
Online Query Relaxation via Bayesian Causal Structures Discovery

Ion Muslea & Thomas J. Lee
SRI International
333 Ravenswood

Menlo Park, California 94025
muslea@ai.sri.com, thomas.lee@sri.com

Abstract

We introduce a novel algorithm, TOQR, for relaxing
failed queries over databases; i.e., over-constrained DNF
queries that return an empty result. TOQR uses a small
dataset to discover the implicit relationships among
the domain attributes, and then it exploits this domain
knowledge to relax the failed query. TOQR starts with
a relaxed query that does not include any constraint,
and it tries to add to it as many as possible of the origi-
nal constraints or their relaxations. The order in which
the constraints are added is derived from the domain’s
causal structure, which is learned by applying the TAN
algorithm to the small training dataset. Our experiments
show that TOQR clearly outperforms other approaches:
even when trained on a handful of examples, it success-
fully relaxes more that 97% of the failed queries; fur-
thermore, TOQR’s relaxed queries are highly similar to
the original failed query.

Introduction
Manually relaxing failed queries, which do not match any
tuple in a database, is a frustrating, tedious, time-consuming
process. Automated query relaxation algorithms (Gaaster-
land 1997; Chu et al. 1996b) are typically trained offline
to acquire domain knowledge that is then used to relax all
failed queries. In contrast, LOQR (Muslea 2004) takes an
online, query-guided approach: the domain knowledge is
extracted online in a process driven by the actual constraints
in each failed query. Even though this approach was shown
to be extremely successful, when trained on small datasets
LOQR tends to generate short queries that contain only a
small fraction of the constraints from the failed query.

We introduce a novel algorithm, TOQR, that is similar to
LOQR, without sharing its weakness: even when trained on
just a handful of examples, TOQR generates non-failing re-
laxed queries that are highly similar to the failed ones. In
order to better explain our contribution, let us first summa-
rize the similarities between TOQR and LOQR. They both
use a small dataset D to generate - via machine learning -
queries Qi that are then used to relax the failed query. These
queries Qi are created so that (1) they are as similar as pos-
sible to the failed query and (2) they do not fail on D (if D is

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

representative of the target database TD, it follows that Qi

is unlikely to fail on TD).
Our main contribution is a novel approach to generate

non-failing queries Qi that are highly similar to the failed
query Qf . In contrast to LOQR, which uses D to learn deci-
sion rules that are then converted into queries, TOQR starts
with an empty query Qi, to which it tries to add as many as
possible of Qf ’s constraints (or their relaxations). The order
in which TOQR considers the constraints is derived from the
domain’s causal structure, which is learned from D.

More precisely, for each constraint in Qf , TOQR uses TAN
(Friedman, Goldszmidt, & Lee 1998) to learn both the topol-
ogy and the parameters of a Bayesian network that predicts
whether that constraint is satisfied. TOQR tries to add the Qf

constraints to Qi in the order of the breadth-first traversal of
the learned topology. Intuitively, the breadth-first traversal
minimizes the conflicts between the constraints on the var-
ious domain attributes (in the TAN-generated Bayesian net-
work, the nodes are independent of each other, given their
parents). Our empirical evaluation shows that the order in
which the attributes are considered is critical: adding the
constraints to Qi in an arbitrary order leads to a significantly
poorer performance.

Related Work
CO-OP (Kaplan 1982) was the first system to address the
problem of failing queries. CO-OP transforms the failed
query into an intermediate, graph-oriented language in
which the connected sub-graphs represent the query’s pre-
suppositions. CO-OP tests each of these presupposition
against the database by converting the subgraphs into sub-
queries. FLEX (Motro 1990), which is a generalization of
CO-OP, is highly tolerant to incorrect queries because of its
ability to iteratively interpret the query at lower levels of cor-
rectness. When possible, FLEX proposes non-failing queries
that are similar to the failing ones; otherwise it just provides
an explanation for the query’s failure.

As finding all minimal failing and maximal succeeding
sub-queries is NP-hard (Godfrey 1997), CO-OP and FLEX
have a high computational cost, which comes from evalu-
ating a large number of queries against the entire database.
To speed up the process, (Motro 1986) introduces heuris-
tics for constraining the search, while (Gaasterland 1997)
controls the query relaxation process via heuristics based on

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Online Query Relaxation via Bayesian Causal Structures Discovery

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Artificial Intelligence Center,SRI International,333 Ravenswood
Avenue,Menlo Park,CA,94025

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

semantic query-optimization.
CoBase (Chu et al. 1996a; 1996b; Chu, Chen, & Huang

1994), which uses machine learning techniques to relax
the failed queries, is the closest approach to TOQR and
LOQR. By clustering all the tuples in the target database
(Merzbacher & Chu 1993), CoBase automatically gener-
ates Type Abstraction Hierarchies (TAHs) that synthesize the
database schema and tuples into a compact form. To relax
a failing query, CoBase uses three types of TAH-based op-
erators: generalization, specialization, and association (i.e.,
moving up, down, or between the hierarchies, respectively).
Note that CoBase performs the clustering only once, on the
entire database, and independently of the actual constraints
in the failing queries. In contrast, TOQR’s learning process
is performed online and is driven by the constraints in each
individual query; furthermore, TOQR uses only a small train-
ing set, thus not requiring access to all the tuples in the target
database.

The Intuition
Consider an illustrative laptop domain, in which the query

Qf : Price ≤ $2, 000
∧

CPU ≥ 2.5 GHz
∧

Display ≥ 17′′ ∧Weight ≤ 3 lbs
∧

HDD ≥ 60GB

fails because laptops under 3 lbs have displays smaller than
17′′ (and, vice-versa, laptops with displays over 17′′ weigh
more than 3 lbs).

In order to relax Qf , TOQR proceeds in three steps: first,
it uses a small dataset to learn the domain’s causal structure,
which is then exploited to generate queries that are guaran-
teed not to fail on the training data. Second, it identifies the
generated query Qsim that is most similar to Qf ; finally, it
uses the constraints from Qsim to relax Qf .

Step 1: Extracting domain knowledge
TOQR uses a small dataset D to discover knowledge that
can be used for query relaxation. TOQR considers Qf ’s
constraints independently of each other and learns from D
“what does it take” to fulfill each particular constraint. This
knowledge is then used to create a relaxed query that is sim-
ilar to Qf , but does not fail on D (as already mentioned, if
D is representative of the target database TD, the relaxed
query is also unlikely to fail on TD).

For example, consider the dataset D in Table 1, which
consists of various laptop configurations. In order to learn to
predict whether Price ≤ $2, 000 is satisfied, TOQR creates a
duplicate D1 of D; for each example in D1, TOQR replaces
the original value of Price by a binary one that indicates
whether or not Price ≤ $2, 000 is satisfied; finally, the binary
attribute Price is designated as D1’s class attribute.

In order to discover “what does it take” to satisfy the con-
straint Price ≤ $2, 000, TOQR uses D1 to train the TAN
learner (Friedman, Goldszmidt, & Lee 1998). From the
given data, TAN learns both the topology and the parame-
ters of a Bayesian network classifier. In order to keep the
computation tractable, TAN considers only topologies that
are similar to the one shown in Figure 1:

RAM Price CPU HDD Weight Screen
1024 $2299 3.0 GHz 50 GB 3.1 lbs 18“

128 $1999 1.6 GHz 80 GB 3.6 lbs 14“

64 $1999 2.0 GHz 20 GB 2.9 lbs 12“

512 $1898 2.5 GHz 60 GB 4.3 lbs 16“

256 $1998 2.8 GHz 60 GB 4.1 lbs 17“

Table 1: The dataset D.

- the network’s root (i.e., Price) influences the values of all
domain attributes (see dotted arrows in Figure 1);

- each non-class node can also have at most an additional
parent (e.g., Display also depends on Weight).

One can read the network in Figure 1 as follows: besides the
dependencies on the class attribute, the only significant de-
pendencies discovered by TAN are the influence of Weight
on Display, and of CPU on RAM and HDD. Intuitively,
this means that once we set the class value (e.g., comput-
ers under $2, 000), the only interactions among the values of
the attributes are the one between Weight and Display, and
the one among CPU , RAM , and HDD. In turn, this im-
plies that Qf ’s failure is due to the incompatible values of
the attributes in one or both of these groups of attributes.

TOQR uses the extracted domain knowledge (i.e., the
Bayesian network) to generate a query Q′

Price that is sim-
ilar to Qf but does not fail on D. TOQR starts with an empty
query Q′

Price, to which it tries to add - one at the time - the
constraints from Qf . The order in which TOQR considers
the constraints is derived from the topology of the Bayesian
network. More precisely, TOQR proceeds as follows:

- it detects all the constraints imposed by Qf on the parent-
less nodes in the network;

- it ranks these constraints by the number of tuples in D that
satisfy both the current Q′ and the constraint itself;

- it greedily tries to add to Q′
Price as many as possible of

the constraints (one at the time, higher-ranked first). If
adding a constraint C leads to the failure of Q′

Price, then
C is removed and the process continues with next highest-
ranking constraint.

- it deletes from the Bayesian network the parentless nodes,
together with the directed edges leaving them;

- it repeats the steps above until all the nodes are visited.

In our running example, the algorithm above is executed
as follows. In the first iteration, TOQR starts with an empty
Q′

Price and considers the Price attribute (as the network’s
root, this is the only parentless node). By adding to Q′

Price
the Price constraint, we get a Q′

Price = Price ≤ $2, 000,
which matches several tuples in D. As there are no other
parentless nodes to consider, the Price node and all the dot-
ted arcs are deleted from the network. The remaining forest
consists on two trees, rooted in Weight and CPU , respec-
tively. These two new parentless nodes are the ones consid-
ered by TOQR in the next iteration.

It is easy to see that TOQR ranks the CPU constraint
higher than the Weight one: among the tuples matching

Price

Weight CPU

Display RAM HDD

Figure 1: Bayesian network learned by TAN.

Q′
Price (i.e., the bottom four in Table 1), CPU ≥ 2.5 GHz

matches two tuples, while Weight ≤ 3 lbs matches only one.
Consequently, TOQR tries first to add the CPU constraint,
and Q′

Price becomes Price ≤ $2, 000
∧

CPU ≥ 2.5 GHz.
Then TOQR tries to add Weight ≤ 3 lbs to this new

Q′
Price, but the resulting query Price ≤ $2, 000

∧
CPU ≥

2.5GHz
∧

Weight ≤ 3lbs does not match any tuple from Ta-
ble 1; consequently, the Weight constraint is removed from
Q′

Price. As both parentless nodes were considered, TOQR
deletes the nodes Weight and CPU , together with edges
originating in them (i.e., all remaining arcs).

In the last iteration, TOQR considers the nodes Display
and HDD (RAM is ignored because it does not appear
in Qf). Of the two tuples matched by Q′

Price (i.e., the
bottom ones in Table 1), Display ≥ 17′′ matches only
one, while HDD ≥ 60GB matches both. Consequently,
HDD ≥ 60GB is added to Q′

Price, which becomes Price ≤
$2, 000

∧
CPU ≥ 2.5 GHz

∧
HDD ≥ 60GB (and still

matches the same two tuples). Then TOQR adds Display ≥
17′′ to Q′

Price; as the resulting query matches one tuple in
D, we get the final result

Q′
Price : Price ≤ $2, 000

∧
CPU ≥ 2.5 GHz

∧

Display ≥ 17′′ ∧HDD ≥ 60GB

TOQR performs the algorithm above once for each con-
straint in Qf ; i.e., TOQR also creates the datasets D2 − D5,
in which the binary class attributes reflect whether or not the
constraints on CPU, HDD, Weight, and Display are satisfied,
respectively. Then TAN is applied to each of these datasets,
and the corresponding queries Q′

CPU , Q′
HDD, Q′

Weight,
and Q′

Display are generated.
At this point, let us re-emphasize that the learning process

above takes place online, for each failing query Qf ; further-
more, the process is also query-guided in the sense that each
of the datasets D1 − D5 is created at runtime by using the
actual constraints from the failed query. This online, query-
guided nature of both TOQR and LOQR distinguishes them
from all other existing approaches.

The key characteristic of TOQR, which also represents our
main contribution, is the use of the learned network topology
for deriving the order in which the constraints are added to
Q′. As our experiments will show, an algorithm identical
to TOQR - except that it adds the constraints in an arbitrary
order - performs significantly worse than TOQR. Intuitively,
this is due to the fact that - early in the search - one may

inadvertently add a constraint that dramatically constraints
the range of values for the other domain attribute.

For example, assume that TOQR begins by considering
first the constraint on Weight (rather than the one on Price).
Then TOQR starts with Q′

Price = Weight ≤ 3 lbs, which
matches a single example in D (i.e., the third one). As the
only Qf constraint that can be added to this query is the
one on Price, it follows that the final result is Price ≤
$2, 000

∧
Weight ≤ 3 lbs. It is easy to see that this two-

constraint query is less similar to Qf than the four-constraint
one created earlier.

Steps 2 & 3: Relaxing the failing query
In order to complete the query relaxation process, TOQR pro-
ceeds in two steps, which are identical to the ones performed
by LOQR (Muslea 2004). First, it finds - among the queries
generated in the previous step - the one that is most simi-
lar to Qf . Second, it uses the constraints from this “most
similar” query to relax the constraints in Qf .

For pedagogical purposes, let us assume that when learn-
ing to predict whether CPU ≥ 2.5 Ghz is satisfied, TOQR
generates the query

Q′
CPU : Price ≤ $3, 000

∧
CPU ≥ 2.5 GHz

∧

Weight ≤ 4 lbs

Note that two of the values in the constraints above are not
identical to those in Qf ; this is an illustration of TOQR’s
ability to relax the numerical values from the constraints that
could not be added unchanged to Q′ (see next section for
details).

It is easy to see that Q′
Price is more similar to Qf than

Q′
CPU : the only difference between Q′

Price and Qf is that
the former does not impose a constraint on the Weight;
in contrast, Q′

CPU includes a weaker constraint on Price,
without imposing any constraints on display or hard disk
sizes. More formally, TOQR uses the similarity metric from
(Muslea 2004), in which the importance/relevance of each
attribute is described by user-provided weights.

To illustrate TOQR’s third step, let us assume that, among
the queries generated after applying TAN to D1 − D5, the
one that is the most similar to Qf is

Q′
Display : Display ≥ 17′′ ∧Price ≤ $2, 300

∧

Weight ≤ 3.1 lbs
∧

CPU ≥ 2.5 GHz

Then TOQR creates a relaxed query Qrlx that contains
only constraints on attributes that appear both in Qf and
QDisplay; for each of these constraints, Qrlx uses the least
constraining of the numeric values in Qf and QDisplay . In
our example, we get

Qrlx : Price ≤ $2, 300
∧

CPU ≥ 2.5 GHz
∧

Display ≥ 17′′ ∧Weight ≤ 3.1 lbs

which is obtained by dropping the original constraint on the
hard disk (since it appears only in Qf), keeping the con-
straint on CPU and Display unchanged (Qf and QDisplay

have identical constraints on these attributes), and setting the
values for Price and Weight to the least constraining ones.

The approach above has two advantages. First, as
QDisplay is the statement the most similar to Qf , TOQR
makes minimal changes to the original failing query. Sec-
ond, as the constraints in Qrlx are a subset of those in
Q′

Display, and they are at most as tight as those in Q′
Display

(some of them may use looser values from Qf), it follows
that all examples that satisfy Q′

Display also satisfy Qrlx. In
turn, this implies that Qrlx is guaranteed not to fail on D,
which makes it unlikely to fail on the target database.

The TOQR algorithm
As shown in Figure 2, TOQR takes as input a failed DNF
query Qf = C1

∨
C2

∨
. . .

∨
Cn and relaxes its disjuncts Ck

independently of each other (for a DNF query to fail, all of
its disjuncts must fail). Each disjunct Ck is a conjunction of
constraints imposed on (a subset of) the domain attributes:

Ck = Constr(Ai1)
∧

Constr(Ai2)
∧

. . .
∧

Constr(Aik).

We use the notation ConstrCk(Aj) to denote the constraint
imposed by Ck on the attribute Aj . In this paper, we
consider constraints of the type Attr Operator NumVal,
where Attr is a domain attribute, NumVal is a numeric
value, while Operator is one of ≤, <, ≥, or >.

As we have already mentioned, TOQR’s second and third
steps (see Figure 2) are identical to the ones in LOQR. As the
intuition behind them was presented in the previous section,
for a formal description of these steps we refer the reader to
(Muslea 2004). In the remainder of this paper we focus on
TOQR’s first step, which represents our main contribution.

Step 1: Extracting the domain knowledge
TOQR uses a dataset D to discover the implicit relationships
that hold among the domain attributes. This is done by learn-
ing to predict, for each attribute Aj in Ck, “what does it
take” for ConstrCk(Aj) to be satisfied; then the learned in-
formation is used to generate a query that does not fail on D
and contains ConstrCk(Aj), together with as many as possi-
ble of the other constraints in Ck.

As shown in Figure 3 (see ExtractDomainKnowledge()),
for each attribute Aj in Ck, TOQR proceeds as follows:

1. it creates a copy Dj of D; in each example in Dj ,
Aj is set to yes or no, depending on whether or not
ConstrCk(Aj) is satisfied. This binary attribute Aj is then
designated as Dj’s class attribute.

2. it applies TAN to Dj , thus learning the domain’s causal
structure, which is expressed as a restricted Bayesian net-
work (each non-class node has as parents the class at-
tribute and at most another node).

3. it uses the learned Bayesian network to generate a query
(see “BN2Query()”) that

- does not fail on D, which also makes it highly unlikely
to fail on the target database;

- is as similar as possible to the original disjunct Ck.

“BN2Query()” starts with an empty candidate query Q′, to
which it tries to add as many as possible of the constraints in

Given:
- a failed DNF query Qf = C1

∨
C2

∨
. . .

∨
Cn

- a small dataset D representative of the target database

RelaxedQuery = ∅
FOR EACH of Q’s failing conjunctions Ck DO

- Step 1: Queries = ExtractDomainKnowledge(Ck, D)
- Step 2: Refiner = FindMostSimilar(Ck, Queries)
- Step 3: RelaxedConjunction = Refine(Ck, Refiner)
- RelaxedQuery = RelaxedQuery

∨
RelaxedConjunction

Figure 2: TOQR independently relaxes each conjunction.

Ck or their relaxations. As shown in Figure 3, “BN2Query()”
is a 3-step iterative process. First, it detects all the parent-
less nodes in the network (in the first iteration, it will be
only the class node). Second, it sorts these nodes accord-
ing to the effect that they have on the coverage of Q′ (i.e.,
how many examples in D would satisfy Q′ if Ck’s constraint
on that attribute is added to Q′). Third, it greedily adds to
Q′ the constraints on the parentless nodes, starting with the
ones that lead to higher coverage. If adding ConstrCk

(A)
to Q′ leads to the failure of the new query, A is added to
the RetryAttribs list; in a second pass, “BN2Query()” tries
to relax the constraints on A by changing its numeric value
by one, two, or three standard deviations (these statistics are
computed from D). Finally, the parentless nodes and their
out-going arcs are eliminated from the network, and the en-
tire process is repeated until all the nodes are visited.

Experimental results
We empirically compare TOQR with LOQR and two base-
lines, AddOne and DropOne. AddOne is identical to TOQR,
except for adding the constraints in an arbitrary order (rather
then by exploiting the learned Bayesian structure). DropOne
starts with the original query and arbitrarily removes one
constraint at a time until the resulting query does not fail.

The Datasets and the Setup
We follow the experimental setup that was proposed for
LOQR’s evaluation (Muslea 2004), with two exceptions.
First, as in many real-world applications one can rarely get
a dataset D that consists of more than a few dozen exam-
ples, we consider only datasets D of at most 100 examples
(also remember that LOQR performs inadequately on such
small datasets). Second, we use only five of the six datasets
used for LOQR’s evaluation: Laptops, Breast Cancer (Wiscon-
sin), Pima, Water, and Waveform. This is because the sixth
dataset, LRS, has a large number of attributes (99 versus
5, 10, 8, 21, 38, respectively), which leads to slow running
times (remember that for each query relaxation, LOQR and
TOQR invoke their respective learners - C4.5 and TAN - once
for each domain attribute).

For each of the five domains, we use the seven failing
queries proposed in (Muslea 2004). We consider datasets D
of sizes 10, 20, . . . , 100 examples; for each of these sizes,
we create 20 arbitrary instances of D. Each algorithm uses
D to create a relaxed query QR, which is then evaluated

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100

S
im

ila
rit

y
(%

)

Examples

Laptops

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

S
im

ila
rit

y
(%

)

Examples

Breast Cancer (W)

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

S
im

ila
rit

y
(%

)

Examples

PIMA

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80 90 100

S
im

ila
rit

y
(%

)

Examples

Water

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

S
im

ila
rit

y
(%

)

Examples

Wave

TOQR
LOQR

DropOne
AddOne

Figure 4: Similarity: how similar is the relaxed query to the failed one?

ExtractDomainKnowledge (conjunction Ck, dataset D)
- Queries = ∅
FOR EACH attribute Aj that appears in Ck DO

- create a binary classification dataset Dj as follows:
- FOR EACH example ex ∈ D DO

- make a copy ex′ of ex
- IF ex′.Aj satisfies ConstrCk(Aj)

THEN set ex′.Aj to “yes”
ELSE set ex′.Aj to “no”

- add ex′ to Dj

- designate Aj as the (binary) class attribute of Dj

- apply TAN to Dj , with BNj being the learned Bayesian network
- Queries = Queries

⋃
BN2Query(D, BNj , Ck)

- return Queries

BN2Query(dataset D, TAN network BN , conjunction Ck)
- Q′ = ∅
WHILE there are unvisited nodes in BN DO

- let Nodes be the set of parentless vertices in BN
- let Cands = {Qi|∀Ai ∈ Nodes, Qi = Q′ ∧ ConstrCk(Ai)}
- let Match(Qi) = {x ∈ D|Satisfies(x, Qi)}
- sort Cand in the decreasing order of Match(Qi), Qi ∈ Cand
- let RetryAttribs = ∅
FOR EACH Qi in the sorted Cands DO

IF Q′ ∧ConstrCk(Ai) does not fail on D THEN
- Q′ = Q′ ∧ConstrCk(Ai)

ELSE RetryAttribs = RetryAttribs
⋃{Ai}

FOR EACH A ∈ RetryAttribs DO
- let RlxConstr = RelaxConstraint(A)
IF Q′ ∧RlxConstr does not fail on D THEN

- Q′ = Q′ ∧RlxConstr
- remove from BN all Nodes and the arcs leaving them

- return Q′

Figure 3: Extracting domain knowledge by using the learned
structure of the Bayesian network to generate non-failing queries.

on a test set that consists of all examples from the target
database that are not in D. For each size of D and each of the
seven failing queries, each algorithm is run 20 times (once
for each instance of D); consequently, the reported results
are the average of these 140 runs.

The Results
In our experiments, we focus on two performance measures:

- robustness: what percentage of the failing queries are suc-
cessfully relaxed (i.e., they don’t fail anymore)?

- similarity: how similar to Qf is the relaxed query? We de-
fine the similarity between two conjunctions C and C′ as
the average - over all domain attributes - of the attribute-
wise similarity

SimAj
(C,C ′) = ‖V alueC(Aj)−V alueC′ (Aj)‖

maxV alueD(Aj)−minV alueD(Aj)

(by definition , if an attribute appears only in of the con-
junctions, SimAj

(C,C ′) = 0).

Figures 4 and 5 show the similarity and robustness results
on the five domains. TOQR obtains by far the best similarity
results: on four of the five domains its similarity levels are
dramatically higher than those of the other algorithms; the
only exception is Breast Cancer, where AddOne performs
slightly better. TOQR is also extremely robust: on four of
the five domains, it succeeds on more than 99% of the 140
relaxation tasks (i.e., 20 distinct training sets for each of the
seven failed queries); on the fifth domain, Water, TOQR still
reaches a robustness of 97%.

Overall, TOQR emerges as a clear winner. DropOne,
which is just a strawman, performs poorly on all domains.
The other two algorithms score well either in robustness or
in similarity, but at the price of a poor score on the other
measure. For example, in terms of robustness, LOQR is com-
petitive with TOQR on most domains; however, on four of

94

95

96

97

98

99

100

10 20 30 40 50 60 70 80 90 100

R
ob

us
tn

es
s

(%
)

Examples

Laptops

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

R
ob

us
tn

es
s

(%
)

Examples

Breast Cancer (W)

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

R
ob

us
tn

es
s

(%
)

Examples

PIMA

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

R
ob

us
tn

es
s

(%
)

Examples

Water

88

90

92

94

96

98

100

10 20 30 40 50 60 70 80 90 100

R
ob

us
tn

es
s

(%
)

Examples

Wave

TOQR
LOQR

DropOne
AddOne

Figure 5: Robustness: what percentage of the relaxed queries are not failing?

the five domains, LOQR’s queries are only half as similar to
Qf as the TOQR generated queries.

Finally, let us emphasize an unexpected result: when
trained on a datasets D of at most 30 examples, TOQR typi-
cally reaches a robustness of 99-100%; however, as the size
of D increases, the robustness tends to decrease by 1-3%.
This is due to the fact that - in larger Ds - there may be a few
“outliers” that mis-lead TOQR. We analyzed TOQR’s traces
on these few unsuccessful relaxations, and we noticed that
such atypical examples (i.e., no similar examples exist in
the test set) may lead to TOQR greedily adding to the relaxed
query Q′ a constraint that causes its failure on the test set.
As a few straightforward strategies to cope with the problem
failed, this remains a topic for future work.

Conclusions

We have introduced TOQR, which is an online, query-driven
approach to query relaxation. TOQR uses a small dataset to
learn the domain’s causal structure, which is then used to re-
lax the failing query. We have shown that, even when trained
on a handful of examples, TOQR successfully relaxes more
than 97% of the failing queries; furthermore, it also gener-
ates relaxed queries that are highly similar to the original,
failing query. In the future, we plan to create a mixed ini-
tiative system that allows the user to explore the space of
possible query relaxations. This is motivated by the fact that
a user’s preferences are rarely cast in iron: even though ini-
tially the user may be unwilling to relax (some of) the origi-
nal constraints, often times, she may change her mind while
browsing several (imperfect) solutions.

Acknowledgments

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the

Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010.

References
Chu, W.; Chiang, K.; Hsu, C.-C.; and Yau, H. 1996a. An error-
based conceptual clustering method for providing approximate
query answers. Communications of ACM 39(12):216–230.
Chu, W.; Yang, H.; Chiang, K.; Minock, M.; Chow, G.; and Lar-
son, C. 1996b. Cobase: A scalable and extensible cooperative
information system. Journal of Intelligent Information Systems
6(2/3):223–59.
Chu, W.; Chen, Q.; and Huang, A. 1994. Query answering via
cooperative data inference. J of Intelligent Information Systems
3(1):57–87.
Friedman, N.; Goldszmidt, M.; and Lee, T. J. 1998. Bayesian
network classification with continuous attributes: getting the best
of both discretization and parametric fitting. In Proceedings of
the International Conference on Machine Learning, 179–187.
Gaasterland, T. 1997. Cooperative answering through controlled
query relaxation. IEEE Expert 12(5):48–59.
Godfrey, P. 1997. Minimization in cooperative response to failing
database queries. International Journal of Cooperative Informa-
tion Systems 6(2):95–149.
Kaplan, S. 1982. Cooperative aspects of database interactions.
Artificial Intelligence 19(2):165–87.
Merzbacher, M., and Chu, W. 1993. Pattern-based clustering for
database attribute values. In Proceedings of AAAI Workshop on
Knowledge Discovery in Databases.
Motro, A. 1986. SEAVE: a mechanism for verifying user pre-
supositions in query system. ACM Transactions on Information
Systems 4(4):312–330.
Motro, A. 1990. Flex: A tolerant and cooperative user interface
databases. IEEE Transactions on Knowledge and Data Engineer-
ing 2(2):231–246.
Muslea, I. 2004. Machine learning for online query relaxation. In
Proceedings of the International Conference on Knowledge Dis-
covery and Data Mining, 246–255.

