kno.w1edge of that position.

Shakey the Robot: Future Versions

Having achieved the plateau of a second complete robo.t system (j ust

described) we are now lo.oking toward the future and listing requirements

and research problems for our next few years ' efforts.

Scene Analysis

Our picture-processing programs have evolved during these past

five years from complex but largely undirected operations, such as tho.se

of Roberts, through very simple but highly directed analysis algorithms,

such as the decision trees, to the current system in which the visual-

analysis process has been relegated to highly specialized subo.rdinate

routines such as LADMAK. Our future work in perceptio.n will proceed

in two. directions. First, we feel that the use o.f light intensity obtained
from a TV camera as our only source of data is restrictive. We are begin-

ning to experiment with the use of depth and color as additional sensory

dimensions. Second, we feel that the analysis of sensory data is a prob1em-
solving task and, therefore, the senso.ry-perception and the problem-solving

compo.nents of a robot system must be better integrated. We are just
beginning to explore haw this can be done.

Prob1em Solving

We are pleased with the success of STRIPS and PLA for the
classes o.f problems that we have considered thus far. However, the nature
of the problems we have co.nsidered and the nature of the experimental do.main

have all been rather restrictive. Many pro.b1ems are difficult to pose in

the form of state descriptions. Far example, "go down the hall and take

a picture through every open doorway" canno.t be defined by a single state

predicate, unless we use same awkward and unsatisfying coding tricks.
Therefore, we must define richer languages far stating prob1ems--and this
means reo.pening the question of what is a problem, as opposed to. an

algorithm for solving it.
plan , as we now use it, is always a linear sequence of operator

calls. For solving problems like "go dawn the hall

...

II we should be able

to construct plans with loo.ps. How difficult will it be to generate

plans that contain such conventional programming features as loops and

condi tiona1 branches? A plan of acti vi ty for a robot resembles, in many
ways, a pro.gram of instructions for a computer. One area we wish to

explore is the applicability of the problem-solving methods we have been

studying to the automatic construction of computer programs.

Thus far we have been wo.rking in a static experimental environ-

ment in which a single robot vehicle is the only active element. We plan

very so.on to begin studying problems involving dynamic environments--
that is, environments that may change from time to time without the knowledge

of the robot and may even contain mo.ving objects. We will also be interested

in the problem of two o.r more robots co.o.perat ing with each other while under

the control of a single computer or, alternatively, while being operated

independently so. that they can only perceive each other s acti vi ties through

appro.priate senso.rs.

Implementation Too.1s

All of our work thus far has been developed in a time-shared

computing environment using a combinatio.n of LISP and FORTRA programing

languages. A new generatio.n of programming languages for implementing

problem-salving systems is now becoming available. Languages such as

PLAR will allow the system designer to think in terms of parallel
processes, coo.perating coroutines, "demo.ns " monitoring the progress of

various pro.grams, and theo.rem-proving and heuristic-search procedures
imp1ici t1y built into the language. The usefulness of these new kinds of
too.1s for designing and building robo.t systems remains to be explored.

App1ications for Industry

The wo.rk discussed above has been essentially lang-range, theo.retica1

research--fundamenta1 studies into the nature of intelligence and perception

and haw they may be emulated by automatic systems. We have gained consider-

able knowledge of problem-solving and perceptual systems and have just begun

to exp1o.re how these systems can be coupled to physical devices in the real
world.

On the other hand, industry has recently been developing a variety

of sophisticated physical devices. These devices include numerically
controlled machines, "te1eo.perators " or remotely controlled slave devices,

and programed manipulators. These devices are all striking in that they

have considerable dexterity and strength but virtually no. perceptual or

problem-salving ability.

The time appears ripe to marry these two. lines of development.

believe that by borrowing even the most trivial aspects of perceptual and

decisio.n-making capabilities from the research 1aporato.ries and integrating
them with existing systems for visual inspection and materials handling

one could very quickly produce automated systems of much greater value

than any in use today. At SRI we have recently begun a development pro.gram

to exp1o.re such po.ssibili ties.

10.

REFERENCES

M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geo.metry (The MIT Press, Cambridge, Mass., 1969).

L. G. Roberts, "Machine Perception of Three-Dimensio.nal So.lids, " in
Optica1 and E1ectro-Optica1 Information Processing , pp. 159-197,

J. T. Tippett et a1., Eds. (The MIT Press, Cambridge, Mass., 1965).

C. R. Brice and C. L. Fennema, "Scene Analysis Using Regions,
Artificia1 Intelligence , Vol. 1, No. 3, pp. 205-226 (American Elsevier
Publishing Company, New York, NY, 1970).

A. Guzman, "Decomposi tion of a Visual Scene into Three-Dimensio.nal
Bodies, " Proceedings FJCC, pp. 291-304 (December 1968) .

M. B. Clowes, "On Seeing Things, Artificia1 Intelligence , Vol. 2,
No. 1, pp. 79-116 (North-Holland Publishing Company, Amsterdam, The

Netherlands, 1971).

D. A. Huffman, "Impassible Objects as Nonsense Sentences, " in Machine
Inte1ligence 6 , pp. 295-323, B. Meltzer and D. Michie, Eds. (Edinburgh
University Press, Edinburgh, Scotland, 1971).

7 . G. Ernst and A. Newell, GPS: A Case Study in Generality and Problem
Solving (ACM Monograph Series, Academic Press, New York, NY, 1969).

C.. Green, "Application of Theorem Proving to Problem Solving,
Proceedings IJCAI (The Mitre Corpo.ration, Bedford, Mass., 1969)

L. S. Coles, "The Application of Theo.rem Proving to Information
Retrieval, Proceedings Fifth Hawaii International Conference on

System Sciences, Honolulu, Hawaii, January 1972.

C. A. Rosen, "An Experimental Mobile Automaton, Proceedings American

Nuclear Society Eighteenth Conference on Remote Systems Techno.1ogy
Washington, DC, November 1970.

11.

12.

13.

R. E. Fikes and N. J. Ni 1sson, "STRIPS: A New Approach to the
Application of Theo.rem Proving to Problem Salving, Artificial
Intelligence , Vol. 2, Nos. 3/4, pp. 189-208 (l971).

R. E. Fikes, ''Monitored Execution of Robot Plans Pro.duced by STRIPS,
Proceedings IFIP Co.ngress r 71

, Lj ub1j ana, Yugoslavia, August 1971.

c. Hewitt, "PLAER: Language for Proving Theorems in Robo.ts,
Proceedings IJCAI (The Mi tre Corporation, Bedford, Mass., 1969).

