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DEPENDENT OBSERVATIONS

Evaggelos Geraniotis

Department of Electrical Engineering
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College Park, MD 20742

ABSTRACT

The problem of robust sequential discrimination from two dependent observation
sequences with uncertain statistics is addressed. As in Part I ({1]) of this study, which treated
asymptotically optimal sequential discrimination for stationary observations characterized by
m-dependent or mixing type of dependence, sequential tests based on memoryless nonlineari-
ties are employed. In particular, the sequential tests robustified in this paper employ linear test

n

statistics of the form S, = AY g(X;) + Bn, where (X;}%, is the observation sequence, the
i=1

coefficients A and B are selected so that the normalized drifts of S, are antipodal under the
two hypotheses, and the nonlinearity g solves a linear integral equation. As shown in Part I,
the performance of these tests is very close to that of the asymptotically optimal memoryless
sequential tests when the statistics of the observations are known. The above tests are
robustified in terms of the error probabilities and the expected sample numbers under the two
hypotheses, for statistical uncertainty determined by 2-alternating capacity classes for the mar-
ginal (univariate) pdfs and upper bounds on the correlation coefficients of time-shifts of the
observations sequence for the bivariate pdfs. Finally, the robustification of sequential tests
based on a test statistic similar to S, defined above is carried out for detecting a weak-signal in
stationary m -dependent or mixing noise with uncertainty in the univariate and bivariate pdfs.

This research was supported in part by the Office of Naval Research under contract N0O0014-89-J-1375 and in part by the
Systems Research Center at the University of Maryland, College Park, through the National Science Foundation's Engineering
Research Centers Program: NSF CDR 8303012.






1. Introduction

In Part I of this study [1], we addressed the problem of sequential discrimination between
two arbitrary stationary sequences of observations characterized by m-dependent or mixing
type conditions. The necessary for the development of memoryless sequential discriminators
statistics, namely the marginal and bivariate pdfs of the observations, were assumed to be
known. The discriminators derived in [1] employed memoryless nonlinearities and were
optimal among the class of such structures. Different types of sequential tests employing linear
or quadratic test statistics were considered and a minimization of the expected sample numbers
of these tests under the two hypotheses for fixed desirable error probabilities was carried out
with respect to the coefficients of the test statistics and the nonlinearities. The performance of
the various sequential tests and nonlinearities derived was evaluated via simulation for several
situations of practical interest encountered in radar discrimination and involving envelope

observations with p-mixing dependence.

Before discussing the problem addressed here and the contributions made by this paper
(which constitutes Part II of this study) we summarize the most relevant conclusions from Part
I (see [1]). These are the following:

(a) The sequential discriminators employing a linear test statistic of the form S, = AT, + Bn,

n
where T, = ¥ ¢(X;), {X;}/, is the observation sequence, A and B are coefficients selected so
i=1

that the normalized drifts of S, under the two hypotheses are antipodal, and the nonlinearity g
solves a linear integral equation, which depends on the marginal and bivardate pdfs of the
observation sequences under the two hypotheses (refer to equation (59) of [1]), perform only
slightly worse than the discriminators employing quadratic tests and nonlinearities g solving
the appropriate nonlinear integral equation (refer to equation (62) of [1]). The memoryless

discriminators with linear test statistics are easy to implement; we only need to solve a linear



integral equation, which is easily accomplished via discretization and reduction to a linear sys-
tem of equations, as discussed in Section 4 of [1], to obtain the optimal nonlinearity, and then
form the sum T, and the test statistic S, in a straightforward manner. In this paper, it will be
established that they are also amenable to robustification. The memoryless discriminators with
quadratic test statistics are optimal within the class of memoryless sequential discriminators
structures, because the quadratic processing that follows the formation of the sum T, is asymp-
totically optimal, as it corresponds to the likelihood ratio. Therefore, performance is comprom-
ised very little, if one uses the sequential discriminators based on linear test statistics and the
nonlinearity solving a linear integral equation.

(b) The sequential discriminators described in (a) provide significant gains in performance
(meaning that they achieve the same discrimination reliability faster, with fewer samples) when
compared to the i.i.d. sequential discriminators or to the block memoryless discriminators of
{2] (the companion paper to Parts I and II) for identical desirable error probabilities. This
justifies our recommendation for their use in situations characterized by m -dependent or mix-
ing types of dependence and our interest in robustifying them for situations characterized by

statistical uncertainty.

In this part of this study, we robustify the sequential discriminators above against uncer-
tainty in the marginal and the bivariate pdfs. The robustification may be necessary for many
situations of practical interest, in which the statistics of the observations are unknown or at best
partially known. The literature on the subject contains a considerable amount of research in
robust signal processing as attested by the references cited in the tutorial of [3]. However,
most of the work on robust detection is concermned with fixed-sample-size (or block) schemes.
The work of [4] constitutes of an exception; it considers robust detection of weak signals in

additive i.i.d. noise for uncertainty in the noise pdf within p -point classes.



This paper makes a twofold contribution. On the one hand, it robustifes the sequential
discriminators .of [1], which employ linear test statistics and nonlinearities solving linear
integral equations for two arbitrary stationary sequences of observations with m -dependent or
mixing type of dependence and uncertainty in the marginal and bivariate pdfs. Emphasis is
placed on situations that can not be characterized as weak signals in additive dependent noise.
As will be shown in the following section, the uncertainty class for the marginal pdfs is deter-
mined by 2-alternating capacities; this is a very general model that includes several popular
uncertainty models as subcases. The uncertainty for the bivariates is determined by bounds on
the correlation coefficients between time-shifts of the observation sequences. On the other
hand, this paper derives robust sequential detectors for weak signals in additive m -dependent
or mixing noise. Here the uncertainty on the marginal pdfs is of the e-contaminated or total
variation type, whereas the uncertainty in the bivariate pdfs is determined by bounds on the

correlation coefficients between time-shifts of the noise sequence.

Consequently, the first part of the paper, which is concerned with the robustification of
sequential memoryless discrimination schemes, extends naturally the work of [1] and [2] that
dealt with optimal memoryless sequential and block discrimination schemes, respectively, for
known observation statistics. The second part of the paper, which is concemed with robust
sequential memoryless schemes for the detection of weak signals, extends the results of [5] and
(6] for the robust fixed-sample-size detection of weak signals in additive dependent noise to
sequential detection schemes, while at the same time extending the results of [4] for the
sequential detection of weak-signals in i.i.d. noise to the case of dependent noise. Although [4]
deals with a detection problem, the weak signal is first estimated using Huber’s M -estimators
and then the estimate is used to form a likelihood ratio, on which a probability ratio test
(SPRT) with Wald’s thresholds is performed. In this context, since combined estimation and

detection are used, the process is somewhat complicated: not only the nonlinearity used in the



estimator needs to be derived, but also the estimate needs to be computed from the n observa-
tions for each step of the SPRT, as the latter progresses. The sequential detector proposed in
this paper does not rely on any estimation process; the task is accomplished with a simpler

structure. This comparison will be elaborated upon in the following.

Our approach is that of minimax robustness, according to which we derive sequential
discrimination schemes that guarantee a desirable level of performance in terms of the error
probabilities (false alarm and miss) and the expected sample numbers under the two hypotheses
for the least-favorable elements in the uncertainty classes (i.e., for marginal distributions in
capacity classes and bivariate distributions satisfying the bounds on the correlation coefficients)
and show that, for any other elements in these classes, the performance of the robust sequential

schemes is superior.

This paper is organized as follows. In Sections 2 and 3, we develop and analyze robust
sequential memoryless schemes for the cases of general discrimination from two arbitrary sta-
tionary dependent observations sequences and of the detection of a weak signal in stationary
dependent noise, respectively. In each of these two Sections, we first introduce the necessary
notation and the uncertainty classes for the marginal and bivariate pdfs of the observation
sequences or the noise sequence; then we derive expressions for the error probabilities and the
expected sample numbers under mismatch for the sequential test employed; finally, we derive
the robust sequential memoryless discriminators or detectors for the uncertainty calsses of

interest. In Section 4, a summary of the paper and conclusions are presented.



2. Robust Sequential Memoryless Discriminators
2.1 Preliminaries

As in [1] and [2] the general hypothesis testing problem of this paper is formulated as the

need to discriminate between the two hypotheses
He: X ~f for k=0,1, ey

where X = (X1, X, . . ., X,) denotes the vector of n dependent observations and f,{*)(X) the
n-dimensional joint pdf of X. For many situations of practical interest characterized by depen-
dence and non-Gaussian statistics £’ is hard or even impossible to obtain in closed form, as
density estimation in n dimensions can be a truly formidable task. Therefore, we resort to
models of dependence that are as non-restictive as possible and at the same time make the

analysis of discrimination schemes possible.

In [1] and [2], various models of dependence were reviewed. Here we cite only the most
relevant definitions so that we can introduce the necessary notation and make the presentation
in this paper self-sufficient. The simplest model of dependence assumes that, under both
hypotheses, the observations are stationary and m -dependent, meaning that (see [13]) the sta-
tionary data X; and X, are correlated with known correlation for /-] I < m, and independent
for 11—l > my, under hypothesis H,. The least restrictive dependence model of interest is

that of p-mixing which is characterized by
cov (XY} < ppp : (2a)

for all real X € Lo(A) and ¥ € Ly(B). X and Y are random variables measurable with
respect t0 A and B, respectively, where A is an event from X ! | the latter being the c-algebra
generated by the random variables {X{, X5, ..., X;}, and B an event from X7, which is the

c-algebra generated by the random variables {X;,,, Xj4n+1s--}. Pk are sequences of real



numbers, such that p, 2 0,3 n > oo, for k =0, 1. Equation (2a) implies the weaker but

more intuitive result
coVi (X1 X1 4n} S Prp (2b)
and represents a good model for a time series of data that are asymptotically uncorrelated.

The main component of the test statistic for the discriminators of [1] and [2] is of the

n
form T,(X) = ¥ g(X;), where the number of samples n is large (e.g., n > m;) and g is a

i=1
nonlinearity chosen to maximize a suitable performance measure. The means of T, (X) under

the two hypothesis H, and H 4 are given by nu, and s, respectively, where

e = E (g (X))} = [g0)fe(x)dx, k=0,1. 3)

E, denotes expectation under hypothesis H, and f,(x) is the corresponding marginal density.
The asymptotic variance of T,(X) wunder hypothesis H, is nc,?, where
of =1lim,_,.n"var, {T,} (k=0,1) is given by

my

0i(g) = var, (g X} + 2 Y cov (g X )g Xjs))
j=1

=E (X)) + 23 E (g X Dg Xjy1)} — Cm+DIE (g X DI (4a)
j=t

for m -dependent observations, and by

O8) = B (8 %) - (Ex (g G} + 23, [E s Gg Ky - (B (s XDIP]

j=1
for p-mixing observations.

In addition, T,(X) is asymptotically Gaussian distributed under hypothesis H, with
mean n, and variance no? cited above, provided that 67 >0 and some other conditions

hold. This follows from the validity of the Central Limit Theorem (CLT) for dependent



observations (see [13] and particularly the tutorial in [14], which provides CLTs for various

mixing types of stationary observations). For example, in the p-mixing case, the condition for a

CLT to hold is that the variance in (4b) is c,cz >0 and ¥ p, ,» < oo (see [12]). Actually, the
n=0

existence and validity of Central Limit Theorems for quantities like 7, formed from the depen-

dent observations of (1) constitutes the basis for the remainder of this paper.

The sequential test (SPRT) to be robustified is based on the linear test statistic of (33a) of
(1], which employs the nonlinearity solving the linear integral equation of (59)-(60) of [1].
The reasons for this choice of test statistic and nonlinearity have already been discussed in
Section 1 of this paper and in Section 5 of Part I [1]. The test statistic of interest is expressed

as

. _ 2o | 163+067
S = ZEX) == " (5)
61468 61+6§
and it is compared to Wald’s thresholds
4= lni <0 (6a)
1-6&

and

b= ln-l—-é-ﬁ >0 (6b)

where & and B are the desirable error probabilities for the SPRT. In (5), the means {1, and
varia.nc:es G,?, for k =0, 1, are obtained from (3) and (4a)-(4b), respectively, upon substitution
for the nonlinearity ¢ and the marginal and bivariate pdfs f; and (f{*"}:Z,. These pdfs (i)
may represent estimates of the statistics that govern the observation sequences under the two
hypotheses (k = 0, 1) and thus could be different from the actual statistics of the observations,

or (ii) they may be chosen to characterize the least-favorable conditions for the operation of the



test of (5) within certain uncertainty classes (as will be done in Section 2.2.) below. For nota-
tional convenience, we use fU(x,y), instead of £ "V*(x,y), heretoforth. We assume that

Y

these marginal and bivariate pdfs, from which § is determined, always exist and the
corresponding distributions (cdfs) are denoted by F r and F kU). We denote by F ,: the pair (15' s
(F9) j=1)-

The linear integral equation that £ solves was derived in [1] but is cited here for the sake

of completeness:

F1(x) = fox)

. —— ~ [ y)E@)dy =8 (x) 7)
S ey Mt s (
where

Ky = 2 OBDKGY) +wB oK) ®

w(GLB)F 1) + w(B.6)f o(x)

The kernels Iek(x ,y) for k =0, 1 are defined as

Ry = 3 [0 + 1900 20,0 - @) ©

j=1

for m-dependent observations; m, should be replaced by e for p-mixing observations. The

function w (x,y) is defined as

1—-x

wxy)=(0-x)In +x In (10

-y
and, as shown in [1] for desired error probabilities & and B, w(6.B) > 0 and w(B,&) > 0.
The operating conditions of the above test statistic are determined for our analysis, which
involves only first and second order statistics, by the actual marginal F,(x) and bivariate
{F k(")};l distributions (k = 0, 1) of the observations, which are generally different from the |

ones involved in (5) and (7)-(9). This situation is called mismatch and plays an important role



in the robustification of the test in (5). The above distributions may or may not have densities;
when they have pdfs, these are denoted by f, and f k(i). We use F ,: to denote collectively the
pair (Fy, {Fk(i)} j=1) of the actual cdfs of the observations under hypothesis H, (k =0, 1).
Clearly, the asymptotic means of the test statistic §,, under H, depend on F, and its asymp-

totic variances on F,: .

We now describe the uncertainty classes, to which belong the marginal and bivariates
pdfs necessary for solving (7) and obtaining ¢, as well as the pdfs characterizing the operating
conditions of the test statistic in (5). The uncertainty classes are identical to those considered in
[2] for the robustification of block memoryless discriminators. These classes constitute an
extension to those considered in [5] and [6] for memoryless block discrimination, in that the
classes for the marginals pdfs treated in this paper and in [1]-[2] are broader. Specifically, the
marginal pdfs are assumed to belong to uncertainty classes determined by 2-alternating capa-
cities, also termed Huber-Strassen classes. These classes include many popular models of
uncertainty, such as the e-contaminated classes (see [7]), the total variation classes (see [7]),
the band classes (see [8]), and the p -point classes (see [9]). These classes are characterized by
either a degree of deviation from a nominal (known) pdf or by known upper and lower bounds
(confidence limits) on the members of the class. They can be considered as special cases of a
general uncertainty model involving a capacity as the upper measure of each specific class.
Generalized capacities [10] can also be considered in this context. The basic theory of minimax
robustness for these was developed in [11]. The least favorable elements with respect to the
Bayes risk of these classes have been identified in closed form for each one of the four uncer-
tainty classes enumerated above. In Appendix A, we review the most relevant to our problem
results of this theory and provide a complete example based on the e-contaminated model. We

assume that the nominal distributions determining the uncertainty classes of (A-1) have densi-



10

ties (pdfs) and so do the least-favorable distributions singled out by Lemma 1 of Appendix A.

As in [5] and [6], the bivariate pdfs are assumed to belong to classes determined by
bounds on the correlation coefficients between time-shifts of the observation sequence

(assumed to be p-mixing in the less restrictive case), then

lcov, {g (X 1)g X 1,7)}
Sup
g var {g(X)}var {g X 14j)}

Srkj (11)

where g ranges over all measurable functions satisfying E, { P04 D} < e under hypothesis H,,
for k =0, 1. Since we assume stationarity, the denominator in (11) is var, {g(X)}. The
parameters r, ; can be obtained from the parameters p,; of the p-mixing process {X;}2;
under H,. As proved in Proposition 6 of [2], for processes {X;};2; with bivariate distributions
having diagonal expansions involving an orthonormal set of polynomials, the supremum of the
correlation coefficient of the process {g(X;)};2; in (11) can be directly related to the correla-
tion coefficient and the moments up to order four of the original process {X;};Z;. Examples of
processes with such expansions are those with Gausssian or Gamma distributions and processes

obtained from them via memoryless transformations.

For a given marginal distribution F,, equality holds in (11) for all g, if the bivariate dis-

tribution function is
F0y) = (1= 1 PP COF ) + 1y jFr (i AY) (123)

where xAy is the minimum of x and y. If F, has a density f,, then we may write for the

bivariate pdf
F@y) = A = r M O) + 1 fr(x)8G—y) (12b)

where 8(x) is Dirac’s & function. In [6] it was shown by two constructions that there exist

processes with bivariate distributions given by (12). Notice that, if the condition (11) is



11

satisfied, then (4a) and (4b) imply

Gi(g) < (1 42Ry) var, {g (X )} | (13)
my

with R, = 3'r, ;, where for the m-dependent model, m, is the number of samples it takes the
j=1

signal to decorrelate (meaning that covy {X,X;,,} = 0 for j > m,) under hypothesis H,; for
the p-mixing model, m; = o=. The equality is achieved in (13) for the cdfs defined by (12) and
thus (12) has maximum variance among all cdfs in the class defined by (11). In this formula-
tion, it tumns out that the value of the sum R, rather than the individual terms of the sum, are

relevant to the robustification that follows.
2.2 Robustification of Sequential Memoryless Nonlinear Discriminators

Before robustifying the performance measures of interest, we establish the following
result, which provides the error probabilities and the expected sample numbers of the sequen-

tial test under mismatch and is used extensively in the sequel.

Proposition 1: Let P, (8 F;) denote the probability of error under mismatch and E, {N | 8 ,F,)}
the required average sample number, when hypothesis H, (k =0, 1) is true. Let us assume
that the sequential test of (5), with thresholds 4 and b defined by (6a)-(6b) for desired error

probabilities & and B is employed. Then the following identities hold

2io(E Fo)
1~(e%) ¢ Fo)
268 F o)
B2GE Fo)

Py§ ,FE) == P0{§N up—crosses b before it down—crosses d } = (14a)

1-(e%~b)
2m@EF)
of@.F1)

M8 Fy)
8¢ F1)

1—(e?)

Pi(¢.F7) =P =P {Sy down—crosses 4 before it up—crosses b} = (14b)

1_(61;—&)

and



12

EolN 1 F o) = ~X0bie)
- p:()(g ’FO)

E({N1§.F} =:m—(&j%3—) (15b)
m(g.F1)

(152)

where

2(0— 83+1,67
T 0 =~ g,y - IO

16
6746, 624+6¢ (10)

and

SRR T(( T P LA ,
BLG.Fy) = mcz(g i) Qa7

for k =0, 1. In (16)-(17), W(g.Fy) = jg(x)dFk(x) = lim n"'E,{T,} denotes the asymptotic
n-—yoo

mean and 6%(§,F;) = lim n”'var,{T,) the asymptotic variance [obtained from (4a) or (4b)

n -0

for § and marginal/bivariate pair F;] under mismatch of T, = 3.8 (X;), when hypothesis H, is
i=1

true. The corresponding means and variances under matched conditions are denoted by
0, = W@ E) = W& .Fy) and 67 = 6*(¢ F;) = 6%(§.f;). In this case, the pdfs are assumed to
exist and have already been used in the definition of the test statistic in (5). The rest of the

quantities involved in (14)-(15) are the error probabilities under matched conditions

6=Py{Sy 2b) (18a)
and
B =P Sy <a) (18b)
and the quantity
O@E.F30) = (1 — x) =% 4 x In—*— (19)
y -3

which, under matched conditions, reduces to o(£,y;£) = w(£,y) defined by (10).
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Remark 1: Equations (14a)-(14b) and (15a)-(15b) are approximations which become tight,
when the desired probabilities of false alarm and miss are sufficiently small, so that a large
number of samples is required to achieve the desired reliability. If N (the required sample
number) is large under both hypotheses, then (i) the overshoot phenomenon present in Wald’s
approximations can be neglected and (ii) the diffusion (Brownian motion) approximation used

in the computation of the means and variances of the test statistic becomes accurate.

Remark 2: The numerators of (15a)-(15b) are usually positive for all situations of interest and

so are the denominators. These facts are established in Proposition 3 below.

Proof: Expressions (14a)-(14b) were obtained following similar steps, as for deriving (25a)-
(25b) of [1] (Part I), essentially by applying the Brownian motion approximation to the linear
test statistic of (5) operating under mismatch conditions. The expressions in (16) and (17)
actually represent the drift and the variance of the diffusion, i.e., for large n

E (S, ) = nm (8 Fy)
and

vary {.§n} = nB,f(g F) .

Furthermore, the expressions (15a)-(15b) can be obtained in a manner similar to that used
for deriving equations (15a)-(15b) and (18a)-(18b) of [1]. Specifically, by neglecting the

overshoot phenomenon and using Wald’s approximations we obtain that under mismatch

Ey{Sy} = ~ox0.B;00)

and
E Sy} = 0B.6:P) .

Moreover, we can easily show that, for N taking large values,
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Ey(Sy) = (@ .fL)EL(N)
Then (15a)-(15b) follows from a combination of the above equations.

Next we establish the first of the two main results of this section pertaining to the error

probabilities of the sequential test of (5).

Proposition 2: Consider the sequential test which is based on the thresholds 4 and b, obtained
from (6a)-(6b) for desired error probabilities & and [3 and on the linear test statistic of (5),
which employs the nonlinearity § solving (7)-(8) with the kemels of (9) modified according to

(12b) as

K (e.y) = 2R fr(6)8(x—~y ) — (142R)F L ) &) (20)

where F X 't ) are the cdfs (pdfs) singled out by Lemma 1 of Appendix A for the capacity
class of (A-1), and FY satisfy (12a), for all j and k =0, 1. Then this test is least-favorable

for the error probabilities under the two hypotheses, that is,
Pe(8.Fe) < P8 Fp) @1)
for any Fy = (Fy.,{F$’};2,) with F} in the capacity class Fj, of (A-1) and F,? satisfying (11).

In (21), P,(8.F;), the error probabilities under mismatch, are as defined in Proposition 1 by

(14a)-(14b).

Remark 3: This Proposition holds under the same conditions that Proposition 1. The issues
raised by Remark 1 about the accuracy of Wald’s approximations and the Brownian-motion
(diffusion) approximation are also valid here. (21) can be expressed as o < & and B < B in the
notation of Proposition 1. The result in (21) is valid under the assumptions (A4) stated in
Remark 4 below.

Proof: Proving (21) requires several steps. We start by using the fact that, since F k(i) satisfies



15

(12a), the equality in (13) is achieved, and we can write

67 = (@ F) = (1 + 2RI E Fy) . (22)
The quantity oz(g ,F,:) defined after (17) (for matched conditions) now depends only on the
marginal cdf ﬁk; this is equivalent to removing the dependence from the observations sequence

and modifying the kernels of (9) according to (12b), so that they are given by (20). We return

to this important point later in this proof. We use (22) to define

PR Fp) = P (8.F) 23)
where P,(8 ), for k =0, 1, is obtained from (14a)-(14b) by using (22) in (17) with F,
replacing F,. The left-hand-side in (23) depends only on the univariate (marginal) distribution
F ¢ Furthermore, because of (13)

62§ Fr) < (1 + 2R,)G* (S Fy) (24)

for any F, with bivariates F,9) satisfying (11), for j = 1,2, - - -, and arbitrary marginals F.
Therefore, since P, (¢ ,F,:) is an increasing function of 3,3(g F ,:) given by (17) and the latter is
an increasing function of 6%(g ,Fy), which is the left-hand-side of (24), we obtain

Pu(@F) <SPG .F) . (25)

In (25), P,(g.F,), for k =0, 1, can be obtained from (14a)-(14b) by using the right-hand-side
member of (24), for cz(g‘ ,F,’:) in (17). The right-hand-side of (25) now depends only on the

marginal cdf F,.

Upon substitution from (23) and (25) in (21), we find that (21) is valid, if the following

inequality holds
Py(8.Fy) < PL(2.Fy) (26)

for all the marginal cdfs F, in the class F, given by (A-1) and F, singled out by Lemma 1 of
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Appendix A. This inequality corresponds to the least-favorability condition for the new error
probabilities P, (g ,F,) obtained from the original ones P, (g .Fy) by removing the dependence

of the observations sequence through the use of the bounds of (11).

To prove the inequality in (26), we use some of the results on minimax robustness
reviewed in Appendix A. Several steps are involved in the proof. First we exploit the fact
that the mismatch error probability of (14a) is an increasing function of the normalized drift cg,
whereas (14b) is a decreasing function of the drift ¢, defined as ¢, = 2, (§.F;) / a,f(g Fo)
for k =0, 1, and, for the worst-case, as & = 2[[,(8.F;) / 6,3(g‘ ,ﬁ,:) Removing the depen-
dence in the observations through the bounds of (11) implies that £, = -1 and ¢, = 1. Using
this and the definitions (16)-(17) we establish that the inequalities of (26), for k =0, 1, are
equivalent to the following inequalities characterizing the mismatch and matched worst-case

situations:

_ W@ Fop@ FoII+2R )04 F JHWE F -1 F )I(14+2R )0’@ F o)

Co — — 5 S =1 =0¢(27a)
[ F D)8 F )J(1-4H2R )oX(g F o)
and
MG F ) F DIAH2R 0)0%(@ F o HIE F 1)-i(g F )J(142R )6*(8 F 1) .
cy= >1=2¢; (27b)

(g F )-8 F)I(142R DS*(E F y)

In (272)-(27b), the means and variances involved depend only on the marginal cdfs F . and F,
as has already been shown above. In particular, both the matched worst-case variances 6,? and
the mismatch variances c,f, involve the same factor (1 + 2R,) after the dependence in the
observations is removed in the expressions for P,(,F;) and subsequently in the expressions

for ¢;. Under the assumption that
W@ F) 2 pg Fo) (AD)

the conditions
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REFo) SuEFo and o%g,Fo) = cXE.Fy) (28a)
are sufficient for (27a). To prove this notice that, if (28a) holds, then
(8 JF (g F )](142R DG F DHIUE F o8 F DI(142R 0)6%(8 .F o)

< WG F (g F DIA+2R )X G F o) < [WE F (g F DII+2R 06X (8 F o)

= {18 F )& F)(142R )0 (g F o) < ~[1(8 F )8 F )l(142R )" F o)
and thus ¢y < -1 = ¢,. Similarly, the conditions

WEF)2p@F) and o*(@.Fy) 2 0%§.Fy) (28b)
are sufficient for (27b). To prove this notice that, if (28b) holds, then

(g F D~p(g F DIA+2R )0%(@ F o)+ F (8 F )I(142R )6%(§ F )

> W8 F ) F DI(1H2R )% (G F oHHIE F D-(E F )I(142R )o*(8 F 1)

> [W(E F )@ F )I(142R DoXE F 1) = [WE F )—Ug F )I(142R )oX($ F 1)
andthus c; 2 1=2¢4.

Now we show that conditions (28a)-(28b) are satisfied for the ¢ that solves the linear
integral equation (7), after the removal of dependence in the observations through the bounds
of (11). As already discussed, we substitute £, from (12b) for the f,¥° in (9) to obtain the
kernels K, in (20); after some further manipulations, the linear integral equation (7) becomes

F1x0) = fox)
w (0,B)(1+2R )F 1(x) + w (B.6)(1+2R )f o(x)

s — [ |2 ODARIF @S 107 + 0 BRGS0 o)
w (CLB)(1+2R Df 1(6) + w (B.6)(14+2R 0)f o)

}?(y)dy

or, equivalently, since £ scales both members of the integral equation,

&)

_S@-fw [Afl(x)fl(v) + Fo)f o)
Af1x) + fox) Af 1) + Fol)

}?@)dy (29)
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where

4 w (B + 2R)) ‘ 30
w(B,6)(1 + 2R )

An integral equation of the form (29) was solved in [6, Appendix C] for a different A. The

solution to (30) is shown to be

frie) _ m@)
Af1x) + fox)  Am,(x) +1

g(x)= (€29

for all x € Q (the sample space), where T, (x) = f 1x) f ofx) > 0 is the Huber-Strassen deriva-
tive defined in Lemma 1 of Appendix A of this paper.

In Appendix B, we use the dominance properties (A-3)-(A-4) of Lemma 1 of Appendix
A to prove that the sufficient conditions for the minimax robustness of the error probabilities in

(26) [namely (28a) and (28b)] are satisfied for the nonlinearity § given by (31).

Remark 4: Sufficient conditions for robustification are the assumptions (A2) and (A3) of

Appendix B, which can be summarized as
WEF)<0<u@.F) (A4-1)

where the two equalities are not allowed to hold simultaneously (resulting in

WEF1) — @ Fo) > 0) and
Ap@.Fp=1. (A4-2)

These conditions are not particularly restrictive for most practical situations. Specifically, A
[given by (30)] is typically a relatively large positive number (as is the case for the realistic
discrimination scenaria considered in Section 4 of [1]), because, under H {, the observations are
usually more strongly positively correlated than under Hg; this implies that (A4-2) is easily

satisfied. Furthermore, (A4-1) is satisfied in most situations in which a good choice of § has
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been made; it represents a good condition for adequate separation of the means (g ﬁk)
(k =0, 1) under the two hypotheses and, consequently, for a better performance of the sequen-

tial test of (5).

Finally, we prove the second main result of this section, which pertains to the

robustification of the expected sample numbers of the sequential memoryless test of (5).

Proposition 3: Suppose that the same sequential test as in Proposition 2 is employed. A nota-
tion identical to that of Propositions 1 and 2 is used. Assume that, besides the assumptions

(A4) of Remark 4, the following additional assumptions hold:
nl=B 5 pgpd=-0a-f (AS-1)
6 af

1@ 5 g L=0A-B

B &f

(A5-2)

Then the sequential test of (5) is minimax robust for the expected sample numbers under
the two hypotheses, that is,

E.(NIgF})<EJ(NIgF,}, for k=01, (32a)
and
E\{N1§.F 1) +EoNI1§.Fo} SE(NI§F }+Eo(NIgFo} SE((NIgF 1} +Eo(Nlg.Fo)

(32b)
for all marginal cdfs F, in the capacity class F; of (A-1) with bivariates Fk(f) satisfying (11)
and any measurable function g satisfying E, {g%(X )} < ee. F, (f,) is the cdf (pdf) singled out

by Lemma 1 of Appendix A with bivariates £,V satisfying (12a), for all j. The expected sam-

ple numbers under mismatch E, {N | § ,F, } are as defined by (15a)-(15b) of Proposition 1.

Remark 5: The assumptions (AS) are not so restrictive, since they can be easily satisfied, if

both ¢ and ﬁ (the desirable error probabilities under worst-case conditions) are smaller than
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1073, Therefore, our results are valid for sequential tests with high reliability; recall that,
according to Remarks 1 and 3, the sufficiently small probabilities of false alarm and miss are
necessary for Wald’s approximations and the diffusion approximation used in Proposition 1 to

be accurate.

Remark 6: The choice of the linear test statistic in (5) and of § solving the linear integral
equation of (29) restricts the validity of the right-hand-side inequality in (32b) to the classes of
sequential tests employing linear test statistics and solving integral equations. However, as
already discussed at the beginning of Section 4, these choices are well justified by practical

considerations.

Remark 7: The inequalities in (32) are not inequalities in the strict sense; this becomes clear
in the proof that follows immediately below and is related to the assumptions (A5-1) and (AS-
2). However, these inequalities are satisfied, for all practical purposes, when @& and B are
sufficiently small (refer to Remark 5). In particular, as & — 0 and B — 0, the required
number of samples N — oo, under both hypotheses, the thresholds 4 and b obtained from
(6a)-(6b) for the desirable error probabilities & and B become @ — — oo and b — oo, and (32)

reduces to the asymptotic result

EoiNolg Fo) = ——2— < Eg(N.1§.Fo) =

a
—_— 33
— (8 F o) — (@ £ o) (332)
Ex{NwlgﬂFl}=———é—SEl{Nwl§ﬁ1}=-—-——éT— (33b)
mE.Fy - MEF Y

E{NoIgF 1)+ EoiNulg Fo} SE{{Nol 8 F1} + EgiNGI§.F 0} SE((Nalg F 1) + EoiNw18.Fo)

(33¢)

The quantities involved in these inequalities are termed asymptotic speeds of the SPRT

(matched and mismatched ones), the asymptotic nature being denoted by the subscript e of the
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required sample number N.

Remark 8: As promised in Remark 2, the numerators of (15a)-(15b) are positive and so are
the denominators for the situations of interest in this paper. This definitely holds for the robust
sequential test of (5) and observations with marginal cdfs within the capacity classes of (A-1)

and bivariates satisfying (11), and is established in the proof below.

Proof: The right-hand-side in the inequality (32b) follows from the fact that § is selected to
optimize the sum of the average sample numbers under the two hypotheses (for desirable error
probabilities smaller than & and B) of the sequential test (5), when the cdfs are F e (k=0,1)
and the dependence of the observations has been removed through the bounds of (11) and (20).
Under these conditions, § solves (29), which is a version of the linear integral equation of (7).

A

In this context, § is the optimal such nonlinearity for a sequential test employing a linear test
statistic and for solving a linear integral equation. This optimization was discussed in detail in

Section 2 of Part I of this study (see [1]).
The left-hand-side inequality in (32a) is established as follows. We prove the result for
k = 1; a similar proof holds for k =0, as well. From (15b) and the definition of ®(£,y;x) in

(19) we can rewrite the left-hand-side of (32a), for & = 1, in the equivalent form

E(NIgF,) == By61 — B Inf(1 — &)1 = ByeP)] _ Inf(1 — By6]

(8 .F ) TOEGEFY
< Inl(1 =By _ Ini(1 - By - ini(1 - &)1 - BB _ g v ig.4) (34)
m@.Fo (& .Fy)

In proving (34), we first establish that the the numerators of (15a)-(15b) are positive for all ele-
ments in the uncertainty classes considered in this paper, as predicted in Remarks 8 and 2. We
use the facts that o < & and B < B, as established in Proposition 2 [refer to inequality (21) and

Remark 3], and that o + § < 1 to show that
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oB.6:B) = (B,6:0) = w(B,6) > 0 (35a)

and

o(6.B;0) = 0(6.B;6) = w(ep) > 0 (35b)
where the final inequalities come from the discussion following (10). Moreover, under assump-
tion (A4-1) and, as (28a)-(28b) hold for all F; in the capacity class of (A-1), we have that

200 — Ro)°67 o

GFY2mMEF)=
M .F ) 2 (8 .F ) 6% + 037

(36a)
and

20 - 0)*63 <0

(B Fo) SHy@Fo) =—
o(g F o) < W€ .F o) 0% 1 037

(36b)

where 67 = (1 + 2R,)0%(#.f,) and i, = u(g.f,), for k =0, 1, as defined in the proof of Pro-
position 2. This establishes that the denominators in (15a)-(15b) are strictly positive, for all

elements in the uncertainty classes of interest.

Returning to the proof of (34), we use (21), for k& =0, 1, which is equivalent to B < [3
the fact that condition (A5-1) holds for B sufficiently small, and (36a) to obtain the two
approximations in (34). Then the inequality in (34) follows from (36a), since all terms
involved are positive. Thus, although the initial numerators of (34) satisfy the opposite ine-
quality from the desirable one [see (35a)], assumption (A5-1) and the correct inequality
satisfied by the denominators [see (36a)] prevail to render the desirable inequality in the middle
of (34) and thus the left-hand-side of (32a). The left-hand-side of (32b) follows trivially.
Notice that, for the asymptotic results of Remark 7, the numerators of (33a)-(33b) are striclty
positive and the denominators satisfy the correct inequalities, so that the inequalities in (33a)-
(33b) are strict and do not require the assumptions (AS), which are trivially satisfied when

&— 0and f — 0.
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3. Robust Sequential Memoryless Detectors for Weak Signals
3.1 Preliminaries

In this section, we consider the following special case of (1) pertaining to the detection of

a weak signal in dependent non-Gaussian noise: we must decide between the two hypotheses

Hy X;=N;, fori=12,.,n (372)

and

Hy X;=N;+80, for i =1,2, ..., n, (370)
where {N;}/., is the noise sequence assumed to be m-dependent or p-mixing and 0 is a
known weak signal, i.e., 0 — 0.

As in [5], the stationary noise sequence {N;}/; has a symmetric marginal pdf

f (x) = f(—x) belonging to an e-contaminated uncertainty class (see [7]):
fx) =1 -ef°x) + & ) (38)

where f9x) is a known symmetric pdf (termed nominal), € (0 < € < 1) the known degree of

uncertainty, and f (x) an arbitrary symmetric pdf.

The following conditions are assumed to hold about the nonlinearity g and the marginal

pdf of the noise f:
glx)=-g(x), (39)
d Y
Sg U & = O)dxTlgn = [== (g () (¢ — Ol dr (40a)
lim fg(e)f " ~ 0p)dx = [g (x)f “(x)dx (40b)

for 9 » 0as! — oo,

lim E {[g(V, + ) - gNDPY =0, (40c)



24

Jg(o)f (x)dx <0 @D

and

03(g) = E([g(N DI} + 25 (g N g (N;,)) > 0 “2)
j=1

for a p-mixing stationary noise sequence; the oo in the sum of (42) should be replaced by the

parameter m for an m -dependent stationary noise sequence.

The bivariate pdf of the noise sequence, denoted by fY(x,y) for the pair (NN 1)y

satisfies an inequality similar to (11) (see [6]), for k = 0, that is,

lcov {g(NDgWN )} IE{s Vg N}l
up = sup 5 <rj
g var{g(Np}var {g(Nj)} ¢ E{[g(NDI?)

43)

where ¢ ranges over all measurable functions satisfying E {[g (N 1)]2} < oo. The parameters r;
can be obtained from the parameters p; of the p-mixing process {N;};Z; (refer to the discus-
sion following (11) in Section 2.1 for more details). We denote by f* the collection
(f {fD)2)). For a given marginal pdf £, equality holds in (43) for all g, if the bivariate pdf

takes the form

FO@y) =1 = rp)f Cf O) + r;f )8x-y) (44)

where 8(x) is Dirac’s & function. In [6] random processes {N;}72; with pdfs of the form (44)

have been constructed. Similarly to (13), if the condition (43) is satisfied,

63(8) < (1 + 2R)E {[g N D) (45)

where R = Y r;, for a p-mixing noise sequence; o should be replaced by m for an m-
j=1

dependent noise sequence. The equality in (45) is satisfied for all g, if ¢ is given by (44);

thus, the pdf of (44) has maximum variance among all pdfs in the class defined by (11).
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As discussed in [4], when defining the sequence 8, = c/Nl — 0 as [ — oo, we use an
index other than n (the sample number) for the sequential detection problem; thus, [ — oo

implies 8; — 0 and the required sample number for the SPRT N — oo, as well.

The sequential test (SPRT) to be robustified is based on the linear test statistic of (5) and
the thresholds (6a)-(6b) of Section 2.1 with the necessary adjustments for the weak-signal in
additive noise case. Actually, as proved in Section 2 of Part I (see equation (12) of [1] and the

subsequent discussion) the modified test statistic:

¢ _ P
S =—2-
0

Z &X;) - &n} (46)

i=1
is optimal within the class of SPRTs based on memoryless nonlinearities, in the sense that it is

n
a likelihood ratio sequential test performed on Y g(X;). To minimize the expected sampie
i=1

numbers under the two hypotheses for desirable error probabilities ¢& and B, the nonlinearity §
in (46) must maximize the asymptotic relative efficiency (ARE) [jg (x)f "(x)dx ]2/ [cg(g )] (refer

to equation (22) of [1]). Therefore, § is the solution to the linear integral equation
g =—LEL _ (R y)50)dy @7)
f&x)
where the kemnel K (x,y) is defined by

Ray)= TFP0y) + 70 2] (48)

j=1
for a p-mixing sequence; o should be replaced by m for an m-dependent noise sequence. In
(47) and (48) F (x) and {(fVx »¥)}j=1 denote marginal and bivariate pdfs of the noise sequence
that either represent estimates of the statistics of the noise equence and thus are different from

the actual statistics of the noise sequence, or may be chosen to characterize the least-favorable

conditions for the operation of the test of (46) within specific uncertainty classes [like those of
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(38) and (42)] as will be done in Section 3.2. below. For notational convenience, we use
f "= FAf (j)} j=1)- The above situation is clearly one of mismatch, since the operating condi-
tions of the above test statistic are determined by the actual statistics of the noise sequence,
namely the marginal pdfs f in the class (38) and the bivariate pdfs (f¥}:2; in the class (42),
which are generally different form the ones involved in (46) and (47)-(48). Finally, in (46) the

mean fly is given by
fo = [8()f (x — B)dx =0 (49)

whereas the mean fiy = jg (x)f (x)dx =0 since § and f are odd and even functions, respec-
tively. This last fact justifies why fl; is not present in (46), which was directly derived from

(5). The variance 63 is obtained from (42) upon substitution for § and f "
3.2 Robustification of Sequential Memoryless Detectors for Weak Signals

First, we evaluate the error probabilities and the expected sample numbers of the sequen-

tial test of (46) under mismatch.

Proposition 4: Let P,(g,f ") denote the probability of error under mismatch and Ej (N 18.1)}
the required average sample number, when hypothesis H, (k =0, 1) of (37a) or (37b) is true.
Let us assume that the sequential test of (46) with thresholds 4 and b defined by (6a)-(6b) for
desired error probabilities & and f, is employed. Then the following identities hold, under the

assumptions (39)-(42):

Py(g Fo) = o= Py(Sy up—crosses b before it down—crosses 4} = (50a)
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2LES)
= . . l{eg)céw')
Py(g.F,)=0=P,{Sy down—rosses d before it up—crosses b} = TG T) (50b)
1—(e“)6°2@f')

and

Eo(N 18.f)) —m (51a)

Ho(€.f)
E4{N18.5)) =—‘§ﬁ%ﬁ)—) (51b)
1 s,

where

mE.f)= —i—‘; [ue(g S) - —F-l-e-] (52a)

0
A fg

M€ .f)=~— ?6? (52b)
and

o e B, ,

God.f )= -6-; 237 . (53)

0

In (52)-(53), pe€.f) = Ig‘ (x)f (x — 8)dx = lim n'E{T,} denotes the asymptotic mean and
n—o0

o¥g.f") = lim n'E {IT,1?} denotes the asymptotic variance [obtained from (42) for § and
n—oo0

n

marginal/bivariate pair £~ ] under mismatch of T, = > £(X;). The corresponding means and
i=1

variances under matched conditions are denoted by flg = pg(2.f) and 63 = 6*@.f ). The rest

of the quantities involved in (50)-(51) are & and B the error probabilities under matched condi-

tions still given by (18a)-(18b), and the quantity w(£,y;x) defined by (19).

Remark 9: Remarks similar to Remarks 1 and 2 made for Proposition 1 are valid here. Also,

the proof of Proposition 4 is very similar to that of Proposition 1 and is omitted.
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Next we establish the first of the two main results of this section pertaining to the robust-

ness of the sequential test of (46) with respect to the error probabilities.

Proposition 5: Consider a sequential test based on the thresholds 4 and b, obtained from
(6a)-(6b) for desired error probabilities & and B and on the linear test statistic of (46), where
the nonlinearity § solves (47) with the kernels of (48) modified according to (44) as
R(xy)=2Rf (x)8x-y) (54)
and is given by
) =-feif &) . (55)

In (54) f is the least-favorable pdf for the ARE and the mean-square estimation error for
uncertainty in the marginal pdf of the noise within the class of (38); f has been evaluated by
Huber in [7]; moreover, f 0) satisfies (44), for all Jj. Then this test is least-favorable for the

error probabilities under the two hypotheses, that is,
Pe@FSP@f), for k=01, (56)

for any f* = (f,{f¥V};2)) with f in the class of (38) and f¢) satisfying (43). In (56),
P.(g.f"), the error probabilities under mismatch, are as defined in Proposition 4 by (50a)-

(50b).
Remark 10: This Proposition holds under the same conditions as Proposition 4.

Proof: The sequence of steps necessary for Proving (56) is similar to that used for the proof of
Proposition 2, but the individual steps differ. Here we sketch the proof and cite the points that

are different.

On the basis of (42)-(45) we can derive the equality
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65 = oXg.f")=(1+2R)* @ .f) (57)
where 6%(¢ /) depends only on f and the inequality
g .fT)< (1 +2R)0%g.f) (58)

for all f* with bivariates £ in (43), where 6%(¢ f) depends only on f belonging to (38).
Using these two results and the fact that P, (8 .f *) of (50a)-(50b) is an increasing function of

Bo($.f"), and thus of %8 ,f ™), we deduce that (56) is equivalent to
Pg.fYSP@.f), for k=01, (59)

where P,(¢.f) is obtained from (50a)-(50b) by using the right-hand member of (58) in (53).
Equation (59) involves only the marginal pdfs f and f and this simplifies considerably the

final part of the proof.

To prove (59) we observe that (50a) is an increasing function of the normalized drift c,
whereas (50b) is a decreasing function of the drift ¢, defined as ¢, = 2[T, (3.f )lag(g‘ S, for
k =0, 1, and for the worst case &, = 2[,(¢.f) / 62(¢.f ). Removing the dependence in the
observations through the bounds of (43) and (44) implies that &y = —1 and & 1 = 1. Thus (59)

becomes equivalent to

__U+2RPE S
(1 +2R)c*($.f)

1=2¢g (60a)

and

o = 288 .S) — Bl +2R)6* (3 .f)

21=¢ ’ (60b)
1 o1 + 2R)S@ f) 1
These inequalities are satisfied, if
@) 2 o*@.f) (612

and
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He(Z.f) 2 ne(8.F)=Me>0. (61b)

The last two conditions can be put in the following equivalent forms

[220)f @dx 2 [87()f (x)dx (62a)

and

~ [f G)dx 2 - [g(0)f "x)dx > 0 (62b)

Obtaining (62a) from (61a) is trivial. To obtain (62b) from (61b) we subtract Ly(g.f) from
the left-hand side and py(g, f ) from the right-hand side of (61b). Since both these terms are O

(due to § being an odd and any f in (38) being an even function) we obtain

fglf & - 8) - FIdx 2 [ & - 0) - F(x)dx
which after dividing by 0 > 0 and taking the limit as 6 — 0 yields (62b).

Notice that the conditions (62a)-(62b) are satisfied for all f in the class (38) if f is the
least-favorable pdf for the ARE derived in [7] and § is given by (55). Indeed, in the proof of
[7] the ARE was robustified by minimzing its numerator and maximizing its denominator; the
former corresponds to (62b) and the latter to (62a) in our situation. The inequality flg > 0 or
equivalently — jg (x)F "(x)dx > 0 follows from assumption (41). This completes the proof or

Proposition 5.

Remark 11: Proposition 5 holds not only for classes of the form (38) for the marginal pdfs of
the noise sequence, but also for any other class of pdfs for which the numerator and denomina-
tor of the ARE are respectively minimized and maximized simultaneously by the same least-
favorable pdf f in the class. For example, for the total variation uncertainty class, also intro-

duced in [7], (62a)-(62b) hold and so do Propositions 5 and 6.
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Finally, we prove the second main result of this section, which pertains to the robustness

of the sequential memoryless test of (46) with respect to the expected sample numbers.

Proposition 6: Suppose that the same sequential test as in Proposition 5 is employed. A nota-
tion identical to that of Propositions 4 and 5 is used. Assume that conditions (62a)-(62b) and
assumptions (A5-1)-(AS-2) hold. Then the sequential test of (46) is minimax robust for the
expected sample numbers under the two hypotheses, that is,

ENISFYSENIgf), for k=01, (63a)

and
E\{NIGf)+EoINIGfY<SE|NIZF)+EoNIZFYSE(NIg.f} +EoINIg.f) (63b)

for all marginal pdfs f in the class (38) with bivariates f @) satisfying (43) and any measurable
function g satisfying E {g2(X D} <o f is the pdf derived by Huber in [7] and has, in this
case, bivariates f 2 satisfying (44), for all j. The expected sample numbers under mismatch

E {N|g.f} are as defined by (50a)-(50b) of Proposition 4.

Remark 12: In contrast to Remark 6 following Proposition 3, the choice of the linear test
statistic in (46) and of § solving the linear integral equation of (47) [the solution being given
by (55)] does not restrict the validity of the right-hand-side inequality in (63b). This is due to

the fact that the test test statistic of (46) is optimal within the class of memoryless structures.

Remark 13: Remarks 7 and 8 following Proposition 3 are also valid here. In particular, results
similar to the asymptotic results of (33a)-(33b) regarding the asymptotic speeds of the SPRT
hold for the situation described by Proposition 6.

Proof: The right-hand-side in the inequality (63b) follows from the fact that § is selected to
optimize the sum of the average sample numbers under the two hypotheses (for desirable error

probabilities smaller than 6 and B) of the sequential test (46), when the noise pdf is £ and the
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dependence of the observations has been removed through the bounds of (43) and (54). Under

these conditions, § is given by (55) and maximizes the ARE for the matched worst case. Also

refer to the beginning of Section 2.1 of Part I [1].

The left-hand-side inequality in (63a) is established as follows. We prove the result for
k =1; a similar proof holds for £ = 0, as well. From (51b) and the definition of ®(£,§;x) in

(19) we can rewrite the left-hand-side of (63a), for £ = 1, in the equivalent form

E(N1g.f] =10 =B8] - Binl(1 — &)1 - Bred)) _ In(1 — Bro]

Mm@ .f) M@ .f)
< Inl( - Bye] _ In((1 - Byeq - B inl(1 - &)1 =BV _ & ()4 7 6
m@ /) mG@.f) v ©9

Regarding the denominators of (64) we can apply (61b) to obtain

i ng
FY2mE.f) = — >0 65
m@E.f)zm@E.f) 0+ 200G F) > (652)

and

g

(s = 1T, '\’A = — 0
Ho(g.f) = Bo(§.f) AT RGP <

(65b)

After establishing (65a), we follow for the proof of (64) similar arguments, as we did for the

proof of (34) for Proposition 3. We do not repeat them here.

Remark 14: The robust sequential test of (46) which wuses a test statistic

S=F

z X)) - E—nJ with § given by (55), fle given by (49), and 6 given by (42)

0
2
0 L=l

upon substitution for ¢, £, and £ from (44), is easier to implement than the sequential test

of [4]. The latter first estimates © by an M -estimator for each step n of the SPRT; this

n
involves solving the nonlinear equation »,/(X; — 0,) = 0 for the estimate 6,, where [(x) is an
i=1
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appropriate nonlinearity and {X;}/.; are the n observations collected untill the n-th step of the

sequential test. Then it performs an SPRT based on the likelihood ratio of 6,,.
4. Conclusions

In this paper, we robustified sequential tests based on memoryless nonlinearities. We
developed robust sequential tests for (i) memoryless dicrimination from two arbitrary stationary
m-dependent or mixing observations, and (ii) memoryless detection of a weak signal in addi-
tive stationary m -dependent or mixing noise. In both cases, the marginal pdfs of the two obser-
vation sequences or of the noise sequence belong to uncertainty classes, such as €-contaminated
classes and total variation classes, whereas the bivariate pdfs satisfy bounds on the correlation

coefficients of time-shifts of the observation sequences or the noise sequence.

The robust sequential tests derived have the form of (5) for the discrimination problem
and of (46) for the problem of detecting a weak signal. They consis of SPRTs based on sim-
ple linear test statistics involving nonlinearities § associated with the least-favorable pdf in the
uncertainty class of marginal pdfs and with bivariates which achieve the aforementioned
bounds on the correlation coeffcients of time-shifts of the observation or noise sequences. In
the case of detection of weak signals, the test of (46) is considerably easier to implement that

the test proposed in {4] for the i.i.d. case (refer to Remark 14).

Coupled with the results of the first part of this study (see [1]), which derived optimal
sequential discrimination schemes based on memoryless nonlinearities and established their
superiority to the conventional i.i.d. discriminators and to ﬁxed-samplé-size memoryless
schemes for environments characterized by strongly correlated observations, this paper
strengthened further the usefulness of these sequential tests by establishing that they can be
rendered relatively immune to statistical uncertainty within certain popular classes of distribu-

tions.
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Appendix A

Review of Uncertainty Models and of Basic Results from the Theory of Minimax Robustness

In this Appendix we present a review of the uncertainty models based on 2-alternating
capacities and of Huber’s basic theory of minimax robustness associated with these models.

Definition: A positive finite set function v on a sample space Q with a complete, separ-
able, and metrizable topology and associated Borel field F is called a 2-alternating capacity if
it is increasing, continuous from below, continuous form above on closed sets, and satisfies the
conditions v(2) = 0, and

VAUB) +V(ANB) < vA) + v(B).

Suppose now that M is the class of measures on (2, F) and meM is a measure. Con-
sider the uncertainty class which is determined by the 2-alternating capacity v as follows

M,={meM| m(A)<v), VAeF, m(Q) =v(Q)}. (A-1)

When €2 is compact several popular uncertainty models like €-contaminated neighborhoods [7],
total variation neighborhoods [7], band classes [8], and p-point classes [9], are special cases of
this model. The most general uncertainty classes of the form (A-1) are determined by general-
ized capacities of the form v(4) = jug (A)(da) for VAeF (see [10]), where v, is a capacity
when conditioned on the parameter vector @ and L is the measure induced by the joint distri-
bution of these parameters. Fundamental properties of the uncertainty model (A-1) have been
studied by Huber and Strassen (see [11]). We state the relevant properties as Lemma 1.

Lemma: Suppose vy and v; are 2-alternating capacities on (2, F) and (Mo, M ;) are the
uncertainty classes determined by (vg, v;) as in (1). In that case, there exists a Borel-
measurable function 7,:Q — [0, =] such that the average (Bayes) risk 6vg(4) + V1(A°) is
minimized for A* = {rn, > 0}, i.c.,

Bug ({my > 0}) + vy ({7, £ 0}) < BVg(A) + v, (A°) (A-2)

for all AeF and 6 20; A denotes an arbitrary decision test, A¢ its complement, 6 can be
interpreted as the ratio of the prior probabilities of the two hypotheses Hq and H4, and {r,>0}
can be interpreted as the likelihood ratio test for vy versus v;. Clearly, (A-2) together with
(A-1) imply that

Om o({my > 6}) + my({m, < 8}) < Bu({m, > B}) + vy({my < 0}) < Bug(A) + V(A7) ()

forall mge Mgy, m; e My, 0 20, and AeF; this inequality establishes the minimax robust-
ness of the test based on m,. Furthermore, there exist measures (g, 1) in M o< My such
that

o ({y > 8}) = vg ({my > 8}) 2 mg ({my > 6}) (A-3)

My ({1, < 8}) = vy ({m, < 8}) 2 m; ({m, < 8}) (A-4)

for all B 2 0; these inequalities imply that =, is stochastically largest over M, under rig and
stochastically smallest over M under r;. The quantity m, is sometimes termed the Huber-
Strassen derivative of the classes My and M, is denoted by dv;/dvy, is given by
T, = drity/difig, and is unique a.e. [/ + mg); it plays the role of the worst-case likelihood
ratio for the two uncertainty classes. The dominance properties (A-3)-(A-4) establish the
existence of measures in the classes My and M that achieve the upper values provided by v,



and v, for sets of the form {r, <8} and their complements. The measures (77, /i1}) are
termed the least-favorable measures over M gx M. For the aforementioned four uncertainty
classes (e-contaminated mixtures, total variation classes, band classes, and p-point classes),
which are special cases of the general model (A-1) when Q is compact, the least-favorable
pairs of probability measures (actually, the corresponding probability density functions) have
been derived in closed form ([7]-[9]). Depending on the form of the joint distributions of the
parameter vector @ under the two hypotheses, even the most general uncertainty model that can
be obtained from (A-1), that is, when v(A); = J‘l)g,l- (A)u;(da) for VAeF are the generalized
capacities of [10]), can result in closed form expressions for the least-favorable probability
measures.

Example: Consider the e-contaminated mixture uncertainty classes of probability meas-
ures described in [7]

M; = (mie M1m;(A) = (1-¢,)m2(A) + gj;(A) forall AeF, m;j(Q)=m(Q) =1} (A-5)

for j =0, 1, which are determined by the known nominal probability measures mé’ and mlo
and the degrees of uncertainty ¢; and ¢; (0<¢; <1 for j =0, 1) the unknown probability
measures 7iz; are allowed to take any arbitrary values. This uncertainty class is appropriate for
modeling situations in which the probability measures govemning the observations are convex
combinations of known probability measures and arbitrary probability measures. Then the
associated 2-alternating capacities are

{(1-e)mj°(A) +e, A%Q

)=, N (A-6)
and the least-favorable distributions are
(1-€g) dm1d , dmidm8 < cq AT
dit/dh = 3 Ta
o/ [(1-eg) leldm¥IdN . co < dm?ldm
(1-&)) dmL1d) , ¢y < dmidmd AT
~ = * _’
difdh =1, ey dm@idh, dmlidmQ < c,

.

where A is the Lebesgue measure and 0<c;<cg<e are constants such that
m1(QQ) = my(2) = 1, and the Huber-Strassen derivative rt, has the form

1-¢
Ry = dift iy = —i-g?min{co, max{c,, dm{/dm{}) (A-8)

which consists of a censored version of the nominal likelihood-ratio dm {/dm .

Recently, in [12] the dominance properties (A-3) and (A-4) were exploited to extend the
Huber-Strassen theory to more general objective functions than the Bayes risk of (A-2). We
cite the following proposition from [12] without the proof provided there as Lemma 2.

Lemma 2: Suppose that the measures (mq, m,) on (€, F) belong to My X M charac-
terized by (A-1) and that x is a real variable:
(i) If one of the following situations holds:
(a) both g(m,) and h(x) are nonnegative, increasing functions of w, (the Huber-Strassen



derivative) and x, respectively;

(b) g(m,) is a nonnegative, decreasing function of &, and 4 (x) is a nonpositive and increasing
function of x; ,
(c) g(my) is a nonpositive, increasing function of &, and A (x) is a nonnegative and decreasing
function of x;

(d) both g(m,) and & (x) are nonpositive and decreasing functions of =, and x, respectively;
then

Jof RGDh (Im(dx) < [ g (ry())h Cx )it oldx) (A-9)

Jgé: (o (X))h (x)m 1 (dx) 2 Jﬂg (T (x DA (x )1t 1 (dx ) (A-10)

(ii) If one of the following situations holds:

(a) both g (m,,) and A (x) are nonnegative, decreasing functions of =, and x, respectively;

(b) g(m,) is a nonnegative, increasing function of &, and h(x) is a nonpositive and decreasing
function of x;

(¢) g(m,) is a nonpositive, decreasing function of 1, and 4 (x) is a nonnegative and increasing
function of x;

(d) both g(m,) and A(x) are nonpositive and increasing functions of &, and x, respectively;
then

o Rl Imolddx) 2 [ g (e, Ceh et (A-11)

[o8 @GR Im y(dx) < [ g (ryGe)h (e y(d) (A-12)

where 171 and 71, are singled out by Lemma 1.

Remark 1: If either g(x) =1 or A(x) =1 for all x, i.e., one of the two functions g or & is
absent from the integrands of (A-9)-(A-12), the inequalities in (A-9)-(A-12) still hold; in this
case the nonnegativity of the function involved is not a necessary condition.

Remark 2: Lemmas 1 and 2 hold even if the 2-alternating capacity vy is itself a measure. In
this case, the uncertainty class M has a single element vy,

Remark 3: If the nominal measures m, characterizing the uncertainty class (e.g., the &-
contaminated or total variation classes or the upper and lower bounds in the case of the band
class) are absolutely continuous with respect to the Lebesgue measure A on (Q,F), that is
m§ < A, then for the least-favorable measures singled out by Lemma 1 Mg < A and /| < A
as well. In other words, if the nominal distributions have densities (pdfs), so do the least-
favorable ones, although many elements of the uncertainty class in (A-1) may not have pdfs.



Appendix B

Establishing the Sufficient Conditions (28a)-(28b) for
the Minimax Robustness of the Sequential Test of (5)

In this Appendix we establish (28a)-(28b), the sufficient conditions for (26) which
expresses the minimax robustness (actually least-favorability) of the sequential test of (5) for
the error probabilities.

Since 98 =1/[Ar,+1]>°>0, § is an increasing function of &,. Consequently, from

or,
(A-3) of Appendix A we obtain
W@ Fo) = [§0)dF ox) < [§()dF o(x) = Mg F o) (B-1a)
and from (A-4) we obtain
WG .F 1) = [§C0dF (x) 2 [§()dF 1(x) = (g F ) (B-1b)

which establish the desirable inequalities involving the means in conditions (28a) and (28b).

The corresponding proof for the variances in (28a) and (28b) is more complicated. We
actually show that

J18 )-8 F ) PdF o) < [18 )-1(g FPdF o(x) < [[8 )-(g Fo)lPdFox)  (B-22)

and

[lg)-n(g FOIPdF (x) < [18 ()-8 F PP () < [18 ()-1(g F DIPaF (x) . (B-2D)

The left-hand-side inequalities in (B-2a)-(B-2b) follow from an application of the minimum
variance principle of estimating a random variable g(X) by its mean p(¢,.F,) under cdf F.
The right-hand-side inequalities in (B-2a)-(B-2b) follow from the dominance properties (A-3)
and (A-4) of Appendix A, provided that the function [§(x) — p(g JF o) is increasing in the
Huber-Strassen derivative 7, and the function [g(x) — w(g.F )]? is decreasing in =,. These
last facts are established as follows. We notice that

A B fl(x)fo(x)dx A f%(x)dx
“‘(g 7F )= Py A “‘(A’F )= A A (B'3)
0=] AF 100 + Fo®) SRRl vy
which implies
s L= ARG FoIn, () - W@ Fo) )
)G Fp) = A0 11 (B-4a)
and ’
3_ls 2ol 200 - Ap@ Folm, () - m@ Fol
_9_ - = 20 B-5
ey {[g (x) = (g F o) } A+ 17 (B-5a)
if the conditions
pE.F)<0 and A >0 (A2)

hold. Similarly,



[1-Ap@.FIn, (x) — n(@ Fy)

gy — WG .F)= AT G+ (B-4b)
and ’

3 . Ca o 2001 = A F)Im, (x) — @ LF ) ‘

< — @ E DR = <0 B-5b

amﬁﬁm m51n} 11T (B-5b)

if the following conditions hold
W@.FD20 and Ap@.F)z1. (A3)



