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Abstract

Inner holes, artifacts and blank spots are common in microarray images, but current image
analysis methods do not pay them enough attention. We propose a new robust model-based
method for processing microarray images so as to estimate foreground and background intensi-
ties. The method starts with a very simple but effective automatic gridding method, and then
proceeds in two steps. The first step applies model-based clustering to the distribution of pixel
intensities, using the Bayesian Information Criterion (BIC) to choose the number of groups up
to a maximum of three. The second step is spatial, finding the large spatially connected compo-
nents in each cluster of pixels. The method thus combines the strengths of histogram-based and
spatial approaches. It deals effectively with inner holes in spots and artifacts. It also provides
a formal inferential basis for deciding when the spot is blank, namely when the BIC favors one
group over two or three. In experiments, our method had better stability across replicates than
a fixed-circle segmentation method or the seeded region growing method in the SPOT software,
without introducing noticeable bias when estimating the intensities of differentially expressed
genes. An R software package called spotSegmentation implementing the method is being
made available through the BioConductor project.
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1 Introduction

Microarray technology provides a useful tool to assay the expression of a large number of genes

simultaneously. The DNA obtained from the genes of interest is printed on a glass microscope slide

by a robotic arrayer. In the two-color array, the cDNA extracted from the experimental and control

samples are first labelled using the Cy3 (green) and Cy5 (red) fluorescent dyes. Then they are mixed

and hybridized with the arrayed DNA spots. After hybridization, the arrays are scanned at the

corresponding wavelengths separately to obtain the images corresponding to the two channels. The

fluorescence measurements are used to determine the relative abundance of the mRNA or DNA in

the samples. However, the quantification of the amount of fluorescence hybridized is affected by

things that happen during the manufacturing of the arrays, such as perturbations of spot positions,

irregularities of spot shapes, holes in spots, unequal distribution of cDNA within spots, variable

background, and artifacts. Ideally these events should be recognized when they occur, and the

estimated intensities adjusted to take account of them.

Several commercial and research image processing packages have been developed for analyzing

microarray data. For segmentation, the existing methods can be grouped into four categories,

namely fixed circle segmentation, adaptive circle segmentation, adaptive shape segmentation and

histogram segmentation, as reviewed by Yang et al. (2002). Fixed circle segmentation assumes

that the spots have a circular shape and fits a circle with a fixed radius to all the spots. It was

probably first implemented in ScanAlyze (Eisen 1999). Spot-on, a customized software written at

the University of Washington (Spot-On Image, developed by R. E. Bumgarner and Erick Ham-

mersmark), also implements this algorithm. Adaptive circle segmentation improves the method by

allowing the radius of the circle to be adjustable. However, a circular spot mask provides a poor

fit to irregular spots or donut-shaped spots with inner holes, which are often seen in microarray

images.

Several recent developments belong to the class of adaptive shape segmentation. The seeded

region growing approach (Adams and Bischof 1994) is used to segment microarray images in the

SPOT software (Yang et al. 2002). The foreground and background are grown from two initial

seeds; this method can adapt to various shapes of spots. Histogram methods are intensity-based,

and use a target mask which is chosen to be larger than all spots. The pixels are classified as

foreground or background using thresholds from the histogram of pixel values within the masked

area. Histogram methods do not use any spatial information, and so the resulting spot masks are

not necessarily connected. Ahmed et al. (2004) provide evidence that, although histogram methods

do not take spatial aspects into account, they yield better intensity estimates than other methods.

Many current methods have difficulties with donut-shaped spots, artifacts such as scratches,

and blank spots, all of which are common in practical microarray work. When the spot is donut-

shaped, many current methods identify the outer contour of the spot as the mask; this eads to

downward bias in the estimated intensity. Another common problem is that a foreground is always
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generated even when no spot is present. This tends to inflate the variance of the estimates.

In this paper we propose an approach to image segmentation and intensity estimation combining

two simple steps: model-based clustering of pixel intensities, and spatial connected-component

extraction. We start by using a very simple automatic gridding method. We then apply model-

based clustering to the pixel intensities, which allows us to estimate the number of groups in the

target area, and hence provides a formal basis for determining whether or not a spot is present,

namely when the number of groups estimated is equal to one. Our final spot consists of the

large connected components of the foreground cluster of pixels. An R software package called

spotSegmentation implementing the method is being made available.

By itself, model-based clustering of pixels is a histogram-based method. Thus our method

combines the strengths of the histogram method documented by Ahmed et al. (2004) with a

simple spatial step that ensures as much as possible spatial coherence of the resulting estimated

spots. It handles donut-shaped spots well because the estimated spots can easily be of this form.

It deals effectively with artifacts such as scratches because they get classified as a separate group

of pixels and are not included in the foreground or background intensity estimates. Perhaps most

importantly, it deals explicitly with blanks, i.e. locations on the slide where there is no spot; this

is something that few other current methods do. In experiments we found the results to be more

stable than those from either the fixed-circle method or the region seeded growing method, without

introducing substantial biases. We did our experiments on two-color arrays, but the method is

generic and can be extended to other types of array.

The term “model-based segmentation” has been used to describe methods based on the assump-

tion that the areas of interest follow a parametric form (e.g. Bergemann et al. 2004). Fixed-circle

and adaptive circle methods are of this type. However, our method does not make this rather

restrictive assumption. Instead, our method is called “model-based” because it is based on model-

based clustering of the pixel intensities. It is very flexible in terms of the shape of spot that it can

accurately recover.

In Section 2, we describe our image segmentation method, including automatic gridding, model-

based clustering of pixels, spatial connected-component extraction, and final estimation of fore-

ground and background intensities. In Section 3 we give the results of applying our method to

microarray images from an HIV infection experiment. The results are compared with those from

fixed-circle segmentation as implemented in Spot-on and seeded region growing as implemented

in SPOT. In Section 4 we describe the R software package, spotSegmentation, implementing the

methods.

2 Methods

Our method consists of several simple steps: automatic gridding, model-based clustering of pixels,

and spatial connected component extraction. Figure 1 gives an outline of the whole procedure in

flowchart form. We now describe each of the steps in turn.
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Spot is blank
Background: group mean

One group?
No Yes

, foreground = background

Form sum of intensities
for each pixel

with <=3 groups
Model−based clustering of pixels 

components of each cluster
Find spatially connected

Automatic grid finding

Foreground: Brightest connected component
Background: Darkest connected component

Output foreground, background

by size: <= 100 pixels
Threshold connected components

Figure 1: Outline of Model-based Segmentation.

2.1 Automatic Gridding

In order to segment the image, we must first identify the location of each spot. This process is called

gridding or addressing. A microarray typically consists of several blocks with the same layout. The

print-tips on the arrayer are normally arranged in a regular array. Under perfect conditions, the

spots in each block locate in an evenly-spaced lattice corresponding to the layout of the print-tips.

However, the variation during the printing of the array will cause the exact locations of spots to vary

from the prespecified parameter. Even if the irregularities are slight, they can result in significant

irregularity in the image, and hence have to be corrected.

In order to locate the spots, we do not need to find their centers, but rather the edges of the

target mask, i.e. the rectangle containing the spot. As long as the rectangle contains only the

pixels from a single spot, it is a valid target mask.

Our algorithm is as follows:

• Sum up the intensities across the pixels in each row and each column.

• Find the local minima of the summed intensities using a sliding window with span approxi-
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mately equal to the width of a typical spot.

This method is extremely simple and does not require human interaction. The only control

parameters to be specified are the number of spots in each row or column (as specified by the array

manufacturer), and the size of the sliding window. A crude estimate using the known number of

rows and columns suffices for the window size in the arrays we have used.

Figures 2 and 3 show the results of applying the method to a 12 × 32 subarray from the HIV

experiment dataset we will describe later. Figure 2 shows the summed intensities; the valleys

correspond to the grid lines. Figure 3 shows the resulting grids; this captures the locations of the

spots well.
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Figure 2: Row (column) Sum of Intensity and Grid on a 12 × 32 Subarray. Because the spots
are located loosely on a rectangle grid, the row (column) sums present a peak-valley pattern, with
peaks corresponding to the average center of spots on the row (column) and valleys the delimiters
of spots. Grids are placed at the valleys of the curves.

2.2 Model-Based Clustering of Pixels

The gene expression level is proportional to the pixel intensities of a spot. Thus pixels that are

in the spot or foreground should have similar intensities, and pixels that are in the background

should also have similar intensities. In addition, pixels that belong to an artifact such as a scratch

that is neither spot nor background will tend to have intensities that are different from either.

As a result, clustering the pixel intensities makes sense as an approach to segmentation; this is

the idea underlying histogram-based methods. Here we apply model-based clustering to the pixel

intensities.

In model-based clustering, data are viewed as coming from a mixture density f(x) =
∑K

k=1
πkfk(x).

Here, πk’s are the mixing proportions (0 < πk < 1 for all k = 1, . . . ,K and
∑

k πk = 1), and fk is
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Figure 3: Array image with grids overlaid.

the density of the observations in group k. In the Gaussian mixture model, each component k is

modeled by the multivariate normal distribution with mean µk and covariance matrix Σk:

φ(xi;µk,Σk) =
exp{−1

2
(xi − µk)

T Σ−1

k (xi − µk)}
√

det(2πΣk)
. (1)

The likelihood of the data for a Gaussian mixture with K mixture components is

Lmix =

n
∏

i=1

K
∑

k=1

πkφ(xi;µk,Σk). (2)

For reviews of model-based clustering, see McLachlan and Peel (2000), Fraley and Raftery (2002).

For a fixed number of clusters K, the model parameters pk, µk, and Σk can be estimated using

the EM-algorithm hierarchical model-based clustering step (Dasgupta and Raftery 1998; Fraley and

Raftery 1998). The number of groups, K, can be estimated by maximizing the Bayesian Informa-

tion Criterion (BIC). Model-based clustering is implemented in the MCLUST software (Fraley and

Raftery 1999; Fraley and Raftery 2003), which is available at http://www.stat.washington.edu/mclust

or http://cran.us.r-project.org.

To combine the signals from the two channels, the red and green intensities are summed. In-

spection of the resulting histograms, such as that in Figure 4, suggest that it is reasonable to assume

that the distribution of the summed intensities is approximately a mixture of Gaussian densities.
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Figure 4: Distribution of spot intensity

We have some prior information about the number of groups of pixels present in the images.

Typically, background pixels would be one group and pixels in the spot or foreground would be

another. In addition, if an artifact is present, or if the spot is donut-shaped and has an inner

hole, the corresponding pixels would form a third group. Thus in most cases we would expect the

number of groups, K, to be at most 3. We use BIC to choose K, but restrict the possible choices

to K ≤ 3.

We have three cases: K = 1, K = 2 and K = 3. The case K = 1 would correspond to the

situation where there is no spot, i.e. a blank, and our method provides a principled statistical basis

for detecting this situation. The case K = 2 would arise in the typical situation where there is a

spot, with background. And K = 3 would be chosen when there is a spot and an artifact or an

inner hole.

2.3 Spatial Connected Component Extraction and Intensity Estimation

Artifacts often take the form of small disconnected groups, and so a threshold on the size of the

connected components in a cluster can identify clusters formed by artifacts in many cases. We apply

a 4-neighbor connected component labeling procedure (Haralick and Shapiro 1992) to the clusters

to divide them into spatially connected components. We retain only the connected components

that are a given threshold in size and discard the other components. The default threshold we

use is 100 pixels, which is about one-sixth of the typical size of a spot on the arrays used in our

examples.

The brightest and darkest clusters passing the threshold are classified as foreground and back-

ground, respectively. If only one cluster passes the threshold, we conclude that there is no spot

and that the location is blank. Our estimate of foreground intensity in the Cy3 channel is the

mean of the pixels in the foreground cluster. Similarly for the Cy5 channel foreground, where the
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same pixels are in the cluster for both channels. The background intensities of the two channels

are estimated in the same way.

In this way, we leave out the disconnected pixels for intensity estimation. Also, when three

clusters are identified, we also exclude the intermediate cluster of pixels, which often consists of

“suspicious” pixels, such as an inner hole, an artifact, or a blurry rim.

The estimated signal is Is = If − Ib, where If and Ib are the mean intensities of the foreground

and background, respectively. The true signal is always nonnegative, but occasionally the estimated

signal, Is, is negative. In this case, it is reasonable to assume that the true intensity is small but

positive. When this happens, we therefore set I s to be equal to the 5th percentile of the spot signals

on the array.

3 Results

We applied our proposed method to several microarrays which had been produced to identify the

genes differentially expressed in HIV infected cells. The expression levels of 4068 cellular RNA

transcripts were assessed in CD4-T-cell lines at 24 hours after infection with HIV virus type 1.

Here we consider 4 replicate subarrays, each consisting of 12 × 32 = 384 genes, including three

HIV-1 genes used as positive controls. All the four replicates shared the same DNA samples. Two

of the replicates were from a dye-swap experiment in which the dyes were switched between the

two channels; this can be helpful for canceling out the dye-binding effects. Further details can be

found in the original paper (van’t Wout et al. 2003). The image files can be found at

http://expression.microslu.washington.edu/expression/vantwoutjvi2002.html. In these microarrays,

a large number of spots have donut shapes with one or more holes in them. We compare our method

with two other methods representative of the range of methods available: the well-known software

package SPOT, which segments using seeded region growing, and a customized software written at

the University of Washington (Spot-On Image, developed by R. E. Bumgarner and Erick Hammers-

mark), which implements fixed circle segmentation and estimates background using four smaller

circles in the corners of the rectangle.

Figures 5 - 10 show the results for different individual spots. Figure 5 shows an ideal case with

a single regularly shaped spot and no artifacts. There SPOT and our method both perform well,

but the fixed-circle method of Spot-on is inaccurate, missing some of the spot and including some

of the background in it.

Figure 6 is an example of a donut-shaped spot. The fixed-circle method again misrepresents

the shape of the spot. The seeded region growing method of SPOT takes the spot to be all the

pixels inside the outer contour of the donut shape. This includes the inner hole, which is darker

than the spot, and so may lead to intensity estimates that are biased downwards. Our method

correctly identifies the donut shape. The inner hole is identified as a third cluster, and the pixels

in the inner hole are not included in the calculation of either foreground or background intensity.

Figure 7 shows a different kind of donut shape, with a small inner hole that is brighter than the

9



(a) Our method (b) Spot (c) Spot-on

Figure 5: Segmentation results: Good

(a) Our method (b) Spot (c) Spot-on

Figure 6: Segmentation results: Donut

spot. The fixed-circle method again does not perform well. SPOT identifies the small inner hole as

the spot. Our method, in contrast, identifies the donut shape of the spot. The inner hole is brighter

than the main body of the spot, and it is identified as a third cluster, but it is not identified as the

foreground because it is too small to pass the threshold of 100 pixels.

Figure 8 includes several small artifacts, one or two inside the spot, one at the bottom, and

perhaps one on the left. The fixed-circle segmentation includes most of the artifacts in the spot.

SPOT includes the inner artifacts in the spot, and misses part of the spot. Our method finds the

shape of the spot correctly and excludes the artifacts.

Figure 9 shows a blank spot with a small artifact. The fixed-circle method finds a spot anyway.

SPOT also finds an oddly-shaped area which does not correspond to any real spot. Our method

correctly infers that there is no spot in this rectangle. In fact, BIC chose K = 2 in this case, with

10



(a) Our method (b) Spot (c) Spot-on

Figure 7: Segmentation results: Donut

(a) Our method (b) Spot (c) Spot-on

Figure 8: Segmentation results: Artifacts

the second cluster being the small artifact, but it was excluded because it was too small, below the

100-pixel threshold.

Figure 10 shows another blank spot. Again, the fixed-circle method and SPOT identify areas

which do not correspond to any real spot, while our method concludes that no spot is present. In

this case, BIC chose K = 1, so the conclusion that there is no spot present was clear-cut.

We now turn to more global evaluation of the different methods. Figure 11 displays the seg-

mentation results of part of the subarray using our approach (left column), and the results from

SPOT (right column). Our criterion is stability of estimated expression levels across replicates. We

evaluate the stability of intensity estimation as the variation in the logratio estimate, l = log2 I1/I2,

across replicates, where I1 and I2 are the signal estimates from channel 1 and 2, respectively, as
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(a) Our method (b) Spot (c) Spot-on

Figure 9: Segmentation results: Blank

(a) Our method (b) Spot (c) Spot-on

Figure 10: Segmentation results: Blank

defined in Section 2.3. Stability is measured by the sum of squared differences, defined as

SSD = ΣN
i=1Σ

R
r=1(li,r − l̄i)

2, (3)

where N is the total number of spots on the array, R is the total number of replicates, li,r is the

log ratio for the ith spot on the rth replicate, and l̄i is the mean of the logratio across all replicates

for the ith spot. If no foreground is identified, I1/I2 is set to 1. We apply median normalization to

our estimate as well as the estimates from SPOT and Spot-on before calculating the log-ratios.

Table 1 shows the comparison of stability between the three methods. Our method demonstrates

better stability than both the fixed-circle method of Spot-on and the seeded region growing method

of SPOT. In the 12×32 array, the SSD of our method was 51.5% lower than that of the fixed-circle

method and 20.6% lower than that of SPOT.

A good method not only has less variation, but also does not bias the estimated expression
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(a) Model-based segmentation (b) Seeded region growing

Figure 11: Segmentation results for a 12 × 8 subset of the array.
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Table 1: Sum of Squared Differences of Estimates of Logratios for 384 Genes Across 4 Replicates.
SSD %reduction

Model-based segmentation 657.02 -

Seeded region growing 826.99 20.6%

Fixed circle 1354.10 51.5%

levels of highly expressed genes downwards. A method could achieve small variation by reducing

the estimated expression levels of all genes, including those that are differentially expressed, but

this would not be a very useful method. Because HIV genes are present only in the HIV infected

sample and are highly expressed in the HIV infected sample, they can be used as positive controls to

check whether estimated expression levels of highly expressed genes are biased downwards. There

are three HIV genes in the subarray. Table 2 shows the average of the estimated logratio across the

four replicates for these three genes. The estimates from our method are very close to those from

seeded region growing. They are a little smaller than those from fixed-circle segmentation, but this

is so much more unstable than our method that this does not seem to be of great concern.

Table 2: Average Logratios for the 3 HIV Genes across Replicates. The logratios (base 2) are
median normalized.

HIV1 HIV2 HIV3

Model-based segmentation -10.46 -11.62 -11.03

Seeded region growing -10.33 -10.10 -10.50

Fixed circle -12.81 -12.75 -12.87

As a final assessment, we carried out a subjective evaluation of whether the method was suc-

cessfully identifying blank spots (i.e. genes that were not expressed on the microarray). Human

eyes typically segment images better than machine vision, and so we compared the results from our

automatic computer method with those from a subjective evaluation by one of the present authors,

acting as a human subject. The subject examined the raw images of four replicates of a 12 × 8

subarray without prior knowledge of the machine segmentation, and coded the resulting 384 spots

into one of three classes:

• Not expressed: No visible spots in both channels;

• Questionable: No visible spots in one channel and questionable in the other channel, or

questionable in both channels;

• Expressed: otherwise

Table 3 shows the cross-classification of the subjective decision and the segmentation using our

method. The agreement is quite close: 85% for genes not expressed, and 98% for expressed genes.
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In addition, of the genes about which the human subject was unsure, our automatic method split

them fairly evenly, identifying 42% as not expressed and 58% as expressed.

Table 3: Cross-Classification of Subjective against Automated Assessments of 96 genes in 4 repli-
cates.

Automated Decision
Not Expressed Expressed % Agreement

Subjective Not Expressed 23 4 85
Decision Questionable 11 15 —

Expressed 5 326 98

4 Software

The methods described in this paper are implemented in the R language contributed package

spotSegmentation. The software consists of two basic functions: spotgrid, which determines

rectangles within cDNA microarray slides in which individual spots are located, and spotseg,

which determines foreground and background signals within the spots.

The spotgrid function is used to divide a microarray image block into a grid separating the

individual spots. It takes as input the intensities from the two channels, along with the known

numbers of rows and columns of spots within a block on a slide. The output is the row and column

locations defining a grid separating the individual spots. There is an option to display the grid

with the image superimposed.

Individual spots can be segmented using the function spotseg. It takes as input the intensities

from the two channels, along with the row and column delimiters of the spots within a block on

a slide (e.g., as determined by spotgrid). There is an option to display the various stages of

the segmentation process for individual spots, as well as to display the entire block of segmented

spots at the end of processing. Mean and median pixel intensities for the foreground and back-

ground for each channel and each spot can be recovered through the summary function applied

to the output of spotseg. The spotseg function requires the MCLUST package (http://cran.r-

project.org/src/contrib/PACKAGES.html) for the clustering phase.

The spotSegmentation package is being made available through the BioConductor project

(see http://www.bioconductor.org).

5 Discussion

We have described a two-step method for segmenting microarray images and estimating intensities.

The two steps are model-based clustering of pixel intensities, and spatial connected component

extraction. Each of the steps is simple to implement. The method provides a principled statistical

basis for determining whether or not a gene is expressed at a spot, and thus deals explicitly with
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blank spots. It also deals effectively with donut-shaped spots with inner holes and with artifacts. In

experiments it yielded results that were more stable across replicates than fixed-circle segmentation

or the seeded region growing method implemented in the SPOT software, without introducing

noticeable biases in the estimated expression levels of differentially expressed genes. We are making

available a software package in R, called spotSegmentation, implementing the method.

Recently, some clustering methods have been used for image processing of microarray data

(Bozinov and Rahnenführer 2002; Nagarajan 2003; Glasbey and Ghazal 2003). Bozinov and Rah-

nenführer (2002) used k-means and Partitioning Around Medoids (PAM) on the two-dimensional

vectors of the intensities, and Rahnenfürer and Bozinov (2004) improve on this by considering only

the pixels within the average spot shape, which turns out to be almost exactly a circle. Nagara-

jan (2003) used the same method, but only on the intensities from the green channel. Glasbey

and Ghazal (2003) considered a Gaussian mixture model for the two-dimensional vector of the

square root of the intensities. All of these methods consider only two clusters. As Bozinov and

Rahnenführer (2002) pointed out and we also observed, fixing the number of clusters to two can

mislead the clustering algorithm into taking the large brighter artifacts as foreground and combin-

ing the dimmer spot pixels into the background. It also excludes the ability to formally identify

blank spots provided in our method by the data-based choice of the number of clusters. Antonio

et al. (2004) used a clustering method that does not constrain the number of clusters, but in the

experiments reported it did not exclude the inner holes of donut-shaped spots.

For segmentation, QuantArray (GSI Luminomics 1999) applies a threshold to the histogram of

pixel values in a target region around a spot, ScanAlyse (Eisen 1999) uses a circle of fixed radius,

GenePix (Axon Instruments Inc. 1999) uses a circle with adaptive radius, and UCSF Spot (Jain

et al. 2002) uses histogram information within a circle. Liew et al. (2003) use an adaptive circle

method, while Bergemann et al. (2004) generalize this by using an adaptive ellipse. They flag inner

holes, but the user has to decide what to do with them when estimating intensities.

Steinfath et al. (2001) fitted a scaled bivariate Gaussian distribution to pixel values, but using

a robust fitting method. Brändle et al. (2003) described a robust fitting for the Gaussian spot

model using an M-estimator. Schadt et al. (1999) proposed an adaptive pixel selection algorithm

to remove pixels contaminated by noise.

Kim et al. (2001) used an edge detection method. They were aware of the problem of inner

holes and used a threshold of intensity to decide the eligibility of pixels as foreground. Hirata et al.

(2002) and Angulo and Serra (2003) used mathematical morphology. Their methods can deal with

blank spots, but not with spots with inner holes. Glasbey and Ghazal (2003) used a combinatorial

way to consider a variety of methods, including fixed circle, proportions of histogram, k-means

clustering with different preprocessing and different parameters. O’Neill et al. (2003) recreate the

background slide and subtract it. Their method deals effectively with global artifacts that involve

a substantial number of spots, but not with inner holes or more local artifacts.

Automatic gridding is necessary before applying our method, and any automatic gridding
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method could be used in combination with our segmentation approach. We have developed a very

simple technique for gridding, which is included in the spotSegmentation software. More complex

automatic gridding methods have been proposed by Jung and Cho (2002) who use nearest-neighbor

graph methods, Galinsky (2003) who uses Voronoi diagrams, and by Katzer et al. (2003) who use

a Markov random field approach, as well as by authors of several of the more comprehensive seg-

mentation methods mentioned above. Our automatic gridding method is much simpler, and we

have found it to be effective.
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