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Abstract

Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical
score based on the forecast and on the event or value that materializes. A scoring rule
is proper if the forecaster maximizes the expected score for an observation drawn from
the distribution F if she issues the probabilistic forecast F , rather than G 6= F . It is
strictly proper if the maximum is unique. In prediction problems, proper scoring rules
encourage the forecaster to make careful assessments and to be honest. In estimation
problems, strictly proper scoring rules provide attractive loss and utility functions that
can be tailored to the scientific problem at hand.

This paper reviews and develops the theory of proper scoring rules on general prob-
ability spaces, and proposes and discusses examples thereof. Proper scoring rules derive
from convex functions and relate to information measures, entropy functions and Breg-
man divergences. In the case of categorical variables, we prove a rigorous version of the
Savage representation. Examples of scoring rules for probabilistic forecasts in the form
of predictive densities include the logarithmic, spherical, pseudospherical and quadratic
scores. The continuous ranked probability score applies to probabilistic forecasts that
take the form of predictive cumulative distribution functions. It generalizes the absolute
error and forms a special case of a new and very general type of score, the energy score.
Like many other scoring rules, the energy score admits a representation in terms of neg-
ative definite functions, with links to inequalities of Hoeffding type, in both univariate
and multivariate settings. Proper scoring rules for quantile and interval forecasts are
also discussed. We relate proper scoring rules to Bayes factors and to cross-validation,
and propose a novel form of cross-validation, random-fold cross-validated likelihood.

A case study on probabilistic weather forecasts in the North American Pacific North-
west illustrates the importance of propriety. We note optimum score approaches to point
and quantile estimation, and propose the intuitively appealing interval score as a utility
function in interval estimation that addresses width as well as coverage.
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1 Introduction

One of the major purposes of statistical analysis is to make forecasts for the future, and to
provide suitable measures of the uncertainty associated with them. Consequently, forecasts
should be probabilistic in nature, taking the form of probability distributions over future
quantities or events (Dawid 1984). Indeed, over the past two decades probabilistic forecast-
ing has become routine in applications such as weather and climate prediction (Palmer 2002;
Gneiting and Raftery 2005), stochastic finance (Duffie and Pan 1997) and macroeconomic
forecasting (Garratt, Lee, Pesaran and Shin 2003). In the statistical literature, advances
in Markov chain Monte Carlo methodology (see, for example, Besag, Green, Higdon and
Mengersen 1995) have led to explosive growth in the use of predictive distributions, mostly
in the form of Monte Carlo samples from posterior predictive distributions of quantities
of interest. Gneiting, Raftery, Balabdaoui and Westveld (2003) and Gneiting, Balabdaoui
and Raftery (2005) contend that the goal of probabilistic forecasting is to maximize the
sharpness of the predictive distributions subject to calibration. Calibration refers to the sta-
tistical consistency between the distributional forecasts and the observations, and is a joint
property of the forecasts and the events or values that materialize. Sharpness refers to the
concentration of the predictive distributions and is a property of the forecasts only.

Scoring rules provide summary measures for the evaluation of probabilistic forecasts,
by assigning a numerical score based on the forecast and on the event or value that ma-
terializes. In terms of elicitation, the role of scoring rules is to encourage the assessor to
make careful assessments and to be honest (Garthwaite, Kadane and O’Hagan 2005). In
terms of evaluation, scoring rules measure the quality of the probabilistic forecasts, reward
probability assessors for forecasting jobs, and rank competing forecast procedures. Me-
teorologists refer to this broad task as forecast verification, and much of the underlying
methodology has been developed by atmospheric scientists (Jolliffe and Stephenson 2003).
In a Bayesian context, scores are frequently referred to as utilities, thereby emphasizing the
Bayesian principle of maximizing the expected utility of a predictive distribution (Bernardo
and Smith 1994). We take scoring rules to be positively oriented rewards that a forecaster
wishes to maximize. Specifically, if the forecaster quotes the predictive distribution P and
the event x materializes, her reward is S(P, x). The function S(P, · ) takes values in the
extended real line R = [−∞,∞], and we write S(P,Q) for the expected value of S(P, · )
under Q. Suppose, then, that the forecaster’s best judgement is the distributional forecast
Q. The forecaster has no incentive to predict any P 6= Q, and is encouraged to quote her
true belief, P = Q, if S(Q,Q) ≥ S(P,Q) with equality if and only if P = Q. A scoring rule
with this property is said to be strictly proper. If S(Q,Q) ≥ S(P,Q) for all P and Q the
scoring rule is said to be proper. Propriety is essential in scientific and operational forecast
evaluation, and our case study below provides a striking example of some of the difficulties
resulting from the use of intuitively appealing but improper scoring rules.

In estimation problems, strictly proper scoring rules provide attractive loss and utility
functions that can be tailored to a scientific problem. To fix the idea, suppose that we
wish to fit a parametric model Pθ based on a sample X1, . . . , Xn. To estimate θ, we might
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measure the goodness-of-fit by the mean score

Sn(θ) =
1

n

n∑

i=1

S(Pθ, Xi),

where S is a strictly proper scoring rule. If θ0 denotes the true parameter, asymptotic
arguments indicate that arg maxθ Sn(θ) → θ0 as n→ ∞. This suggests a general approach
to estimation: choose a strictly proper scoring rule that is tailored to the scientific problem
at hand, maximize Sn(θ) over the parameter space, and take θ̂n = arg maxθ Sn(θ) as the
optimum score estimator based on the scoring rule S. Pfanzagl (1969) and Birgé and
Massart (1993) studied this approach under the heading of minimum contrast estimation.
Maximum likelihood estimation forms a special case of optimum score estimation, and
optimum score estimation forms a special case of M -estimation (Huber 1964), in that the
function to be optimized derives from a strictly proper scoring rule. The appeal of optimum
score estimation lies in the potential adaptation of the scoring rule to the problem at hand.
Apparently, this approach has only very recently been explored (Buja, Stuetzle and Shen
2005; Gneiting, Raftery, Westveld and Goldman 2005).

This paper reviews and develops the theory of proper scoring rules on general probability
spaces, proposes and discusses examples thereof, and supplies case studies. The remainder of
the paper is organized as follows. Section 2 states a fundamental characterization theorem,
reviews the links between proper scoring rules, information measures, entropy functions
and Bregman divergences, and introduces skill scores. Section 3 turns to scoring rules for
categorical variables. We provide a rigorous version of the Savage (1971) representation
and relate to a more recent characterization of Schervish (1989). Bremnes (2004, p. 346)
noted that the literature on scoring rules for probabilistic forecasts of continuous variables
is sparse. We address this issue in Section 4 where we discuss the spherical, pseudospher-
ical, logarithmic and quadratic scores. The continuous ranked probability score has lately
attracted the attention of meteorologists, enjoys appealing properties, and might serve as
a standard score in evaluating probabilistic forecasts of real-valued variables. It forms a
special case of a novel and very general type of scoring rule, the energy score. Section 5
introduces an even more general construction that is based on negative definite functions
and inequalities of Hoeffding type, with side results on expectation inequalities and posi-
tive definite kernels that are of interest in their own right. Section 6 studies scoring rules
for quantile and interval forecasts. We show the class of proper scoring rules for quantile
forecasts to be larger than conjectured by Cervera and Muñoz (1996) and introduce the
interval score, a scoring rule for prediction intervals that is proper and has intuitive appeal.
In Section 7 we relate proper scoring rules to Bayes factors and to cross-validation, and
propose a novel form of cross-validation, random-fold cross-validated likelihood. Section 8
presents the case study on the use of scoring rules in the evaluation of probabilistic weather
forecasts. Section 9 turns to optimum score estimation and closes the paper. We discuss
point, quantile and interval estimation, and propose the use of the interval score as a utility
function that addresses width as well as coverage. Scoring rules show a superficial analogy
to statistical depth functions, as we briefly discuss in the Appendix.
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2 Characterizations of proper scoring rules

We introduce notation, provide characterizations of (strictly) proper scoring rules, and relate
them to information measures and Bregman divergences. The discussion is more technical
than in the remainder of the paper, and readers with more applied interests might skip
ahead to Section 2.3, in which we discuss skill scores, without significant loss of continuity.

2.1 Proper scoring rules and convex functions

We consider probabilistic forecasts on a general sample space Ω. Let A be a σ-algebra of
subsets of Ω, and let P be a convex class of probability measures on (Ω,A). A function
defined on Ω and taking values in the extended real line, R = [−∞,∞], is P-quasiintegrable
if it is measurable with respect to A and is quasiintegrable with respect to all P ∈ P (Bauer
2001, p. 64). A probabilistic forecast is any probability measure P ∈ P. A scoring rule is any
extended real-valued function S : P × Ω → R such that S(P, ·) is P-quasiintegrable for all
P ∈ P. Hence, if the forecast is P and ω materializes, the forecaster’s reward is S(P, ω). We
permit algebraic operations on the extended real line and deal with the respective integrals
and expectations as described in Section 2.1 of Mattner (1997) or Section 3.1 of Grünwald
and Dawid (2004). We write

S(P,Q) =

∫
S(P, ω) dQ(ω)

for the expected score under Q when the probabilistic forecast is P . The scoring rule S is
proper relative to P if

S(Q,Q) ≥ S(P,Q) for all P,Q ∈ P. (1)

It is strictly proper relative to P if (1) holds with equality if and only if P = Q, thereby
encouraging honest quotes by the forecaster. Clearly, finite sums of (strictly) proper scoring
rules and P-integrable functions are (strictly) proper. The term was apparently coined by
Winkler and Murphy (1968, p. 754), but the general idea dates back at least to Good
(1952, p. 112). In a parametric context, and with respect to estimators, Lehmann and
Casella (1998, p. 157) refer to the defining property in (1) as risk unbiasedness.

A function G : P → R is convex if

G((1 − λ)P0 + λP1) ≤ (1 − λ)G(P0) + λG(P1) for all λ ∈ (0, 1), P0, P1 ∈ P. (2)

It is strictly convex if (2) holds with equality if and only if P0 = P1. A function G∗(P, · ) :
Ω → R is a subtangent of G at the point P ∈ P if it is integrable with respect to P ,
quasiintegrable with respect to all Q ∈ P, and

G(Q) ≥ G(P ) +

∫
G∗(P, ω) d(Q− P )(ω) (3)

for all Q ∈ P. The following characterization theorem is more general and considerably
simpler than previous results by McCarthy (1956) and Hendrickson and Buehler (1971).
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Definition 2.1 A scoring rule S : P × Ω → R is regular relative to the class P if S(P,Q)
is real-valued for all P,Q ∈ P, except possibly that S(P,Q) = −∞ if P 6= Q.

Theorem 2.2 A regular scoring rule S : P×Ω → R is (strictly) proper relative to the class
P if and only if there exists a (strictly) convex, real-valued function G on P such that

S(P, ω) = G(P ) −
∫
G∗(P, ω) dP (ω) +G∗(P, ω) (4)

for P ∈ P and ω ∈ Ω, where G∗(P, · ) : Ω → R is a subtangent of G at the point P ∈ P.

Proof. If the scoring rule S is of the stated form, the subtangent inequality (3) implies
the defining inequality (1), that is, propriety. Conversely, suppose that S is a regular
proper scoring rule. Define G : P → R by G(P ) = S(P, P ) = supQ∈P S(Q,P ), which
is the pointwise supremum over a class of convex functions and therefore is convex on P.
Furthermore, the subtangent inequality (3) holds with G∗(P, ω) = S(P, ω). This implies
the representation (4) and proves the claim for propriety. By analogy to an argument of
Hendrickson and Buehler (1971), strict inequality in (1) is equivalent to no subtangent of
G at P being a subtangent of G at Q, for P,Q ∈ P and P 6= Q, and this is equivalent to G
being strictly convex on P.

Expressed slightly differently, a regular scoring rule S is (strictly) proper relative to the
class P if and only if the expected score function G(P ) = S(P, P ) is (strictly) convex and
S(P, ω) is a subtangent of G at the point P , for all P ∈ P.

2.2 Information measures and Bregman divergences

Suppose that the scoring rule S is proper relative to the class P. Following Grünwald and
Dawid (2004) and Buja et al. (2005), we call the expected score function

G(P ) = supQ∈P S(Q,P ), P ∈ P, (5)

the uncertainty measure or generalized entropy function associated with the scoring rule S.
This is the maximally achievable utility, and the term entropy function is used as well. If
S is regular and proper, we call

d(P,Q) = S(Q,Q) − S(P,Q), P,Q ∈ P, (6)

the associated divergence function. The divergence function is nonnegative, and if S is
strictly proper, then d(P,Q) is strictly positive unless P = Q. If the sample space is fi-
nite and the entropy function is sufficiently smooth, the divergence function becomes the
Bregman divergence (Bregman 1967). Bregman divergences play major roles in optimiza-
tion, and recently have attracted the attention of the machine learning community (Collins,
Schapire and Singer 2002). The term Bregman distance is also used, even though d(P,Q)
is not necessarily the same as d(Q,P ). An interesting problem is to find conditions under
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which a divergence function d is a score divergence, in the sense that it admits the repre-
sentation (6) for a proper scoring rule S, and to describe principled ways of finding such
a scoring rule. The landmark paper by Savage (1971) provides a necessary condition on
a symmetric divergence function d to be a score divergence: If P and Q are concentrated
on the same two mutually exclusive events, and identified with the respective probabilities,
p, q ∈ [0, 1], then d(P,Q) reduces to a linear function of (p− q)2.

Friedman (1983) and Nau (1985) studied a looser type of relationship between proper
scoring rules and distance measures on classes of probability distributions. They restrict
attention to metrics, that is, distance measures which are symmetric and satisfy the triangle
inequality, and call a scoring rule S effective with respect to a metric d if

S(P1, Q) ≥ S(P2, Q) ⇐⇒ d(P1, Q) ≤ d(P2, Q).

Nau (1985) calls a metric co-effective if there is a proper scoring rule that is effective with
respect to it. His Proposition 1 implies that the l1, l∞ and Hellinger distances on spaces of
absolutely continuous probability measures are not co-effective.

Sections 3 through 5 provide numerous examples of proper scoring rules on general
sample spaces with the associated entropy functions and divergence functions. For instance,
the classical logarithmic score is linked to Shannon entropy and Kullback-Leibler divergence.
Grünwald and Dawid (2004) and Buja et al. (2005) give further examples of proper scoring
rules, entropy and divergence functions on finite sample spaces, and discuss the connections
to the Bregman distance in detail.

2.3 Skill scores

In practice, scores are aggregated and competing forecast procedures are ranked by their
average score,

Sn =
n∑

i=1

S(Pi, xi),

over a fixed set of forecast situations. We give examples of this in case studies in Sections
6 and 8 below. Recommendations for choosing a scoring rule can be found in Section 6 of
Winkler (1996) and throughout this paper.

Scores for competing forecast procedures are directly comparable if they refer to exactly
the same set of situations. If scores for distinct sets of situations are compared, considerable
care needs to be exercised to separate the confounding effects of intrinsic predictability and
predictive performance. For example, there is substantial spatial and temporal variability
in the predictability of weather and climate elements (Langland et al. 1999; Campbell and
Diebold 2005). Hence, a score that is superior for a given location or season might be
inferior for another, or vice versa. To address this issue, atmospheric scientists have put
forth skill scores of the form

SSn =
Sfcst

n − Sref
n

Sopt
n − Sref

n

, (7)
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where Sfcst
n is the forecaster’s average score, Sopt

n is the mean score for a hypothetical ideal
or optimal forecast, and Sref

n is the average score for a reference strategy (Murphy 1973;
Wilks 1995, p. 237; Potts 2003, p. 27; Briggs and Ruppert 2005). Skill scores are standard-
ized in that (7) takes the value 1 for an optimal forecast, which is typically understood as a
point measure in the event or value that materializes, and the value 0 for the reference fore-
cast. Negative values of the skill score indicate forecasts that are of lesser quality than the
reference. The reference forecast is typically a climatological forecast, that is, an estimate
of the marginal distribution of the predictand. For example, a climatological probabilistic
forecast for maximum temperature on Independence Day in Seattle, Washington might be a
smoothed version of the local historic record of July 4 maximum temperature. Climatolog-
ical forecasts are independent of the forecast horizon; they are calibrated by construction,
but often lack sharpness.

Unfortunately, skill scores of the form (7) are generally improper, even if the underlying
scoring rule S is proper. Murphy (1973) studied hedging strategies in the case of the Brier
skill score for probability forecasts of a dichotomous event. He showed that the Brier skill
score is asymptotically proper, in the sense that the benefits of hedging become negligible
as the number of independent forecasts grows. Similar arguments may apply to skill scores
based on other proper scoring rules. Mason’s (2004) recent claim of the propriety of the
Brier skill score rests upon unjustified approximations and generally is incorrect.

3 Scoring rules for categorical variables

We now review the representations of Savage (1971) and Schervish (1989) that characterize
scoring rules for probabilistic forecasts of categorical and binary variables, and we give
examples of proper scoring rules.

3.1 Savage representation

We consider probabilistic forecasts of a categorical variable. Hence, the sample space Ω =
{1, . . . ,m} consists of a finite number m of mutually exclusive events, and a probabilistic
forecast is a probability vector (p1, . . . , pm). Using the notation of Section 2, we consider
the convex class P = Pm, where

Pm =
{
p = (p1, . . . , pm) : p1, . . . , pm ≥ 0, p1 + · · · + pm = 1

}
.

A scoring rule S can then be identified with a collection of m functions

S( · , i) : Pm → R, i = 1, . . . ,m.

In other words, if the forecaster quotes the probability vector p and the event i materializes,
her reward is S(p, i). Theorem 3.2 below is a special case of Theorem 2.2 and provides a
rigorous version of the Savage (1971) representation of proper scoring rules on finite sample
spaces. Our contributions lie in the notion of regularity, in the rigorous treatment, and in
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the introduction of appropriate tools of convex analysis (Rockafellar 1970, Sections 23–25).
Specifically, let G : Pm → R be a convex function. A vector G′(p) = (G′

1(p), . . . , G
′
m(p)) is

a subgradient of G at the point p ∈ Pm if

G(q) ≥ G(p) + 〈G′(p), q − p〉 (8)

for all q ∈ Pm, where 〈· , ·〉 denotes the standard scalar product. We assume that the
components of G′(p) are real-valued, except that we permit G′

i(p) = −∞ if pi = 0.

Definition 3.1 A scoring rule S for categorical forecasts is regular if S(· , i) is real-valued
for i = 1, . . . ,m, except possibly that S(p, i) = −∞ if pi = 0.

Theorem 3.2 (McCarthy, Savage) A regular scoring rule S for categorical forecasts is
(strictly) proper if and only if

S(p, i) = G(p) − 〈G′(p), p〉 +G′
i(p) for i = 1, . . . ,m, (9)

where G : Pm → R is a (strictly) convex function and G′(p) is a subgradient of G at the
point p, for all p ∈ Pm.

Put slightly differently, a regular scoring rule S is (strictly) proper if and only if the
expected score function G(p) = S(p, p) is (strictly) convex on Pm and the vector with
components S(p, i) for i = 1, . . . ,m is a subgradient of G at the point p, for all p ∈ Pm.
In view of these results, every bounded (strictly) convex function G on Pm generates a
regular (strictly) proper scoring rule. This function G becomes the expected score function,
information measure or entropy function (5) associated with the score, and the divergence
function (6) is the respective Bregman distance.

We now give a number of examples. The scoring rules in Examples 3.3 through 3.5 are
strictly proper, and the score in Example 3.6 is proper but not strictly proper.

Example 3.3 (quadratic or Brier score) If G(p) =
∑m

j=1 p
2
j − 1 then (9) yields the

quadratic score or Brier score,

S(p, i) = −
m∑

j=1

(δij − pj)
2 = 2pi −

m∑

j=1

p2
j − 1,

where δij = 1 if i = j and δij = 0 otherwise. The associated Bregman divergence is squared
Euclidean distance, d(p, q) =

∑m
j=1(pj − qj)

2. This well-known scoring rule was proposed
by Brier (1950). Selten (1998) gave an axiomatic characterization.

Example 3.4 (spherical score) Let α > 1 and consider the generalized entropy function
G(p) = (

∑m
j=1 p

α
j )1/α. This corresponds to the pseudospherical score,

S(p, i) =
pα−1

i

(
∑m

j=1 p
α
j )(α−1)/α

,

which reduces to the traditional spherical score when α = 2. The associated Bregman
divergence is d(p, q) = (

∑m
j=1 q

α
j )1/α − ∑m

j=1 pjq
α−1
j /(

∑m
j=1 q

α
j )(α−1)/α.
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Example 3.5 (logarithmic score) Negative Shannon entropy, G(p) =
∑m

j=1 pj log pj ,
corresponds to the logarithmic score, S(p, i) = log pi. The associated Bregman distance
is the Kullback-Leibler divergence, d(p, q) =

∑m
j=1 qj log(qj/pj). This scoring rule is classi-

cal and dates back at least to Good (1952). Detailed information-theoretic perspectives and
interpretations in terms of gambling returns can be found in Roulston and Smith (2002)
and Daley and Vere-Jones (2004).

Example 3.6 (zero-one score) The zero-one scoring rule rewards a probabilistic forecast
if the mode of the predictive distribution materializes. In case of multiple modes, the reward
is reduced proportionally, that is,

S(p, i) =

{
1/#M(p) if i belongs to M(p),

0 otherwise,

where M(p) = {i : pi = maxj=1,...,m pj} denotes the set of modes of p. This is also known
as the misclassification loss, and the meteorological literature uses the term success rate to
denote case-averaged zero-one scores (see, for example, Toth, Zhu and Marchok 2001). The
associated expected score or generalized entropy function (5) is G(p) = maxj=1,...,m pj, and
the divergence function (6) becomes

d(p, q) = max
j=1,...,m

qj −
∑

j∈M(p) qj

#M(p)
.

This does not define a Bregman distance, because the entropy function is neither differen-
tiable nor strictly convex.

The scoring rules in the above examples are symmetric, in the sense that

S ((p1, . . . , pm), i) = S ((pπ1
, . . . , pπm

), πi)

for all p ∈ Pm, for all permutations π on m elements and for all events i = 1, . . . ,m.
Winkler (1994; 1996, Section 5) argued that symmetric rules do not always appropriately
reward forecasting skill and called for asymmetric ones, particularly in situations in which
traditionally skills scores have been employed. Asymmetric (strictly) proper scoring rules
can be generated by applying Theorem 3.2 to (strictly) convex entropy functions G that
are not invariant under coordinate permutation.

3.2 Schervish representation

The classical case of yes or no forecasts for a dichotomous event suggests further discussion.
We follow the literature in considering the sample space Ω = {1, 0}. A probabilistic forecast
is a quoted probability p ∈ [0, 1] for yes or 1. A scoring rule S can be identified with a pair
of functions S( · , 1) : [0, 1] → R and S( · , 0) : [0, 1] → R. Hence, S(p, 1) is the forecaster’s
reward if she quotes p and the event materializes, and S(p, 0) is the reward if she quotes
p and the event does not materialize. Note the subtle change from the previous section,
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where we used the convex class P2 = {(p1, p2) ∈ R
2 : p1 ∈ [0, 1], p2 = 1− p1} in place of the

unit interval, P = [0, 1], to represent probability measures for binary events.
A scoring rule for binary variables is regular if S( · , 1) and S( · , 0) are real-valued, except

possibly that S(0, 1) = −∞ or S(1, 0) = −∞. A variant of Theorem 3.2 shows that every
regular (strictly) proper scoring rule is of the form

S(p, 1) = G(p) + (1 − p)G′(p), S(p, 0) = G(p) − pG′(p), (10)

where G : [0, 1] → R is a (strictly) convex function and G′(p) is a subgradient of G at the
point p ∈ [0, 1], in the sense that

G(q) ≥ G(p) +G′(p)(q − p)

for all q ∈ [0, 1]. The subgradient G′(p) is real-valued, except that we permit G′(0) = −∞
and G′(1) = ∞. If G is differentiable at an interior point p ∈ (0, 1) then G′(p) is unique
and equals the derivative of G at p. Related, but slightly less general results were given by
Shuford, Albert and Massengil (1966).

The Savage representation (10) implies various interesting properties of regular (strictly)
proper scoring rules. For instance, we conclude from Theorem 24.2 of Rockafellar (1970)
that

S(p, 1) = lim
q→1

G(q) −
∫ 1

p

(
G′(q) −G′(p)

)
dq (11)

for p ∈ (0, 1), and since G′(p) is (strictly) increasing, S(p, 1) is (strictly) increasing, too.
Similarly, S(p, 0) is (strictly) decreasing, as one intuitively expects. Alternative proofs of
these and other results can be found in the appendix of Schervish (1989).

Schervish (1989, p. 1861) suggested that his Theorem 4.2 generalizes the Savage rep-
resentation. Given Savage’s (1971, p. 793) assessment of his representation (9.15) as “fig-
urative,” the claim can well be justified. However, in its rigorous form (10) the Savage
representation applies to a larger class of scoring rules than that of Schervish.

Theorem 3.7 (Schervish) Suppose S is a regular scoring rule. Then S is proper and
such that S(0, 1) = limp→0 S(p, 1), S(0, 0) = limp→0 S(p, 0) and both S(p, 1) and S(p, 0) are
left continuous if and only if there exists a measure ν on (0, 1) such that

S(p, 1) = S(1, 1) −
∫

[p,1)
(1 − q) ν(dq), S(p, 0) = S(0, 0) −

∫

[0,p)
q ν(dq), (12)

for all p ∈ [0, 1]. The scoring rule is strictly proper if and only if ν assigns positive measure
to every open interval.

Proof. Suppose S satisfies the assumptions of the theorem. To prove that S(p, 1) is of
the form (12), consider the representation (11), identify the increasing function G ′(p) with
the left continuous distribution function of a measure ν on (0, 1), and apply the partial
integration formula. The proof of the representation for S(p, 0) is analogous. For the proof

10



of the converse, reverse the above steps. The statement for strict propriety follows from
well-known properties of convex functions.

Pearl (1978) considered scoring rules from an economic perspective, and Schervish (1989)
proposed a general method for comparing binary forecasters within the framework of two-
decision problems. A two-decision problem can be characterized by a cost-loss ratio q ∈ [0, 1]
that reflects the relative costs of the two possible types of inferior decision. The measure
ν(dq) in the representation (12) assigns relevance to distinct cost-loss ratios. If the expected
score function, G, is sufficiently smooth, then ν(dq) has Lebesgue density −G ′′(q) (Buja et
al. 2005). For instance, the quadratic or Brier score has entropy function G(p) = 2p(1 − p)
and corresponds to a uniform measure. The logarithmic score derives from Shannon entropy,
G(p) = p log p+ (1 − p) log(1 − p), and corresponds to the infinite measure with Lebesgue
density (q(1 − q))−1. Buja et al. (2005) took this approach a major step further. They
gave a comprehensive discussion of scoring rules for dichotomous events and introduced a
parametric family of proper scoring rules, which includes the quadratic or Brier score, the
logarithmic score, a scoring rule that underlies boosting and a left-continuous version of the
zero-one score as special cases.

4 Scoring rules for continuous variables

Bremnes (2004, p. 346) noted that the literature on scoring rules for probabilistic forecasts
of continuous variables is sparse. We address this issue in the following.

4.1 Scoring rules for density forecasts

Let µ be a σ-finite measure on the measurable space (Ω,A). For α > 1, let Lα denote the
class of probability measures on (Ω,A) that are absolutely continuous with respect to µ
and have µ-density p such that

‖p‖α =

(∫
p(ω)α µ(dω)

)1/α

is finite. We identify a probabilistic forecast P ∈ Lα with its µ-density, p, and call p a
predictive density or density forecast. Predictive densities are defined only up to a set of µ-
measure zero. Whenever appropriate, we follow Bernardo (1979, p. 689) and use the unique
version defined by p(ω) = limρ→0 P (Sρ(ω))/µ(Sρ(ω)) where Sρ(ω) is a sphere of radius ρ
centered at ω.

We begin by discussing scoring rules that correspond to Examples 3.3, 3.4 and 3.5. The
quadratic score,

QS(p, ω) = 2p(ω) − ‖p‖2
2,

is strictly proper relative to the class L2. It has expected score or generalized entropy
function G(p) = ‖p‖2

2, and the associated divergence function is d(p, q) = ‖p − q‖2
2. Good

11



(1971) proposed the pseudospherical score,

PseudoS(p, ω) = p(ω)α−1/ ‖p‖α−1
α ,

that reduces to the spherical score when α = 2. He described original and generalized
versions of the score — a distinction that in a measure-theoretic framework is obsolete.
The pseudospherical score is strictly proper relative to the class Lα. The strict convexity
of the associated entropy function, G(p) = ‖p‖α, and the nonnegativity of the divergence
function are straightforward consequences of the Hölder and Minkowski inequalities.

The logarithmic score,
LogS(p, ω) = log p(ω),

emerges as the limiting case α → 1 in suitably scaled pseudospherical scores. This scoring
rule was proposed by Good (1952) and has been widely used since, sometimes under other
names, including the predictive deviance (Knorr-Held and Rainer 2001) and the ignorance
score (Roulston and Smith 2002). The logarithmic score is strictly proper relative to the
class L1 of the probability measures that are dominated by µ. The associated expected score
function or information measure is negative Shannon entropy, and the divergence function
becomes the classical Kullback-Leibler divergence.

Bernardo (1979, p. 689) argued that “when assessing the worthiness of a scientist’s final
conclusions, only the probability he attaches to a small interval containing the true value
should be taken into account.” This seems subject to debate, and atmospheric scientists
have argued otherwise, putting forth scoring rules that are sensitive to distance (Epstein
1969; Staël von Holstein 1970). That said, Bernardo (1979) studied local scoring rules
S(p, ω) that depend on the predictive density p only through its value at the event ω that
materializes. Assuming regularity conditions, he showed that every proper local scoring
rule is of the form S(p, ω) = a log p(ω) + f(ω) for some constant a ≥ 0 and function f .
Consequently, the linear score, LinS(p, ω) = p(ω), is not a proper scoring rule, despite its
intuitive appeal. For instance, let ϕ and u denote the Lebesgue densities of the standard
normal distribution and the uniform distribution on (−ε, ε), respectively. If ε <

√
log 2 then

LinS(u, ϕ) =
1

(2π)1/2

1

2ε

∫ ε

−ε
e−x2/2 dx >

1

2π1/2
= LinS(ϕ,ϕ),

in violation of propriety. Essentially, the linear score encourages overprediction at the modes
of an assessor’s true predictive density (Winkler 1969). The probability score of Wilson,
Burrows and Lanzinger (1999) integrates the predictive density over a neighborhood of the
observed, real-valued quantity. This resembles the linear score and is not a proper score
either.

If Lebesgue densities on the real line are used to predict discrete observations, the
logarithmic score encourages the placement of artificially high density ordinates on the
target values in question. This problem emerged in the Evaluating Predictive Uncertainty
Challenge at the PASCAL Challenges Workshop in Southampton in April 2005 and is
described at www.kyb.tuebingen.mpg.de/bs/people/jqc/southampton. It disappears if
scores in terms of predictive cumulative distribution functions are used, or if the sample
space is reduced to the target values in question.

12



4.2 Continuous ranked probability score

The restriction to predictive densities is frequently impractical. Probabilistic quantita-
tive precipitation forecasts, for instance, involve distributions with a point mass at zero
(Krzysztofowicz and Sigrest 1999; Bremnes 2004). This could be handled by considering
densities with respect to a mixed dominating measure in place of Lebesgue measure, but
it seems more compelling to define scoring rules directly in terms of predictive cumulative
distribution functions. Furthermore, the aforementioned scores are not sensitive to dis-
tance, meaning that no credit is given for assigning high probabilities to values near but
not identical to the one materializing. Sensitivity to distance seems particularly desirable
when the predictive distributions tend to be multimodal.

To address this situation, let P consist of the Borel probability measures on R. We
identify a probabilistic forecast, that is, a member of the class P, with its cumulative
distribution function F , and we use standard notation for the elements of the sample space
R. Let 1{y ≥ x} denote the function that attains the value 1 if y ≥ x and the value 0
otherwise. The continuous ranked probability score is defined as

CRPS(F, x) = −
∫ ∞

−∞
(F (y) − 1{y ≥ x})2 dy (13)

and corresponds to the integral of the Brier scores for the associated binary probabilistic
forecasts at all real-valued thresholds (Matheson and Winkler 1976; Hersbach 2000).

Applications of the continuous ranked probability score have been hampered by a lack
of analytic expressions, and the use of numerical quadrature rules for the evaluation of
(13) has been proposed instead (Staël von Holstein 1977; Unger 1985). However, analytic
expressions can be derived in some cases using the following results. By Lemma 2.2 of
Baringhaus and Franz (2004) or identity (17) of Székely and Rizzo (2005),

CRPS(F, x) =
1

2
EF

∣∣X −X ′
∣∣ −EF |X − x|, (14)

where X and X ′ are independent copies of a random variable with distribution function F
and finite first moment. For normal predictive distributions, it follows readily that

CRPS
(
N (µ, σ2), x

)
= σ

(
1√
π
− 2ϕ

(
x− µ

σ

)
− x− µ

σ

(
2Φ

(
x− µ

σ

)
− 1

))
,

where ϕ and Φ denote the probability density function and the cumulative distribution
function of a standard normal random variable, respectively. Similarly, analytical expres-
sions can be given for other distributions. If a closed form expression is not available but
random numbers with distribution F can be generated, the right-hand side of (14) can be
evaluated by Monte Carlo techniques.

The continuous ranked probability score is proper relative to the class P and strictly
proper relative to the subclass P1 of the Borel probability measures that have finite first
moment. The associated expected score function or information measure,

G(F ) = −
∫ ∞

−∞
F (y) (1 − F (y)) dy = −1

2
EF

∣∣X −X ′
∣∣,
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is negative selectivity (Matheron 1984), and the respective divergence function,

d(F,G) =

∫ ∞

−∞
(F (y) −G(y))2 dy,

is of the Cramér-von Mises type.
The continuous ranked probability score has lately attracted renewed interest in the

atmospheric sciences community (Hersbach 2000; Candille and Talagrand 2005; Gneiting,
Raftery, Westveld and Goldman 2005; Grimit, Gneiting, Berrocal and Johnson 2005). It is
typically used in negative orientation, say CRPS∗(F, x) = −CRPS(F, x). The representa-
tion (14) can then be written as

CRPS∗(F, x) = EF |X − x| − 1

2
EF

∣∣X −X ′
∣∣,

and this sheds new light on the score. In negative orientation, the continuous ranked
probability score can be reported in the same unit as the observations, and it generalizes
the absolute error to which it reduces if F is a deterministic forecast — that is, a point
measure. Thus, the continuous ranked probability score provides a direct way of comparing
deterministic and probabilistic forecasts.

4.3 Energy score

We introduce a generalization of the continuous ranked probability score that draws on
Székely’s (2003) statistical energy perspective. Let Pβ, β ∈ (0, 2), denote the class of the
Borel probability measures P on R

m which are such that EP ‖X‖β is finite, where ‖ · ‖
denotes the Euclidean norm. We define the energy score,

ES(P, x) =
1

2
EP

∥∥X −X ′
∥∥β −EP ‖X − x‖β , (15)

where X and X ′ are independent copies of a random vector with distribution P ∈ Pβ. This
generalizes the continuous ranked probability score, to which (15) reduces when β = 1 and
m = 1, by allowing for an index β ∈ (0, 2), and by applying it to distributional forecasts
of a vector-valued quantity. The evaluation of (15) is straightforward if P is discrete,
and Monte Carlo techniques can be used otherwise. The energy score has the potentially
desirable property of invariance under joint translation and/or rotation of P and x. In
negative orientation it can be interpreted as a generalization of the absolute error of order
β. By Theorem 1 of Székely (2003), the energy score is strictly proper relative to the class
Pβ. For a different and more general argument, see Section 5.1 below.

The energy score with index β ∈ (0, 2) applies to all Borel probability measures on R
m,

by defining

ES(P, x) = − β 2β−2 Γ(m
2 + β

2 )

πm/2 Γ(1 − β
2 )

∫

R
m

|ϕ(y) − ei〈x,y〉|2
‖y‖m+β

dy, (16)

where ϕ denotes the characteristic function of P . Essentially, the score computes a weighted
distance between the characteristic function of P and the characteristic function of the

14



point measure at the value that materializes. This is akin to the metric studied by Eaton,
Giovagnoli and Sebastiani (1996, p. 124). If P belongs to Pβ, Theorem 1 of Székely (2003)
implies the equality of the right-hand sides in (15) and (16). In the limiting case β = 2,
the right-hand side of (15) reduces to the squared Euclidean distance between x and the
mean of P . This score is proper but not strictly proper relative to the class P2 of the Borel
probability measures P for which EP‖X‖2 is finite.

4.4 Predictive model choice criterion

The predictive model choice criterion of Laud and Ibrahim (1995) and Gelfand and Ghosh
(1998) has lately attracted the attention of the statistical community. Suppose that we
fit a predictive model to observed data x1, . . . , xn. The predictive model choice criterion
(PMCC) assesses the model fit through the quantity

PMCC =
n∑

i=1

(µi − xi)
2 +

n∑

i=1

σ2
i ,

where µi and σ2
i denote the expected value and the variance, respectively, of a replicate

variable Xi, given the model and the observations. Within the framework of scoring rules,
the PMCC corresponds to the positively oriented score

S(F, x) = − (EFX − x)2 − VarF (X),

where X is a random variable with distribution F and finite variance. This is not a proper
scoring rule: if the forecaster’s true belief is F and if she wishes to maximize the expected
score, she will quote the point measure at EFX — that is, a deterministic forecast — rather
than the predictive distribution F .

One might also be tempted to consider an alternative to the continuous ranked proba-
bility score (13) in terms of F−1, say

S(F, x) = −
∫ 1

0

(
F−1(u) − x

)2
du = −EF (X − x)2.

This relates to the Mallows (1972) distance and the Wasserstein metric and does not define
a proper scoring rule either, with a hedging strategy that is identical to the above.

5 Proper scoring rules, negative definite functions and in-

equalities of Hoeffding type

In this section we employ negative definite functions to construct proper scoring rules, and
we present expectation inequalities that are of independent interest.
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5.1 Scoring rules associated with negative definite kernels

Let Ω be a nonempty set. A real-valued function g on Ω×Ω is said to be a negative definite
kernel if it is symmetric in its arguments and

∑n
i=1

∑n
j=1 aiaj g(xi, xj) ≤ 0 for all positive

integers n, all a1, . . . , an ∈ R that sum to zero, and all x1, . . . , xn ∈ Ω. Numerous examples
of negative definite kernels can be found in Berg, Christensen and Ressel (1984) and the
references therein.

We now give the key result in this section.

Theorem 5.1 Let Ω be a Hausdorff space and let g be a nonnegative, continuous nega-
tive definite kernel on Ω × Ω. For a Borel probability measure P on Ω, let X and X ′ be
independent random variables with distribution P . Then the scoring rule

S(P, x) =
1

2
EP g(X,X

′) −EP g(X,x) (17)

is proper relative to the class of the Borel probability measures P on Ω for which the expec-
tation EP g(X,X

′) is finite.

Proof. Let P and Q be Borel probability measures on Ω, and suppose that X,X ′ and
Y, Y ′ are independent random variates with distribution P and Q, respectively. We need
to show that

1

2
EQ g(Y, Y

′) ≥ 1

2
EP g(X,X

′) −EP,Q g(X,Y ). (18)

If the expectation EP,Q g(X,Y ) is infinite, the inequality is trivially satisfied; if it is finite,
Theorem 2.1 in Berg, Christensen and Ressel (1984, p. 235) implies (18).

Next we give examples of scoring rules that admit the representation in Theorem 5.1.
In each case, we equip the sample space with the standard topology. Note that scores of
the type (17) are straightforward to evaluate if P is discrete and has a moderate number
of atoms only, as is typically true for ensemble forecasts and Markov chain Monte Carlo
samples.

Example 5.2 (quadratic or Brier score) Let Ω = {0, 1} and suppose that g(0, 0) =
g(1, 1) = 0 and g(0, 1) = g(1, 0) = 2. Then (17) recovers the quadratic or Brier score.

Example 5.3 (continuous ranked probability score) If Ω = R and g(x, x′) = |x− x′|
for x, x′ ∈ R in Theorem 5.1, we obtain the continuous ranked probability score (14).

Example 5.4 (energy score) If Ω = R
m, β ∈ (0, 2) and g(x, x′) = ‖x − x′‖β for x, x′ ∈

R
m, Theorem 5.1 recovers the energy score (15).

Example 5.5 (continuous ranked probability score for circular variables) We let
Ω =

�
denote the circle, and write α(θ, θ ′) for the angular distance between two points

θ, θ′ ∈ �
. Let P be a Borel probability measure on

�
, and let Θ and Θ′ be independent
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random variates with distribution P . By Theorem 1 of Gneiting (1998), angular distance
is a negative definite kernel. Hence,

S(P, θ) =
1

2
EP α(Θ,Θ′) −EP α(Θ, θ) (19)

defines a proper scoring rule relative to the class of the Borel probability measures on
the circle. Grimit et al. (2005) introduced (19) as an analogue of the continuous ranked
probability score (14) that applies to directional variables, and used Fourier analytic tools
to prove the propriety of the score.

We now turn to a far-reaching generalization of the energy score. For x = (x1, . . . , xm) ∈
R

m and α ∈ (0,∞] define ‖x‖α = (
∑m

i=1 |xi|α)1/α if α ∈ (0,∞) and ‖x‖α = max1≤i≤m |xi|
if α = ∞. Schoenberg’s theorem (Berg, Christensen and Ressel 1984, p. 74) and a strand
of literature culminating in the work of Koldobskǐı (1992) and Zastavnyi (1993) imply that
if α ∈ (0,∞] and β > 0, then the kernel

g(x, x′) = ‖x− x′‖β
α, x, x′ ∈ R

m,

is negative definite if and only if the following holds.

Assumption 5.6 Suppose that either (i) m = 1, α ∈ (0,∞] and β ∈ (0, 2]; or (ii) m ≥ 2,
α ∈ (0, 2] and β ∈ (0, α]; or (iii) m = 2, α ∈ (2,∞] and β ∈ (0, 1].

Example 5.7 (non-Euclidean energy score) Under Assumption 5.6, the scoring rule

S(P, x) =
1

2
EP ‖X −X ′‖β

α −EP ‖X − x‖β
α

is proper relative to the class of the Borel probability measures P on R
m for which the

expectation EP ‖X−X ′‖β
α is finite. If m = 1 or α = 2, we recover the energy score; if m ≥ 2

and α 6= 2, we obtain non-Euclidean analogues. Section 5.2 of Mattner (1997) shows that
if α ≥ 1 then EP,Q‖X − Y ‖β

α is finite if and only if EP ‖X‖β
α and EQ‖Y ‖β

α are such. In
particular, if α ≥ 1 then EP ‖X −X ′‖β

α is finite if and only if EP ‖X‖β
α is finite.

The following result sharpens Theorem 5.1 in the crucial case of Euclidean sample
spaces and spherically symmetric negative definite functions. Recall that a function η on
(0,∞) is said to be completely monotone if it possesses derivatives η (k) of all orders and
(−1)k η(k)(t) ≥ 0 for all nonnegative integers k and all t > 0.

Theorem 5.8 Let ψ be a continuous function on [0,∞) with −ψ ′ completely monotone
and not constant. For a Borel probability measure P on R

m, let X and X ′ be independent
random vectors with distribution P . Then the scoring rule

S(P, x) =
1

2
EP ψ(‖X −X ′‖2

2) −EP ψ(‖X − x‖2
2)

is strictly proper relative to the class of the Borel probability measures P on R
m for which

EP ψ(‖X −X ′‖2
2) is finite.

17



The proof of this result is immediate from Theorem 2.2 of Mattner (1997). In particular,
if ψ(t) = tβ/2 for β ∈ (0, 2), Theorem 5.8 assures the strict propriety of the energy score

relative to the class of the Borel probability measures P on R
m for which EP ‖X‖β

2 is finite.

5.2 Inequalities of Hoeffding type and positive definite kernels

A number of side results seem of independent interest, even though they are easy conse-
quences of previous work.

Briefly, if the expectations EP g(X,X
′) and EP g(Y, Y

′) are finite, then (18) can be
written as a Hoeffding type inequality,

2EP,Q g(X,Y ) −EP g(X,X
′) −EQ g(Y, Y

′) ≥ 0. (20)

See Theorem 1 of Székely and Rizzo (2005) for a nearly identical result and a converse: if g
is not negative definite, then there are counterexamples to (20), and the respective scoring
rule is improper. If furthermore Ω is a group, and the negative definite function g satisfies
g(x, x′) = g(−x,−x′) for x, x′ ∈ Ω, a special case of (20) can be stated as

EP g(X,−X ′) ≥ EP g(X,X
′). (21)

In particular, if Ω = R
m and Assumption 5.6 holds, inequalities (20) and (21) apply and

reduce to
2E ‖X − Y ‖β

α −E ‖X −X ′‖β
α −E ‖Y − Y ′‖β

α ≥ 0 (22)

and
E ‖X −X ′‖β

α ≤ E ‖X +X ′‖β
α, (23)

respectively, thereby generalizing results in Buja, Logan, Reeds and Shepp (1994), Székely
(2003) and Baringhaus and Franz (2004).

In the above case in which Ω is a group and g satisfies g(x, x′) = g(−x,−x′) for x, x′ ∈ Ω,
the argument leading to Theorem 2.3 of Buja et al. (1994) and Theorem 4 of Ma (2003)
implies that

h(x, x′) = g(x,−x′) − g(x, x′), x, x′ ∈ Ω, (24)

is a positive definite kernel, in the sense that h is symmetric in its arguments and
∑n

i=1

∑n
j=1

aiaj h(xi, xj) ≥ 0 for all positive integers n, all a1, . . . , an ∈ R, and all x1, . . . , xn ∈ Ω.
Specifically, under Assumption 5.6,

h(x, x′) = ‖x+ x′‖β
α − ‖x− x′‖β

α, x, x′ ∈ R
m, (25)

is a positive definite kernel, and this extends and completes the aforementioned theorem of
Buja et al. (1994).

6 Scoring rules for quantile and interval forecasts

Occasionally, full predictive distributions are difficult to specify, and the forecaster might
quote predictive quantiles or prediction intervals instead. Christoffersen (1998) and Bremnes
(2004) gave examples of this type of situation.
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6.1 Proper scoring rules for quantiles

We consider probabilistic forecasts of a continuous quantity that take the form of predictive
quantiles. Specifically, suppose that the quantiles at the levels α1, . . . , αk ∈ (0, 1) are sought.
If the forecaster quotes the quantiles r1, . . . , rk and x materializes, she will be rewarded by
the score S(r1, . . . , rk;x). We define

S(r1, . . . , rk;P ) =

∫
S(r1, . . . , rk;x) dP (x)

as the expected score under the probability measure P when the forecaster quotes the
quantiles r1, . . . , rk. To avoid technical complications, we suppose that P belongs to the
convex class P of Borel probability measures on R that have finite moments of all orders
and whose distribution function is strictly increasing on R. For P ∈ P, let q1, . . . , qk denote
the true P -quantiles at levels α1, . . . , αk. Following Cervera and Muñoz (1996), we say that
a scoring rule S is proper if

S(q1, . . . , qk;P ) ≥ S(r1, . . . , rk;P )

for all real numbers r1, . . . , rk and for all probability measures P ∈ P. If S is proper, the
forecaster who wishes to maximize the expected score is encouraged to be honest and to
volunteer her true beliefs.

To avoid technical overhead, we tacitly assume P-integrability whenever appropriate.
Essentially, we require that the functions s(x) and h(x) in (26) and (28) be P-measurable
and grow at most polynomially in x. We write 1{x ≤ r} for the function that takes the
value 1 if x ≤ r and the value 0 otherwise. Theorem 6.1 addresses the prediction of a single
quantile; Corollary 6.2 turns to the general case.

Theorem 6.1 If s is nondecreasing and h is arbitrary, the scoring rule

S(r;x) = αs(r) + (s(x) − s(r)) 1{x ≤ r} + h(x) (26)

is proper for predicting the quantile at level α ∈ (0, 1).

Proof. Let q be the unique α-quantile of the probability measure P ∈ P. We identify P
with the associated distribution function so that P (q) = α. If r < q then

S(q;P ) − S(r;P ) =

∫

(r,q)
s(x) dP (x) + s(r)P (r) − αs(r)

≥ s(r)(P (q) − P (r)) + s(r)P (r) − αs(r) = 0,

as desired. If r > q an analogous argument applies.

If s(x) = x and h(x) = −αx, we obtain the scoring rule

S(r;x) = (x− r)(1{x ≥ r} − α), (27)

which was proposed by Koenker and Machado (1999), Taylor (1999) and Theis (2005,
p. 232) for measuring in-sample goodness-of-fit and out-of-sample forecast performance,
respectively.
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Corollary 6.2 If si is nondecreasing for i = 1, . . . , k and h is arbitrary, the scoring rule

S(r1, . . . , rk;x) =
k∑

i=1

(
αisi(r) + (si(x) − si(ri)) 1{x ≤ ri}

)
+ h(x) (28)

is proper for predicting the quantiles at levels α1, . . . , αk ∈ (0, 1).

Cervera and Muñoz (1996, pp. 515 and 519) proved Corollary 6.2 in the special case in
which each si is linear. They asked whether the resulting rules are the only proper ones for
quantiles. Our results give a negative answer; that is, the class of proper scoring rules for
quantiles is considerably larger than anticipated by Cervera and Muñoz. We do not know
whether or not (26) and (28) provide the general form of proper scoring rules for quantiles.

6.2 Interval score

Interval forecasts form a crucial special case of quantile prediction. We consider the classical
case of the central (1 − α) × 100% prediction interval, whose lower and upper endpoints
are given by the predictive quantile at level α

2 and 1 − α
2 . We denote a scoring rule for the

associated interval forecast by Sα(l, u;x), where l and u stand for the quoted α
2 and 1 − α

2
quantile, respectively. Hence, if the forecaster quotes the (1−α)× 100% central prediction
interval [l, u] and x materializes, her score will be Sα(l, u;x). Putting α1 = α

2 , α2 = 1 − α
2 ,

s1(x) = s2(x) = 2 x
α and h(x) = − x

α in (28) yields the interval score,

Sint
α (l, u;x) = −

(
(u− l) +

2

α
(l − x)1{x < l} +

2

α
(x− u)1{x > u}

)
. (29)

This scoring rule has intuitive appeal and — in the form of a utility function — can be
traced back at least to Dunsmore (1968) and Winkler (1972). The forecaster is rewarded
for narrow prediction intervals, and she avoids an additional penalty whose size depends on
α if the interval covers the observation. In the particular case α = 0.50, Hamill and Wilks
(1995, p. 622) used a score that is negatively oriented yet equivalent to the interval score.
They noted that “a strategy for gaming [. . . ] was not obvious” which is confirmed by the
propriety of the score.

6.3 Prediction intervals for a conditionally heteroscedastic process

Kabaila (1999) called for rigorous ways of specifying prediction intervals for conditionally
heteroscedastic processes and proposed a relevance criterion in terms of conditional coverage
and width dependence. We contend that the notion of proper scoring rules provides a
simpler, more general and more rigorous paradigm. The prediction intervals that we deem
appropriate derive from the true conditional distribution, as implied by the data generating
mechanism, and thereby maximize the expected value of all proper scores.

To fix the idea, consider the stationary bilinear process {Xt : t ∈ Z} defined by

Xt+1 =
1

2
Xt +

1

2
Xtεt + εt, (30)
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where the εt are independent standard normal random variates. Kabaila and He (2001)
studied central one-step ahead prediction intervals at the 95% level. The process is Marko-
vian, and the conditional distribution of Xt+1 given Xt, Xt−1, . . . is Gaussian with mean
1
2Xt and variance (1 + 1

2Xt)
2, thereby suggesting the prediction interval

I =

[
1

2
Xt − c

∣∣∣∣1 +
1

2
Xt

∣∣∣∣ ,
1

2
Xt + c

∣∣∣∣1 +
1

2
Xt

∣∣∣∣
]
, (31)

where c = Φ−1(0.975). This interval satisfies the relevance property of Kabaila (1999),
and Kabaila and He (2001) adopted I as the standard prediction interval. We agree with
this choice, but we prefer the aforementioned more direct justification: the prediction in-
terval I is the standard interval because its lower and upper endpoints are the 2.5% and
97.5% percentiles of the true conditional distribution function, respectively. Kabaila and
He considered two alternative prediction intervals, namely

J =
[
F−1(0.025), F−1(0.975)

]
, (32)

where F denotes the unconditional, stationary distribution function of the Xt, and

K =

[
1

2
Xt − γ

(∣∣∣∣1 +
1

2
Xt

∣∣∣∣
)
,
1

2
Xt + γ

(∣∣∣∣1 +
1

2
Xt

∣∣∣∣
)]
, (33)

where

γ(y) =






(
2 log

(
7.36
y

))1/2
y if 0 < y ≤ 7.36,

0 if y ≥ 7.36.

This choice of γ minimizes the expected width of the prediction interval under the constraint
of nominal coverage. However, the interval forecast (33) seems misguided; it collapses to a
point forecast when the conditional predictive variance is highest.

We generated a sample path of length 100 001 from the bilinear process (30) and consid-
ered the interval forecasts (31), (32) and (33), respectively. Table 1 summarizes the results
of this experiment. All three interval forecasts showed close to nominal coverage, and the
prediction interval (33) showed the smallest average width. Nevertheless, the classical pre-
diction interval (31) performed best in terms of the interval score.

6.4 Scoring rules for distributional forecasts

Specifying a predictive cumulative distribution function is equivalent to specifying all pre-
dictive quantiles; hence, one can build scoring rules for predictive distributions from scoring
rules for quantiles. Matheson and Winkler (1976) and Cervera and Muñoz (1996) suggested
ways of doing this. In particular, if Sα denotes a proper scoring rule for the quantile at
level α and ν is a Borel measure on (0, 1), then the scoring rule

S(F, x) =

∫ 1

0
Sα(F−1(α);x) ν(dα) (34)
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Table 1: One-step ahead 95% prediction intervals for the stationary bilinear process (30).
Results of a simulation study using 100 000 interval forecasts each.

Interval Empirical Average Average
Forecast Coverage Width Interval Score

I (31) 95.01% 4.00 − 9.55
J (32) 95.08% 5.45 −16.09
K (33) 94.98% 3.79 −10.64

is proper, subject to regularity and integrability constraints.
Similarly, one can build scoring rules for predictive distributions from scoring rules for

binary probability forecasts. If S denotes a proper scoring rule for probability forecasts and
ν is a Borel measure on R, then the scoring rule

S(F, x) =

∫ ∞

−∞
S(F (y),1{y ≥ x}) ν(dy) (35)

is proper, subject to integrability constraints (Matheson and Winkler 1976; Gerds 2002).
The continuous ranked probability score (13) corresponds to the special case in (35) in which
S is the quadratic or Brier score and ν is Lebesgue measure. This construction carries over
to the multivariate case. If P denotes the class of the Borel probability measures on R

m,
we identify a probabilistic forecast P ∈ P with its cumulative distribution function F . A
multivariate analogue of the continuous ranked probability score can be defined as

CRPS(F, x) = −
∫

R
m

(F (y) − 1{y ≥ x})2 ν(dy).

This is a weighted integral of the Brier scores at all m-variate thresholds, and the Borel
measure ν can be chosen to encourage the forecaster to concentrate her efforts on the
important ones. If ν is finite and dominates Lebesgue measure, this score is strictly proper
relative to the class P.

7 Scoring rules, Bayes factors and random-fold cross-validation

We now relate proper scoring rules to Bayes factors and to cross-validation, and propose a
novel form of cross-validation, random-fold cross-validated likelihood.

7.1 Logarithmic score and Bayes factors

Probabilistic forecasting rules are often generated by probabilistic models, and the standard
Bayesian approach to comparing probabilistic models is by Bayes factors. Suppose we have a
sampleX = (X1, . . . , Xn) of values to be forecast. Suppose also that we have two forecasting

22



rules, based on probabilistic models H1 and H2. So far in this paper we have concentrated
on the situation where the forecasting rule is completely specified before any of the Xi is
observed, that is, there are no parameters to be estimated from the data being forecast. In
that situation, the Bayes factor for H1 against H2 is

B =
P (X|H1)

P (X|H2)
, (36)

where P (X|Hk) =
∏n

i=1 P (Xi|Hk) (k = 1, 2) (Jeffreys 1939; Kass and Raftery 1995).
Thus if the logarithmic score is used, the log Bayes factor is the difference of the scores

for the two models,
logB = LogS(H1, X) − LogS(H2, X). (37)

This was pointed out by Good (1952), who called the log Bayes factor the weight of evidence.
It establishes two connections. First, the Bayes factor is equivalent to the logarithmic score
in this no-parameter case. Second, it shows that the Bayes factor applies more generally
than just to the comparison of parametric probabilistic models, but also to the comparison
of probabilistic forecasting rules of any kind.

So far in this paper we have taken probabilistic forecasts to be fully specified, but often
they are specified only up to unknown parameters estimated from the data. Now suppose
that the forecasting rules considered are specified only up to unknown parameters, θk for
Hk, to be estimated from the data. Then the Bayes factor is still given by (36), but now
P (X|Hk) is the integrated likelihood,

P (X|Hk) =

∫
p(X|θk,Hk) p(θk|Hk) dθk,

where p(X|θk,Hk) is the (usual) likelihood under model Hk and p(θk|Hk) is the prior dis-
tribution of the parameter θk.

Dawid (1984) showed that when the data come in a particular order, such as time order,
the integrated likelihood can be reformulated in predictive terms:

P (X|Hk) =
n∏

t=1

P (Xt|Xt−1,Hk), (38)

where X t−1 = {X1, . . . , Xt−1}, and P (Xt|Xt−1,Hk) is the predictive distribution of Xt

given the past values under Hk, namely

P (Xt|Xt−1,Hk) =

∫
p(Xt|θk,Hk)P (θk|Xt−1,Hk) dθk,

with P (θk|Xt−1,Hk) being the posterior distribution of θk given the past observations X t−1.
Let us denote by Sk,B the log integrated likelihood, viewed now as a scoring rule. It

helps to view it as a scoring rule to rewrite it as

Sk,B =
n∑

t=1

log P (Xt|Xt−1,Hk).
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Dawid (1984) showed that Sk,B is asymptotically equivalent to the plug-in maximum like-
lihood prequential score

Sk,D =
n∑

t=1

log P (Xt|Xt−1, θ̂t−1
k ), (39)

where θ̂t−1
k is the maximum likelihood estimator (MLE) of θk based on the past observa-

tions, X t−1, in the sense that Sk,D/Sk,B → 1 as n → ∞. He also showed that Sk,B is
asymptotically equivalent to the BIC score,

Sk,BIC =
n∑

t=1

log P (Xt|Xt−1, θ̂n
k ) − dk

2
log n,

where dk = dim(θk), in the same sense, namely Sk,BIC/Sk,B → 1 as n → ∞. This justi-
fies the use of BIC for comparing forecasting rules, extending the previous justification of
Schwarz (1978), which related only to comparing models.

These results have two limitations, however. First, they assume that the data come
in a particular order. Second, they use only the logarithmic score, and not other scores
that might be more appropriate for the task at hand. We now briefly consider how these
limitations might be addressed.

7.2 Scoring rules and random-fold cross-validation

Suppose now that the data are unordered. We can replace (38) by

S∗
k,B =

n∑

t=1

ED[log p(Xt|X(D),Hk], (40)

where D is a random sample from {1, . . . , t−1, t+1, . . . , n}, whose size is a random variable
that has a discrete uniform distribution on {0, 1, . . . , n − 1}. Dawid’s result (39) implies
that this is asymptotically equivalent to the plug-in maximum likelihood version,

S∗
k,D =

n∑

t=1

ED[log p(Xt|X(D), θ̂
(D)
k ,Hk], (41)

where θ̂
(D)
k is the MLE of θk based on X(D).

The formulations (40) and (41) may be useful because they turn a score that was a
sum of non-identically distributed terms into one that is a sum of identically distributed
exchangeable terms. This opens the possibility of evaluating S∗

k,B or S∗
k,D by Monte Carlo,

which would be a form of cross-validation. In this cross-validation, the amount of data left
out would be random rather than fixed, leading us to call it random-fold cross-validation.
Smyth (2000) used the log-likelihood as the criterion function in cross-validation, as here,
calling the resulting method cross-validated likelihood, but used a fixed holdout sample size.
This general approach can be traced back at least to Geisser and Eddy (1975). One issue
in cross-validation generally is how much data to leave out, and different choices lead to
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different versions of cross-validation, such as leave-one-out, 10-fold, and so on. Considering
versions of cross-validation in the context of scoring rules may shed some light on this issue.

We have seen by (37) that when there are no parameters being estimated, the Bayes
factor is equivalent to the difference in the logarithmic score. Thus one could replace the
logarithmic score by another proper score, and the difference in scores could be viewed as a
kind of predictive Bayes factor with a different type of score. In Sk,B, Sk,D, Sk,BIC, S∗

k,B, and
S∗

k,D, we could replace the terms in the sums (each of which has the form of a logarithmic
score) by another proper scoring rule, such as the continuous ranked probability score, and
we conjecture that similar asymptotic equivalences remain valid.

8 Case study: Probabilistic forecasts of sea-level pressure

over the North American Pacific Northwest

Our goals in this case study are to illustrate the use and the properties of scoring rules and
to demonstrate the importance of propriety.

8.1 Probabilistic weather forecasting using ensembles

Operational probabilistic weather forecasts are based on ensemble prediction systems. En-
semble systems typically generate a set of perturbations of the best estimate of the current
state of the atmosphere, run each of them forward in time using a numerical weather predic-
tion model, and use the resulting set of forecasts as a sample from the predictive distribution
of future weather quantities (Palmer 2002; Gneiting and Raftery 2005).

Grimit and Mass (2002) described the University of Washington ensemble prediction
system over the Pacific Northwest which covers Oregon, Washington, British Columbia,
and parts of the Pacific Ocean. This is a five-member ensemble that consists of distinct
runs of the MM5 numerical weather prediction model with initial conditions taken from
distinct national and international weather centers. We consider 48-hour ahead forecasts
of sea-level pressure in January–June 2000, the same period as that on which the work of
Grimit and Mass was based. The unit used is the millibar (mb). Our analysis builds on a
verification data base of 16 015 records scattered over the North American Pacific North-
west and the aforementioned six-month period. Each record consists of the five ensemble
member forecasts and the associated verifying observation. The root-mean-square error of
the ensemble mean forecast was 3.30 mb, and the square root of the average variance of the
five-member forecast ensemble was 2.13 mb, resulting in a ratio of 1.55.

This underdispersive behavior — that is, observed errors that tend to be larger on
average than suggested by the ensemble spread — is typical of ensemble systems and seems
unavoidable, given that ensembles capture only some of the sources of uncertainty (Raftery,
Gneiting, Balabdaoui and Polakowski 2005). To obtain calibrated predictive probability
distributions, it thus seems necessary to carry out some form of statistical postprocessing.
One natural approach is to take the predictive distribution for sea-level pressure at any
given site as normal, centered at the ensemble mean forecast, and with predictive standard
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Figure 1: Probabilistic sea-level pressure forecasts over the North American Pacific North-
west in January–July 2000. The scores are shown as a function of the inflation factor r,
where the predictive density is taken to be normal, centered at the ensemble mean fore-
cast, and with predictive standard deviation equal to r times the standard deviation of the
forecast ensemble. The scores were subject to linear transformations as detailed in Table 2.

deviation equal to r times the standard deviation of the forecast ensemble. Density forecasts
of this type were proposed by Déqué, Royer and Stroe (1994) and Wilks (2002). Following
Wilks, we refer to r as an inflation factor.

8.2 Evaluation of density forecasts

In the aforementioned approach the predictive density is Gaussian, say ϕµ,rσ: its mean,
µ, is the ensemble mean forecast, and its standard deviation, rσ, is the product of the
inflation factor, r, and the standard deviation of the five-member forecast ensemble, σ. We
considered various scoring rules S and computed the average score,

s(r) =
1

16 015

16 015∑

i=1

S(ϕµi ,rσi
, xi), r > 0, (42)
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Table 2: Probabilistic sea-level pressure forecasts over the North American Pacific North-
west in January–July 2000. The predictive density is taken to be normal, centered at
the ensemble mean forecast, and with predictive standard deviation equal to r times the
standard deviation of the forecast ensemble.

Score arg maxr s(r) Linear Transformation
in Eqn. (42) in Figure 1

Quadratic score (QS) 2.18 40s+ 6
Spherical score (SphS) 1.84 108s− 22
Logarithmic score (LogS) 2.41 s+ 13
Continuous ranked probability score (CRPS) 1.62 10s+ 8

Linear score (LinS) 0.05 105s− 5
Probability score (PS) 0.02 60s− 5

as a function of the inflation factor r. The index i refers to the i-th record in the verification
data base, and xi denotes the value that materialized. Given the underdispersive character
of the ensemble system, we expect s(r) to be maximized at some r > 1, possibly near the
observed ratio r = 1.55 of the root-mean-square error of the ensemble mean forecast over
the square root of the average ensemble variance.

We computed the mean score (42) for inflation factors r ∈ (0, 5) and for the quadratic
score (QS), spherical score (SphS), logarithmic score (LogS), continuous ranked probability
score (CRPS), linear score (LinS), and probability score (PS), as defined in Section 4.
Briefly, if p denotes the predictive density and x stands for the observed value, then

QS(p, x) = 2p(x) − ∫ ∞
−∞ p(y)2 dy,

SphS(p, x) = p(x)
/

(
∫ ∞
−∞ p(y)2 dy)1/2,

LogS(p, x) = log p(x),

CRPS(p, x) = 1
2Ep|X −X ′| −Ep|X − x|,

LinS(p, x) = p(x),

PS(p, x) =
∫ x+1
x−1 p(y) dy.

Figure 1 and Table 2 summarize the results of this experiment. The scores shown in the
figure are linearly transformed, and the transformations are listed in the right-hand column
of the table. In the case of the quadratic score, for instance, we plotted the sum of 40
times the value in (42) and 6. Clearly, propriety is preserved under the transformation.
The quadratic score, spherical score, logarithmic score and continuous ranked probability
score were maximized at values of r that were larger than 1, thereby confirming the un-
derdispersive character of the ensemble. These scores are proper. The linear score and the
probability score were maximized at r = 0.05 and r = 0.02, respectively, thereby suggesting
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ignorable forecast uncertainty and essentially deterministic forecasts. The latter two scores
have intuitive appeal, and the probability score has been used to assess forecast ensembles
(Wilson, Burrows and Lanzinger 1999). However, they are improper and their use may
result in misguided scientific inferences, as in this experiment. A similar comment applies
to the scores discussed in Section 4.4.

It is interesting to observe that the logarithmic score gave the highest maximizing value
of r. The logarithmic score is strictly proper but involves a harsh penalty for low probability
events and therefore is highly sensitive to extreme cases. Our verification data base includes
a number of low spread cases for which the ensemble variance implodes. The logarithmic
score penalizes the resulting predictions, unless the inflation factor r is large. Weigend and
Shi (2000, p. 382) noted similar concerns and considered the use of trimmed means when
computing the logarithmic score. In our experience, the continuous ranked probability score
is less sensitive to extreme cases or outliers and provides an attractive alternative.

8.3 Evaluation of interval forecasts

The aforementioned predictive densities also provide interval forecasts. We considered the
central (1 − α) × 100% prediction interval where α = 0.50 and α = 0.10, respectively. The
associated lower and upper prediction bounds li and ui are the α

2 and 1 − α
2 quantiles of

the normal distribution with mean µi and standard deviation rσi, as described above. We
assessed the resulting interval forecasts in their dependence on the inflation factor r in two
ways, by computing the empirical coverage of the prediction intervals, and by computing

sα(r) =
1

16 015

16 015∑

i=1

Sα(li, ui;xi), r > 0, (43)

where Sα denotes the interval score (29). This scoring rule assesses both calibration and
sharpness — the latter by rewarding narrow prediction intervals, and the former by penal-
izing prediction intervals that do not cover the observation. Figure 2(a) shows the empirical
coverage of the prediction intervals. Clearly, the coverage increased with r. If α = 0.50
and α = 0.10 the nominal coverage was obtained at r = 1.78 and r = 2.11, respectively.
This confirms the underdispersive character of the ensemble. Figure 2(b) shows the interval
score (43) as a function of the inflation factor r. If α = 0.50 and α = 0.10 the score was
maximized at r = 1.56 and r = 1.72, respectively.

9 Optimum score estimation

Strictly proper scoring rules are also of interest in estimation problems, where they provide
attractive loss and utility functions that can be adapted to the problem at hand.

9.1 Point estimation

We return to the generic estimation problem described in the introduction. Suppose that we
wish to fit a parametric model Pθ based on a sample X1, . . . , Xn of identically distributed
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Figure 2: Interval forecasts of sea-level pressure over the North American Pacific Northwest
in January–July 2000: (a) Nominal and actual coverage, and (b) the interval score (43), for
the 50% central prediction interval (α = 0.50, broken line) and the 90% central prediction
interval (α = 0.10, solid line, score scaled by a factor of 10). The predictive density is
Gaussian, centered at the ensemble mean forecast, and with predictive standard deviation
equal to r times the standard deviation of the forecast ensemble.
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observations. To estimate θ, we can measure the goodness-of-fit by the mean score

Sn(θ) =
1

n

n∑

i=1

S(Pθ, Xi),

where S is a scoring rule that is (strictly) proper relative to a convex class of probability
measures that contains the parametric model. If θ0 denotes the true parameter value,
asymptotic arguments indicate that

arg maxθ Sn(θ) → θ0 as n→ ∞. (44)

This suggests a general approach to estimation: Choose a strictly proper scoring rule S that
is tailored to the scientific problem at hand and take θ̂n = arg maxθ Sn(θ) as the optimum
score estimator based on the scoring rule S. The first four values of the arg max in Table
2, for instance, refer to the optimum score estimate for the inflation factor r based on
the logarithmic score, spherical score, quadratic score and continuous ranked probability
score, respectively. Pfanzagl (1969) and Birgé and Massart (1993) studied optimum score
estimators under the heading of minimum contrast estimators. This class includes many of
the most popular estimators in various situations such as maximum likelihood estimators,
least squares and other estimators of regression models, and estimators for mixture models
or deconvolution. Pfanzagl (1969) proved rigorous versions of the consistency result (44),
and Birgé and Massart (1993) related rates of convergence to the entropy structure of
the parameter space. Maximum likelihood estimation forms the special case of optimum
score estimation based on the logarithmic score, and optimum score estimation forms a
special case of M -estimation (Huber 1964), in that the function to be optimized derives
from a strictly proper scoring rule. When estimating the location parameter in a normal
population with known variance, for example, the optimum score estimator based on the
continuous ranked probability score amounts to an M -estimator with a ψ-function of the
form ψ(x) = 2Φ(x

c ) − 1, where c is a positive constant and Φ denotes the standard normal
cumulative. This provides a smooth version of the ψ-function for Huber’s (1964) robust
minimax estimator; see Huber (1981, p. 208). Asymptotic results for M -estimators, such as
the consistency theorems of Huber (1967) and Perlman (1972), then apply to optimum scores
estimators, too. Wald’s (1949) classical proof of the consistency of maximum likelihood
estimates relies heavily on the strict propriety of the logarithmic score, which is proved in
his Lemma 1.

The appeal of optimum score estimation lies in the potential adaption of the scoring rule
to the problem at hand. This approach has, apparently, only very recently been explored.
Gneiting, Raftery, Westveld and Goldman (2005) estimated a predictive regression model
using the optimum score estimator based on the continuous ranked probability score — a
choice that was motivated by the meteorological problem at hand. They showed empirically
that such an approach can yield better predictive results than approaches using maximum
likelihood plug-in estimates. This agrees with the findings of Copas (1983) and Friedman
(1989) who showed that the use of maximum likelihood and least squares plug-in estimates
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can be suboptimal in prediction problems. Buja et al. (2005) proposed the use of strictly
proper scoring rules in classification and class probability estimation problems and drew
links to Bayesian techniques as well as boosting.

9.2 Quantile estimation

Koenker and Bassett (1978) proposed quantile regression using an optimum score estimator
that is based on the proper scoring rule (29).

9.3 Interval estimation

We now turn to interval estimation. Casella, Hwang and Robert (1993, p. 141) pointed out
that

“The question of measuring optimality (either frequentist or Bayesian) of a set
estimator against a loss criterion combining size and coverage does not yet have
a satisfactory answer.”

Their work was motivated by an apparent paradox due to J. O. Berger, which concerns
interval estimators of the location parameter θ in a normal population with unknown scale.
Let 1{·} denote an indicator function. Under the loss function

L(I; θ) = cλ(I) − 1{θ ∈ I}, (45)

where c is a positive constant and λ(I) denotes the Lebesgue measure of the interval estimate
I, the classical t-interval is dominated by a misguided interval estimate that shrinks to the
sample mean in the cases of the highest uncertainty. Casella et al. (1993, p. 145) commented
that “we have a case where a disconcerting rule dominates a time honored procedure. The
only reasonable conclusion is that there is a problem with the loss function.” We concur,
and we propose the use of strictly proper scoring rules to assess interval estimators using a
loss criterion that combines width and coverage.

Specifically, we contend that a meaningful comparison of interval estimators requires
either equal coverage or equal width. The loss function (45) applies to all set estimates,
regardless of coverage and size, which seems unnecessarily ambitious. Instead, we focus
attention on interval estimators with equal nominal coverage and use the (negative of the)
interval score (29). This loss function can be written as

Lα(I; θ) = λ(I) +
2

α
inf
η∈I

|θ − η|, (46)

and applies to interval estimates with upper and lower exceedance probability α
2 × 100%,

respectively. This approach can, again, be traced back to Dunsmore (1968) and Winkler
(1972) and avoids paradoxes, as a consequence of the propriety of the interval score. When
compared to (45), the loss function (46) provides a more flexible assessment of the coverage,
by taking account of the distance between the interval estimate and the estimand.
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Appendix

Statistical depth functions (Zuo and Serfling 2000) provide useful tools in nonparametric
inference for multivariate data. Specifically, if P is a Borel probability measure on R

m, a
depth function D(P, x) gives a P -based center-outward ordering of points x ∈ R

m. Formally,
this resembles a scoring rule S(P, x) that assigns a P -based numerical value to an event
x ∈ R

m. Liu (1990) and Zuo and Serfling (1999) list several desirable properties of depth
functions, including maximality at the center, monotonicity relative to the deepest point,
affine invariance, and vanishing at infinity. The latter two properties do not appear to
be defendable requirements for scoring rules; conversely, propriety is irrelevant for depth
functions.
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David B. Stephenson, Werner Stuetzle, Gabor J. Székely, Olivier Talagrand, Jon A. Wellner
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