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ABSTRACT
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I. INTRODUCTION

Consider the discrete-time linear time-invariant stochastic system

o = AXY + Wi,
X =¢ t=0,1,... (L1
Yi= HXS + V.

where the matrices A and H are of dimension n X n and n X k, respectively. This system is
defined on some underlying probability triple (2, F, P) which carries the IR™-valued plant process
{X?, t=0,1,...} and the IR*-valued observation process {Y;, t = 0,1,... }. Throughout we make
the following assumptions (A.1)-(A.3), where

(A.1): The process {(W2,V%1), t =0,1,...} is a stationary zero-mean Gaussian White Noise

(GWN) sequence with covariance structure I' given by

= Wit o ( 5¥ &% =
I"—COV(Vtil)_(ZW E”)’ t=0,1,... (1.2)

(A.2): The initial condition £ has distribution F' with finite first and second moments x4 and A,
respectively, and is independent of the process {(W2,;,V%,), t =0,1,...}, and
(A.3): The covariance matrices £¥ and A are positive definite.

For each t = 0,1,..., we form the conditional mean X,y; := E[Xt"HIYo,Yl,'. .., Y] or
MMSE estimate of X{,; on the basis of {¥p,Y3,...,Y;}. In general, Xt+1 is a non-linear func-
tion of {Yp,Y1,...,Y;}, in contrast to the LMSE or Kalman estimate of X¢., on the basis of
{Yy,Y1,...,Y:}, which is by definition linear, and which we denote by X{il Foreacht =0,1,...,
we can then calculate €41 := E[|| X471 - XX |1 which is an L? measure of the agreement between

the MMSE and LMSE estimates of X on the basis of {Y,Y1,...,Y;}.

The goal of this paper is to study the asymptotic behavior of ¢; as the time parameter ¢ tends

to infinity. Noting the dependency
€t=€t((A,H,I‘),F), t:l,?,... (13)

we find it natural to parametrize our analysis of the asymptotics of €; in terms of the system triple
(A, H,T') and of the initial distribution F. Of course, if F is a Gaussian distribution, the LMSE

and MMSE estimates coincide and ¢; = 0 for all t = 1,2,... and any system triple (4, H,I').
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We are interested in characterizing the limit of the error sequence {¢;, t = 0,1,...} and in
obtaining the corresponding rate of convergence. In particular, we seek conditions under which
the convergence lim;e; = 0 takes place, and investigate the form of the corresponding rate of
convergence and its dependence on the initial distribution F. Of special interest is the situation

where exponential rates of convergence are available, i.e., limt% log e; = —1 for some I > 0.

To the authors’ knowledge, no results have been reported in the literature to study the asymp-
totics of €; for a general non-Gaussian initial distribution. Such a lack of results may be explained
in part by the fact that the key representation result of Theorem 1 has been derived only relatively -
recently (although, see [*¥]). In any case, the work reported here provides a formal justification to
the idea widely held by practitioners that short of first and second moment information, precise
distributional assumptions of the initial condition can be dispensed with when estimating the state
X7, on the basis of {Yp,Y1,...,Y:}.

The organization of this paper is as follows. In Section II we summarize a representation result
for {e;, t = 0,1,...} which constitutes the basis for the analysis presented here. In Section III, we
investigate the asymptotic behavior of {¢;, t = 0,1,...} for a general multivariable system; this is
followed in Section IV by a more complete analysis of the scalar case when n = k = 1.

The following notation is used throughout. Elements of IR™ are viewed as column vectors and
transposition is-denoted by /. For any positive integers m and n, we denote by M, x., the space of
n X m real matrices and by Q, the cone of n X n nonnegative definite matrices. For each positive
integer n, let I, and O, be the unit and zero elements in M, x,. Also, for any matrix K in My yx,
we define sp(K) as the set of all eigenvalues of K, and set

Amin (I0) 1= min{|A| : X € sp(K)} (1.4a)

and
Amax (K) := max{|A| : A € sp(K)}. (1.4b)

We let &, be the convex set of square-integrable probability distributions functions on
(JIR",B(IR"™)) and we define D, as the collection of those distributions in &, with zero-mean.
Finally, for each matrix R in Q,, Gr denotes the distribution of an IR"-valued Gaussian RV with

zero mean and covariance E.

II. A REPRESENTATION RESULT

The basis for our analysié is a representation result for the sequence {¢;, t = 0,1,...} obtained

in [ ]. However, before stating this result, we find it useful to observe that there is no loss in
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generality in assuming F[£] = 0. Indeed, with the notation
X? = X2 —®(t,0)x and Y;:=Y:— HO(t,0)pu, t=0,1,... (2.1)

we see that the RV’s {X?, t =0,1,...} and {Y;, t =0,1,...} obey the dynamics

A
e

P = AXD +Wo,

Xy =¢ t=0,1,... (22
Yt = HX; + I/t?i-l
where the RV £ := £ — p satisfies the zero-mean condition E[€] = 0. If E[A|B] denotes the LMSE

estimate of A on the basis of B for any square-integrable random vectors A and B, we conclude

from basic principles that for each t = 0,1,...,

EX{Yo, Ya,...,Ye) = E(XP,|Y0,11,...,YY]

) (2.3)
= B[X211Y, Y1,... ., Y3] - Alp
and
E(X?1Yo, Y1, .., 4] = E[X2,1|Yo, Y1,..., Y]
A (2.4)
= thil - A'p
so that
Xt+1 - XtIil = E[X?_*_llffo, Y], v ,K} - E[Xto-{»lIYO’Yl’ e ,Yt]. (2.5)
Consequently, for any distribution F in &£, and any triple (A, H,T), the relation
e ((A,H,T),F) = ¢ (A, H,T), F) (2.6)
holds where F is the element of D, given by
F(z):=F(z —p), z€lIR" (2.7)

and we may thus restrict our attention to those distributions F in D,,.

We now can state the needed representation result, the proof of which is found in [4].

Theorem 1. Define the Q,-valued sequence {P;, t =0,1,...} by the recursions

Pt+1' = APtA’ - [AP:H’ + va][HPtHI + 2“]“1[APtH’ + va]l + D
t=0,1,... (2.8)
Py =0,



and, for convenience, introduce the Qy-valued sequence {Jy, t = 0,1,...}, where
Ji:= HP,H' + %", i=0,1,... (2.9)

Let the deterministic sequences {Q}, t = 0,1,...} and {R}, t = 0,1,...} in Mpy, and Q

==

respectively, be defined recursively by

Qi1 = [A-[APH' + I H] Q:
t=0,1,... (2.10)
I,

Qo =

and

Ri =Ry +Q7H'JTTHQ;
t=0,1,... (2.11)
RE = O,

Then the representation

€41 = / 19711 Jire {2 = [RBEys + A7 0} expl2'b — %Z'RZHZ]dF(Z)”z

dGp= (b 12
. exp[z'b - 12'R;, 2]dF (2 Gry,, (b)  (212)
R 2 t+1

holds true for eacht = 0,1,....

In order to simplify the expression (2.12), we define the mapping Ir : Mpyxn X Q, — IR
parameterized by the initial distribution F by setting

| & [ {z = [R+ A~1]"1b} exp[2'b — %z'Rz]alI*’(z)“2
n S~ explz'b — $2'Rz]dF(2)

(K, R) = / dGnb)  (213)

for all K in Myx, and R in Q,. With this notation, (2.12) may be rewritten as
e = Ip(QF, R}). t=1,2,... (2.14)

This representation clearly separates the dependence of ¢; on the system triple (A, H,T') from the
dependence on the initial distribution F'; the distribution F affects ¢; only through the structure

of the functional I, whereas the system triple and time affect ¢; only through @} and R}.
Although (2.14) provides a simple representation for studying the asymptotic behavior of ¢,
we still must study the behavior of Ir under the joint asymptotic behavior of {Q}, t = 0,1,...}
and {R}, t =0,1,...}. To that end, upon defining the mapping I} : @, — IR by
I-(R) := Ip(I, R) (2.15)
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for all R in Q,,, we observe the inequalities

Amin(QF QIF(RY) < € (A, H,T), F) < Amax(Q7' Q1) E(RY). t=1,2,... (216)

In effect, (2.16) shows that we may separately consider the asymptotic behavior of {Q7F, t = 0,1,...}
and the asymptotic behavior of I, as {R}, t = 0,1,...} tends to its limit.

III. A STABILITY RESULT

We now commence our analysis of the asymptotic behavior of {¢;, t = 0,1,...} in the general
multivariable case. We focus our attention first on the asymptotics of {Q7, ¢ =.0, 1,...} and
{R}, t = 0,1,...}, and then study the behavior of Ir as Q} and R} asymptotically behave in a
well-defined way. As a first step, we provide a stability criterion for the system (A, H,T') which
is strong enough to ensure that lim; ¢, = 0 for any initial distribution F in &,. If this stability
criterion is satisfied, we may then also make several estimates of the rate at which ¢, tends to
0. Apart from being interesting from an operational viewpoint, these estimates on the rates of
convergence provide an indirect characterization of F' as follows: indeed they are independent of
the initial distribution F’ when F is not Gaussian, so that if lim;e; = 0 at a fast enough rate, then

F must necessarily be Gaussian.

We first present some additional notation: We introduce the matrices A and C in Mpyx, and

Q,, defined by

A:i=A- E"’”(E”)"lH (3.1)
and

C:=T¥ - Zv(5Y)"lgwy, (3.2).
The matrices {Ly, t = 0,1,...} in M,x, are now defined by
Ki:=A-[APH +S*|J7'H t=0,1,... (3.3)

and we set Ko, := lim; K'; whenever this limit is well defined. With this notation, we may rewrite

the recursion (2.10) as

Qi1 = K.Q}. t=0,1,... (3.4)
The following stability criterion taken.from [1] is used in what follows.
Theorem 2. If the pair (A, H) is detectable and if the pair (A,C) is controllable, then

6



1. The matriz Py 1= limy Py is well defined and positive definite, and
2. The matriz Koo = A — [APyoH' + SY)[H P H' + £¥]71H is stable.

Proof. 1t is not difficult to verify that
Y - BU(S)TIS = B[[Way - BV Wea - EVEaIVEL] 35)

so that the matrix L% — Z¥(Z¥)"1 LY is symmetric non-negative definite, and its square root is
well defined [2, Secs. VIIL6 and VIIL.7]. Claim 1is Appendix 1 in [1] and claim 2 is Theorem 5.1
in [1]. |
Because of its importance, we list the assumption of Theorem 2 as the following key condition
(C.1), where
(C.1): The pair (A, H) is detectable and the pair (4, C) is controllable.

Theorem 2 implies the following results concerning {Q}, t = 0,1,...} and {R}, t =0,1,...}.
We first observe from (2.11) that 0 < Rf < Ry for allt = 0,1,.... Consequently, R’ ;= lim, I}
is always well defined and non-negative definite, although possibly infinite, with

t-1

R} =) QVH'HPH + X' HQ;. t=1,2,... (3.7)

s=0

Theorem 3. Assume the criterion (C.1) to be satisfied.
1. We have lim; Q7 = 0 with

lim sup —ln Max (@7 Q7) < 2ln Amax(Ks) < 0, (3.8)

and if the matriz K, is invertible for each t = 0,1,..., then

limnf -1- 10 Amin (Q'Q2) > 210 Amin (K oo)- (3.9)

2. Moreover, R%, = lim; R} is well defined and finite.

Proof. By Theorem 2, Ko = lim; K exists and is stable if (C.1) is satisfied. Claim 1 is now a
consequence of the stability of K, and Appendix B of [3]. To obtain the second claim, we note

from (3.7) that
0SB, <5 m(gv) Z HQY)(HQY) (3.10)
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and the finiteness of R} follows from Claim 1. B

For ease of exposition, we define the mapping ¢ : IR" X IR" X Q, — Ry U {0} by

#(z,b; R) := exp[2'b — %Z’RZ] (3.11)

for z and b in IR™ and R in Q,, and we set
(b R) = / #(z, b R)AF(2). (3.12)
IR"

A family of probability measures F‘b,R on IR™, parametrized by & in IR" and R in @Q,, is now
introduced. Each probability measure in this family is absolutely continuous with respect to I

with Radon-Nikodym derivative given by

‘_{F}gﬁ_(z) ~ {¢(z,b; R)/®(b;R) if (b;R) <

(3.13)
dF 1 if ®(b; R) = 00
for all z in IR™. With this notation, the function Ir can be expressed as
) 2
Ip(K,R) = / K/ {z=[R+ A0} dFy r(2)]] ®(b; R)dGR(b) (3.14)
R» R»
for all K in M, x, and R in Q,, a form more manageable for our calculations.
Our first observation is contained in
Proposition 1. For every distribution F in D, we have lim sup, I5(R}) < co.
Proof. From Jensen’s inequality, we conclude that
In(RY) < Jr(RY) _ t=1,2,... (3.15)
with
Jrp(R) = / / |z - [R+ A"l]‘1b|]2de,R(z)cb(b;R)dGR(b). (3.16)
IR™ J IR
for all R in @,,. The definition of F’b, r and Tonelli’s theorem imply
1
Jr(R) = / [/ |z - [R+ A'l]"lb“2 exp[z’b]dGR(b)] exp[—é-z'Rz]dF(z), (3.17)
23 mn
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where the inner integral may be directly evaluated by using standard results on Gaussian RV’s.

After some tedious calculations, we find that

Jr(R) = tr {{[R+ A" R[R + A7)}

(3.18)
+/ AR+ AR + A1 AL 2dF(2)
for every R in @Q,. Since R} is nonnegative-definite and R} ; > R} fort = 0,1,..., we have that
lim sup,Jr(R}) < o0 (3.19)
which, together with (3.15), concludes the proof. ]

Note that in Proposition 1, we did not impose the requirement that R} be finite.
Collecting what we have discovered so far, we obtain the following result.

Theorem 4. Assume the condition (C.1) to hold. For any square-integrable distribution F,
lim; ; ((A,H,T),F)=0 (3.20a)

and

1
lim sup, -t-loget ((A,H,T), F) < 2log Amax(Ko) < 0. (3.200)

Proof. It suffices only to show (3.20b) since it implies (3.20a). For distributions F in D,,, (3.20b)
follows immediately from (2.16), Theorem 3 and Proposition 1. To extend the results to distribu-

tions F in &,, we use the transformation (2.6)-(2.7). |

Whereas Theorem 4 establishes an upper bound on the rate at which ¢; decays to 0if (C.1) is
satisfied, we now show lower bounds for this same rate. These lower estimates require the following
condition (C.2) on the nonnegative-definite matrix R’ , namely

(C.2): The matrix R} is positive definite.

We then have the following proposition.

Proposition 2. If the distribution F is in D, and 0 < R}, < oo, then F is necessarily Gaussian
if lim inf, IH(R;) = 0.
Proof. First we introduce the distribution ¥ in D, which is absolutely continuous with respect to

F and whose Radon-Nikodym derivative is given by

dF exp [-22'R% 2]
——=(2) = 17w ’
dF S e €xp [~ 32/ R, 2] dF(2)

z € IR, (3.21)
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The moment generating N of F is simply
N(b) ::/ exp[2'bldF(z), b€ IR". (3.22)
We show that if lim inf, I5(R;) = 0, then N must satisfy the conditions

VoN(b) = [Rz, + A1) 7T BN (b)
(3.23)
N{0)=1

on IR", from which we conclude that the distribution F is Gaussian; we shall use (3.21) to verify

that then F' must also be Gaussian.

Since the matrix RY is positive definite, there exists a finite T' such that for ¢t = 7,7 + 1,...
the matrix R} is also positive definite and thus Gg+ is absolutely continuous with respect to the
Lebesgue measure v on IR™. Applying Fatou’s Lemma to (2.14), we see from the assumption

liminf, I%(R}) = 0 that

i {= =[R2 + A7)0} 6(z, b RYAF()| dGr;

lim inf, CYR) 7 (b) = 0. (3.24)
If 0 < R, < oo, we see that for all b in IR",
) dGR; ’ dGR';o or
lim, - (b) = = (b)>0 (3.25)
and
lim,®(b; R}) = ®(b,R5,) > 0 (3.26)

with the last following by monotone convergence. Combining (3.25)-(3.26), we now conclude that

lim inf, / {z - [R} + A7)0} ¢(2,b; Ry )dF(2)|| = 0 (3.27)
IR»
for v-almost every b, or equivalently
/ 2¢(2,b; Ry )VAF(z) = [Re + A”l]'lb/ &(2,b; RS )dF(z). (3.28)
n IRn

Upon dividing (3.28) by [jp. exp [—%—z’Rgoz] dF(z), we obtain (3.23); the technical details are

found in [3].
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The unique solution of (3.23) is
- 1 -
N(b) = exp | b’ Ry, + A7 ‘b} , belR" (3.29)

so that F* is Gaussian with mean 0 and variance [R%, 4+ A~']~1. Since the variance of I is positive
definite, we see that Fis absolutely continuous with respect to v and therefore F must be absolutely
continuous with respect to v by virtue of the mutual absolute continuity of F' and F. We calculate

the density of F' with respect to v by the relation

%g = -3% . %ﬁ: (3.30)

and find after some arithmetic that
%(z) = cexp [-—%z'A“lz] , z€IR" (3.:31)
i.e., that the distribution F is Gaussian. B

The following is an immediate result of this proposition.

Theorem 5. If the assumptions (C.1) and (C.2) are satisfied, and Apin(@7'Q7) > 0 for all t

sufficiently large, then the distribution F is in fact Gaussian if

Ct((AaH9P)’F) _

lim = 0. 3.32
¢ ’\min(Q;IQ?) ( )

Proof. If the distribution F' in in D, and (3.32) holds, then from the lower bound of (2.16) we
see that liminf; I5(R7) = 0, so necessarily F' must be Gaussian in view of Proposition 2. The

transformations (2.6) and (2.7) allow us to establish the result for distributions in &,. B

In a similar manner, we may verify a lower bound analogous to the upper bound of Theorem

4,

Theorem 5. If the assumptions (C.1) and (C.2) are satisfied and the matrices {K,, t = 0,1,...}

are invertible, then

lim inft—} Ine; (A, H,T'), F) > 2In Apnin (K oo) (3.33)

for all non-Gaussian distributions F' in &,.
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IV. THE SCALAR CASE

We now turn to the case where n = k = 1. Recall the following standard definition from

control theory [5, Def. 6.5]:
A system (A, H) is said to be stabilizable if all unstable modes are in the controllable subspace.

and make the following definition:

A system (A, H) is sald to be marginally stabilizable if all modes which are not either stable

or critically stable are in the controllable subspace.
Our goal in this section is to verify the following claim.

Theorem 7. Assume n = k = 1. We have the following convergence results:

1. Ifthe pair (A,C) is marginallyystabilizable, lim:e; = 0 for any distribution F in £y, whereas
if the pair (A, C) is not marginally stabilizable, then the asymptotic behavior of €; depends
nontrivially upon F in £,.

Moreover we also have the following estimates:

2. If (A,C) is stabilizable, then lim;e; = 0 at an exponential rate independent of F for F in
&1 non-Gaussian whereas if the pair (A,C) is marginally stabilizable but not stabilizable, then the

rate depends non-trivially upon F.

We shall prove these results by considering a number of cases. Since we are working in IR, we

may rewrite (2.8), (2.9) and (2.11) as

(APH + 8P o,
H*P; + XV t=0,1,... (4.1)

Py = AP, —

Py =0,

AYXY -¥¥H .
o

Qiy1 = ( H2P, + %V t=0,1,... (4.2)

QS =1,
and
. ., (@Qp)PH?
Ri =R e :
t+1 t+H2Pt+E‘U t:o,l,... (4&)
Ry = 0.

12



Note also that we have
e = (Q})* Ir(R}) t=1,2,... (4.4)

for I in Dy.

We first observe a degeneracy when H = 0.

Proposition 3. If H =0, then ¢, =0 for all t = 1,2,... and all distributions F in £;.

Proof. If H = 0, then Rf = 0forallt=20,1,...,s0 ¢, =0forallt =1,2,... forall Fin D; by
directly evaluating (2.12); by translation the result is true for all F in &;. B

We could prove Proposition 3 more directly in the case where X = 0, for then the sequences
{X?, t=0,1,...} and {Ys, t =0,1,...} are independent, so the MMSE and LMSE filters coincide.
We now consider the more interesting case when H # 0. Note from (3.2) that (A4, () is controllable
if and only if C # 0, i.e., if and only if V¥ # (5¥?)?. We have

Proposition 4. If H # 0 and (A, C) is controllable, then lim;e; = 0 for all distributions F in & .
If A= 0, then ¢, =0 for all t and all F in £, whereas if A # 0, then

- T
i(7pers)

1
limt? Ine; = 21n <0 (4.5)

for all non-Gaussian distributions F in &;.
Proof. If A =0, then Qf = 0 for all t = 0,1,... by (4.2). We see from (4.4) that ¢, = 0 for all
t =1,2,... and all Fin Dy, whence ¢, = 0 forall t = 1,2,... and all Fin &. If A # 0, then

Ki#0and Q7 #0forallt=0,1,...,s0 R, > 0 from (4.3) and we may apply Theorems 4 and 6
to verify (4.5). B

We next consider the case when (A4, C) is stabilizable but uncontrollable. We can quickly verify

by induction on ¢ that when C = 0, P, = 0 and Q} = A forallt = 0,1,....

Proposition 5. If H = 0 and (A,C) is stabilizable but uncontrollable, i.e., |A] < 1 and C = 0,

then lim;e; tends to zero with

lim, -}lne = 2In]A| < 0. (4.6)

Proof. Since |A| < 1, we have from (4.3) that 0 < R% < co. In view of Propositions 1 and 2, we

have that '

0 < liminf; IR(RY) < limsup, [R(R;) < o0; (4.7)

13



we then arrive at (4.6) by means of (4.4). - ]

Turning now to the case where (A4,C) is not stabilizable, we shall prove the dependencies
given in Theorem 7 by analyzing the asymptotics of ¢; for two specific initial distributions. First,

however, let us verify a general result.

Proposition 6. For any distribution F in Dy, limsup, tI5(t) < oo and therefore lim, [}(t) = 0.

Proof. Since the functional I} is independent of the system dynamics (A4, H,I'), we may assume

for the purpose of argumentation that our system is

X =¢
t=20,1,... (4.8)
’ Yt=E+Vt‘.’H-

Here A= H = ¥¥ =1 and XY = ¥¥ = 0. For this system (which we note to be marginally
stabiliiable), Qf = land Rf =tforallt = 1,2,..., 50 ¢ = If(t) for t = 0,1,.... For all
t=0,1,..., define the linear estimate X; of X2 on the basis of {Yp,...,Y;} to be

t
. 1
Xipp 1= —— Y,
t+1§ t=0,1,... (4.9)

XS = 0.

Using the facts that X is a linear estimator, that f(tK is the LMSE estimator, and that X, is the
MMSE estimator, we have

X~ Xl < I1Xe - X2llo + 1XE - XPlla
<X = X7lla + (125 - {lla- (4.10)

= 2||X: - X?la,

where || X||q := [E(X?)) Y2 for any square-integrable RV X. From (4.10),

t

1

s=0

4
= meeem t:O,l,... (411)

In(t) = ¢; < 4F
F(t) =€ < Tt 1

and the claim is now immediate: ||
We shall now consider two distributions Fy and F;, in Dy.
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Distribution Fj. Distribution F; admits a density with respect to Lebesgue measure A

on IR given by

cd . M] e IR (4.12)

: 1
—d—:\*(z) - ; ai\/27rp exp [—_2- p?

whgre p > 0,0< a; <lfori=1,2,...,n, 3 ,a; =1, and Y0, a;p; = 0. We exclude

the case where Fy is actually Gaussian.

Distribution F,. Under Fy, the RV £ takes on a finite number of values 2y < z,... < z,
with probabilities py,ps,...,p, respectively with 357 p;z; = 0.

The following two facts are proved in [3].

Fact 1. We have

; 1
Iy () = %%—?%, t>0 (4.13)
where lim; 01(3) = 0 and K > 0.
and
Fact 2. We also have
IE,(t) = l—i—gl(—l?—) t>0 (4.14)

where lim; 01() = 0.
We now can prove the rest of Theorem 7.

Proposition 7. If H # 0 and (A,C) is marginally stabilizable but not stabilizable, i.e., |A] = 1
and C = 0, thenlim, e, = 0 for any distribution F in £;, but the rate of this convergence depends
nontrivially upon F for F non-Gaussian.

Proof. We have under the hypothesis that ¢, = (1)'Ix(¢) for all ¢ = 0,1,... and all F in
Dy, the extension to & being as before. By Proposition 6, limse; = 0; however, if F = F,

lim¢In (e;/(Int)) = -2, whereas if F = Fy, lim;In(¢;/(Int)) = —1. ]
Finally, we conclude with

Proposition 8. H # 0 and (A4,C) is not marginally stabilizable, i.e., |A] > 1 and C = 0, then
lim sup, ¢, < oo for all distributions F' in &, the asymptotic behavior depending nontrivially 'upon

F for F not Gaussian.

15



Proof. It is easy to verify that under the hypotheses on (A, H,T'), lim, R} = oo but lim,(Q})?/ R} =
Yv(A? — 1)/ H?. For F in Dy, then

*\2
€ = %(R;‘I}}(R{)). t=1,2,... (4.15)

Applying Proposition 6, we get limsup, ¢; < oo for all F in D;, and thus for all distributions /' in

&,. However, if FF = Fy, lim; ¢; = 0, whereas if F' = F;, then lim, ¢; = 1. B
The proof of Theorem 7 is complete; all the cases have been considered.
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