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Abstract 
 
The Surrey Space Centre, primary developer of the Disaster Monitoring Constellation (DMC), a 

network of satellites that provides users global natural and man-made event monitoring, seeks to 

monitor space and/or terrestrial source data streams for identifying interest-event occurrences.  For the 

purposes of this research, an event is defined as a significant interest item that occurs at a particular 

time and location, such as an individual volcano eruption, a flood, or a forest fire.  During- and post-

event detection can often be achieved through one of several change detection algorithms, however 

pre-event detection introduces an entirely different challenge.  Successful pre-event detection involves 

comparing temporal data against unique impending event data patterns.  More concisely, successful 

pre-event detection involves combining time series analysis with robust event pattern recognition.  

While domain-specific methodologies have garnered varying success levels, a general approach for 

this complex task has yet to be found and therefore motivates this research effort.   

 

The overall research goal is to develop, test, and validate a robust generic methodology for 

determining if a complex process is undergoing, or about to undergo, a significant change.  More 

specifically, this novel research aims to: 

 

• Develop, test, and validate a generic, robust methodology for near real-time (pre-) event 

detection and monitoring on one or more data streams without requiring access to domain-

specific knowledge or analytical models 

• Apply this methodology to noisy and non-stationary raw data as its primary source of input, 

while minimizing all other data requirements 

• Minimize required user interactions while allowing user insight into the training and 

prediction process 

 

Within the context of this research grant, the major research milestones for this effort included 

conducting preliminary sensitivity analyses on the proposed methodology, such as: 

• Evaluating method performance 

• Evaluating variations of existing or different statistical features 

• Evaluating best methods to monitor and control analysis processes 

• Evaluating derived feature and methodology efficacy by incorporating real data from a 

monitored environmental process and comparing pattern recognition results against results 

produced by experts in the related environmental field 

 

Significant progress across the range of research goals and objectives has been achieved.  Preliminary 

analysis results using one and two channelled data suggest the method is capable of identifying 

complex event-related data patterns and perhaps even predicting significant events.  These results 

strengthen our conviction the method warrants further research and investigation.  
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Chapter 1 

 

Introduction 
 
1.1 Overview of Surrey Space Centre Autonomy Effort 
 

Current space systems usually involve sizable operations and support structures.  While some 

mundane tasks relating to operating, maintaining, and tasking satellite constellations are performed 

automatically, most activities require continuous human interaction.  The extent to which humans 

must interact on an hour-by-hour or day-by-day basis with the constellations likely results in less than 

optimal constellation performance and introduces additional delays into the overall process of 

responding to urgent data requests by users.  If it were possible to limit, to the maximum extent 

possible, the need for humans to interact with the satellite constellations to perform functions that 

could be otherwise performed autonomously by the satellite constellation itself (either on the ground 

or on the actual satellites), then the potential exists for better constellation utilization and more timely 

responses to users’ needs.  Improved response times, however, further magnifies the growing global 

quandary of task saturation and data overload often experienced by users.  This problem is especially 

acute for users confronted with the arduous task of monitoring and analysing one or more streams of 

complex process data from multiple sources in order to detect when significant events of interest have 

or are likely to occur.  Accordingly, developing the capability to automatically perform this 

challenging (pre-) event detection task on complex time series data is of considerable interest.     

 

The Surrey Space Centre (SSC) has taken up the challenge to improve upon existing practices and 

research how to best develop the concepts described above as part of a comprehensive autonomy 

effort.  The overall aim of this effort is the development of an efficient process for requesting space 

related data, tasking space assets to meet data requests, delivering data products to users, and 

automatically analysing multiple data streams for (pre-) event detection.  The SSC identified five 

distinct layers that, when properly put together, construct this comprehensive system.  These layers are 

shown in Figure 1.1, and the research effort described in this report aims to develop much of the first 

layer.  A brief summary of the different layers follows. 

 

The first layer of the small spacecraft autonomy solution represents the users.  In this layer, users have 

access to regularly updated time series data from various sources (space or terrestrial) concerning a 

process of interest, and intelligent software agents integrate the raw data into finely tuned statistical 

features for use in near real-time event detection and prediction (a form of pattern recognition).  Alerts 

are generated when the values of statistical features or data patterns match those previously found to 

be indicative of an impending (or occurring) event.  The completed first layer would also include the 

capability for users to obtain data not presently accessible through other means by employing a 

different type of intelligent software agent, notionally called a contract agent, to contract with a data 

service provider to supply the missing data. 

 

The second layer represents the peer-to-peer computer network(s) that connects the users to one 

another as well as to data service providers.  The chosen network architecture offers users working in 

different domains a large degree of flexibility to rapidly share information and enter/leave the network 

as needed.  Indexing of information available throughout the network is also considered within this 

layer.   

 

The third layer of the small spacecraft autonomy solution, representing the space service provider, 

attempts to best accommodate all user data requests in the timeliest possible manner given the 

constraints of its space system constellation at any point in time.  A key aspect of this research is the 

generation of statistical information allowing users to understand the likelihood of receiving desired 

space data within their desired timeframe.  The near real-time event detection and prediction method 
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may also be applied within this layer to automatically alert space service providers of impending 

significant events for possible (re-) tasking of space assets or task reprioritisation as necessary.  

 

The fourth layer lies within a single satellite and optimizes the spacecraft’s resources to best meet the 

tasks placed upon it by either the space service provider or the virtual satellite (representing the fifth 

layer).  The fourth layer must resolve the conflicting resource issues caused by users’ requests and 

spacecraft subsystem needs.   

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  SSC’s Multi-Layered Approach to Solving the Autonomy Challenge 
 

   

Finally, the fifth layer of the small spacecraft autonomy taxonomy investigates the potential of a 

cluster of smaller satellites flying in formation to effectively operate as a single larger “virtual 

satellite.”  The goal of the virtual satellite construct is to minimize network administration traffic 

overhead while maximizing the use of the various payloads contained within the cluster to best meet 

given sets of tasks delivered by the ground station(s). 

 

The total research effort outlined above investigates key elements that must be improved for space 

systems to be more efficient for space developers, operators, and users of information products.  While 

the investigations involve analysing components of satellite systems and processes developed over 

years through the SSC and Surrey Satellite Technology Limited (SSTL) partnership, the methods for 

improvement are intentionally generic in nature so as to be broadly applicable.  

 

 

1.2 Overview of Research Effort 
 

Event detection, time series analysis, and pattern recognition are all broad topics with a vast literary 

base.  Over the years, numerous researchers have combined one or more of these concepts, resulting in 

volumes of literature containing time series data analysed for either event detection or pattern 

recognition.  Many methods employ data pre-processing routines prior to analyzing time series data, 
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resulting in smoother data or relevant statistical feature extraction.  There are as many ways to 

approach these types of analyses as there are researchers interested in finding workable solutions.   

 

Unfortunately, not all time series data analysis techniques have proven successful.  Certainly there are 

many reasons for failure - only a few are mentioned here.  One possible reason lies with the analysed 

data’s complexity.  This occurs with very noisy data and/or data exhibiting highly non-stationary 

characteristics (changes in mean, variance, or both).   Another reason includes mismatches between 

the analysis method and the nature of the available data.  This can occur when the required analytical 

assumptions are not properly met.  For those methods found to be successful, few thrive in multiple 

fields of research.  One example of a very successful method with broad application is statistical 

process control (SPC).  While promising new techniques to increase its effectiveness have been 

combined into the SPC framework, the basic concept has remained unchanged.  The heart of SPC lies 

in the notion that a monitored process can be found in-control or out-of-control by comparing the 

magnitude of the difference between a metric computed using recent process data against the same 

metric computed over a longer time period.  Looking beyond time series analysis, two more examples 

of successful methods capable of solving broad ranges of challenging problems across multiple fields 

of research are neural networks and genetic algorithms.  These methods have largely succeeded due to 

inherent flexibility and relative applicability ease.  The approach taken here combines these and other 

successful broad-based techniques, either directly or in modified form, to produce an altogether novel 

and generic methodology applicable to numerous disciplines. 

 

 

1.3 Research Goal and Aims 
 

The overall research goal is to develop, test, and validate a robust generic methodology for 

determining if a complex process is undergoing, or about to undergo, a significant change.  More 

specifically, this novel research aims to: 

 

• Develop, test, and validate a generic, robust methodology for near real-time (pre-) event 

detection and monitoring on one or more data streams without requiring access to domain-

specific knowledge or analytical models 

• Apply this methodology to noisy and non-stationary raw data as its primary source of input, 

while minimizing all other data requirements 

• Minimize required user interactions while allowing user insight into the training and 

prediction process 

 

 

1.4 Research Objectives 
 

To accomplish the research aims, the following objectives have been established: 

 

• Develop easy to use, continuous data collection and management process for one or more data 

streams within an intelligent agent construct 

• Develop method to generate highly tailored robust statistical features from time series data 

that best capture trend and volatility movement found prior to and during previous significant 

events, capable of overcoming difficulties caused by non-stationary data 

• Develop method for monitoring, controlling, and configuring first-stage modified SPC tool 

• Develop method for combining statistical features from multiple data streams and generating a 

composite “snapshot” of the temporal process 

• Develop method to adaptively configure second-stage pattern recognition tool (a neural 

network) 

• Develop method for intelligent agent to interactively control overall (pre-) event detection 

analytical process 

• Perform sensitivity analyses on methodology using synthetic and real data 
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1.5 Research Novelty 
 

This research effort is novel in several areas, summarized below.  

 

First, the methodology described in this report offers the potential to overcome some of the difficult 

challenges experienced by researchers analysing time series data for event detection by combining a 

modified form of SPC and pattern recognition into a single process.  This modified SPC approach is 

powerful in two key areas: 

 

• It generates robust statistical features tailored to the actual movement of complex time series 

data prior to and during previous significant events 

• It simultaneously generates optimal control limits (or in this application optimal alert 

notification limits) for those statistical features 

 

By simultaneously solving for both the features and the control limits, the methodology optimally 

captures and characterises how the time series evolved prior to and during previous significant events.  

This integrated process effectively defines a data movement pattern that can then be matched against 

future data as the time series evolves temporally.  No other approaches found within the literature 

directly combine these two aspects and in fact, finding SPC-like methods applied to other than 

controlled industrial processes is rare indeed.  There is little doubt monitoring of uncontrolled 

processes with standard SPC methods has proven challenging.  Zimmerman [107], when discussing 

the difficulties associated with monitoring water pollution using standard SPC and time series 

techniques, listed some common problems: seasonal variation, high natural variability, lack of 

independence, covariate effects, non-normal distributions, auto correlation, and unreliable data.  The 

methodology employed here does not require making the common assumptions used in SPC analyses, 

and consequently is not affected by many of these difficulties.  In fact, should some of these 

“problems,” such as high natural variability, be somehow related to the events of interest temporally, 

then these “problems” may actually aide the algorithm in discovering relevant data patterns.  With 

other pattern recognition or point estimating analysis techniques where raw data is first pre-processed 

for feature extraction or smoothing and then analysed serially, there is no way to ensure an optimal 

match occurs between the prepared data and the chosen analysis method.  

 

Second, the method of derived feature development and the nature of the statistical features being 

developed enable characterization of highly complex time series data without first requiring the raw 

data to meet strict SPC assumptions of normality and stationarity.  Discussed more fully later, the 

types of statistical characteristics generated through the proposed method include moments and 

volatility metrics (such as standard errors) over varying time windows, metrics not dependent on 

distributional assumptions or data stationarity.  Rigorously meeting these assumptions, while 

desirable, is not necessary since the goal of the analytical method is pattern recognition and not point 

prediction or hypothesis testing (as in the case of standard SPC applications).  This means the 

statistical metrics can be calculated from the raw temporal data directly without needing first to 

resolve common time series data analysis problems as required by most analysis methods.  In fact, the 

author was unable to locate other instances where SPC (or SPC-like) methods were applied to data still 

within the time domain (such as the aforementioned features) without having first to meet the general 

SPC assumptions of sample data normality and stationarity.      

 

Third, the methodology includes the concept of intelligent software agents within an event detection 

algorithm.  Multiple agents are used within the research methodology: retrieving raw data, monitoring 

and executing the pattern recognition tasks, and supervising the overall analytical process.  

Employing the intelligent software agents effectively eliminates much of the continuous interaction 

normally required by users when analysing complex data in any domain.  While the concept of an 

agent is certainly not new, other instances where an agent has controlled an SPC-like application for 

(pre-) event detection were not discovered in the literature. 
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Chapter 2 

 

Literature Review 
 

 

2.1 Overview of Literature Review 
 
There are a vast number of ways to analyze time series data, depending on the purpose of the analysis.  

Sections 2.2 and 2.3 review how controlled and uncontrolled processes can be monitored for (pre-) 

event detection.  In the case of controlled processes, the relevant basics of static and adaptive 

statistical process control are addressed, including several discussions about state-of-the-art practices 

where multiple methods are combined.  In the case of uncontrolled processes, reviewing process-

unique models is not as constructive as introducing common modelling techniques presently used by 

researchers.  To keep this task manageable, the review will focus on those techniques used by 

researchers within the environmental monitoring field.  Since most monitoring methods often require 

the development of statistical features derived from raw process data, this topic will be briefly 

mentioned throughout the sections.  Sections 2.4 and 2.5 briefly introduce to two of the most versatile 

and widely-used pattern recognition and optimization techniques: neural networks and genetic 

algorithms.  Additional discussion about genetic algorithms can also be found in Section 3.3. 

 

 

2.2 Overview of Static and Adaptive Statistical Process Control 
 
The concept of statistical process control (SPC) is based on the idea that a process, such as a 

manufacturing process, can be monitored to identify when it is “in control” or “out of control.”  

Monitoring is accomplished through product sampling, and adjustments are made to the production 

process as needed in an attempt to continuously reduce the number of defective products produced.  In 

the 1920’s Walter Shewhart described this concept [76], the basic philosophy of modern SPC, and 

thus started the movement now commonly referred to as “total quality management.” 

 

In SPC, process variation is measured and broken down into two components [1].  The first 

component is called common cause, or system variation.  This type of variation is the naturally 

occurring fluctuation, or variation, inherent in all processes.  Making modifications to the process can 

reduce system variation.  The second component is called special cause variation, meaning the 

variation is due to some type of extraordinary occurrence in the production process.  These tend to be 

localized in nature and are often attributed to causes such as operator error, machine error, or materiel 

inconsistencies.  Special cause variation is the foremost type of variation Shewhart’s methods 

attempted to identify and correct, since this variation leads to “out of control” processes.  Over time, 

however, both types of variations are hopefully reduced through continual monitoring and process 

improvement, with the result being overall improved product quality and reduced sample-to-sample 

variation.  To accomplish this, Shewhart developed a methodology for charting a process to quickly 

determine the current state of a system.  While different variations of the basic SPC chart have evolved 

over time, the basic chart construct remains the same.  Samples are taken over time and plotted on a 

time-series control chart.  The values are compared to long-running characteristics, such as the sample 

mean (known as an X -chart), and its position relative to upper and lower control limits is identified.  

The control limits identify when the process goes “out of control.”  In the case of the X -chart, they 

are defined as the mean, µ, plus or minus the control limit coefficients, k, times the process standard 

deviation, σ, divided by the square root of the sample size, n [76].  A frequently used value for k is 

three and the equations for X -chart upper and lower control limits (UCL and LCL, respectively) are 

given in Equations 2.1 and 2.2 [45].   
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n

k
UCL

σ
µ +=             Equation 2.1 

n

k
LCL

σ
µ −=             Equation 2.2 

 

Figure 2.1 shows an example of a process apparently in control, due to all samples falling within the 

upper and lower control limits.  The variation exhibited in this figure represents naturally occurring 

variation.  

    

 

 

 

 

 

 

 

 

 

 

Figure 2.1.  A Process Apparently In Control 

 

Had an observation value fallen outside one of the limits, then SPC theory states special cause 

variation was present.  To increase awareness of excessive variations or variations that change with 

time, SPC practitioners often include one or more zones between the upper and lower control limits, 

and track how data moves through the different zones [31].  Identifying patterns of movement, such as 

linear trends, oscillations, or numbers of points falling into certain zones represent early detection 

methods for processes before they go “out of control.”     

 

There are a variety of SPC charts, depending on whether or not the data is continuous or discrete.  

Commonly used charts include [76]:  

• For continuous (variables) data  

o Shewhart sample mean chart ( X -chart): plots raw variables, xi, compared to the 

sample mean over time   

o Shewhart sample range chart (R-chart): plots ranges observed within a sample run 

o Shewhart sample chart (X-chart): plots the raw variables, xi, over time 

o Cumulative sum chart (CUSUM): plots raw variable values, xi, or the difference 

between xi and a target, its mean, or the previous value, xi-1, over time 

o Exponentially Weighted Moving Average (EWMA) chart: plots an exponentially 

weighted moving average over time  

o Moving-average and range charts: plots the simple moving average or sample range 

over time  

Sampled Product Characteristic Over Time

1 2 3 4 5 6 7 8 9 10 11 12

Time

LCL

UCL
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• For discrete attributes and countable data, common charts address defect proportions and 

rates, topics outside the scope of this research effort.       

A primary function of SPC is to be able to decide whether or not the monitored process is statistically 

stable.  To accomplish this task, SPC has historically been based on two key assumptions concerning 

the plotted statistic: 

• It is independent, i.e. the value is not influenced by its past value and will not affect future 

values  

• It is normally distributed, i.e. the data has a normal probability density function 

Accordingly, SPC theory considers control charts to be plots of samples drawn from normal 

distributions over time, as shown in Figure 2.2 [28].  

 

                       

Figure 2.2.  Control Charts Assume Sampling from Normal Distribution Over Time 

The reason k is frequently set to three (often the case for critical product characteristics) is due to the 

normality assumption and SPC’s form of hypothesis testing.  Given the probability of randomly 

drawing a sample value 3σ or more away from the mean, µ, of a normal probability density function is 

approximately 0.002, then it is very likely an observed sample falling outside the LCL or UCL defined 

by µ +/- 3σ is due to a source of special cause (assignable) variation rather than natural variation and 

the process is termed “out of control.”  Given that processes invariably change over time (due to 

improved processes and reduced volatility, gradual machine wear causing increased natural variation, 

etc.), occasionally it is necessary to re-establish the “fixed” control limits while holding other SPC 

parameters constant [56].    

From the mid-1990’s onwards, one finds a noticeable increase in the volume of SPC literature 

detailing adaptive or dynamic constructs in SPC operations [31][56][87].  The goal of identifying ever 

smaller magnitude shifts in monitored characteristics focused attention on the need for changing one 

or more chart parameters in real-time based upon the observed sample values under the assumption of 

normality.  In addition, continuing challenges to the normality assumption (due to the frequent practice 

of using smaller sample sizes than necessary to invoke the central limit theorem) drove the need to 

explore the affects of samples drawn from non-normal distributions [56].   

Adaptive SPC introduced the opportunity to change one or more of the following common chart 

parameters: sample size, n; time between taking samples, h; and control limit coefficients, k.  If 

additional zones have been identified between the UCL and LCL, such as “warning” zones, then 

warning limit coefficients w (synonymous with control limit coefficients) can also be changed.  For 

moving average charts (either simple or exponentially weighted), additional adaptive parameters 

include the moving average length, l, and the smoothing constant, λ.  Changes in the parameter values 

are based on the perceived stability of the process following the most recent value of the monitored 
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sample characteristic.  Typically, two values for each parameter exist, one larger or longer than the 

other.  If the process is perceived to be statistically stable, then changes such as decreasing n and λ, or 

increasing k, h, w, and l can be considered [31][56][87].  Changing the same parameters in the 

opposing directions is frequently considered should the process be perceived as becoming less 

statistically stable.  Adaptive SPC naturally led to combining SPC with other analytical methods in an 

effort to further enhance sensitivity. 

Early detection of problems can often be achieved by combining SPC with artificial intelligence 

methods, notably neural networks, resulting in improved process control.  Many researchers found 

combining neural networks with certain statistical features within an SPC construct particularly 

effective.  [1] trained a neural network on the standard control chart patterns and extracted multi-

resolution wavelets from the process data for monitoring process control.  The researcher found the 

neural network was better able to adjust to the actual process data movement than the fixed zone 

methods frequently used in static control charts because the complex time-frequency characteristics of 

non-stationary data in control charts is too much of a challenge for static control charts to handle.  In 

addition, he found the use of fixed window frequency analysis techniques, such as the short term 

Fourier transform, produce high-frequency localization results with poor time resolution, whereas high 

time resolution results in poor frequency localization.  [2] used an unsupervised neural network within 

the research to good effect, however it is important to note the researcher’s methods assumed data 

normality.  Despite this assumption, the researcher explored training the neural network not on pre-

defined data patterns representing process irregularities but rather on the actual process data.  [40] 

investigated using neural networks with non-normal data within control charts.  The researcher’s 

conclusion was despite many industrial processes not producing samples meeting the normality 

assumption, neural networks were still able to perform the pattern recognition task.  Different neural 

network architectures and configuration have been investigated and found successful, with the most 

popular being back propagation [108], and recurrent neural networks [76].  Many of these researchers 

only monitored single data streams, so a multivariate perspective is also necessary.   

 

Multivariate SPC (MSPC), where multiple data streams are analyzed simultaneously, have also been 

employed with and without neural networks.  [88] successfully combined multivariate SPC with 

neural networks after the usual linear analysis techniques commonly employed in MSPC failed.  The 

researchers found the nonlinear relationships between the process parameters could not be discovered 

through principle component analysis or partial least square methods, but they could be identified by 

employing a neural network.  Other researchers of MSPC, such as [108], successfully employed neural 

networks and MSPC for novelty detection.  Their work monitored the process mean vector, based on 

probability density estimates and a Gaussian log-likelihood threshold. 

Excellent discussions about SPC theory, how it operates, its sensitivities to sampling distributions, and 

other topics can be found by reading any number of publications and books authored by reference 

sources, notably those written by Montgomery.  Details about many of these topics, while interesting, 

rapidly fall beyond the scope of the research effort and its use of SPC concepts.   

 

2.3 Overview of Environmental Monitoring Techniques 

 
Researchers monitoring environmental processes tend to develop and use process-unique approaches.  

A review of some common elements, however, is still useful within the context of this research. 

 

While few researchers use SPC methods to monitor the environment, several articles in the literature 

were found where this was attempted, but not always successfully.  [28] performed emission 

monitoring from an industrial process using process capability indices with a cumulative sum chart.  

They accomplished this task with only slight modifications to the basic SPC control limit equations.  

The environmental data required substantial pre-processing, and they evaluated a range of 

transformations to make observations behave normally for use within the standard SPC construct.  
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Their transformations included logarithms, inverses, square roots, and others.  Another example of 

environmental monitoring with SPC methods, albeit in a relatively controlled environment, is found in 

[46].  They monitored early warning fire detection systems for the US Navy and found MSPC could 

be applied successfully using Hotelling’s statistic and Q-statistic following principal component 

analysis.  As mentioned earlier, however, other researchers have found these methods perform poorly 

as the data becomes more complex.  [107] used SPC to monitor water quality of a bay and found SPC 

techniques unable to overcome the extreme difficulties of data not conforming to standard SPC 

assumptions.  In addition, the researcher identified a need to develop a much more rigorous method of 

data collection since the observational data came from volunteers at irregular intervals.  

 

A range of techniques outside SPC are regularly used for monitoring environmental processes.  Neural 

networks continually reappear as a common technique [3][5][9][68][78][89][94].  [3] added auxiliary 

data to a water stream flow forecasting model, suggesting perhaps data not originally thought to be 

important might ultimately be relevant.  [9] found a recurrent neural network outperformed existing 

atmospheric and time series models when modelling wind speed and power.  [68] attempted to model 

SO2 pollution with various methods, including statistical techniques and neural networks, and found 

none performed very well. 

 

Most researchers attempted various transformations on the data before analysing it with their preferred 

methods.  The degree to which researchers discussed their use of data transformations and data pre-

processing varied widely, however.  Besides those already mentioned, additional data transformations 

found in the literature include detrended fluctuation analysis [29] used to successfully analyse volcano 

data exhibiting high variability, a range of linear techniques (variants of autoregressive 

parameterization), Fourier techniques, non-linear techniques, and neural networks [5].  While some 

form of data transformation or data pre-processing often improves analysis results, some researchers 

found otherwise.  For example, the researchers monitoring river flow data [5] found leaving the data 

raw (with no pre-processing) and analysing it with a neural network produced better results than pre-

processing it and analysing with the neural network or other methods.   

 

 

2.4 Overview of Neural Networks 
 

Artificial neural networks (ANNs) are inspired by nature and loosely based on how scientists believe 

brains function and organisms learn.  It is well understood that the brain is composed of a network of 

interconnected neurons.  Neurons receive simultaneous inputs from other neurons through their 

dendrites, causing some neurons to “fire” as they pass or suppress signals along the network [13].  The 

firing of various neurons, along with a changing network structure and weighting of the respective 

neurons, forms the basis for how organisms learn.  This same concept of a network, including neurons 

connected to each other and interacting with one another simultaneously, is the structure and learning 

principle used in ANNs.  Learning is accomplished by providing feedback to the network under 

supervised training to adjust the model parameters in order to provide more accurate model output. 

 

Early users of ANNs, such as McCulloch and Pitts in 1943, created simple networks that involved 

neurons firing only when summed inputs exceeded bias threshold values [13].  In the 1950’s, 

Rosenblatt challenged the models made by McCulloch and Pitts because they were single layer in 

nature, didn’t take into account randomness inherent in many systems, and therefore only had limited 

capabilities and uses.  His ideas led to the development of Rosenblatt’s perceptron, shown in Figure 

2.3.  

 

Rosenblatt’s perceptron creates essentially a two-layer network (the input layer is not counted).  The 

first layer contains fixed threshold logic functions, and the second layer provides the network output 

and has connecting trainable weights, wJ.  Rosenblatt’s perceptron improved an ANN’s ability to 

distinguish between linearly separable functions, thus allowing it to perform adequately as a simple 

classification system.  It still fell short, however, of accurately classifying regions that were not 

linearly separable, such as Exclusive OR (XOR) classification problems shown in Figure 2.4.  In this 
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case, the existing learning algorithms will never terminate, and any arbitrary stopping rules do not 

guarantee that the resulting weight vector from the network will generalize well for new data.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Rosenblatt’s Perceptron 

 
 

 

 

 

 

 

 

   

 

Figure 2.4.  XOR Classification Problem 

 

Minsky and Papert pointed out in 1969 that the reason these perceptron networks failed to correctly 

classify data sets that are linearly inseparable is due to the network structure only having a single layer 

of weights that are modified by the learning algorithm [72].  They showed that a network could solve a 

multi-dimensional problem, such as the XOR problem, as long as the number of perceptrons increased 

exponentially with the dimensionality of the problem being presented to the network.  This would 

allow the ANN to operate in a transformed space where the problem can once again become linearly 

separable.  Despite this discovery, size and computational limitations lead most researchers to believe 

that ANNs had little practical use for everyday problems and little progress was made toward 

improved learning algorithms or network structures until the late 1980’s. 

 

In 1986, Rumelhart, Hinton, and Williams announced the discovery of a new learning algorithm that 

eliminated the need for an exponential number of perceptrons to solve nonlinearly separable problems.  

Their approach, now called backpropagation, revitalized the ANN community by employing a 

gradient search method on the error surface produced following training.  The gradient search method 

is implemented to minimize the error so the network correctly classifies patterns as often as possible.  

Other modifications to backpropagation have been introduced since the late 1980’s, but the 

backpropagation method has remained the most widely used neural network algorithm by researchers 

and practitioners alike.  A diagram is shown in Figure 2.5 with a single hidden layer and a bias term.  
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represents a second-layer trainable weight between hidden node j and output node k. 

 

In order for an ANN to be useful in classifying exemplars, the network must first be trained.  Training 

any neural network involves an iterative process by which the network receives inputs, pumps them 

through the network using the current weight values, calculates the network outputs and the resulting 

error values based on comparisons with the known outputs, and then modifies the various nodal 

weights throughout the network in efforts of reducing the calculated error.   

 

The backpropagation method is one algorithm of several to update the weights within a network.  The 

cornerstone of the backpropagation algorithm lies in differentiable activation functions.  This is 

important because the activations of the output nodes become differentiable functions of both the input 

variables, and of the weights and biases.  If an error function is applied, such as a sum-of-squares error 

function, a differentiable function of the network output is created and the error is a differentiable 

function of the weights [13].  By evaluating the derivatives of the error function with respect to the 

different weights, weight values that minimize the error can be found.  The backpropagation algorithm 

evaluates these derivatives and updates the various using a gradient descent approach to find the 

minimum error on the error surface.  Detailed descriptions of the algorithm can be found in numerous 

texts, notably [13] and [72].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.  Multivariate MLP ANN with Bias Term. 

 

2.5 Brief Overview of Genetic Algorithms 
 

Genetic algorithms are also inspired by evolution and operate on the concept of simultaneously 

processing schemata from a gene pool [74].  Each member of the population consists of a number of 

genes, and a fitness function is applied to determine the relative fitness of each member.  Following 

evaluation, candidate schemata are selected for the next generation in proportion to their relative 

fitness.  Each pair of selected chromosomes is crossed with probability pc, and some are mutated with 

probability pm.  This process is repeated generation after generation until a stopping condition is met 

and the optimal (or near optimal) chromosome is identified.  Crossover and mutation offer genetic 

algorithms the benefit of rapidly moving across a complex surface without regards to differentiability, 

a notable difference when compared to the requirements most analytical methods.  This makes using a 

genetic algorithm for combinatorial problems, such as the one in this research, particularly appealing.  

Additional discussions about genetic algorithms and how they are applied in this research can be 

found in Section 3.3.  Detailed discussions, theory, and additional applications can be found within 

numerous texts [27], [36], [37], [74] and other literature.  
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Chapter 3 

 

Development of Event Pattern Recognition Algorithm  
 

3.1 Algorithm Overview  
 

SPC methods, despite their popularity with researchers within industries where processes are 

monitored and controlled, are rarely applied to situations where processes are monitored but not 

controlled.  This observation is rather understandable, since control charts offer a way to test whether 

or not the monitored process is in a state of statistical control.  Out-of-control situations, identified by 

process data falling outside pre-defined control limits, can be considered events to be avoided and the 

quantity of these events can often be reduced through early detection of process problems.  By 

comparing process data against a set of pre-defined patterns found to precede out-of-control processes, 

corrective actions can be taken and out-of-control situations avoided.  By contrast, however, 

researchers working in fields where processes are uncontrolled, such as natural processes encountered 

within the field of environmental monitoring, do not have methods of “correcting” processes when 

out-of-control situations occur or are predicted to occur.  Instead of using a form of SPC for  

monitoring, researchers in these fields accomplish their objectives through the frequent practice of 

building process-unique models based on first principles (if possible), past observations, and/or a 

combination of both.  Their monitoring objectives may consist of developing point estimates for 

processes in the near future, such as predicting outside temperatures for selected geographical 

locations, or their objectives may consist of trying to predict (or detect) significant changes or events 

within underlying processes.  If their task is the latter, then despite differences in approach and the 

lack of corrective measures to re-establish control over processes, their objective of monitoring 

process data for (pre-) event detection is essentially the same objective as researchers working in 

industries with controlled processes.  Both groups of researchers are interested in repetitively 

answering the question, “are our monitored processes about to go out-of-control?”  If we accept this 

argument, then under these circumstances the distinctions between the concepts of (pre-) event 

detection and pattern recognition are no longer necessary; the data pattern(s) found to precede (or 

coincide with) significant events is (are) the pattern(s) to be recognized.   

 

The algorithm within this research effort must be generic in nature yet capable of continuously 

retrieving complex raw data, generating highly tailored features capturing the “event state” at discrete 

points in time, identifying any repeatable data patterns that exist preceding (or coinciding with) 

significant events, and monitoring the data stream(s) for the reappearance of these critical patterns.  

Should any of these (pre-) event patterns be discovered, the algorithm must alert the user(s).  In 

addition, the algorithm must not require access to domain-specific knowledge or analytical models for 

the monitored system, it must be applicable to noisy and non-stationary raw data as its primary source 

of input, and it must minimize required interactions with users.   

 

Fortunately, the novel algorithm developed within this research to meet these demanding criteria is 

strikingly straightforward.  It can be summarized in five basic steps, identified below, and broken into 

two information flow diagrams, Figures 3.1 and 3.2. 

 

1. Initialization.  The intelligent agent queries the user for one or more data streams to monitor, 

and asks for objective function values.  The objective function values indicate how to score 

statistical observations (or “observations”) that exceed limits.  Equation 3.1 details the fitness 

function, with the objective of maximising the fitness score.  The user is also queried about 

how to handle alert notifications. 

 

o If a new data stream is identified, the agent requests historical data and the timing of 

past events within the historical period.  With historical data, the agent can identify 

the raw data observation numbers associated with each event.  Without historical data 
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the agent saves the data stream information and looks for significant variations in the 

data using broad settings, querying the user for event confirmation as necessary.  With 

several confirmed events, the agent can proceed to the statistical feature and warning 

limit optimization process.   

 

o To evaluate the efficacy and robustness of the statistical feature settings, the historical 

data is split into two or more groups.  The ideal case entails developing three data sets 

(a training set, a testing set, and a validation set), with each data set containing 

multiple historical events. 

 

2. Statistical feature and warning limit optimization process.  The method uses single and dual-

layered genetic algorithms to simultaneously define settings producing optimal combinations 

of select statistical features and associated warning limits.  This part of the methodology 

contains much of the research novelty.  

 

o To find the optimal combinations, the genetic algorithms freely adjust a range of 

parameters similar to those found in traditional SPC for charting monitored processes 

and score the result.  The method imposes no constraints on how the warning limits 

are defined, allowing trend-based limits and constant-valued limits to be created and 

mixed interchangeably.  Furthermore, by allowing the control limit coefficients, k, to 

range into negative territory, an event “band” can be created and evaluated.  In this 

case, the lower warning limit rises above the upper warning limit, and observations 

within this region simultaneously exceed both warning limits.  The parameter values 

producing the highest fitness score for each statistical feature and warning limit 

combination are maintained.  The range of statistical features include: simple moving 

average, velocity, acceleration, volatility, and change in volatility.   

 

o The method accommodates single as well as joint conditional relationships.  Solving a 

single conditional relationship entails finding the optimal settings for one statistical 

feature and warning limit combination for one data channel.  Solving a joint 

conditional relationship entails simultaneously finding the optimal settings for two 

statistical feature and warning limit combinations across one or two data channels.  

The capability to solve for joint conditional relationships across one or more channels 

enables the method to potentially capture a wider range of conditional behaviour. 

 

o New parameter values are processed by the “core” modified SPC algorithm to 

produce three compound fitness metrics: the fitness score, the number of times the 

warning limits were exceeded, and the success rate.  The metrics are suitable to allow 

comparisons across statistical features, ultimately enabling discovery of high-fitness 

statistical feature settings.    

 

o The intelligent agent can change settings describing how the genetic algorithms 

operate.  Examples include the number of chromosomes in a population, the number 

of generations to use for training, the rates of mutation and cross-over, and a range of 

other settings.  The agent can also modify the evaluation function settings in the 

search for improved method performance.   

 

3. Review combined statistical feature and limit results.  During and/or following training, the 

intelligent agent compares statistical feature settings using the test and validation data.  

Valuable statistical features capture most of the test data events with relatively few false 

alarms.  Less valuable features capture fewer events and/or have relatively high levels of false 

alarms.  The test data results provide feedback to the training process and training settings.  

When complete, an indication of the robustness of the settings can be achieved by analysing 

results obtained using the validation data.   
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4. Generate composite event temporal pattern.  The intelligent agent places promising 

statistical feature and limit values into a neural network for composite event temporal 

recognition.  The neural network attempts to find relationships, beyond those already 

identified, across statistical features from x data channels. 

 

o The intelligent agent controlling the neural network has the ability to evaluate the 

relative value of each input feature and reduce the number of features as necessary to 

produce the most robust results. 

 

o The intelligent agent can also change neural network settings to improve results. 

 

o Upon completion, an event prediction summary is generated describing the 

characteristics of each statistical feature and how each performed in the 

training/test/validation process. 

 

5. Monitor data stream(s).   

 

o Monitor data stream(s) by reading new data and generating individual and composite 

event predictions. 

 

o Based on user preferences, if any warning limits on significant features are exceeded 

then notify the user.  If no warning limits on individual features are exceeded but the 

composite temporal pattern indicates a warning is warranted, then notify the user. 

 

Figure 3.1 reflects the information flow block diagram for developing the temporal event pattern, 

coinciding with Steps 1 through 4.  A more complete discussion about these steps follows in Sections 

3.2 through 3.5.  Figure 3.2 depicts the information flow block diagram for monitoring data streams 

for the event pattern.  Three activities are required to perform this function, introduced above as Step 5 

and also discussed in Section 3.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1.  Block Flow Diagram for Developing the Temporal Event Pattern 

 

 
3.2 Initialization 
 

In the initialization task, the fundamental desires of the user are communicated to the intelligent agent.  

Many of the key elements were mentioned in Section 3.1.  Table 3.1 details the range of objective 
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function choices available to the user.  The method allows for separate weightings to be placed on two 

aspects of exceeding a limit: the weight given when a statistical feature simply exceeds a limit, and the 

weight given for the degree the limit was exceeded (the distance beyond the limit).  Of particular 

interest is the option to explicitly identify the time window of acceptable alerts.  Users can set when a 

pre-event alert is too early or too late to be useful.  Furthermore, users can indicate their risk tolerance 

through the values they choose for true positive versus false positive alerts.  Depending on the needs 

of the analysis and the perceived severity of each event, these point values may differ greatly.  As 

shown in Table 3.1 and given mathematically in Equation 3.1, the objective function choices available 

to the user allow considerable flexibility for how the analysis is to be evaluated.  Cumulative totals are 

tabulated by summing all points obtained over the training (or testing) data set as limits are exceeded. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2.  Block Flow Diagram for Monitoring Data Streams for Temporal Event Pattern 
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Table 3.1.  Objective Function Options 
 

Understanding the range of different settings within Table 3.1 is easily accomplished.  These particular 

settings indicate the user chooses to accept correct (true positive) pre-event alarm notifications within 

(and including) ten time periods of the actual event, giving each instance a weighting (or point value) 

of one.  Each alarm notification during an event is given a weighting (or point value) of zero, as are 

post-event confirmatory alarm notifications up to ten time periods following an event.  All other alarm 

notifications are deemed to be incorrect and result in the subtraction of one point, as evidenced by the 

negative weighting.  The complete fitness score is calculated through the fitness function shown in 

Equation 3.1. 
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3.3 Statistical feature and warning limit optimization process 
 

The “core” of the method lies within the simultaneously solved statistical feature and warning limit 

optimization process.  A single-layered genetic algorithm is used to solve for statistical features 

operating directly on the raw data, and a dual-layered genetic algorithm solves for statistical features 

operating on dependent data.  

 

The method intentionally isolates the two primary elements within this process.  The genetic 

algorithms generate parameter settings and receive fitness function results, whereas the “core” 
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modified SPC algorithm receives parameter settings and generates fitness function results.  This 

separation increases code simplicity and enhances method generality.  The process is discussed below, 

starting with the “core” modified SPC algorithm then followed by the genetic algorithm construct. 

 

The modified SPC algorithm receives parameters from the genetic algorithm and processes them for 

fitness.  To accomplish this task efficiently, the parameters are grouped by statistical feature type and 

associated with a data stream number.  Figure 3.3 shows a fully completed sample configuration for 

Data Stream #2.  Five features exist within the figure, broken down by “raw values”, “directional 

trend”, and “volatility”.  “Raw values” refers to processing the raw data using simple moving 

averages, “directional trend” refers to calculations involving velocity and acceleration, and “volatility” 

refers to calculations involving volatility and changes in volatility.  These calculations are all very 

straight forward, and they can be performed over nearly any time window (depending on the statistical 

feature).  The simple moving average is simply the rolling average of a given number of raw data 

values.  Velocity is calculated as the rolling slope of a given number of raw data values, found by 

taking the slope following a first order least squares fit.  Similar to velocity, acceleration is calculated 

as the rolling change in velocity of a given number of velocity data values, found by taking the slope 

following a first order least squares fit.  Volatility is calculated as the rolling standard error of a first 

order least squares fit divided by the raw data average value within the time window.  Similar to 

acceleration, change in volatility is calculated as the rolling change in volatility over a given time 

window, found by taking the slope following a first order least squares fit.   

 

 
                                                     Event Detection Settings

Data Stream # 2 Composite Score                               Moodified SPC Settings

Initial Values Current Values Interim Best Settings

Raw Values                              Simple Moving Average Raw Data Length 11 11 11

Metric Summary Results Trend Line MA Length 16 16 16

Score 71 Trend Line StDev Length 377 377 377

# Limits Exceeded 83 Upper Trend Line Limit k  Value 1.6 1.6 1.6

Success Rate 95.2% Lower Trend Line Limit k  Value 5.6 5.6 5.6

Conduct GA Search? ("1" = Yes, "0" = No)0

Directional Trend                          Velocity (1st Moment) Raw Data Length 20 20 20

Metric Summary Results Trend Line MA Length 93 93 93

Score 73 Trend Line StDev Length 1332 1332 1332

# Limits Exceeded 80 Upper Trend Line Limit k  Value 2.2 2.2 2.2

Success Rate 97.5% Lower Trend Line Limit k  Value 3.8 3.8 3.8

Conduct GA Search? ("1" = Yes, "0" = No)0

                   Acceleration (2nd Moment) 2nd Moment Raw Data Length 9 9 8

Metric Summary Results Trend Line MA Length 909 909 904

Score 17 Trend Line StDev Length 1210 1210 836

# Limits Exceeded 53 Upper Trend Line Limit k  Value 2.3 2.3 2.2

Success Rate 84.9% Lower Trend Line Limit k  Value 6 6 8

Conduct GA Search? ("1" = Yes, "0" = No)1 Source (Velocity) Raw Data Length 388 388 29

Volatility                       Volatility (1st Moment) Raw Data Length 29 29 29

Metric Summary Results Trend Line MA Length 469 469 469

Score 23 Trend Line StDev Length 1498 1498 1498

# Limits Exceeded 26 Upper Trend Line Limit k  Value 0.6 0.6 0.6

Success Rate 100.0% Lower Trend Line Limit k  Value 7.8 7.8 7.8

Conduct GA Search? ("1" = Yes, "0" = No)0

         Change In Volatility (2nd Moment) 2nd Moment Raw Data Length 325 325 325

Metric Summary Results Trend Line MA Length 262 262 262

Score -73 Trend Line StDev Length 274 274 274

# Limits Exceeded 113 Upper Trend Line Limit k  Value 2.5 2.5 2.5

Success Rate 25.7% Lower Trend Line Limit k  Value 2.6 2.6 2.6

Conduct GA Search? ("1" = Yes, "0" = No)0 Source (Volatility) Raw Data Length 319 319 319

        Objective Function Settings Values

Correct Pre-Event Alarm Notifications

Furthest # raw data points before event an alarm is deemed useful 10

Nearest # raw data points before event an alarm is deemed useful 0

Weighting on True Positive (TP) alarm notifications 1

Weighting on distance above/below limit for TP pre-event alarm notifications 0

Incorrect Pre-Event Alarm Notifications

Weighting on False Positive (FP) pre-event alarm notifications -1

Weighting on distance above/below limit for FP pre-event alarm notifications 0

During-Event Confirmatory Alarm Notifications

Weighting on TP during-event alarm notifications 0

Weighting on distance above/below limit for TP during-event alarm notifications 0

Post-Event Confirmatory Alarm Notifications

# raw data points after event completion an alarm is deemed confirmatory, neither TP or FP 10

Weighting on TP post-event alarm notifications 0

Weighting on distance above/below limit for TP post-event alarm notifications 0  
Figure 3.3.  Sample Modified SPC Settings For Data Stream #2 
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For each statistical feature calculation, chart characteristics similar to those used within traditional 

SPC are identified.  “Raw data length” refers to the number of raw data values within the rolling time 

window.  In the case of velocity within Figure 3.3, the raw data length is 20, meaning 20 raw data 

values are included within the rolling velocity calculation.  Each velocity calculation generates one 

instance, or observation, of the statistical feature.  “Trend line MA length” refers to the number of 

observations contained within the trend line time window, a simple moving average (MA) of the 

observations.  For velocity, the “trend line MA length” is 93, meaning the first velocity trend value is 

calculated starting with the 93rd velocity observation.  “Upper trend line limit k value” refers to k in 

Equation 2.1, whereas “lower trend line limit k value” refers to k in Equation 2.2.  “Trend line StDev 

Length” refers to n, also in Equations 2.1 and 2.2.  Once the trend line moving average can be 

calculated, the respective limit lines are also calculated, even if n has not yet been reached.  In this 

case the limit values will consist of n-m calculations, and m decreases to zero as the number of 

observations approach n.  

 

Second moment calculations, like acceleration and change in volatility, require special processing by 

the algorithm.  These calculations are dependent not on raw data directly, but on data produced 

following first moment calculations (velocity or volatility).  Experimentation with the algorithm 

revealed optimal time window settings for first moment statistical features do not produce optimal 

time window settings for second moment statistical features.  Accordingly, second moment 

calculations have an extra input line called “Source (velocity or volatility) Raw Data Length.”  This 

extra input provides the second moment with its own direct link to the raw data, and the second 

moment statistical features use the data from this calculation for it dependent statistical calculation.  

For instance, acceleration has a “source raw data length” of 388, meaning the input into the 

acceleration feature is velocity values calculated over a time window length of 388 raw data points.  

Following with this example, an acceleration value is generated upon receipt of the ninth velocity 

value.  The additional layer of complexity associated with solving second moment statistical features 

necessitated developing a dual-layered genetic algorithm structure.  One genetic algorithm labours to 

solve the “source raw data length” value, while the other genetic algorithm solves the remaining 

parameters for the statistical feature and its respective limits.      

 

The method can be extended to solve more than one group of settings at a time, thus enabling joint 

conditional relationships to be considered and evaluated within one or across two data channels.  The 

capability to identify significant joint conditional relationships within this step of the method offers the 

potential to vastly improve the method’s final pattern recognition results.  Adding a joint relationship 

capability to the method, however, requires modifying the evaluation routines to handle different types 

of relationships.  New considerations include events defined by both statistical metrics simultaneously 

exceeding their limits or only one statistical metric exceeding its limits.  The fitness function in 

Equation 3.1 still applies, however the evaluation routine needs must now consider each different type 

of relationship.  

 

The method accommodates a wide range of different settings for each genetic algorithm layer to 

control the analysis process.  Example settings are shown in Tables 3.2 and 3.3.  Table 3.2 controls the 

first moment genetic algorithm and Table 3.3 provides controls for the second layer genetic algorithm.  

The genetic algorithms can perform “elite selection” where one copy of the best settings for a 

statistical feature (a single chromosome) is always carried forward into the next generation without 

interference from the crossover or mutation operators.  Other settings for consideration include an 

option for automatically calculating the maximum time windows for the parameters, based on the 

proportion of the available raw data.  Also shown in Table 3.3 is the option to change some of the 

settings for the primary genetic algorithm to reduce computational expense when solving second 

moment settings.  The best set of settings is always made available to the user or intelligent agent 

should the training need to be stopped before normal stopping conditions are met.  These are shown in 

Figure 3.3 under the column heading “Interim Best Settings.” 
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The genetic algorithms optimize parameter settings through crossover and mutation operators and 

employ a roulette wheel selection process.  The roulette wheel method is used for selection of parents 

from a population based on their fitness, shown in Figure 3.4.   The outer ring is divided by the 

proportional contributions from each member of the population based on fitness.  Random selection is 

used to determine which parent to select.  Each genetic algorithm maintains a population of schema, 

representing groupings of parameter settings.  With each generation, the genetic algorithms replace the 

current parent population with children schemata.  In order for the selection method to operate, scaling 

of the fitness values is first accomplished as some fitness values fall below zero.  The normalizing 

method described in [36] was used for this purpose.  Once fitness values are normalized, chromosome 

selection can occur, and a schemata’s probability of being selected is based on its proportional fitness.  

A certain percentage, pc, are selected for crossover using the two cut point crossover approach.  For 

those selected, a bit location is randomly chosen and the setting affected by the chosen bit exchanges 

its genetic material for the identical setting with the other selected chromosome.  Finally, a small 

percentage of the child population, pm, are randomly selected for mutation where a single bit is 

changed in value.  Figure 3.5 and 3.6 show the crossover and mutation operations, respectively.  With 

the mutation operation complete, the child population replaces the parent population, the fitness of the 

new population is evaluated, and the process repeats until a stopping condition is met.   

 

 

 

                                                                                                                        Main Problem Variable Settings

Variable Descriptions Minimum Value Maximum Value Precision (# decimal places)

Raw Data Length 2 xxx xxx

Trend Line MA Length 2 xxx xxx

Trend Line StDev Length 3 xxx xxx

Upper Trend Line Limit k Value 0 xxx 2

Lower Trend Line Limit k Value 0 xxx 2

Primary Genetic Algorithm Solver Settings Value

Probability of crossover, pc 50.00%

Probability of mutation, pm 2.50%

Population Size (Number of chromosomes) 100

Max number of generations 500

Perform elite selection? (1 = Yes, 0 = No) 1

Automatically Set Maximum Setting Values? (1 = Yes, 0 = No) 1

Maximum Proportion Allocated To Raw Data Length 0.2

Maximum Proportion Allocated To Trend Line MA Length 0.5

Maximum Proportion Allocated To Trend Line StDev Length 0.9  
Table 3.2.  Max & Min Settings, Plus Primary Genetic Algorithm Control 

 
 

 
Secondary "Source Raw Data" Problem Variable Settings

Variable Descriptions Minimum Value Maximum Value

Data Length To Generate Raw Data For Acceleration & Change in Volatility 2 xxx

                                                   Secondary "Source Raw Data" Genetic Algorithm Solver Settings Value

Probability of crossover, pc 0.6

Probability of mutation, pm 0.025

Population Size (Number of chromosomes) 40

Max number of generations 100

Perform elite selection (always maintain best known settings in next generation)? (1 = Yes, 0 = No) 1

Primary GA Settings During & After Running Secondary GA Value

During Execution, Replace Primary GA with this Population Size (Number of chromosomes) 50

During Execution, Replace Primary GA with this Max number of generations 100

When Finished, Replace Primary GA with this Population Size (Number of chromosomes) 100

When Finished, Replace Primary GA with this Max number of generations 500

Automatically Set Maximum Setting Values? (1 = Yes, 0 = No) 1

Proportion Allocated To Raw Data Length 0.25  
Table 3.3.  Max & Min Settings, Plus Secondary Genetic Algorithm Control 
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Figure 3.4.  Roulette Wheel Selection 
 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 3.5.  Crossover Operation                              Figure 3.6.  Mutation Operation 
 
 

3.4 Review combined statistical feature and limit results 
 

When training is completed, the summary metrics, combined with the number of events properly 

detected, can be used to evaluate how well each statistical feature performed.  In general, the more 

consistently events are identified by features in the training data, the more likely they are to be found 

in the test and validation data.  Features predicting a relatively small number of events in the training 

data are unlikely to be of further use, and the intelligent agent will not collect the data developed from 

those features.   

 

 

3.5 Generate composite event temporal pattern 
 

By combing statistical feature and limit combinations shown to be useful in the training data, the 

intelligent agent is able to develop a composite temporal pattern of the event.  The composite data, 

consisting of one or more data streams, will then be evaluated by a neural network for overall event 

detection and prediction.  The specifications (architecture and settings) for the neural network in this 

portion of the research have not yet been established.   

 

 

3.6 Monitor data stream(s)   
 

The method completes with an intelligent agent monitoring near real-time data from one or more data 

streams for event patterns.  The monitoring activity handles data differently depending on the refresh 

rate of the incoming data and the user’s settings for monitoring frequency.  A low frequency 

monitoring rate, when more than several minutes pass between one monitoring update and the next, a 

“scheduled event” method is used to start and stop the activity.  Each time the monitoring activity 

completes one update, the monitoring agent turns itself off after scheduling a future restart time on 

either the application or operating system level of the host computer.  As each start of each monitoring 

activity requires parsing one or more historical data files and filling arrays to calculate the statistical 

metrics, computer resources are demanded periodically and then released.  With low frequency 

1 1 0 0 1 1 11 1 0 0 1 1 1

1 0 1 1 1 0 01 0 1 1 1 0 0

1 1 1 1 1 0 01 1 1 1 1 0 0

1 0 0 0 1 1 11 0 0 0 1 1 1

1 0 1 1 1 0 01 0 1 1 1 0 0

1 0 0 1 1 0 01 0 0 1 1 0 0
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monitoring rates, these periodic demands are likely not consequential.  Alternatively, high frequency 

monitoring rates, ranging from one second up to several minutes, requires immediate access to data 

arrays in order to complete all calculations prior to commencing the next monitoring cycle.  

Consequently, a special routine was developed to allow the host computer to perform all other 

operations while waiting for the next monitoring cycle to begin.  This routine alternates between 

calling the “sleep” application programming interface (API) and the “DoEvents” command within 

Microsoft Visual Basic, as neither command by itself produces the desired result.  By keeping the 

monitoring activity “live,” recent historical data is only read once during monitoring function 

initialisation, high frequency monitoring can be achieved, and demands placed on the host computer 

are minimised. 

 

When established limits are exceeded, the monitoring agent alerts one or more users to the potential of 

an (impending) event along with details about the alert including the statistical metrics involved and 

the observation and threshold values.  Presently the method provides for two types of alerts: a pop-up 

message on the host computer and a broadcast e-mail alert.  As users may or may not be present when 

a pop-up alert is generated, the monitoring activity continues to function in the background.  All e-

mail alerts are generated using Collaboration Data Objects (CDO) without accessing the host 

computer e-mail application.  Recent advancements in anti-spam software have made auto-generated 

messages sent from computer to computer more difficult and secure networks frequently only allow 

authenticated message traffic.  Depending on the network, inter-domain unauthenticated messages can 

still be generated and received.  Cross-domain messages can be sent and received if the servers allow 

unauthenticated message traffic and/or blind message forwarding, conditions often met with most 

internet service providers.  Adding authentication to the alerts is certainly possible and would 

overcome some of these difficulties.   

 

Data can be made available to the data monitoring agent through passive or active means.  Passive 

data availability implies an external mechanism retrieves data for access by the data monitoring agent.  

Active data collection is achieved through a data collection agent capable of retrieving data over the 

internet.  The data collection agent aids the user in setting up the data collection process, collecting 

details such as the website addresses and key data fields on each site, as well as the data collection 

refresh rate.  Despite the data collection agent’s assistance, and depending on the complexity of the 

website layout and the type of data being collected, it is likely some computer programming is 

required to ensure the agent collects the correct data.  Once completed, the user can select an option 

for continuous data collection at a certain frequency, or identify data collection over a range of dates 

through day/month/year criteria.  Additional options are available including selecting individual days 

of the week, and event certain times within each day, for the collection to occur.  At midnight each day 

the data collection agent determines and posts its data collection schedule for the next day.  By posting 

its collection schedule and comparing this information to the last date and time data files are saved, an 

external “health” monitoring agent can determine if the data collection agent is operating properly or 

stopped prematurely due to unforeseen errors.  A health monitoring agent, capable of monitoring the 

health of all the other agents through a similar fashion, has not been created but a need for its existence 

has already become apparent.  The additional capability to monitor and automatically close and restart 

entire applications as needed offers the potential to create a very robust event detection and prediction 

system.   
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Chapter 4 

 

Feasibility Study with Single Channelled Data 
 

4.1 Overview 
 

An initial feasibility study was conducted to evaluate the potential of the method and decide whether 

or not the broader outlined research objectives were reasonable and obtainable.  This chapter presents 

the results of the study using single channelled data and a less mature version of the method.  Chapter 

5 presents similar material using two channelled real data and a more mature version of the method.   

Section 4.2 introduces the generation of two artificial data sets, and Section 4.3 discusses the analysis 

results using this data.  Section 4.4 compares these results against other time series analysis methods.      

 

4.2 Generating the Sample Data Sets and Adjusting Settings 
 

To evaluate method feasibility, complex time series data needed to be acquired.  A fundamental 

requirement was the need for significant control over how the data was generated.  This section 

describes the generation process, and presents several graphs to enhance understanding.   

 

The sample data streams each contained 5000 data points consisting of a complex signal sampled at 

0.001 seconds.  The complex signal contained four additive elements: two sinusoidal background 

signals, one partial sinusoidal event signal, and Gaussian noise.  The first background signal was 

chosen to produce a non-stationary mean through an increasing constant positive slope over the data 

sets.  As a result, it was a low frequency signal (0.01 Hz) with large amplitude of 50.0 and no phase 

shift.  The second background signal had a higher frequency (1.0 Hz) with smaller amplitude of 1.0 

and no phase shift.  It was designed to add increased variability resulting in non-stationary variance 

within the data sets by randomly starting and stopping over the 5000 data points.  Although random in 

duration, once the signal was randomly started it always completed at least two full periods.  In 

addition, once the signal stopped, it always had to wait at least one period before starting again. 

 

The event signal had a frequency of 20 Hz and no phase shift.  It represented the signal to be identified 

by the method for correct event prediction.  The sinusoidal signal started at –π/2 and continued until it 

reached π/2, resulting in a slanted s-shape appearance.  The amplitude of the signal was either 1.0 or 

1.5, depending on the data set, and the event was defined to occur at the peak value of the signal, 

Asin(π/2), where A is the signal amplitude.  There were no other differences between the two data sets 

besides the amplitude of the event signal.  The event signal was randomly started and stopped 

throughout the 5000 data points within the time series, bounded by several constraints.  First, events 

could not occur consecutively.  Second, the number of time steps between events should average (over 

many thousands of data points) six periods.  In this case, since there were 50 time steps per period in 

the event signal, over the long run the average number of time steps between events should be 300.  A 

high variability factor was included in the random calculation to make the number of steps between 

events very irregular, as reflected in Table 4.1.  It turns out the average number of time steps between 

events in the data streams was 401.  The composite data stream was finalised by adding the signal 

values at each sampled time period.  Gaussian noise, with a magnitude of 1.0, was then added to the 

composite data stream prior to analysis.   

 

The method was provided the first 3000 data points within each data stream for training, with the 

remaining 2000 data points set aside for testing.  Success or failure of the method is based on how well 

it performs on the testing data, since this represents data the method was unable to explore during the 

training process.  Figures 4.1 and 4.2 show the completed data streams over 5000 data points, with a 

line separating the training and testing portions.  A review of the data streams reveals several 

interesting points.  One point to mention concerns how small the events appear when compared to the 

noise, a result of the low signal-to-noise ratio values.  This is particularly true for the second data 
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stream where the signal and noise amplitudes are both 1.0.  Another point to mention is the appearance 

of the higher frequency background signal only towards the end of the training data.  This additional 

signal remains throughout roughly one third of the testing period.  The significance of this observation 

concerns how little exposure the method has to this higher frequency within the training data, yet the 

overall feasibility of the method will be based on results obtained during the testing period where the 

signal is more prevalent. 

 

                            

Event Number Time Of Event Number of Data Points Between Events

1 27 ---

2 507 480

3 1437 930

4 1859 422

5 2243 384

6 2454 211

7 2511 57

8 2624 113

9 2971 347

10 3309 338

11 3968 659

12 4273 305

13 4837 564  
Table 4.1.  Timing of Events and Number of Time Periods Between Events 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Complete Raw Time Series Data with SNR = 1.5  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Complete Raw Time Series Data with SNR = 1.0  
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To make it easier to see how the events look within the data stream, two smaller sections of the data 

streams are presented in Figures 4.3 and 4.4.  These figures each contain the same four events at times 

2243, 2454, 2511, and 2624.  They also more clearly show the composite data stream before noise was 

added, as well as showing the relative differences in event signal magnitude.  The higher frequency 

background signal can be seen starting around time 2550. 
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Figure 4.3.  Magnified Section of Raw Time Series Data with SNR = 1.5  
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Figure 4.4.  Magnified Section of Raw Time Series Data with SNR = 1.0  

 

A spectral analysis of each data stream was performed.  Figures 4.5 through 4.7 are the results of this 

analysis.  A general overview of the frequencies contained within the raw data stream with SNR = 1.0 

can be seen in Figure 4.5.  The potential regions of interest are circled.  The actual event signal, 

labelled in the figure, lies in a valley located at 20Hz.  One also notices several larger spikes in the 

vicinity of the event signal, located at18.6Hz, 22.5Hz, and 26.9Hz.  Several other spikes of nearly 

equal size are spread across a range of frequencies, with the highest frequency within an area of 

interest located at 240Hz.  Figures 4.6 and 4.7 are magnifications of the low frequency spectrums to 

better highlight potentially interesting frequencies in the data.  Analysis of the Figure 4.6 reveals 

generalized signal activity around the event frequency (20Hz).  As noted earlier, the event frequency 

lies in a valley surrounded by two spikes.  Figure 4.7 is almost identical to Figure 4.6, except the lower 

signal-to-noise ratio results in an overall reduction in power in the frequencies surrounding the event 
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signal.  Given the low signal-to-noise ratios and randomness of the event signal within the non-

stationary data, one would not expect remarkable insights from a spectral analysis.  This is because 

frequency domain time series analysis requires stationary data (like most other time series analysis 

methods), an assumption clearly violated by the data.  If suitable transformations were found to make 

the data stationary, then perhaps the spectral analysis would provide greater insight. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Overview of Frequencies Within Raw Data Stream with SNR = 1.0 
 

   

 

 

 

 

 

 

 

 

 

 

 

     

 

Figure 4.6. Magnification of the low frequency spectrum of Raw Data Stream with SNR = 1.5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Magnification of the low frequency spectrum of Raw Data Stream with SNR = 1.0 
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The method requires two data elements in order to properly match the statistical features and warning 

limits to the events in the training data.  One element is the raw training data, and the other element is 

the time when each event occurred.  These elements were provided, and the objective function settings 

were entered as shown in Table 4.2, duplicated from Table 3.2 for convenience. 

 

            

Correct Pre-Event Alarm Notifications Values

Furthest # raw data points before event an alarm is deemed useful 10

Nearest # raw data points before event an alarm is deemed useful 0

Weighting on True Positive (TP) alarm notifications 1

Weighting on distance above/below limit for TP pre-event alarm notifications 0

Incorrect Pre-Event Alarm Notifications Values

Weighting on False Positive (FP) pre-event alarm notifications -1

Weighting on distance above/below limit for FP pre-event alarm notifications 0

During-Event Confirmatory Alarm Notifications Values

Weighting on TP during-event alarm notifications 0

Weighting on distance above/below limit for TP during-event alarm notifications 0

Post-Event Confirmatory Alarm Notifications Values

# raw data points after event completion an alarm is deemed confirmatory, neither TP or FP 10

Weighting on TP post-event alarm notifications 0

Weighting on distance above/below limit for TP post-event alarm notifications 0   
Table 4.2.  Objective Function Settings 

 

While different combinations of settings could have been used, for feasibility purposes these seemed 

adequate.  The settings reflect an equal weighting between correct and incorrect predictions (+1 or -1 

points), and they allow up to 10 data points following an event for limits to be exceeded where points 

are neither awarded nor taken away.  This allows for a short penalty-free “cool down” or 

“confirmatory” period should the statistical feature lie above (or below) a warning limit immediately 

following an event.  Without allowing this concept and depending on the point values awarded (or 

taken away) for exceeded limits, the algorithm might find it optimal to never cross the warning limits, 

resulting in a useless search.  Other settings included identifying the minimum and maximum values 

for each modified SPC setting, and the precision of the upper and lower trend limit lines.  The 

minimum values were kept at the lowest possible setting, as shown in Table 4.3 (and duplicated from 

Table 3.3), and the maximum values were automatically calculated using the proportional settings 

shown at the bottom of Table 4.3.  Other general settings to operate the primary genetic algorithm 

were as shown in the table.  Table 4.4 provides the same basic information as Table 4.3, except the 

information controls the secondary layer genetic algorithm when solving dependent statistical features, 

such as acceleration and change in volatility.  Also as shown in the table, users have the option to 

change some of the settings for the primary genetic algorithm to reduce computational expense.  The 

values chosen are shown in the table.  
 

 
                                                                                                                       Main Problem Variable Settings

Variable Descriptions Minimum Value Maximum Value Precision (# decimal places)

Raw Data Length 2 xxx xxx

Trend Line MA Length 2 xxx xxx

Trend Line StDev Length 3 xxx xxx

Upper Trend Line Limit k Value 0 xxx 2

Lower Trend Line Limit k Value 0 xxx 2

Primary Genetic Algorithm Solver Settings Value

Probability of crossover, pc 50.00%

Probability of mutation, pm 2.50%

Population Size (Number of chromosomes) 100

Max number of generations 500

Perform elite selection? (1 = Yes, 0 = No) 1

Automatically Set Maximum Setting Values? (1 = Yes, 0 = No) 1

Maximum Proportion Allocated To Raw Data Length 0.2

Maximum Proportion Allocated To Trend Line MA Length 0.5

Maximum Proportion Allocated To Trend Line StDev Length 0.9  
Table 4.3.  Max & Min Settings, Plus Primary Genetic Algorithm Control 
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Secondary "Source Raw Data" Problem Variable Settings

Variable Descriptions Minimum Value Maximum Value

Data Length To Generate Raw Data For Acceleration & Change in Volatility 2 xxx

                                                   Secondary "Source Raw Data" Genetic Algorithm Solver Settings Value

Probability of crossover, pc 0.6

Probability of mutation, pm 0.025

Population Size (Number of chromosomes) 40

Max number of generations 100

Perform elite selection (always maintain best known settings in next generation)? (1 = Yes, 0 = No) 1

Primary GA Settings During & After Running Secondary GA Value

During Execution, Replace Primary GA with this Population Size (Number of chromosomes) 50

During Execution, Replace Primary GA with this Max number of generations 100

When Finished, Replace Primary GA with this Population Size (Number of chromosomes) 100

When Finished, Replace Primary GA with this Max number of generations 500

Automatically Set Maximum Setting Values? (1 = Yes, 0 = No) 1

Proportion Allocated To Raw Data Length 0.25  
Table 4.4.  Max & Min Settings, Plus Secondary Genetic Algorithm Control 

 

4.3 Results of Analysis 
 

As mentioned earlier, the way to identify whether or not the method is feasible should be based on 

how well the method performs during testing or validation periods following training over the training 

period.  On the other hand, insight into how well each feature & limit combination may perform over 

the testing period can be provided by simply observing which feature & limit combinations correctly 

identified most of the events in the training period while maintaining a low false alarm rate.  If a 

feature & limit combination detected a relatively small proportion of events, then it is unlikely to 

perform well in the testing period either. 
 
In the case of the two data sets, two statistical feature and limit combinations performed well over both 

the training and testing periods.  Those features were the simple moving average (MA) feature and the 

velocity feature.  The simple moving average feature performed significantly better on the data set 

with the higher signal-to-noise ratio than with the lower ratio, whereas the velocity feature performed 

well on both data sets.  The optimal settings found by the modified SPC method for both sets of 

features are located towards the end of the section in Table 4.9.  Figures 4.8, 4.9, and 4.10 show 

graphically how the simple moving average feature and limit combination performed in the data set 

with SNR = 1.5.  Figure 4.8 shows the combination across the entire time period, while Figures 4.9 

and 4.10 show portions of data within the training and testing periods, respectively.  In Figure 4.9, one 

will notice the simple moving average feature did not cross the warning limit line near time period 

1960, thus avoiding a false positive.  In Figure 4.10, one notices the feature correctly predicted events 

at time periods 3968 and 4273, but just missed the event at time period 4837.  A summary of the 

results in tabular form is shown in Table 4.5.  
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Figure 4.8.  Results –Entire Simple Moving Average Feature & Limit Combination, SNR = 1.5 
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Figure 4.9.  Results – Sample of Training Portion from Simple Moving Average Feature & 
Limit Combination, SNR = 1.5 
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Figure 4.10.  Results – Sample of Testing Portion from Simple Moving Average Feature & 
Limit Combination, SNR = 1.5 

 

 

      

                           Number Time Periods Before Each Event An Alert Was Generated

Time Of Event SNR = 1.0 SNR = 1.5

27 (limits not yet established) (limits not yet established)

507 (limits not yet established) 9

1437 8 9

1859 1 10

2243 1 10

2454 4 6

2511 8 10

2624 8 8

2971 did not detect 8

3309 did not detect 8

3968 did not detect 9

4273 2 6

4837 did not detect did not detect

Average During Training Period 5 8.75

Average During Test Period 2 7.67  
Table 4.5. Simple MA Results Summary – When Alerts Were Generated By Data Set 
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False Alarm Results

Description SNR = 1.0 SNR = 1.5

False Alarms In Training Period 5 of out 3000 (0.17%) 4 of out 3000 (0.13%)

False Alarms In Testing Period 25 out of 2000 (1.25%) 2 out of 2000 (0.10%)  
Table 4.6. Simple MA Results Summary – False Alarm Statistics 

 

 

Tables 4.5 and 4.6 show how many time periods before an event the feature produced a warning.  In 

some cases this feature did not detect the event, particularly in the case of the data set with SNR = 1.0.  

The high average warning time in the data set with SNR = 1.5 also reflects the ease with which this 

feature could distinguish the event signal.  In terms of false alarms, the feature produced very few.  

The most false alarms were recorded in the testing portion of the data set with the lower SNR, as 

expected. 

 

While the simple moving average feature and limit combination produced solid results, even better 

results were obtained from the velocity feature and limit combination.  Figures 4.11 and 4.12 

graphically depict the results, while Tables 4.7 and 4.8 show results in a tabular format. 
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Figure 4.11.  Results: Entire Velocity Feature & Limit Combination, SNR = 1.5 
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Figure 4.12.  Results: Entire Velocity Feature & Limit Combination, SNR = 1.0 
 

 

Figures 4.11 and 4.12 clearly show how well the statistical feature and limit combination performed in 

the two data sets.  In both cases, the method was able to develop strong spikes prior to each event, 

allowing relatively easy event prediction to occur.  In addition, the difference in event signal 

magnitudes between the two data sets is easy to distinguish.  Glancing at Tables 4.7 and 4.8 also 

reveals how well this statistical feature and limit combination performed.  Table 4.7 shows every event 

was predicted before it occurred, with a minimal warning time of three periods.  It is interesting to 

note the average warning times only dropped slightly between the training and testing time periods, 

from 6 to 5, and from 8 to 7.25 for the two data sets.  While an ideal case would reflect identical 
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values across the training and testing periods, the relatively small drop means the method produced a 

very robust classifier through the velocity feature and limit combination.  It remains to be seen 

whether or not this holds true when other data sets, particularly using real data, are tested.  Table 4.8 

also portrays the strength of the velocity classifier for event detection by showing the false alarm rate 

stayed below 0.4%.  The higher false alarm rate in the test data shown by the data set with SNR = 1.5 

is caused by an attempt to have very early event detection.  As with any warning system, the earlier 

the desired warning, the higher the expected false alarm rate [78]. 

 

 

          

                           Number Time Periods Before Each Event An Alert Was Generated

Time Of Event SNR = 1.0 SNR = 1.5

27 (limits not yet established) (limits not yet established)

507 7 9

1437 8 9

1859 4 8

2243 5 7

2454 4 6

2511 8 9

2624 5 8

2971 7 8

3309 4 7

3968 3 9

4273 4 6

4837 9 7

Average During Training Period 6 8

Average During Test Period 5 7.25  
Table 4.7. Velocity Results Summary – When Alerts Were Generated By Data Set 

                 
False Alarm Results

Description SNR = 1.0 SNR = 1.5

False Alarms In Training Period 3 of out 3000 (0.10%) 0 of out 3000 (0.00%)

False Alarms In Testing Period 4 out of 2000 (0.20%) 7 out of 2000 (0.35%)
 

Table 4.8. Velocity Results Summary – False Alarm Statistics 
 

 

As mentioned earlier, Table 4.9 identifies the optimal settings developed from the method for both 

feature and limit combinations per data set.  It is interesting to note that while some of the settings are 

remarkably close across data sets, some are very different.  Larger gene pools and more generations 

might have reduced the differences observed within the table, however it is likely the change in signal 

amplitude relative to the noise is cause for most of the difference.  The consistently wider limits on the 

data set with SNR = 1.0 confirms this notion.  The largest difference is shown to be the trend line 

moving average length for the simple moving average.  The trend line for the data set with SNR = 1.0 

is so long that it practically resembles a straight line, whereas the trend line for the other data set is 

many times shorter.  The stronger signal amplitude combined with the shorter trend line is likely one 

reason why this statistical feature was so much more successful in this example.  

 

The calculations for this feasibility study were performed on a 3GHz hyperthreading computer with 

1GB RAM running Windows XP Professional.  In the right form, all of the statistical features can be 

calculated quickly.  Research into exploring different features or variations of existing features yielded 

an improved form for the volatility equation involving no recursive operations, a significant advance 

over the initial volatility implementation.  Outside the volatility metric, no other statistical features or 

changes to existing features were discovered.   While the second moment calculations (acceleration 

and change in volatility) are individually fast, however, the dual-layered solution approach results in 

significant training time periods. 
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Optimal Settings By Statistical Feature Type Per Data Set

Statistical Feature Setting Description     Number of Time Periods Within Calculation

SNR = 1.0 SNR = 1.5

Simple Moving Average Raw Data Length 9 11

Trend Line MA Length 1405 16

Trend Line StDev Length 661 377

Upper Trend Line Limit k Value 4.33 1.6

Lower Trend Line Limit k Value 6.99 5.6

Velocity Raw Data Length 24 20

Trend Line MA Length 48 93

Trend Line StDev Length 1931 1332

Upper Trend Line Limit k Value 2.42 2.2

Lower Trend Line Limit k Value 5.27 3.8  
Table 4.9. Optimal Settings For Both Feature and Limit Combinations Per Data Set 

 

 

4.4 Comparison Against Other Time Series Analysis Methods   
 

Several existing time series analysis methods were tested using the two data sets following multiple 

transformations to make them stationary.  First, the data were differenced.  This produced what 

appeared to be white noise, an independent variable for use in model building or placing in a neural 

network.  Next a dependent variable was created to capture the timing of the events.  The time of the 

event, plus the five previous time periods were all given values of one; all other time periods were 

given a value of zero.  The raw and differenced data were then smoothed using three smoothing 

methods: exponentially smoothed, double (Brown) exponentially smoothed, and damped-trend linear 

exponentially smoothed.  The total number of explanatory variables available for analysis was five.  A 

linear model incorporating a full second-degree factorial of all the variables was attempted with no 

success (adjusted r^2 = 0.001229).  Multiple combinations of these variables were also attempted, with 

no appreciable improvement.  The best obtained adjusted r^2 value was 0.06743.  Multiple 

autoregressive integrated moving average (ARIMA) models were then build to see if the raw data, 

differenced data, or smoothed data could be improved to the point of helping the linear modelling 

effort (still applying a full second degree factorial of all the variables).  Despite lots of effort and 

roughly seventy ARIMA combinations (including seasonal adjustments), the effort was stopped after 

having only reached slight improvement.  The best adjusted r^2 value was found to be 0.1814.  

Successful results were not expected from linear or ARIMA-based modelling techniques, and the 

results confirmed these expectations.      

 

Building a non-linear model requires knowing the functional form of the data, a condition unlikely to 

be met in without substantial apriori knowledge of the underlying phenomenon generating the time-

series, so this option was discarded.  Fifteen pattern recognition neural networks were then evaluated 

using the variables listed above (the raw data, differenced data, and smoothed data) against the 

independent event variable.  Different numbers of hidden nodes were chosen (5, 10, and 15), and two 

learning rates were tried (0.02 and 0.1).  The momentum variable was held constant at 0.20, and 

training was terminated after 100 epochs (if not already terminated due to increasing hold-out sample 

root mean square error values).  Unfortunately, none of the neural networks performed any better than 

the linear models on this data set.  The best one predicted one event and correctly classified three out 

of 20 pre-event time periods.  The neural networks essentially always misclassified the events as non-

events, a common result when only a few data points are classified differently than the majority.   

 

More time could have been spent trying other time series analysis methods, but it became clear that 

little improvement would be found without lots of trial-and-error.  The extended time and frustration 

in attempting to analyze the complex data using the various methods described above underscores why 

an easy-to-use, more robust method needs to be developed.  
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Chapter 5 

 

Feasibility Study with Two Channelled Real Data 
 

 

5.1 Overview 
 

A feasibility study using two channelled data from a real environmental process was conducted to 

further evaluate the potential of the method.  This chapter presents the results of the study using river 

data collected from Pajaro River in Chittenden, California, USA.  The method employed for this study 

uses a more advanced version of the first stage pattern recognition method than found in Chapter 4.  

Differences between the two versions include the capability to analyse joint conditional relationships, 

the introduction of constant-valued threshold limits in addition to trend-based limits, and the capability 

to create event “bands” by allowing the lower and upper limits complete freedom in their selection of 

k values.  Section 5.2 introduces the data used in the analysis, Section 5.3 discusses how the data was 

prepared for analysis, Section 5.4 shows results for characterising a flood event, and Section 5.5 shows 

results for predicting a flood event.   

 

 

5.2 Introduction to the River Data 
 

The data acquired for this feasibility study came from the United States Geological Survey (USGS) 

and covers the Pajaro River near Chittenden located at 36.9020°N latitude and 121.6050°W longitude.  

The testing site collects a range of river-related data and is stationed at an elevation of 82ft above sea 

level.  The data used here was collected over 20 years, from 1984 through 2004, and included hourly 

measurements for water flow, measured in cubic feet per second (cfs), and water stage, measured in 

feet (ft).   

 

The USGS defines a flood for this river at this location as any time the water stage meets or exceeds 

32ft in height.  A “monitor” stage, or flood warning, occurs whenever the water stage meets or 

exceeds 25ft.  Over the 20-year monitoring period, two unique floods occur.  The first flood, detailed 

in Figures 5.1 and 5.2, occurred on March 10
th
 in 1995.  Flood stage conditions only lasted for seven 

hours over an 18-hour period.  As shown in Figure 5.1, the water only slightly exceeded the flood 

stage during the course of the flood period, and the data shows a maximum recorded water stage of 

32.13ft.  The 32ft level was exceeded for four hours, dropping below 32ft for the next 12 hours, and 

then exceeding 32ft again for three more hours before slowly receding back to more normal levels.  

Importantly, there were a total of four hours between the flood warning and the flood, the duration of 

time when the water exceeded the “monitor” stage prior to exceeding the flood stage.  The flood is 

recorded to occur on the fifth hour following the flood warning.  According to the USGS this was a 

35-year flood (meaning a flood of this magnitude is expected to occur about once every 35 years).  

The second flood, occurring between February 2
nd

 and 3
rd

, 1998, and shown in Figures 5.3 and 5.4, 

exceeded the flood stage for seventeen straight hours and reached a maximum recorded water stage of 

34.92 feet.  The 25ft flood warning stage was exceeded for eleven hours prior to the reaching the flood 

stage on the 12th hour.  According to the USGS, a flood of this magnitude is expected to occur about 

once about every 80 years. 

 

As shown in Figures 5.1 through 5.4, both data channels exhibit similar overall characteristics during a 

flood event as water flow and water stage increase.  Different rates of increase and decrease are also 

noted, with sharper increases and decreases found in the water flow data.  The entire training and 

validation data sets used within this analysis are shown in Figures 5.5 through 5.8.  Visible plateaus in 

the data sets are due to pockets of bad or missing data and not due to natural environmental causes, as 

discussed more fully in Section 5.3.  
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Figure 5.1.  Review of March 1995 Flood: Water Stage Data 
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Figure 5.2.  Review of March 1995 Flood: Water Flow Data 
 

 

5.3  Pre-processing the River Data and Generating Data Sets 
 

The USGS maintains thousands of data collection sites throughout the United States monitoring a 

wide range of environmental phenomena.  It is not surprising, therefore, that data are not always 

recorded as desired due to any number of reasons.  The two channelled data studied here had to 

undergo significant pre-processing to enable its use, and the method to accomplish this pre-processing 

is presented below.  The overall pre-processing effort involved multiple passes through the data 

containing over 183,000 data points each.  Each pass performed different functions such as identifying 

and handling obvious outliers and erroneous data, and filling in missing values where gaps were 

discovered.   

 

The first step entailed finding the median of each data set, a metric of central tendency less susceptible 

to outliers than the mean.  Extreme deviations from one data point to the next, more than two orders of 

magnitude, were ignored in the median calculation as were all negative and non-numerical values.  

The resulting median values were low, coinciding with California’s long standing water shortage 

concerns.  To allow the median values to be useful in identifying less obvious outliers, minimum 

acceptable data set values were established by multiplying the median values by 2.5.  The second step 

entailed upwardly adjusting all values falling below the minimum values.  The third step attempted to 

identify less obvious outliers through a look-forward, look-backward process.  With each time step, 

neighbouring values exceeding 300% of the preceding value were reduced to the average between the 

following two data points and the previous two data points.  In the fourth step, the data was reviewed 
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to identify and fill missing data points, taking into account the number of days in each month and even 

leap year considerations.  Since many of the missing time gaps were large, ranging from several hours 

to several months, the gaps were filled with the preceding data point value.  The effect of introducing a 

minimum value and filling missing data in this manner generated plateaus of short or long duration. 
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Figure 5.3.  Review of February 1998 Flood: Water Stage Data 
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Figure 5.4.  Review of February 1998 Flood: Water Flow Data 
 

 

By far the most frequent plateau was the contrived minimum value, as the Pajaro River experienced 

extended periods of low water flow and low water stage levels.  Consequently, useful data sets were 

constructed by collecting each significant increase in the data streams and piecing them together to 

generate new data sets, leaving several hundred data points on each side of the increases intact. The 

metric used to determine a significant increase was defined as any period where the water stage 

increased beyond ten feet, a value less than one third of the flood stage.  This process resulted in two 

reduced data sets each containing 30,095 data points spanning the years between 1984 and 2004.  As 

mentioned earlier, over this timeframe there were two floods and approximately thirty-three instances 

where the water stage increased beyond ten feet.   
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Ideally, three data sets would be constructed using the available data: a training set, a testing set, and a 

validation set.  Each data set would contain multiple examples of events to ensure the most robust 

settings were established during the training process.  The most robust settings are typically identified 

as those producing the most favourable results on the test data set, and an indication of the robustness 

can be achieved by analysing results obtained using the validation data set.  Using less than three data 

sets increases the risk of over-fitting the data, resulting in settings unable to properly identify events in 

variable complex processes. 

  

With only two flood events in the entire data set to use for reference, the decision was made to develop 

only two data sets for each data channel: a training set and a validation set.  The results of the pre-

processing effort are shown in Figures 5.5 through 5.8. 
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Figure 5.5.  Review of Training Data Set: Water Stage  
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Figure 5.6.  Review of Training Data Set: Water Flow  
 

 

5.4  Characterising a Flood Event 
 

A few fundamental questions arise when working with event-related temporal data.  One question 

considers whether or not the method can characterise the event of interest, and another considers 

whether or not the method can predict the event.  This section discusses an attempt to characterise the 

flood event. 
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Figure 5.7.  Review of Validation Data Set: Water Stage  
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Figure 5.8.  Review of Validation Data Set: Water Flow  
 

 

First and foremost, however, it must be clearly understood the results presented in Chapter 5 are 

unfortunately based on a poor selection of data sets where only two flood events occurred during the 

monitored time period.  There is no doubt training the method on only one event will result in over-

fitting that event, thus severely limiting the robustness of the resultant settings.  This problem is due to 

the data and not the method.  As a result, comprehensive finalised settings will not be presented in this 

chapter and significant conclusions cannot be reached.  

 

An attempt was made to limit the effects of over-fitting the training data.  Since genetic algorithms 

refine possible solutions with each generation of chromosomes, one way to combat the over-fitting 

problem involves reducing the number of generations before the best settings are finalised.  This 

approach was chosen and the number of generations was reduced from 200 down to 20, however no 

sensitivity analysis was performed to determine whether or not 20 was an appropriate value.  Other 

genetic algorithm settings included a crossover probability of 0.65, a mutation probability of 0.035, 

and a population size of 200.  Elite selection was not employed.  The following objective function 

weights were used to characterise, not predict, the flood event: +1 for each TP during-event 

notification, wb, and -1 for all other notifications.  A value of zero was given to . jα    
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The results, shown in Figures 5.9 and 5.10, indicate the method was easily able to characterise this 

event.  It achieved perfect success using the water stage data by combining a simple moving average 

over one time step in conjunction with a constant-valued limit placed at 31.96ft.  (In this example, the 

method generated an event “band” between 31.96ft, the upper limit, and 35.92ft, the lower limit.)   

Since 32ft is defined as a flood, the value obtained by the genetic algorithm is completely accurate.  

While promising, more excitement would be generated with this result had more events existed within 

the training data.     
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Figure 5.9.  Overview of Flood Event Characterisation  
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Figure 5.10.  Detailed Review of Flood Event Characterisation  
 

 

5.5  Predicting a Flood Event 
 

Only three settings needed to be changed when transitioning from trying to characterise the event to 

trying to predict the event: b1 (changed to 20), a (changed to 20), and wb (changed to +1).   

 

All combinations of statistical features across both data streams were evaluated in the course of the 

analysis.  The results, shown in summary format in Figure 5.11 and in detail in the Appendix, indicate 

wide performance differences across the different statistical features.  Figure 5.11 only shows those 

features found to have successfully produced one or more pre-event notifications in the training data 

set.  For each feature, an average has been computed reflecting how it performed by itself and jointly 
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in the validation data set.  The average metric reflects the average number of pre-event notification 

periods in the validation data set, and the number of attempts identifies how many combinations with 

that metric detected the flood event in the validation data set.  For example, the best overall results 

came from water flow velocity.  This statistical feature not only performed well in the training data, as 

did many others, but also produced an average pre-event notification of 2.4 time periods before the 

flood event in the validation data set.  The 2.4 average is based over seven combinations with other 

statistical metrics, indicating water flow velocity is likely a very significant feature for flood detection 

and prediction.  The next best performing statistical feature appears to be the simple moving average 

of the water stage data.  After a more detailed review of the data, however, one discovers it actually 

only had a very good result when paired with itself and only moderate results when paired with the 

other statistical features.  When paired with itself, two simple moving averages with different settings 

over different time windows were created, achieving ten periods of pre-event notification for the flood 

event in the validation data.  Solid results also appear in the water flow simple moving average 

statistical metric, however Figure 5.11 indicates the results were not as consistent across as many 

statistical metrics as the water flow velocity and water stage simple moving average statistical metrics. 

As mentioned earlier, however, while these results are certainly interesting no significant conclusions 

can be drawn from them due to the low event count in the data.   
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Figure 5.11.  Summarised Results Given Successful Pre-Event Notification in Training Data 
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Chapter 6 

 

Research Program 
 

6.1 Discussion on Future Work 
 

The initial results highlighted in Chapters 4 and 5 indicate this method has the potential to meet the 

demanding research goal and aims, and significant progress across the range of research milestones 

has been achieved.  While most aspects of the “core” algorithm have already been developed, tested, 

and integrated, more work remains.  A discussion of future work outside this research grant necessary 

to meet the seven objectives identified in Section 1.4 follows.  

 

• Objective 1.  Develop easy to use, continuous data collection and management process for one or 

more data streams within an intelligent agent construct 

 

Much progress has been made relating to Objective 1, but more work remains for the objective to 

be fully realised.  An event monitoring capability has been successfully developed using the 

method identified in Figure 3.2.  Data from multiple data streams can be collected by the data 

collection agent, read and processed by the data monitoring agent, and near real-time event 

monitoring can be performed using statistical feature settings identified by the data analysis agent.  

Additionally, event warning alerts can be displayed on the host terminal and automatically 

generated alert messages can be transmitted to other users at other terminals.   

 

As mentioned earlier, the currently implemented algorithm has the ability to manage and process 

more than one data stream at a time.  The modified SPC tool (for combined feature generation and 

pattern recognition) represents the first stage of a two-stage pattern recognition process.  In the 

first stage, each optimal statistical feature (and associated event warning limits) is individually or 

jointly developed for one data stream or across any two data streams in a pairwise fashion.  The 

second stage of pattern recognition is performed by a neural network.  It is in the second stage 

where all the optimized statistical features for one or more data streams relating to a single 

monitored process are combined to accomplish composite temporal pattern recognition.  While 

effort has been placed on understanding some of the intricacies of neural networks, and in fact a 

basic neural network tool has already been developed, actual implementation and tight integration 

within the algorithm has not yet been accomplished.   

 

Other areas relating to Objective 1 still needing work include developing and improving the logic 

for controlling each component of the pattern recognition process in an attempt to ensure robust 

results, and the creation of an “agent health” monitoring capability.  Computer network problems 

and the difficulties caused by network failures on the data collection agent underscore the need for 

a “health” monitoring agent capable of determining whether or not each agent is functioning 

properly and shutting down and restarting the agents and applications as necessary.   

 

• Objective 2.  Develop method to generate highly tailored robust statistical features from time 

series data that best capture trend and volatility movement prior to and during previous 

significant events, capable of overcoming difficulties caused by non-stationary data 

 

The single and dual-layered genetic algorithm approach appears to properly perform the 

combinatorial matching between the statistical feature settings and associated event warning limit 

settings.  The direct evaluation of joint conditional relationships in the first stage of the pattern 

recognition process shows potential to further enhance the method’s effectiveness.  However, 

certain aspects of method performance, such as the type of mutation and cross over operators to 

employ, still need further analysis.   
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Another area yet to be explored includes pre-processing the data prior to building the statistical 

features.  Disparate smoothing techniques commonly used in time series analyses can be 

employed to see if they improve the method’s performance.  Other options to explore include 

using optimally processed statistical feature data as the “raw” data source for altogether different 

statistical feature calculations.  For example, Chapter 4 identified the value of the velocity 

statistical feature, producing an optimal data set of velocity metrics.  This data could become the 

raw data for use by the other statistical features, perhaps enhancing visibility of the predicted 

event. 

 

• Objective 3.  Develop method for monitoring, controlling, and configuring first-stage modified 

SPC tool 

 

This objective relates to Objective 1 and the use of intelligent software agents to control the 

analysis process.  While the methodology attempts to minimize the number of settings, 

preliminary sensitivity analysis results indicate changing some settings have greater affect than 

changing others.  Accordingly, additional sensitivity analyses should be performed to identify 

robust initial settings and understand when, and to what degree, they should change throughout the 

analysis. 

 

• Objective 4.  Develop method for combining statistical features from multiple data streams, 

generating a composite “snapshot” of the temporal process 

 

This objective addresses the presentation of numerous statistical features to the neural network.  

The preliminary results support the notion that statistical features producing poor results with 

training data in the first stage pattern recognition process also tend to produce poor results in test 

and validation data.  This is particularly true when comparing the number of time periods 

associated with correct pre-event notification between the training and test or validation data.  

Poor performing statistical features will be discarded prior to the second stage pattern recognition 

process, and further statistical feature reduction will occur in the second stage using the feature 

saliency screening method described in [11].  The preliminary results suggest statistical features 

capturing (and in particular predicting) event-related data pattern movement with the training data 

appear to offer the strongest potential for correctly identifying event-related data pattern 

movement in the test data, an intuitively appealing result.   

 

• Objective 5.  Develop method to adaptively configure second-stage pattern recognition tool (a 

neural network) 

 

This objective addresses how to configure the neural network to best perform the pattern 

recognition task from the given set of statistical features.  Neural networks are prevalent across 

many fields of research because they offer such a wide range of architectures, configurations, and 

settings.  Unfortunately there is little consensus within the literature for how to best match these 

variables to a given problem, and to date little work has been conducted in this area inside this 

research effort.  As a result, two different types of preliminary sensitivity analyses still need to be 

performed.  The first one must evaluate the different types of neural network architectures to 

identify which type best meets the goals of this research, whereas the second one must consider 

how to best configure the settings of the chosen architecture to this research problem. 

 

• Objective 6.  Develop method for intelligent agent to interactively control overall (pre-) event 

detection analytical process 

 

As mentioned in Objective 1, work has progressed significantly in this area but more work 

remains.  As a better understanding of the method emerges through various sensitivity analyses, 

more insight will be obtained for how to best control the analysis process.  Intelligent agents will 

ultimately be responsible for starting, stopping, and monitoring each part of the analysis.  They 
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will be capable of changing the settings identified through the work accomplished within 

Objectives 3 and 5, and it will also need to interact with the user.  The user, in turn, will be able to 

override the agent’s choice of settings, as well as monitor the analysis progress through summary 

reports and descriptive event log files generated throughout the analysis process.   

 

• Objective 7.  Perform preliminary sensitivity analyses on methodology using synthetic and real 

data  

 

In order to evaluate the robustness of the methodology, several sensitivity analyses have been 

performed but more are required.  The results in Chapters 4 and 5 indicate the approach is capable 

of identifying and possibly even predicting events despite being confronted with challenging and 

complex data.  More investigation is warranted to better understand the capabilities and limitations 

of this approach.  Careful examination of the results will likely reveal how some identified 

limitations may be reduced or eliminated through changes to the algorithms.  Obtaining additional 

multi-channelled real data in different fields of research is critical to evaluating how the method 

performs in practice.  Comparing these results against results from other researchers will prove 

insightful and will ultimately indicate whether or not future research efforts using this approach 

are justified.   
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Chapter 7 

 

Conclusions 
 
The Surrey Space Centre is at the forefront of a broad movement to make space more responsive, 

accessible, and affordable to an increasing number of users.  Key elements in this overall strategy 

include improved space system utilization, increased operational efficiencies, and superior methods to 

analyze immense volumes of data.  Developing and integrating innovative uses of autonomy across 

the whole spectrum of space-related activities, from space service providers to data consumers, is vital 

for SSC to meet its lofty goals.   

 

As the primary developer of the DMC, the SSC is now investigating how to best monitor space and/or 

terrestrial source data streams for identifying interest-event occurrences.  This research addresses the 

development of a novel method for enhanced (pre-) event detection, particularly when working with 

one or more complex temporal data streams such as those found in environmental monitoring.  As 

Zimmerman noted when conducting water pollution monitoring [107], environmental data often shows 

evidence of seasonal variations, high natural variability, lack of independence, covariate effects, non-

normal distributions, and auto correlation.  While many methods exist to analyse time series data, 

rarely can they operate directly on data exhibiting these difficulties.  To analyse such data using 

traditional time series analysis methods, if possible at all, requires meeting numerous data assumptions 

obtained following lengthy data transformation efforts frequently accomplished in trial-and-error 

fashion.  Even if the data transformations are successful, traditional time series methods are not 

designed to perform pattern recognition tasks directly, leaving the researcher to serially explore 

numerous pattern recognition techniques.  In summary, successfully accomplishing event detection 

with complex temporal data ultimately results in significant effort requiring substantial domain-

specific expertise. 

 

In contrast, the proposed method coherently employs a dual-layered optimization and pattern 

recognition approach controlled by intelligent software agents to overcome these challenges.  In the 

first layer, by exploiting the unique combinatorial search benefits of genetic algorithms within a 

modified SPC construct, robust statistical features tailored to the temporal data of one or more data 

streams are calculated without first requiring the raw data to meet strict assumptions of normality and 

stationarity.  In addition, by simultaneously solving for the features and a range of flexible event alert 

control limits, the proposed method optimally captures and characterises how the time series evolved 

prior to and during previous significant events.  In the second layer, a composite temporal snapshot of 

the monitored process is developed and analysed by combining salient optimally tuned statistical 

features from one or more data streams within a tailored neural network.  The author was unable to 

locate literature in any field of research where these key features had been previously combined.  

 

A novel method was developed and evaluated over two different types of data sets.  The first 

feasibility study contained two synthetic single channelled data sets with noisy, highly non-linear, 

non-stationary mean and variance data.  The results reveal the method was able to readily detect the 

event signal despite the considerably low 1.5 signal-to-noise ratio.  In the case where the event signal 

magnitude was reduced to equal the noise level (a 1.0 signal-to-noise level), the results indicated the 

method was still able to accurately detect the signal for the training and test data sets.  In fact, using 

the velocity statistical feature for the data set with signal-to-noise ratio of 1.0, the method achieved an 

overall 99.8% prediction accuracy over 2000 test data points, correctly predicting each of the four 

events before they occurred (with an average warning interval of five time periods) while only 

generating a 0.2% false alarm rate.  A comparison result using traditional time series methods and 

several neural networks was difficult to accomplish, and produced unsatisfying results.  The best 

results only captured one event and produced no false alarms.  The overall difficulty of analysing 

complex time series data for pattern recognition using other methods accentuates the benefits of the 

proposed approach.  In this example, no data transformations were applied, and the feature 
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development and pattern recognition analysis were performed simultaneously by the genetic algorithm 

in one step.   

 

The second feasibility study contained two channelled real river data obtained over a 20-year period.  

Despite the low event count in the data, the study demonstrated the method could successfully fuse 

two data streams through pairwise evaluations of all joint conditional relationships, an idea easily 

extended for more than two channelled data.  With better training data, stronger conclusions could be 

drawn. 

 

The final results from this research are intended not only to demonstrate the method’s utility within the 

environmental monitoring field, but for the general problem of (pre-) event detection using temporal 

data.  Significant progress across the range of research milestones and objectives has been achieved.  

Preliminary analysis results using single and two channelled data suggest the method is capable of 

identifying and perhaps useful in predicting complex event-related data patterns.  These results 

strengthen our conviction in the potential of the method for successful (pre-) event detection on 

complex temporal data. 
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Way Forward 
 

 

 

Significant progress has been achieved through the course of this research, and we believe the 

method offers the potential for tremendous benefit to a wide range of organisations interested 

in event detection and prediction using temporal data.  Accordingly, we have outlined in 

Chapter 6 a number of research opportunities that if accomplished, would advance the method 

as well as develop a better appreciation for its application and potential.  Researching these 

various activities will provide considerable insight into this method as well as likely prove insightful 

into a number of different research areas touching on each topic.  A brief overview of the work and 

the benefits for each task are outlined below. 
 

The first activity we would research involves tightly integrating a neural network into the pattern 

recognition process, creating a coherent method capable of simultaneous multi-channelled data fusion.  

The existing first layer pattern recognition capability offers a way to generate optimal input data by 

evaluating single and joint conditional relationships, however a neural network is needed to bring all 

the different relationships together at one time for a comprehensive assessment.  

 

The second research activity generates the logic for how to interact with and control each stage of the 

pattern recognition process.  Different techniques will being considered, with the result being a 

coherent logic flow for adjusting analysis parameters during training and monitoring activities to 

ensure optimal performance with robust statistical metrics.  

 

The third research activity involves evaluating the method performance using different types of 

mutation and cross over operators within the two tiered genetic algorithm structure.  With numerous 

operators and configurations to choose from, understanding how each one affects method performance 

is critical.    

 

The fourth area of research will look at creating an “agent health” monitoring capability.  This 

research will investigate how to monitor and interact with the other agents and applications.  As the 

method grows in capacity and complexity, the need to ensure each component is operating properly 

becomes more and more important.   
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Appendix 

 

The details contained in this Appendix represent one level of summarisation for the information 

discussed in Section 5.5.  The tables are grouped one statistical feature per data stream at a time, and 

show the results when that feature is joined with all other combinations of statistical features across 

the two data streams in a pairwise fashion.  The first ten tables only show those feature combinations 

found successful in producing pre-event notification within the training data set.  It is from this group 

we would normally expect to find the best feature and setting combinations most likely able to predict 

future events.  The second ten tables show all values regardless of their pre-event notification results.  

Water flow velocity appeared to perform particularly well joined with other water flow statistical 

features.  

                            

Water Stage Simple Moving Average

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None 16 1 16 1

Stage Simple Moving Average 22 7 27 10

Stage Velocity 16 1 11 1

Stage Acceleration 16 1 16 1

Stage Volatility 16 1 14 1

Stage Change in Volatility

Flow Simple Moving Average 16 1 18 1

Flow Velocity 16 1 14 1

Flow Acceleration 19 5 -41 N/A

Flow Volatility 16 1 -1708 Did Not Detect

Flow Change in Volatility 16 1 15 1

Water Stage Velocity

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 16 1 11 1

Stage Velocity 5 2 -172 Did Not Detect

Stage Acceleration

Stage Volatility 5 2 4 -1

Stage Change in Volatility

Flow Simple Moving Average 18 4 -47 N/A

Flow Velocity 6 4 -10 N/A

Flow Acceleration

Flow Volatility 11 7 -1 Did Not Detect

Flow Change in Volatility

Water Stage Acceleration

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 16 1 16 1

Stage Velocity

Stage Acceleration 1 3 0 0

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average 15 3 -46 N/A

Flow Velocity 9 5 2 -1

Flow Acceleration

Flow Volatility

Flow Change in Volatility

Water Stage Volatility

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 16 1 14 1

Stage Velocity 5 2 4 -1

Stage Acceleration

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average 10 2 -2 N/A

Flow Velocity 7 8 -16 N/A

Flow Acceleration

Flow Volatility

Flow Change in Volatility

Water Stage Change in Volatility

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average

Stage Velocity 8 6 -187 Did Not Detect

Stage Acceleration

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average

Flow Velocity 9 4 -11 Did Not Detect

Flow Acceleration

Flow Volatility

Flow Change in Volatility   
Figure A.1.  Water Stage Statistical Metrics Found Successful In Training Data  



 52

 

                       

Water Flow Simple Moving Average

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 16 1 18 1

Stage Velocity 18 4 -47 N/A

Stage Acceleration 15 3 -46 N/A

Stage Volatility 10 2 -2 N/A

Stage Change in Volatility

Flow Simple Moving Average 18 3 5 4

Flow Velocity 7 3 4 2

Flow Acceleration

Flow Volatility

Flow Change in Volatility

Water Flow Velocity

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None 3 2 -1 Did Not Detect

Stage Simple Moving Average 16 1 14 1

Stage Velocity 6 4 -10 N/A

Stage Acceleration 9 5 2 -1

Stage Volatility 7 8 -16 N/A

Stage Change in Volatility 9 4 -11 Did Not Detect

Flow Simple Moving Average 16 2 1 4

Flow Velocity 8 4 6 3

Flow Acceleration 7 4 4 2

Flow Volatility 9 5 2 6

Flow Change in Volatility 7 3 0 2

Water Flow Acceleration

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 19 5 -41 N/A

Stage Velocity

Stage Acceleration

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average

Flow Velocity 7 4 4 2

Flow Acceleration

Flow Volatility

Flow Change in Volatility

Water Flow Volatility

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None

Stage Simple Moving Average 16 1 -1708 Did Not Detect

Stage Velocity 11 7 -1 Did Not Detect

Stage Acceleration

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average 16 1 -14 -9

Flow Velocity 11 7 3 9

Flow Acceleration

Flow Volatility

Flow Change in Volatility 11 4 -2 Did Not Detect

Water Flow Change in Volatility

Joint Relationship Description

Training 

Score

# Training Pre-Event 

Periods

Validation 

Score

# Validation Pre-Event 

Periods

None 7 7 -19 Did Not Detect

Stage Simple Moving Average 16 1 15 1

Stage Velocity

Stage Acceleration

Stage Volatility

Stage Change in Volatility

Flow Simple Moving Average

Flow Velocity 7 3 0 2

Flow Acceleration

Flow Volatility 11 4 -2 Did Not Detect

Flow Change in Volatility 7 6 -21 Did Not Detect  
Figure A.2.  Water Flow Statistical Metrics Found Successful In Training Data  
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Water Stage Simple Moving Average

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 16 25 100% 1 0 16 25 92% 1 2

Stage Simple Moving Average 22 33 100% 7 0 27 27 100% 10 0

Stage Velocity 16 18 100% 1 0 11 12 100% 1 0

Stage Acceleration 16 23 100% 1 0 16 23 100% 1 0

Stage Volatility 16 22 100% 1 0 14 26 85% 1 4

Stage Change in Volatility 15 23 100% 0 0 10 25 84% 0 4

Flow Simple Moving Average 16 24 100% 1 0 18 23 100% 1 0

Flow Velocity 16 19 100% 1 0 14 29 86% 1 4

Flow Acceleration 19 22 100% 5 0 -41 65 19% N/A N/A

Flow Volatility 16 24 100% 1 0 -1708 1728 1% Did Not Detect N/A

Flow Change in Volatility 16 24 100% 1 0 15 26 89% 1 3

Water Stage Velocity

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Stage Simple Moving Average 16 18 100% 1 0 11 12 100% 1 0

Stage Velocity 5 5 100% 2 0 -172 172 0% Did Not Detect N/A

Stage Acceleration 5 5 100% -7 0 4 4 100% -9 0

Stage Volatility 5 5 100% 2 0 4 4 100% -1 0

Stage Change in Volatility -2 2 0% N/A N/A N/A N/A N/A N/A N/A

Flow Simple Moving Average 18 25 96% 4 1 -47 81 25% N/A N/A

Flow Velocity 6 6 100% 4 0 -10 10 0% N/A N/A

Flow Acceleration -1 1 0% N/A N/A N/A N/A N/A N/A N/A

Flow Volatility 11 12 100% 7 0 -1 -1 0% Did Not Detect 1

Flow Change in Volatility 3 3 100% -4 0 -1616 1635 1% Did Not Detect N/A

Water Stage Acceleration

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 2 2 100% 0 0 0 0 0% Did Not Detect N/A

Stage Simple Moving Average 16 23 100% 1 0 16 23 100% 1 0

Stage Velocity 5 5 100% -7 0 4 4 100% -9 0

Stage Acceleration 1 1 100% 3 0

Stage Volatility 6 7 100% -8 0 -6 12 25% -10 9

Stage Change in Volatility N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Flow Simple Moving Average 15 16 100% 3 0 -46 54 7% N/A N/A

Flow Velocity 9 9 100% 5 0 2 6 67% -1 2

Flow Acceleration 1 1 0% -8 0 0 2 50% -4 1

Flow Volatility 10 15 100% -2 0 -393 393 0% Did Not Detect 393

Flow Change in Volatility N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Water Stage Volatility

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 0 1 100% 0 0 N/A N/A N/A N/A N/A

Stage Simple Moving Average 16 22 100% 1 0 14 26 85% 1 4

Stage Velocity 5 5 100% 2 0 4 4 100% -1 0

Stage Acceleration 6 7 100% -8 0 -6 12 25% -10 9

Stage Volatility 0 1 100% -6 0 N/A N/A N/A N/A N/A

Stage Change in Volatility -2 2 0% N/A N/A N/A N/A N/A N/A N/A

Flow Simple Moving Average 10 13 100% 2 0 -2 32 47% N/A N/A

Flow Velocity 7 7 100% 8 0 -16 34 27% N/A N/A

Flow Acceleration 5 5 100% -7 0 -1 9 56% N/A N/A

Flow Volatility 4 10 1% -1 0 -17 17 0% Did Not Detect 17

Flow Change in Volatility 11 11 100% -7 0 -12 12 0% Did Not Detect 12

Water Stage Change in Volatility

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Stage Simple Moving Average 15 23 100% 0 0 10 25 84% 0 4

Stage Velocity 8 8 100% 6 0 -187 187 0% Did Not Detect 187

Stage Acceleration N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Stage Volatility -2 2 0% N/A N/A N/A N/A N/A N/A N/A

Stage Change in Volatility N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Flow Simple Moving Average 12 15 100% -2 0 -5 5 0% Did Not Detect 5

Flow Velocity 9 9 100% 4 0 -11 11 0% Did Not Detect 11

Flow Acceleration 2 3 100% -6 0 -2 6 33% N/A N/A

Flow Volatility 0 1 0% -4 0 -2 2 0% N/A N/A

Flow Change in Volatility N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A  
Figure A.3.  Complete Summary of Water Stage Statistical Metrics  
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Water Flow Simple Moving Average

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Stage Simple Moving Average 16 24 100% 1 0 18 23 100% 1 0

Stage Velocity 18 25 96% 4 1 -47 81 25% N/A N/A

Stage Acceleration 15 16 100% 3 0 -46 54 7% N/A N/A

Stage Volatility 10 13 100% 2 0 -2 32 47% N/A N/A

Stage Change in Volatility 12 15 100% -2 0 -5 5 0% Did Not Detect 5

Flow Simple Moving Average 18 21 100% 3 0 5 5 100% 4 0

Flow Velocity 7 7 100% 3 0 4 14 64% 2 5

Flow Acceleration 14 14 100% 0 0 -3 3 0% Did Not Detect 3

Flow Volatility 12 16 100% -3 0 -12 30 30% 5 21

Flow Change in Volatility 12 23 100% 0 0 -6 6 0% Did Not Detect 6

Water Flow Velocity

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 3 3 100% 2 0 -1 1 0% Did Not Detect 1

Stage Simple Moving Average 16 19 100% 1 0 14 29 86% 1 4

Stage Velocity 6 6 100% 4 0 -10 10 0% N/A N/A

Stage Acceleration 9 9 100% 5 0 2 6 67% -1 2

Stage Volatility 7 7 100% 8 0 -16 34 27% N/A N/A

Stage Change in Volatility 9 9 100% 4 0 -11 11 0% Did Not Detect 11

Flow Simple Moving Average 16 16 100% 2 0 1 3 67% 4 1

Flow Velocity 8 8 100% 4 0 6 14 71% 3 4

Flow Acceleration 7 7 100% 4 0 4 10 70% 2 3

Flow Volatility 9 10 100% 5 0 2 8 63% 6 3

Flow Change in Volatility 7 7 100% 3 0 0 2 50% 2 1

Water Flow Acceleration

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 5 5 100% -8 0 -1 9 44% -10 4

Stage Simple Moving Average 19 22 100% 5 0 -41 65 19% N/A N/A

Stage Velocity -1 1 0% N/A N/A N/A N/A N/A N/A N/A

Stage Acceleration 1 1 0% -8 0 0 2 50% -4 1

Stage Volatility 5 5 100% -7 0 -1 9 56% N/A N/A

Stage Change in Volatility 2 3 100% -6 0 -2 6 33% N/A N/A

Flow Simple Moving Average 14 14 100% 0 0 -3 3 0% Did Not Detect 3

Flow Velocity 7 7 100% 4 0 4 10 70% 2 3

Flow Acceleration N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Flow Volatility 13 16 100% 0 0 -6 6 0% Did Not Detect 6

Flow Change in Volatility

Water Flow Volatility

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 11 11 100% -7 0 -9 9 0% Did Not Detect 9

Stage Simple Moving Average 16 24 100% 1 0 -1708 1728 1% Did Not Detect N/A

Stage Velocity 11 12 100% 7 0 -1 -1 0% Did Not Detect 1

Stage Acceleration 10 15 100% -2 0 -393 393 0% Did Not Detect 393

Stage Volatility 4 10 1% -1 0 -17 17 0% Did Not Detect 17

Stage Change in Volatility 0 1 0% -4 0 -2 2 0% N/A 2

Flow Simple Moving Average 16 23 100% 1 0 -14 46 33% -9 21

Flow Velocity 11 11 100% 7 0 3 11 64% 9 3

Flow Acceleration 13 16 100% 0 0 -6 6 0% Did Not Detect 6

Flow Volatility 6 12 75% -8 3 -27 27 0% Did Not Detect 27

Flow Change in Volatility 11 14 100% 4 0 -2 2 0% Did Not Detect 2

Water Flow Change in Volatility

                 Training Results                Validation Results

Joint Relationship Description Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms Score

# Limits 

Exceeded

Success 

Rate

# Pre-event 

Time Periods

# False 

Alarms

None 7 7 100% 7 0 -19 19 0% Did Not Detect 19

Stage Simple Moving Average 16 24 100% 1 0 15 26 89% 1 3

Stage Velocity 3 3 100% -4 0 -1616 1635 1% Did Not Detect N/A

Stage Acceleration N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Stage Volatility 11 11 100% -7 0 -12 12 0% Did Not Detect 12

Stage Change in Volatility N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Flow Simple Moving Average 12 23 100% 0 0 -6 6 0% Did Not Detect 6

Flow Velocity 7 7 100% 3 0 0 2 50% 2 1

Flow Acceleration 7 7 100% -20 20 0% Did Not Detect 20

Flow Volatility 11 14 100% 4 0 -2 2 0% Did Not Detect 2

Flow Change in Volatility 7 7 100% 6 0 -21 21 0% Did Not Detect 21  
Figure A.4.  Complete Summary of Water Flow Statistical Metrics  
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