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Abstract 
Accurate classification of samples using gene expression profiles is critically dependent on the 
method used to select relevant genes. We present the Bayesian Model Averaging (BMA) 
method for gene selection and classification of microarray data. Typical gene selection and 
classification procedures ignore model uncertainty and use a single set of relevant genes 
(model) to predict the class. BMA accounts for the uncertainty about the best set to choose by 
averaging over multiple models (sets of potentially overlapping relevant genes).  
 
We showed that BMA selects smaller numbers of relevant genes (compared to other methods) 
and achieves high prediction accuracy on three microarray datasets. Our BMA algorithm is 
applicable to microarray datasets with any number of classes, and outputs posterior probabilities 
for the selected genes and models. Our selected models typically consist of only a few genes. 
The combination of high accuracy, small numbers of genes and posterior probabilities for the 
predictions, should make BMA a powerful tool for developing diagnostics from expression 
data. 
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1 INTRODUCTION  
There has been a recent explosion in the use of microarray data for classification in a variety of 

diagnostic areas. The prediction of the diagnostic category of a tissue sample from its expression 

array phenotype given the availability of similar data from tissues in identified categories is known as 

classification (or supervised learning). In the context of gene expression data, the samples are usually 

the experiments, and the classes are usually different types of tissue samples, for example, cancer 

vs. non-cancer (Alon et al. 1999; Schummer et al. 1999), different tumor types (Golub et al. 1999; 

Alizadeh et al. 2000; Ross et al. 2000; Bhattacharjee et al. 2001; Ramaswamy et al. 2001), response 

to therapy (Shipp et al. 2002; van 't Veer et al. 2002; Nutt et al. 2003). A challenge in predicting the 

diagnostic categories using microarray data is that the number of genes is usually much greater than 

the number of tissue samples available, and only a subset of the genes is relevant in distinguishing 

different classes. Selection of relevant genes for classification is known as feature selection. A small 

set of relevant genes is essential for the development of inexpensive diagnostic tests. 

Multi-class classification in which the data consist of more than two classes is rapidly gaining attention 

in the literature. For example, Ramaswamy et al. (2001) combined support vector machines, which 

are binary classifiers, to solve the multi-class classification problem. Nguyen and Rocke (2002a; 

2002b) used partial least squares (PLS) for feature selection, together with traditional classification 

algorithms such as logistic discrimination and quadratic discrimination to classify multiple tumor types 

on microarray data. Tibshirani et al. (2002) developed an integrated feature selection and 

classification algorithm called shrunken centroid for classifying multiple cancer types in which features 

are selected by considering one gene at a time. Yeung and Bumgarner (2003) extended the shrunken 

centroid algorithm to take dependency between genes and repeated measurements into 

consideration. Dudoit et al. (2002) compared the performance of different discrimination methods, 

including nearest neighbor classifiers, linear discriminant analysis, and classification trees, for 

classifying multiple tumor types using gene expression data.  

The method used for selecting relevant genes is critical to the performance of all classification 

algorithms. Most feature selection methods in the literature are tailored towards binary classification, 

and are univariate in the sense that each candidate relevant gene is considered individually. 

Examples of univariate methods include the signal-to-noise ratio (Golub et al. 1999), the t-test 

(Nguyen and Rocke 2002b), the ratio of between-groups to within-groups sum of squares (BSS/WSS) 

(Dudoit et al. 2002), the Significance Analysis of Microarray (SAM) statistic (Tusher et al. 2001), the 

Threshold Number of Misclassification (TNOM) score (Ben-Dor et al. 2000), the Wilcoxon test statistic 

(Dettling 2004) and many others. Multivariate gene selection methods consider multiple genes 
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simultaneously, and hence, account for dependency between genes, which hopefully will lead to a 

reduced number of relevant genes. Bo and Jonassen (2002) evaluated relevant genes in a pairwise 

fashion, while Jaeger et al. (2003) and Yeung and Bumgarner (2003) reduced the number of relevant 

genes by eliminating highly correlated ones. Recently, Lee et al. (2003) employed a hierarchical 

Bayesian model which used a Markov Chain Monte Carlo (MCMC) based stochastic search algorithm 

to discover relevant genes. Their multivariate gene selection algorithm is applicable to microarray data 

with two classes only. Sha et al. (2004) extended the underlying theory to multiple classes data as 

well, but did not give empirical results for gene selection on multi-class microarray data.  

In addition, most proposed feature selection and classification algorithms ignore model uncertainty by 

selecting one set of relevant genes, and then by using class prediction on that set of selected genes. 

It is possible that there is more than one set of relevant genes that fit the model equally well, 

especially with microarray data in which the number of genes (variables) is much greater than the 

number of samples. There have been efforts to use model averaging and model ensemble 

approaches to classify microarray data. As an example, Li and Yang (2002) applied a model 

averaging approach to classify samples by averaging over multiple single-gene models to microarray 

data. Boosting algorithms have also been applied to microarray data (Ben-Dor et al. 2000; Dudoit et 

al. 2002; Dettling and Buhlmann 2003; Dettling 2004). 

In this paper, we present the Bayesian Model Averaging (BMA) approach (Raftery 1995; Hoeting et al. 

1999; Viallefont et al. 2001) as our multivariate feature selection method for multi-class microarray 

data. This is in contrast to Li and Yang (2002) in which the emphasis was on classification and genes 

were selected independently. Our approach also differs from Lee et al. (2003) and Sha et al. (2004) in 

the sense that we adopt a model averaging approach and we report empirical results on multi-class 

as well as binary microarray data. In addition, our algorithms are computationally efficient compared 

to the MCMC based algorithms in Lee et al. (2003) and Sha et al. (2004). We extended an existing 

BMA algorithm to be applicable to any number of input variables (genes), and to any number of 

classes. We show that our extended BMA algorithm generally selects fewer relevant genes and 

produces prediction accuracy at least comparable to that of the best existing feature selection and 

classification methods. We also propose to use the Brier Score (Brier 1950) and use a generalized 

Brier Score to assess prediction accuracy for 2-class and multi-class datasets respectively. Our 

approach has the additional advantage of facilitating biological interpretation by producing posterior 

probabilities of selected genes and models. Our BMA algorithm is a multivariate gene selection 

method, and our selected models are typically very simple, consisting of only a few genes. By 

averaging over multiple simple models and using relatively small numbers of relevant genes, we 
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demonstrate high prediction accuracy on both binary and multi-class microarray data. In Section 2, we 

review Bayesian Model Averaging (BMA) and describe our extension of existing BMA algorithms to 

large numbers of predictors and multi-class classification problems, and in Section 3, we give results 

for three gene expression datasets. 

 

2 METHODS 

2.1 Bayesian Model Averaging (BMA) 
Typical model selection approaches select a model and then proceed as if the selected model has 

generated the data, which might lead to over-confident inferences. Bayesian Model Averaging (BMA) 

takes model uncertainty into consideration by averaging over the posterior distributions of multiple 

models, weighted by their posterior model probability (Raftery 1995; Hoeting et al. 1999).  

For simplicity, let us first consider the binary classification problem. Let Y be the response variable 

(class) of a sample in the test set, where Y = 0 or 1, and let D be the training dataset for which the 

classes are known. The essence of BMA is shown in Equation 1: the posterior probability of Y=1 given 

the training set D is the weighted average of the posterior probability of Y=1 given the training set D 

and model Mk multiplied by the posterior probability of model Mk given training set D, summing over a 

set of models Mk in M: 

Pr(Y =1 | D) = Pr(Y =1 | D, Mk ) *Pr(Mk | D)
k∈M

∑ .                                              (1) 

BMA presents several implementation difficulties. One of these is that the exhaustive summation of all 

feasible models leads to an enormous number of terms in Equation 1. Raftery (1995) used the leaps 

and bounds algorithm (Furnival and Wilson 1974) to efficiently identify a reduced set of good models. 

The leaps and bounds algorithm rapidly returns the best “nbest” models of each size (up to 30 

variables). Madigan and Raftery (1994) proposed to use the Occam’s window method to choose a set 

of parsimonious and data-supported models. Their idea is to discard models that are much less likely 

than the best model supported by the data (the default is 20 times less likely).  

A second difficulty with BMA is that there is an implicit integral associated with the evaluation of the 

posterior probability for model Mk given training set D. Using Bayes’s Theorem, Pr(Mk|D) is 

proportional to Pr(D|Mk)*Pr(Mk), where Pr(D|Mk) is the integrated likelihood of model Mk in which the 

regression parameters for model Mk are integrated over. Please refer to Raftery (1995) and Hoeting et 

al. (1999) for the mathematical details. There are many different ways to approximate this integral 

including MCMC approximations (Madigan and York 1995). In this paper, we use logistic regression 

(Hosmer and Lemeshow 2000) to predict Pr(Y=1|D, Mk) such that ln[Pr(Y=1|D, Mk)/ Pr(Y=0|D, Mk)] = 
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b0+b1x1+…+bpxp, where xi’s represent the expression levels of selected genes and bi’s are the 

regression parameters. In this case, the Bayesian Information Criterion (BIC) can be used to 

approximate the integral (Raftery 1995). We adopt the BMA implementation (Raftery 1995) which 

makes use of the BIC approximation. The source code of the BMA implementation is available at 

http://www.research.att.com/~volinsky/bma.html. 

P-values computed from typical variable selection procedures (such as stepwise forward or backward 

selection) have been shown to overstate the strength of inference (Raftery 1995; Viallefont et al. 

2001). One of the advantages of BMA is that it yields an easily interpreted summary: posterior 

probabilities for the selected models and the selected genes (variables). In particular, our adopted 

traditional BMA implementation (Raftery 1995) outputs the posterior probability that each variable is 

non-zero, probne0.  

 

2.2 Our modifications to existing BMA algorithms 

Iterative BMA algorithm 

With microarray data, the number of genes (variables) is typically much greater than the number of 

samples (responses). However, in the traditional BMA implementation (Raftery 1995), the leaps and 

bounds algorithm can only compute the best “nbest” models for up to 30 variables, and if the number 

of variables is greater than 30, backward elimination is used to reduce the number of variables to 30 

before applying the leaps and bounds algorithm. However, stepwise backward elimination in which 

one variable is removed at a time cannot be applied in this situation in which there are more 

predictors (genes) than observations (samples). Instead, we developed an iterative BMA algorithm 

which first rank orders genes with a univariate gene selection method and then moves a 30-variable 

window down the ordered genes. Recall that probne0 represents the posterior probability of a gene 

not being equal to zero, and hence, genes with high probne0 are good candidates for relevant genes. 

Outline of Iterative BMA Algorithm  

Input: training set D with G genes and n samples 

Pre-processing step: Rank all G genes using a univariate gene selection procedure. Let x1, x2, …, xG 

be the ordered list of genes. 

Parameters: nbest and p, where p is the total number of genes to be processed such that 30< p = G. 

1. Initially, start with the 30 top ranked genes (x1, x2, …, x30), and apply the traditional BMA 

algorithm. Let toBeProcessed be an ordered list of genes with ranks 31 to p. Initially, 

toBeProcessed <- x31, x32, …, xp. 
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2. Repeat until all p genes are processed 

a. Remove all genes with probne0 < 1%.  

b. Adaptive threshold step: If all genes have probne0 = 1%, determine the minimum 

probne0, minProbne0, among the 30 genes in the current window. Remove all genes 

with probne0 < (minProbne0 +1)%. 

c. Let removedGenes be the set of genes removed, and suppose q genes are removed. 

d. Replace the q removed genes with the next q genes from toBeProcessed. Update 

toBeProcessed <- toBeProcessed – removedGenes. 

e. Apply the traditional BMA algorithm. 

Output: selected models and their posterior probabilities, selected genes and their corresponding 

probne0, maximum likelihood estimates of the regression parameters in each model 

In our study, we used the ratio of between-group to within-group sum of squares (BSS/WSS) (Dudoit 

et al. 2002) to determine the initial gene order. Intuitively, genes with relatively large variation between 

classes and relatively small variation within classes are likely candidates as relevant genes. 

BSS/WSS is a univariate gene selection method in which genes with large BSS/WSS ratios are good 

candidate relevant genes. For a gene j, let Dij denote the expression level of gene j under sample i, 

kjD  denote the average expression level of gene j over samples in class k, and jD. denote the 

average expression level of gene j over all samples. The BSS/WSS ratio for gene j is defined as 

BSS( j)
WSS( j)

=
I(Yi = k) Dkj − D. j( )2

k

∑
i

∑

I(Yi = k) Dij − Dkj( )2

k

∑
i

∑
,                                           (2) 

where I(Yi=k) is equal to 1 if sample i belongs to class k and is equal to 0 otherwise. In step 1 of the 

iterative BMA algorithm, we compute the BSS/WSS ratio for each of the G genes and order the genes 

in descending order of the BSS/WSS ratio. 

 

Multi-class Iterative BMA 

For multi-class microarray data, we developed an individualized regression approach in which binary 

logistic regressions are combined. We used the approximation of Begg and Gray (1984) (also 

discussed in Chapter 8 of Hosmer and Lemeshow (2000)). They studied the use of a series of 

individualized binary logistic regressions as an approximation for polychotomous logistic regression in 
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which the response variable can take more than two values.  They showed that this provides a close 

approximation to maximum likelihood estimation of the full multinomial logistic regression model. For 

our purposes, it is particularly attractive because it allows us to use the well-established and 

computationally efficient algorithms for BMA in binary logistic regression when building BMA for multi-

class classification. 

Suppose there are K classes such that the response variable (class) Y takes on values 0, 1, …, or (K-

1), where K = 3, and let Yi be the response variable for sample i. Our idea is to use a separate binary 

logistic regression to discover relevant genes for each training subset (Y=0 vs. Y=k), where k = 1, .., 

(K-1), and use the Begg and Gray (1984) approach to create an augmented matrix M to approximate 

polychotomous logistic regression using the selected genes from each training subset with binary 

logistic regression. Figure 1 shows a flowchart of our algorithm with an example augmented matrix M 

for K=3. The augmented matrix M is formed by concatenating the selected genes from each training 

subset and pasting the two training subsets (Y=0 vs. Y=1) and (Y=0 vs. Y=2) together. There is a 

column in M for the regression parameter of each gene. The first n1 rows of M correspond to samples 

with Y=0 or Y=1 and the next n2 rows of M correspond to samples with Y=0 or Y=2. Finally, we order 

the columns in M using BSS/WSS ratios and apply the iterative BMA algorithm to M to discover 

relevant genes. 

Outline of multi-class iterative BMA 

1. Using Y=0 as our baseline, create subsets of the samples from the training set for the binary 

classification problem in which Y=0 or Y=k, where k = 1, 2, .., (K-1), and ignore all the data 

from Y? 0 and Y? k. Denote the number of training samples for Y=0 vs. Y=k by nk. In the 

training subset (Y=0 vs. Y=k), the response variable Y*=0 when Y=0, and Y*=1 when Y=k. 

2. For each training sample subset (Y=0 vs. Y=k) where k=1, 2, …, (K-1), apply the iterative BMA 

algorithm, and let Sk be the set of selected genes from this subset. 

3. Merge the selected genes from each training sample subset to create an augmented design 

matrix with ordered columns, M, which has ∑
=

K

k
kn

1

rows and )||2(
1

1
∑

−

=

+−
K

k
kSK  columns 

(variables). 

a. Compute BSS/WSS ratios for each gene in Sk from each training sample subset k. 

b. Sort the BSS/WSS ratios from all (K-1) training sample subsets Sk. 
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c. The first (K-2) columns of the design matrix M represent the “intercept” columns while 

all other columns represent genes (variables). The first n1 rows of M represent the 

training sample subset Y=0 or Y=1, and the next n2 rows of M represent Y=0 or Y=2 

etc. 

d. For k= 2 to (K-1), M[i, k-1]=1 for any sample i in training subset k in which Yi=0 or Yi=k, 

and M[i, k-1] =0 for all other samples. 

e. For k=1 to (K-1) and each gene g in Sk, M[i, (K-2)+r]=Dig where r is the rank of gene g 

from step (3b) and Dig is the expression level of gene g under sample i in the training 

set D for any sample i in training subset k (Yi=0 vs. Yi=k), and M[i, (K-2)+r]=0 

otherwise. 

f. The response variable for M, YM=0 for Y=0, and YM=1 for Y=k where k=1, 2,.., (K-1).  

4. Apply the iterative BMA algorithm to the augmented data matrix M. 

5. Prediction step: use the regression parameters from the selected variables from Step 4. 

 

2.3 Evaluation of predictive performance 

In the literature, the number of classification errors is the most popular measure of predictive 

performance, for example, (Golub et al. 1999; Nguyen and Rocke 2002a; van 't Veer et al. 2002; Lee 

et al. 2003). However, in our case, the predicted probability for each class, Pr(Y=k|D), is available. For 

example, a predicted probability close to 0 or 1 is more desirable than a predicted probability around 

0.5 in the binary classification case. In order to take the magnitudes of predicted probabilities into 

consideration, we adopted the Brier Score (Brier 1950) as our evaluation measure. For binary data, let 

Yi denote the response variable (class) of sample i, where Yi = 0 or 1. Denote the predicted probability 

that sample i belongs to class 1, Pr(Yi=1|D), by pi. The Brier Score is defined as ( )
2

1
∑

=

−
n

i
ii pY , which is 

the sum of squares of the difference between the true class and the predicted probability over all 

samples. If the predicted probabilities, pi, are constrained to equal to 0 or 1, the Brier Score is equal to 

the total number of classification errors.  Thus the Brier Score allows us to compare the performance 

of the deterministic 0-1 classification methods with that of probabilistic methods such as BMA, which 

is an appealing feature. 

We use the generalized Brier Score for the multi-class case, where Yi = 0, 1, …, (K-1). Let Yik be an 

indicator variable such that Yik=1 if Yi=k and Yik=0 otherwise, where k = 0, 1, …, (K-1). Let pik denote 
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the predicted probability that Yi =k. The generalized Brier Score is defined as ( )∑∑
=

−

=

−
n

i

K

k
ikik pY

1

1

0

2

2
1

. It 

can be shown that the generalized Brier Score is reduced to the Brier Score when K=2. A high 

generalized Brier Score indicates poor predictive performance. 

 

3 RESULTS 

3.1 Breast cancer prognosis data (2-class) 

The breast cancer prognosis dataset (van 't Veer et al. 2002) consists of primary breast tumor 

samples hybridized to cDNA arrays consisting of 24481 genes with 78 samples in the training set, and 

19 samples in the test set. These samples are divided into two categories: the good prognosis group 

(patients who remained disease free for at least 5 years) and the poor prognosis group (patients who 

developed distant metastases within 5 years). We identified 4919 significantly regulated genes (at 

least a two-fold difference and p-value < 0.01 in least 3 samples) from the training set. We further 

deleted two samples with missing values from the training set. Therefore, the breast cancer prognosis 

training set used in our experiments consists of 76 samples and the test set consists of 19 samples 

(see Table 1) across 4919 genes.  

We applied the iterative BMA algorithm for binary classification to the breast cancer prognosis data, 

and achieved a comparable number of classification errors on the test set to the reported results in 

van’t Veer et al. (2002) while using significantly fewer relevant genes. We experimented with various 

control parameters for the iterative BMA algorithm in our study, including the number of models 

returned by the leaps and bounds algorithm for up to 30 variables (nbest) and the number of top 

genes ranked by BSS/WSS ratios (p). We observed that a large p (1000 or more genes) typically 

yields lower Brier Scores and classification errors, and with the exception of nbest=10, which is too 

small, the prediction accuracy and the number of selected genes are relatively insensitive to “nbest”.  

Using all 4919 genes and nbest=20, our iterative BMA algorithm produced 3 classification errors on 

the test set (out of 19 samples) and a Brier Score of 2.04 using 6 selected genes. van’t Veer et al. 

(2002) reported 2 classification errors on the test set using 70 relevant genes. There is only one 

common gene between our 6 selected genes and the 70 relevant genes from van’t Veer et al. (2002). 

This is probably due to the fact that 4 out of our 6 selected genes have poor univariate rankings 

(above 200, see Table 2). In addition, the 70 relevant genes from van’t Veer et al. (2002) are chosen 

due to a high correlation (> 0.3 or <-0.3) with the response variable. Some of these high correlation 

genes may be correlated among themselves. For example, among the top 10 correlated genes (with 
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the response variable) from the 70-gene subset, four of them have correlation greater than 0.3 with 

the top ranking gene AL080059.  

Our results demonstrate the power of our multivariate BMA gene selection procedure that explores all 

p given genes: genes with poor univariate rankings may be beneficial in classification when used in 

combination with other genes. By choosing our relevant genes from sets of genes, the iterative BMA 

algorithm greatly reduces the number of relevant genes needed for accurate class prediction. 

Furthermore, these 6 selected genes are used in 13 selected models, each of which consists of 3 to 6 

genes. The predicted probabilities for the 19 test samples are illustrated in the uncertainty plot in 

Figure 2, in which the uncertainty (1 – Pr(Y=1|D)) is plotted against the test samples, sorted by 

increasing uncertainty (Bensmail et al. 1997). Figure 2 shows that two out of the three misclassified 

test samples have high uncertainty, indicating that our assessment of uncertainty does correspond 

with the errors actually made, as we would wish. 

  

3.2 Leukemia data (2 and 3 classes) 

The leukaemia dataset (Golub et al. 1999) consists of 7129 genes, 38 samples in the training set and 

34 samples in the test set. We filtered out genes that do not exhibit significant variation across the 

training samples, leaving 3051 genes, and then performed thresholding and the logarithmic 

transformation. The data consist of samples from patients with either Acute Lymphoblastic Leukemia 

(ALL) or Acute Myeloid Leukemia (AML). However, it has also been noted that the global expression 

profiles also reflect two ALL sub-types (B-cell and T-cell) (Golub et al. 1999). Hence, this dataset can 

be divided into either 2 or 3 classes (see Tables 3a and 3b). 

We first applied the iterative BMA algorithm to the 2-class leukemia data, and achieved a comparable 

number of classification errors on the test set to other reported results in the literature. Specifically, we 

observed a Brier Score of 1.5, with 2 classification errors on the test set (out of 34 samples) with 20 

selected genes, using nbest=20 and p=1000 top ranked genes1. Similarly to what happened with the 

breast cancer prognosis data, 13 (out of 20) selected genes have poor univariate BSS/WSS rankings 

(above 200). This dataset is widely used in classification and feature selection papers in the literature. 

For example, Nguyen and Rocke (2002b) reported 1 to 3 classification errors on the test set using 50 

                                                 
1 Using all 3051 genes yielded unstable models. We observed this unstable model phenomenon on this 
thresholded dataset (in which expression values are thresholded by 100 and 16000 before applying the 
logarithmic transformation) only, but not on other unthresholded datasets. This is probably because some genes 
with low BSS/WSS rankings have many identical thresholded values across the samples leading to singular 
matrices in our computation. 
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to 1500 selected genes. They also noted that test sample #66 is consistently misclassified in the 

microarray community and suggested that the sample might be incorrectly labelled. Sample #66 is 

one of the two misclassified samples in our results. Our iterative BMA algorithm consistently 

misclassified sample #66 in all of our experiments using different parameter values (nbest and p). Lee 

et al.  (2003) reported one of the most favorable results in the literature, which is 1 classification error 

using 5 genes. However, it is not clear whether sample #66 was misclassified in their reported results. 

Next, we applied our multi-class iterative BMA algorithm to the 3-class leukemia data (AML, ALL-B 

cell, ALL-T cell). This produced very encouraging results: a Brier Score of 1.5 with 1 classification 

error on the test set (34 samples), using 15 genes (nbest = 20, p = 1000). Figure 3 shows the 

uncertainty plot and Table 4 shows the selected genes and their corresponding posterior probabilities. 

It is interesting that we achieve a similar Brier Score in the 3-class case as in the 2-class case. Six out 

of the 15 relevant genes were selected from the binary classification problem comparing AML to ALL-

B cell (Y=0 vs. Y=1), and nine genes were selected from comparing AML to ALL-T cell (Y=0 vs. Y=2). 

Nguyen and Rocke (2002a) pooled the training and test sets (38+34=72 samples) and classified each 

of the 72 samples in turn using the classifier built using the remaining 71 samples. They reported 4 

classification errors out of 72 samples with 69 to 100 genes, using leave-one-out cross validation. We 

not only produced a lower error rate (3% compared to 5.5%) and good Brier Scores, but also our BMA 

classifier was built using only 38 training samples. Recently, Lee and Lee (2003) also applied the 

multicategory support vector machine to the training set (with 38 samples) of the 3-class leukaemia 

data. Their best result is 1 classification error on the test set (with 34 samples) using 40 relevant 

genes. 

 

3.3 Hereditary breast cancer data (3 classes) 

Hedenfalk et al. (2001) studied the expression patterns of hereditary breast cancer with gene 

mutations (BRCA1 or BRCA2 mutations). The hereditary breast cancer dataset consists of 7 samples 

of cancers with BRCA1 mutation, 8 samples with BRCA2 mutation, and 7 sporadic cases of primary 

breast cancers over 3226 genes. There is no separate test set available, so we use leave-one-out 

cross validation (LOOCV) in which each of the 22 samples is used in turn as the test sample and a 

classifier is built using the remaining 21 samples. 

We applied the multi-class iterative BMA algorithm to this three-class data, and obtained encouraging 

results: a Brier Score of 5.5 with 6 classification errors (out of 22 samples) with 13 to 18 relevant 

genes, using all 3226 genes and nbest=50. Since LOOCV is used, a different classifier is built for 

each test sample, so the number of relevant genes may vary in each classifier. Nguyen and Rocke 
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(2002a) reported 6 classification errors with 343 to 438 relevant genes using their proposed partial 

least squares gene selection method on the same dataset.  

 

4 DISCUSSION 

We have proposed iterative BMA algorithms for gene selection on binary and multi-class microarray 

data. Both are multivariate gene selection methods in which dependency between genes is exploited. 

Our algorithms take advantage of model uncertainty by averaging over multiple models (sets of 

relevant genes). We demonstrated high prediction accuracy using smaller numbers of genes (relative 

to other methods) on both binary and multi-class microarray datasets. Table 5 shows an overall 

summary of our results. In addition, our algorithms produce posterior probabilities for both selected 

genes and models, and these posterior probabilities aid biological interpretation. We also observed 

that the selected models are generally very simple, containing only a few genes. Furthermore, we 

adopted the Brier Score and used the generalized Brier Score to evaluate prediction accuracy, taking 

the posterior probabilities for the response variables into consideration. 

Unlike most feature selection algorithms, in which a pre-specified number (usually small) of top 

ranked genes are chosen as relevant genes and all the remaining genes are discarded, our Iterative 

BMA algorithm guarantees that all p genes are considered even though the resulting selected genes 

and models depend on the initial ranking. We show that genes with poor univariate scores may 

contribute to increased prediction accuracy, and we recommend using all available genes (i.e., p = G) 

in the iterative BMA algorithms, except in the case of thresholded data. From our experiments, 

nbest=20 or 50 generally yield good results. 

In order to efficiently compute a reduced set of good models, we use the leaps and bounds algorithm 

(Furnival and Wilson 1974), which returns the best “nbest” models for each size up to 30 variables. 

This imposes a restriction of a 30-variable window on our iterative BMA algorithms, which in turn limits 

our algorithms to choosing at most 30 relevant genes. Although this restriction does not seem to hurt 

performance, we are currently in the process of exporting our BMA software from Splus to R, and 

relaxing this 30-variable limitation. Our current implementation is computationally efficient. For 

example, it takes under 30 minutes to run our iterative BMA algorithm on the binary breast cancer 

prognosis dataset (nbest=20 and p = 4919) on a moderate computer with a 1.4GHz AMD Athlon 

processor. Another future project is to study the effect of the chosen baseline (Y=0) in our multi-class 

iterative BMA algorithm. Our preliminary results show that changing the baseline response variable 
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does not affect predictive performance much. However, the number of relevant genes chosen can be 

different.  

The combination of high accuracy, small numbers of genes and posterior probabilities for the 

predictions, should make BMA an attractive tool for developing diagnostics from expression data. The 

posterior probability of the prediction provides an estimate of the certainty of the classification, which 

can be useful in a diagnostic setting.   
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7 TABLES 
 
Table 1  - Prognosis groups and class sizes of the training set and test set of the breast cancer 
prognosis data. Y is the response (class) variable. 
 
Prognosis group Y Training set (total 76) Test set (total 19) 
Poor (develop metastases within 5 years) 0 33 12 
Good (disease free for at least 5 years) 1 43 7 
 
 
Table 2: Selected genes and their corresponding posterior probabilities of not being equal to zero 
(probne0), BSS/WSS ranks, and membership in the 70-gene signature chosen by van't Veer et al. 
(2002) for the breast cancer prognosis data using 4919 genes and nbest=20. The genes are shown in 
descending order of probne0. 

 
 
 
Table 3: Groups and class sizes of the training and test sets of the leukemia data. Y is the response 
(class) variable. 
a. 2-class (ALL vs. AML) 
 

Class Y Training set (total 38) Test set (total 34) 
ALL (Acute Lymphoblastic Leukemia) 0 27 20 
AML (Acute Myeloid Leukemia) 1 11 14 

 
 
b. 3-class (AML vs. ALL-B cell vs. ALL-T cell) 
 

Class Y Training set (total 38) Test set (total 34) 
AML 0 11 14 
ALL-B cell 1 19 19 
ALL-T cell 2 8 1 

 
 
Table 4: Selected genes and their corresponding posterior probabilities of not being equal to zero 
(probne0), and BSS/WSS ranks for the 3-class leukemia data using p=1000 genes and nbest=20. The 

selected genes probne0(%) BSS/WSS rank in 70-gene signature? gene description

AL080059 100.0 1 yes
Homo sapiens mRNA; cDNA 
DKFZp564H142 (from clone 
DKFZp564H142)

Contig49670_RC 80.8 95 no
Homo sapiens cDNA: FLJ23228 fis, clone 
CAE06654

NM_012214 70.8 201 no
mannosyl (alpha-1,3-)-glycoprotein beta-1,4-
N-acetylglucosaminyltransferase, isoenzyme 
A

Contig59951 57.3 793 no RAD21 (S. pombe) homolog

Contig46443_RC 57.3 1349 no
ESTs, Weakly similar to AF279265 1 
putative anion transporter 1 [H.sapiens]

NM_003315 41.4 423 no tetratricopeptide repeat domain 2
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BSS/WSS ranks represent the ranks in the binary logistic regression (Y=0 vs. Y=1) or (Y=0 vs. Y=2). 
If a gene is selected in only one binary logistic regression, a blank entry is shown. For example, 
X03934_at was ranked #1 in the binary regression between AML (Y=0) and ALL-T cell (Y=2), but 
X03934_at was not selected in the binary regression between AML (Y=0) and ALL-B cell (Y=1). The 
genes are shown in descending order of probne0. 
 

 
 
 
Table 5: Summary of our results. The number of relevant genes, Brier Score and the number of 
classification errors on the test set obtained from our iterative BMA algorithms are shown in column 4. 
The number of relevant genes and number of classification errors on the test set from published 
results are shown in column 5. *Results from the hereditary breast cancer data were evaluated using 
leave-one-out cross validation (LOOCV). 
 
 
Dataset # classes Classes Results from our 

iterative BMA 
algorithms 

Published results 

Breast cancer 
prognosis data 

2 Poor vs. Good 
prognosis groups 

# genes = 6 
Brier Score = 2.04 
# errors = 3/19 

# genes = 70 
 
# errors = 2/19 

Leukemia data 3 AML vs. ALL-B cell 
vs. ALL-T cell 

# genes = 15 
Brier Score = 1.5 
# errors = 1/34 

# genes = 40 
 
# errors = 1/34 

Hereditary breast 
cancer data* 

3 Sporadic vs. 
BRCA1 vs. BRCA2 

# genes = 13 to 18 
Brier Score = 5.5 
# errors = 6/22 

# genes = 343 to 438 
 
# errors = 6/22 

 

BSS/WSS rank
selected genes probne0 (%) Y=0 vs. 1 Y=0 vs. 2 gene description

M27891_at 100.0 1 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)
L28821_at 32.6 279 MANA2 Alpha mannosidase II isozyme
X03934_at 30.9 1 GB DEF = T-cell antigen receptor gene T3-delta
X59871_at 30.9 2 TCF7 Transcription factor 7 (T-cell specific)
U02493_at 18.7 152 54 kDa protein mRNA
X05323_at 8.1 213 OX-2 MEMBRANE GLYCOPROTEIN PRECURSOR
Z22551_at 8.1 312 Kinectin gene

X74008_at 8.0 802
PPP1CC Protein phosphatase 1, catalytic subunit, gamma 
isoform

U90552_s_at 8.0 112 Butyrophilin (BTF5) mRNA
L33075_at 7.9 354 Ras GTPase-activating-like protein (IQGAP1) mRNA
X99459_at 6.6 974 Sigma 3B protein
M98539_at 5.7 523 Prostaglandin D2 synthase gene
M81830_at 5.7 931 GB DEF = Somatostatin receptor isoform 2 (SSTR2) gene
Y11710_rna1_at 5.3 972 Extracellular matrix protein collagen type XIV, C-terminus
L32831_s_at 5.1 1000 PROBABLE G PROTEIN-COUPLED RECEPTOR GPR3
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8 FIGURES 
 
Figure 1: A flowchart illustrating the multi-class iterative BMA algorithm for K=3. Suppose two genes 
x1 and x2 are selected in the two binary logistic regressions (Y=0 vs. Y=1 and Y=0 vs. Y=2) from the 
iterative BMA algorithm. The goal of polychotomous regression is to estimate the regression 
parameters for g1(x)=ln[P(Y=1|D)/P(Y=0|D)]=b10 + b11x1 + b12x2 and g2(x)= ln[P(Y=2|D)/P(Y=0|D)]=b20 
+ b21x1 + b22x2. The augmented matrix M consists of an intercept column (b20 - b10) and a column for 
each regression parameter b11, b12, b21, and b22. 
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Figure 2: Uncertainty plot for the predicted probabilities on the test set (19 samples) of the breast 
cancer prognosis data. The y-axis represents the uncertainty (1 – predicted probability of Y=1), and 
the x-axis represents the 19 test samples sorted in increasing order of uncertainty. The follow-up time 
of patients is used to label the upper x-axis. The vertical bars represent classification errors. In other 
words, test samples # 102, 117, 109 with follow-up times 3.3, 5.3, 3.2 respectively were misclassified. 
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Figure 3: Uncertainty plot for the predicted probabilities on the test set (34 samples) of the 3-class 
leukemia data. Each sample is classified as being in the class j with the maximum predicted 
probability Pr(Y=j|D), where j=0, 1, 2. The y-axis represents the uncertainty (1 – maximum predicted 
probability), and the x-axis represents the 34 test samples sorted in increasing order of uncertainty. 
The vertical bar represents a misclassified sample.  

 
 
 
 
 
 
 
 
 


