
Temporal Planning with Preferences and Probabilities

Robert Morris†, Paul Morris†, Lina Khatib∗†
∗Kestrel Technology

†Computational Sciences Division
NASA Ames Research Center, MS 269-2

Moffett Field, CA 94035, USA
{morris,pmorris,lina}@email.arc.nasa.gov

Neil Yorke-Smith
Artificial Intelligence Center

SRI International
Menlo Park, CA 94025, USA
nysmith@ai.sri.com

Abstract

In an uncertain world, a rational planning agent must simul-
taneously reason with uncertainty about expected outcomes
of actions and preferences for those outcomes. This work
focuses on systematically exploring the interactions between
preferences for the durations of events, and uncertainty, ex-
pressed as probability distributions about when certain events
will occur. We expand previous work by introducing a means
for representing events and durations that are not under the
control of the planner, as well as quantitative beliefs about
when those events are likely to occur. Two reasoning prob-
lems are introduced and methods for solving them proposed.
First, given a desired overall preference level, compute the
likelihood that a plan exists that meets or exceeds the spec-
ified degree of preference. Second, given an initial set of
beliefs about durations of events, and preferences for times,
infer a revised set of preferences that reflect those beliefs.

Introduction
Rational agents are capable of mentally exploring the in-
teractions between what they believe and what they desire
as outcomes of actions. More often than not, the value of
the outcomes of actions cannot be described by a single at-
tribute, but rather by attributes that combine to determine the
overall value of the outcome (Keeney & Raifa 1993). Fur-
thermore, the outcome of actions may not be known with
certainty, as a result of the need to interact with the world.

Many practical planning or scheduling problems surround
events that are not controlled by the planning agent. For ex-
ample, Earth Science observation scheduling may involve
assigning times for the remote sensing of an area of inter-
est on the Earth before, during, or after a fire has occurred
there. The start and end of the fire are not known with cer-
tainty at planning time, but Earth Science models might be
available to estimate a set of times when fires are likely to
occur. In addition, the scientific utility of an observation
may vary based on when the observation is taken relative to
the fire, resulting in preferences for temporal orderings and
durations between planned events and uncontrollable events
(Morris et al. 2004b). As automated planning matures as
a software technology, new techniques inspired by decision
theory are being integrated to address the fact that plans are
executed in the world, with varying degrees of value to the
planner based on their outcomes (Blythe 1999). A princi-

pled approach to scheduling problems as the above is essen-
tial for a decision-theoretic temporal planner that takes into
account preferences when determining plan quality.

The goal in this paper is to devise systematic methods for
exploring the interactions between temporal preferences and
uncertainties. We introduce a framework that generalizes
the Simple Temporal Problem (STP) formulation (Dechter,
Meiri, & Pearl 1991), called the Simple Temporal Problem
with Preferences and Probabilities, or STP3. One com-
ponent of the generalization adds the capability to express
preferences for times, following (Khatib et al. 2001). The
other component allows for the designation of uncontrol-
lable events and the associated probability space over times.
We extend techniques previously used to solve temporal
planning problems with preferences to identify solutions that
are both globally preferred and highly probable.

Besides defining the STP3 framework, the contribution of
this paper is to describe solutions to two practical reasoning
problems arising from the interactions between probabilities
and preferences. We extend techniques previously used to
solve temporal problems with preferences to identify solu-
tions that are both globally preferred and highly probable.

Decision-theoretic planning is surveyed by (Blythe 1999).
Most approaches extend classical planning techniques or
employ Markov Decision Processes (e.g. (Boutilier, Dean,
& Hanks 1999)), in contrast to our constraint-based focus.
Of work on temporal reasoning for planning, a characteris-
tic example is (Hanks, Madigan, & Gavrin 1995), who, like
us, consider exogenous events, but focus on eliciting proba-
bilities and qualitative preferences from a human expert.

In the constraints literature, preferences are commonly
represented using semiring-based formulations, the ap-
proach we adopt. An alternative formulation for qualitative
preferences is CP-nets (Boutilier et al. 2004). Uncertainty
has also been represented both qualitatively and quantita-
tively; probabilistic frameworks include that of (Fargier et
al. 1995), which we adopt, and its extensions.

Generic constraint-based frameworks that account for
both preferences and uncertainty include (Dubois, Fargier,
& Prade 1996). Our work is distinguished by restricting
attention to Simple Temporal constraints. Prior work in
this line has considered STPs with preferences but no un-
certainty (Khatib et al. 2001); and STPs with uncertainty
constraints but no preferences (Morris, Muscettola, & Vidal
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2001; Tsamardinos, Pollack, & Ramakrishnan 2003). While
(Rossi, Venable, & Yorke-Smith 2004) incorporate both as-
pects, that work considers only qualitative uncertainty, that
is, with implied uniform distributions.

Example: Earth Science Campaign
Observation Scheduling

An Earth Science campaign is a systematic set of activities
undertaken to meet a particular science objective. Here, we
present a hypothetical campaign based on a science objec-
tive to test an emissions model predicting the aerosols re-
leased by wildfires. Data on several variables must be gath-
ered in order to accomplish the analysis, and several remote
sensors, such as those on the Landsat satellite, provide data
products at various spatial resolutions relevant to these vari-
ables. Preferred times for acquiring Landsat data for vegeta-
tion type for a region of interest in the northern hemisphere
would be the prior June or July in the same year that the
fire burned, when forested land can most easily be spectrally
distinguished from grassland. For mapping aerosol concen-
tration, images coincident to burning must be obtained; the
Terra and/or Aqua satellites have relevant instruments. For
the burned area, data should be acquired after (though not
too long after) the fire is out, while for mapping vegetation
moisture content, hyperspectral data from an EO-1 Hyper-
ion instrument are relevant, and the most useful data would
be that acquired just preceding the fire.

From this description, the inputs to a campaign planning
problem potentially consist of the following characteristics:

• a set of temporal, spatial, and resource constraints on
when and where images are to be taken;

• user preferences for when an observation should be taken;

• temporal ordering constraints between planned events and
uncontrollable, exogenous events such as fires.

A reasonable goal, given these inputs, is to generate a con-
cise representation of the set of solutions (assignments of
times and sensing resources) that are maximally preferred
and reflect a set of initial beliefs about when exogenous
events are likely to occur. We formulate a framework ca-
pable of describing the problem and generating this output.

Simple Temporal Problems with Preferences
and Probabilities

A soft temporal constraint depicts restrictions on the dis-
tance between arbitrary pairs of distinct events, and a user-
specified preference for a subset of those distances. In
Khatib et al. (Khatib et al. 2001), a soft temporal constraint
between events i and j is defined as a pair 〈I, fij〉, where I is
a set of intervals {[a, b], a ≤ b} and fij is a local preference
function from I to a set A of admissible preference values.1

When I is a single interval, a set of soft constraints defines a
Simple Temporal Problem with Preferences (STPP), a gen-
eralization of a Simple Temporal Problem (Dechter, Meiri,

1For the purposes of this paper, we assume the values in A are
totally ordered, and that A contains designated values for minimum
and maximum preference.
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Figure 1: STP3 Representing the Fire Campaign Scenario

& Pearl 1991). An STPP can be depicted as a pair (V,C)
where V is a set of variables representing events or other
time-points, and C = {〈[aij , bij ], fij〉} is a set of soft con-
straints defined over V . An STPP, like an STP, can be or-
ganized as a network of variables representing events, and
links labeled with constraint information.

Similar to other recent approaches (Morris, Muscettola, &
Vidal 2001; Tsamardinos, Pollack, & Ramakrishnan 2003;
Rossi, Venable, & Yorke-Smith 2004), we extend the STPP
framework to represent temporal uncertainty. First, we parti-
tion V into two groups: the decision variables Vd and the pa-
rameters Vu representing uncontrollable events. This parti-
tion induces a distinction between decision constraints (Cd)
and uncertainty constraints (Cu): those constraints whose
end-point is controllable (i.e. a decision variable), and those
whose end-point is a uncontrollable (i.e. a parameter). An
uncertainty constraint depicts a duration between events as a
continuous random variable. To ease the exposition, we as-
sume that the uncertainty constraints are mutually indepen-
dent2; this allows the constraints in Cu to be expressed in
the form 〈[aij , bij ], pij〉, where pij : [aij , bij ] → [0, 1] is the
probability density function over the designated interval. We
call the framework 〈Vd, Vu, Cd, Cu〉, where Cd are soft con-
straints, a Simple Temporal Problem with Preferences and
Probabilities, or STP3.

Example 1 Earth Science Observation Problem. Inputs:
Variables in Vd standing for two controllable events consist-
ing of taking an observation (Obs1, Obs2), and two uncon-
trollable events in Vu, the start and end of a fire (FS, FE)
(for simplicity, observations are viewed as instantaneous), as
shown in Figure 1. There is also an event TR representing
the beginning of time. Soft constraints f1(t), f2(t) in Cd are
associated with the durations between Obs1 and FS, and
between Obs2 and FE, respectively. For example, f1(t)
may express that there is no value for taking Obs1 after the
start of the fire (FS), and a preference for times that are as
close to FS as possible. Similarly, f2(t) expresses a pref-
erence for Obs2 happening before FE as close as possible,

2For instance, imagine that the Earth Science planner maintains
a Bayes network elsewhere to express the dependencies; each prob-
ability p(t) is given implicitly by that network.



with a penalty if the observation is taken after the fire. Un-
certainty constraints p1, p2 in Cu are associated with random
variables representing the start time and the duration of the
fire. These constraints are based on Earth Science models
about fires in the area of interest. For example, p1 may ex-
press a normal distribution over the range of times.

A solution to an STP3 is a set of assignments to V =
Vd ∪ Vu that satisfies all the constraints in C = Cd ∪ Cu.
Given an STP3 P , let Sol(P ) be the set of all solutions to P .
An arbitrary solution s ∈ Sol(P ) can be viewed as having
two parts: sd, the set of values assigned to Vd, and su, the
set of values assigned to Vu.

Our goal is to develop efficient methods for generating
a concise, graphical representation of subsets of Sol(P )
corresponding to highly likely, globally preferred solutions.
This STP-based graphical representation is called a flexible
(temporal) plan. Many planning systems use an STP-based
representation of the temporal aspects of their plans (Smith,
Frank, & Jónsson 2000).

Following previous efforts, methods for flexible tempo-
ral planning under uncertainty can be distinguished based
on assumptions about the strategy to be applied in executing
the flexible plan. A static execution strategy assumes no ac-
cess to the values of su during plan execution; by contrast a
dynamic execution strategy is applied as plan execution pro-
ceeds and the values of su are observed over time (Morris,
Muscettola, & Vidal 2001; Rossi, Venable, & Yorke-Smith
2004). The results of this paper assume a static execution
strategy; we defer discussions of planning for dynamic exe-
cution of STP3s to future work.

Component Solvers. The solution methods described be-
low are based on different decompositions of an STP3 into
component sub-problems for which efficient solution meth-
ods exist. As a final preliminary, we fix some terminology
and briefly summarize these sub-problem solution methods.
Given an STP3, the underlying STPP is the problem that re-
sults when a constraint {[a, b], pXY } ∈ Cu is replaced by
the STP component constraint [a, b]. The underlying Prob-
abilistic STP is the problem that results when each soft con-
straint {[a, b], fXY } ∈ Cd is replaced by the STP compo-
nent constraint [a, b]. The underlying STP replaces all con-
straints in Cd ∪ Cu with their STP components.

Efficient solution methods for STPs are well-known
(Dechter, Meiri, & Pearl 1991). An Simple Temporal Net-
work (STN) is a graph of nodes representing the STP vari-
ables and edges labeled with the interval temporal con-
straints. Each STN is associated with a distance graph de-
rived from the upper and lower bounds of the interval con-
straints. An STN is consistent iff the distance graph does not
contain a negative cycle; this condition can be determined
by applying a single-source shortest path algorithm such as
Bellman-Ford. In addition to consistency, it is often useful
to determine for an STN the equivalent STN (in terms of a
set of solutions) in which all the intervals are as “tight” as
possible. This minimal network can be determined by ap-
plying an All-Pairs Shortest Path (APSP) algorithm to the
input network (Dechter, Meiri, & Pearl 1991).
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Figure 2: Illustrating the Interactions between Temporal
Probabilities and Preferences

Previous efforts in solving STPPs have been based on
identifying and applying criteria for “globally preferred so-
lutions” such as “weakest link” (maximize the least pre-
ferred local preference), “pareto”, and “utilitarian” (Mor-
ris et al. 2004a). Developing efficient solvers has required
local preference functions that are linear or semi-convex.3

One method for solving STPPs efficiently is called the chop
method, first introduced in (Khatib et al. 2001). The chop
method is a two-step search process of iteratively choosing
a preference value α, “chopping” every preference function
at that point, and then solving an underlying STP defined by
the interval of temporal values whose preference values lie
above the chop line, i.e. {x : f(x) ≥ α}; henceforth, we
refer to this as the chop interval. The highest chop point that
results in a solvable (i.e. consistent) STP produces a flexible
plan whose solutions are exactly the optimal solutions of the
original STPP (based on the criteria of weakest link). Binary
search can be used to select candidate chop points, making
the technique for solving the STPP tractable.

Assessing the Likelihood of Achieving
Preferred Plans

This section and the next consider two practical reasoning
problems involving the interactions of uncertainty and pref-
erences about time, and demonstrate how under certain as-
sumptions they can be solved efficiently using STP3s. The
first problem addresses the question: what are the chances
of achieving a certain level of global preference, given my
belief about the way the world will behave? To illustrate,
consider the simple STP3 in Figure 2(a). Here, Vd = {A,B}
and Vu = {C}, and there are two decision constraints, be-
tween B and C and between A and B. B is tightly con-
strained to occur exactly one time unit after A. The soft
constraint BC prefers durations between B and C to be
minimal (higher values more preferred); this is expressed by
the preference function f(t) = 4 − t. The probability den-
sity function for AC is represented by specifying the named
function (normal) with mean (3) and standard deviation (1).

3A function is semi-convex if drawing a horizontal line any-
where in the Cartesian plane of the graph of the function is such
that the set of X such that f(X) is not below the line forms an in-
terval. Semi-convexity ensures that there is a single interval above
any chop point, and hence that the resulting problem is an STP.
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Figure 3: Why the Upper Bound May Not be Tight

Suppose an agent wants to infer the chances of there being
a solution with an overall preference level of 2 or greater. We
can answer this question by restricting assignments to BC
with an f value of 2 or greater, and propagating the temporal
constraints over the network. This means shrinking the BC
interval to [0, 2], which in turn shrinks AC to [1, 3]. Conse-
quently, the answer to the posed question can be obtained by
computing P (1 ≤ t ≤ 3) =

∫ 3

1
p(t)dt.

This technique can be generalized for arbitrary STP3s.
Given an STP3 P , to determine the probability of achieving
a solution of global preference value γ or higher, we perform
the following procedure:

1. Given an input STP3, chop each local preference function
at the designated preference value γ. Form a new problem
by replacing each associated interval with the resulting
chop interval.

2. Determine the minimal network of the underlying STP of
the new problem, using an APSP algorithm.

3. Compute the overall probability of the underlying proba-
bilistic CSP. Assuming independence of the pij , the value
to be computed is∏

pij

P (aij ≤ t ≤ bij), (1)

where for each uncertainty constraint, [aij , bij ] is the in-
terval of the minimal network derived from step 2.

Provided step 3, which may be done using numerical in-
tegration, is of polynomial complexity, the whole method
is polynomial. Steps 2 and 3 of this method resemble the
method proposed in (Tsamardinos, Pollack, & Ramakrish-
nan 2003) for solving Probabilistic STPs. Unfortunately, it
can be easily shown that the computed value provides only
an upper bound on the probability that the solutions defined
at that chop level or above will succeed. That this is not a
tight upper bound can be demonstrated by a simple example,
found in Figure 3. In this example, chopping the preference
function at 10 and solving the underlying STP would not
shrink the temporal bounds of the uncertainty links. There-
fore, the probability of succeeding returned by this method
would be 1, although in fact some of the probability mass is
lost as a result of the chop.

Despite these limitations, an upper bound computation
may be useful; if the bound is too low, the planner will be
forced to “lower expectations” of the plan branch under con-
sideration, i.e. its overall expected preference level.

A tighter bound would require examining the mass of the
polytope defined by all the constraints (a similar observa-
tion was made in (Tsamardinos, Pollack, & Ramakrishnan
2003)). Applied to the previous example, we get P ((0 ≤
AB ≤ 10) ∧ (0 ≤ BC ≤ 10)) from (1), but the true proba-
bility is P ((0 ≤ AB ≤ 10)∧(0 ≤ BC ≤ 10)∧(AB+BC ≥
10)) or simply P (AB + BC ≥ 10), assuming the bounds.
(Note that the AB and BC random variables are no longer
independent under the condition AB + BC ≥ 10.) We can
reformulate this as P (

∨
x(AB = x ∧ BC ≥ 10 − x)) and

calculate it as ∫ 10

0

(∫ 10

10−x

p(y)dy

)
p(x)dx.

Inducing Preferences from Probabilities
In this section we consider a sort of dual problem to that
posed in the previous section: given current expectations
about the world, how can preferences be systematically ad-
justed to fit with those expectations? Intuitively, by answer-
ing this question, the planner can “factor out” the temporal
uncertainty in the problem, resulting in a pure decision prob-
lem: because of the factoring, the solutions most preferred
based on the induced preferences are also most likely.

This factoring process takes into account the initial pref-
erences on decision constraints, combining them with the
preferences induced from the uncertainty constraints. The
core idea is to apply the concept of expected utility from de-
cision analysis (Keeney & Raifa 1993) to represent induced
local preferences. Once the reasoning is complete, the “out-
put” preferences on the decision constraints thus reflect both
the preferences of the agent and its expectation about the
uncertainty in the world.

The main result of this section will be to state a set of suf-
ficient conditions for finding an efficient algorithm for this
process for certain classes of STP3. The method consists of:

1. Given an input STP3, derive the minimal network of the
underlying STP.

2. Apply a local consistency algorithm (discussed below) to
the resulting STP3 (i.e. with the tightened interval con-
straints) to compute the induced preferences.

3. Solve the underlying STPP of the resulting network using
the chop solver to find the globally preferred solutions.

The set of solutions making up the flexible plan that results
are the expected globally preferred solutions.

To examine the second step in more detail, we mimic the
method of triangular reduction found in (Morris, Muscet-
tola, & Vidal 2001), used to solve Simple Temporal Prob-
lems with Uncertainty (STPUs). We consider all STP3s as
collections of triangular subnetworks of the form illustrated
by Figure 2(b), where there is a single uncertainty constraint
on AC with bounds [u, v], and two decision constraints on
AB and BC with bounds [y, z] and [w, x] respectively. As
in the Earth Science example, A might be the beginning of



time, B might be the start of a planned observation, and
C the onset of a fire. The goal is to compute the regres-
sion of pAC over fBC to find the induced soft decision con-
straint fAB . (The case in which AB is also associated with a
soft constraint can be handled as part of the general solution
method discussed later.)

To handle the single triangle case, we need to consider
three possible orderings between B and C. We assume that
step 1 of the approach has been applied, so that the triangular
network has been minimized. If B precedes C (w ≥ 0), then
the induced soft constraint is {[y, z], fAB}, where

fAB(t) =
∫ v

u

f(t′ − t)p(t′)dt′.

Although in general this function cannot be derived analyt-
ically, with certain restrictions placed on the shape of the
preference function it may be possible to compute it directly.
Alternatively, we can estimate it numerically (e.g. Monte
Carlo integration), or even perform crude but fast estimation
based on the expected value. If C precedes B (x ≤ 0), then
intuitively the planner does not require any knowledge about
the expected time of C in order to deduce the preferred time
to execute B dynamically (the soft constraint on AB in this
case can be derived from that of BC). However, recall that
we focus only on the situation of static execution, in which
knowledge about C is not available at planning time. This
means that the predictive models of the Precede case are rel-
evant to planning the Follow case: the same technique can be
followed. Finally, for static execution the same also applies
if B and C are unordered (w < 0, x > 0).

To derive the induced constraints for general STP3 net-
works, we consider all triangles separately, propagating the
effects of one operation to neighboring triangles, until the
network is quiescent. Thus, the structure of the algorithm is
similar to determining path-consistency in an STP network.
Propagation requires combining local preference functions.
The same combination operator as that used for determin-
ing local consistency for preference networks (Rossi et al.
2002) can be applied here for propagating soft constraints.
After the network has reached quiescence, the planner can
safely discard the probability density functions pXY in Cu.
Removing them results in the underlying STPP, which can
be solved by the chop method (Khatib et al. 2001).

The following result summarizes these core ideas. It will
be proved informally and illustrated by an example. Follow-
ing terminology in (Morris, Muscettola, & Vidal 2001), an
STP3 will be said to be pseudo-controllable if no interval in
an uncertainty constraint is “squeezed” as the result of per-
forming step 1 above (computing the minimal network). We
refer to the STP3 that results from performing step 2 above
as the induced STP3.
Theorem 1 Given an STP3 with the following properties:
1. The input preference functions pij are linear or semi-

convex piecewise linear (intuitively, semi-convex piece-
wise linear means that there are no “V” shaped segments);

2. The STP3 is pseudo-controllable;
3. The probability distributions on the uncertainty con-

straints are normal;
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Figure 4: Example of Induced Preferences

then, using the method described above, the set of expected
globally preferred solutions to the initial STP3 can be com-
puted in polynomial time.

The first condition of the theorem is needed to ensure that
the induced STP3 has only functions that are semi-convex,
which is required for the application of the chop solver
method in step 3 (a polynomial-time procedure). Steps 2
and 3 are required to simplify the induced functions to lin-
ear functions involving expected values (see the example be-
low). The conclusion of the proof consists of observing that
the underlying procedures applied in the method (all-pairs
shortest path, the local-consistency technique for deriving
induced preferences, the chop solver, and numerical integra-
tion for determining the expected values) are all polynomial.

To illustrate step 2 of the method in the general case, con-
sider the STP3 in Figure 4. This problem consists of two
decision constraints on BC and BD with associated prefer-
ence functions f, g defined, f clearly preferring larger dura-
tions between B and C, and g preferring smaller durations.
Two uncertainty constraints on AC and AD consist of nor-
mal probability density functions p1 and p2 with means and
standard deviations indicated in parentheses. The goal is to
infer the induced preference function h on AB (the network
is already minimal).

First, considering the triangle ABC, one induced function
for h arises as follows:

h1(t) =
∫ 10

0

f(t′ − t)p1(t′)dt′

=
∫ 10

0

[t′ − t]p1(t′)dt′

=
∫ 10

0

t′p1(t′)dt′ − t

∫ 10

0

p1(t′)dt′.

Notice that because of the pseudo-controllability of the
network (it being already minimal), the last equation re-
duces to E(T1) − t, since then

∫ 10

0
p1(t′)dt′ = 1 and∫ 10

0
t′p1(t′)dt′ = E(T1), where E(T1) is the expected value

of the random variable T1 associated with the duration. A
similar derivation based on the triangle ABD then results in
another induced function h2(t) = 10 − [E(T2) − t]. The



final induced function h becomes the combination of h1 and
h2: e.g. the intersection of the areas under the functions.

This approach can be generalized for regression over
semi-convex piecewise linear preference functions. Let fBC

be the intersection of n linear segments f1
BC , . . . fn

BC , where
for each k, [ak

BC , bk
BC ] is the segment for which fBC =

fk
BC . When regressing pAC over fBC to compute the in-

duced preference function hAB , we have:

hAB(t) =
∫ bn

a1
fBC(t′ − t)pAC(t′)dt′

=
∑

k=1,...,n

∫ bk

ak

fk
BC(t′ − t)pAC(t′)dt′,

which simplifies to sums involving linear functions.
This example shows how with suitable restrictions on the

shapes of the preference functions and on whether the all-
pairs computation eliminates any of the probability mass, the
computation of induced preferences can be made efficient.

Discussion and Future Work
We have examined temporal reasoning under the interac-
tions of preferences and quantitative uncertainty in the con-
text of constraint-based planning. In addition to the formu-
lation of the STP3 framework, which augments the Simple
Temporal Problem with both preferences and probabilities,
the main contribution of this paper is to formulate two plan-
ning decision problems. Utilizing standard methods from
decision theory, probability theory, and recent advances in
constraint satisfaction, we have shown how flexible tempo-
ral plans can be generated that are most preferred based on
what the planning agent believes about the expected times of
events; and how the agent can update its preferences, given
its beliefs.

Fundamentally, preferences and uncertainty are orthogo-
nal aspects of the decision problem. Both planning decisions
we have considered are approaches to combining the two
aspects; which is most relevant depends on the aim of the
planning agent and the questions being asked of it. The first
decision, to evaluate the probability of a plan existing with
at least a given preference, is useful to determine whether a
plan branch can meet a minimum quality threshold. The sec-
ond decision, to update preferences based on beliefs, is use-
ful to factor the uncertainty into a single criterion for plan
evaluation. Besides these two decision problems, the pro-
posed framework can be applied to related problems; for in-
stance, an agent might seek to determine the maximal prefer-
ence level at which a solution exists with a given probability
p. When p = 1 and the probabilities are uniform, this cor-
responds to certain forms of strong controllability addressed
in (Rossi, Venable, & Yorke-Smith 2004).

Future theoretical efforts include characterizing more
fully the computational complexity of STP3s, and refining
the bound on the probability that a plan exists with given
preference quality. In addition to implementing the methods
described in this paper, our major next step is to extend the
results here to address issues in planning under a dynamic

execution strategy. Of particular importance will be to ex-
amine the interactions between preferences and wait con-
straints that emerge when determining the controllability of
flexible plans, as described in (Morris & Muscettola 2000).
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