
DESIGNERS AND THEIR TOOLS:

COMPUTER SUPPORT

FOR DOMAIN CONSTRUCTION

By

TAMARA R. SUMNER

B.S., University of California, Santa Cruz, 1982

B.A., University of California, Santa Cruz, 1985

M.S., University of Colorado at Boulder, 1992

A thesis submitted to the Faculty of the Graduate School of

the University of Colorado in partial fulfillment of the

requirement for the degree of Doctor of Philosophy

Department of Computer Science

1995

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1995 2. REPORT TYPE

3. DATES COVERED
 00-00-1995 to 00-00-1995

4. TITLE AND SUBTITLE
Designers and Their Tools: Computer Support for Domain Construction

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science,University of
Colorado,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

216

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

This thesis for the Doctor of Philosophy degree by

Tamara R. Sumner

has been approved for the

Department of Computer Science

by

Gerhard Fischer

Mike Eisenberg

 Date ______________________

Dissertation Committee:

Gerhard Fischer, Computer Science

Clayton Lewis, Computer Science

Mike Eisenberg, Computer Science

Mike King, U S WEST Advanced Technologies

Peter Polson, Psychology

Mark Gross, Environmental Design

iii

Designers and their Tools: Computer Support for Domain Construction

Tamara R. Sumner (Ph.D., Computer Science)

Thesis directed by Professor Gerhard Fischer

ABSTRACT

In today’s high-technology workforce, many designers work in
dynamic and innovative domains such as user interface and software
design. This thesis considers the problem of providing these designers
with computational design support tools. It differs from other efforts in
that the emphasis is on understanding and supporting the evolutionary
patterns of change inherent in dynamic domains. The motivating
problem investigated is flexibility, specifically: How can systems provide

domain-specific support for short-term design activities yet still be flexible

enough to accommodate long-term evolutionary patterns of change in the

domain? Three empirical studies show how design communities
gradually construct their domain by defining important domain objects,
creating and evolving representations for viewing these objects, and
establishing relationships between objects and representations. The
observed design process is termed domain construction. Analyses of these
studies are used to characterize the observed domain construction
processes of use, elaboration, and modification . Design environments
based on two computational models are analyzed in terms of these
domain construction processes. The two computational models occupy
seemingly different ends of the spectrum from support to flexibility. The
Toolbelt model, where practitioners assemble and evolve collections of
generic software applications, seemingly offers more flexibility. The
Domain-Oriented Design Environment model, where customized
domain-oriented tools are created for a specific community, seemingly
provides better support but is less flexible. These intuitions are
investigated to better understand which aspects of a computational model
(i.e., underlying data models, domain models, architectures, and
integration services) help or hinder an environment’s overall flexibility.
The results are used to develop recommendations for the next generation
of design support environments.

iv

ACKNOWLEDGEMENTS

I’d like to thank the following individuals for their help and support:

Michael Wright for good food, good company, and moral support.

Gerhard Fischer for providing the opportunity and resources to pursue
this research.

The designers at U S WEST Advanced Technologies: Susan Davies,
Mike King, Josh Staller, Jason Webb, Lynda Baines, and Bruce Keahy
(without them, very little of this work would have been possible).

My “unofficial” dissertation committee: John Rieman, Gerry Stahl,
Markus Stolze, and Alex Repenning.

Several people who contributed much to VDDE: Benedikte Harstad,
Nathalie Bonnardel, and Alex Repenning.

Chris DiGiano for his patience in explaining multimedia design.

The UU Group: Jonathan Ostwald, Stefanie Lindstaedt, Kurt Schneider,
Markus Stolze, and Kumiyo Nakakoji

Tom “Toolbelt” Yoksas for posing with his favorite toys.

The members of L3D for a fun and productive working atmosphere.

This research was supported in part by U S WEST Advanced
Technologies and ARPA under grant No. N66001-94-C-6038. Any
opinions, findings, and conclusions or recommendations expressed in
this publication are those of the author (s) and do not necessarily reflect
the views of the agencies named in this section.

Product Credit and trademark notifications for the products referred to
are given here: Excel, MS Word, FoxPro, and OLE are registered
trademarks of the Microsoft Corporation. MacDraw is a registered
trademark of the Claris Corporation. MacroMind Director is a
registered trademark of the Macromedia Corporation. TopDown is a
registered trademark of the Kaetron Corporation. MacFlow is a
registered trademark of the Mainstay Corporation. OpenDoc is a
registered trademark of the Component Integration Laboratory.

v

TABLE OF CONTENTS

Abstract... iii

Acknowledgements... iv

Table of Contents ... v

List of Tables.. vii

List of Figures.. viii

CHAPTER 1: Introduction .. 1

Motivating Problem.. 2

Approach ... 5

Who Should Read this Thesis?.. 7

Reading Guide.. 8

CHAPTER 2: The Way We Do Things Around Here................................... 11

Three Design Stories ... 12

What is a Domain?.. 26

The Evolution of A Domain... 29

Summary... 42

CHAPTER 3: Domain Construction Framework... 45

Design Language Enactment ... 46

Definition of a Computational Model .. 47

Supporting Use... 50

Supporting Elaboration .. 54

Supporting Modification.. 60

Limitations of this Comparison ... 63

Summary... 63

vi

CHAPTER 4: Three Toolbelt Environments .. 67

The Toolbelt Model... 68

Toolbelt 1: Protocol Analysis... 70

Toolbelt 2: Multimedia Title Design.. 76

Toolbelt 3: Voice Dialog Design.. 83

Reflections on the General Toolbelt Model... 92

Summary... 100

CHAPTER 5: The Voice Dialog Design Environment.................................. 103

The Domain-Oriented Design Environment Model............................... 104

Initial Task Analysis: Challenges Facing Designers 106

The Final VDDE System.. 110

Examining the VDDE Project Timeline... 119

Analyzing the VDDE Project.. 127

Reflecting on the General DODE Model.. 138

Summary... 146

CHAPTER 6: Comparing Computational Models... 149

Domain Construction Processes... 150

Technical Aspects of the Computational Model....................................... 155

Social Aspects of the Computational Model.. 164

Other Computational Models... 169

Summary... 171

CHAPTER 7: Next Steps .. 173

Improving Toolbelts ... 174

Improving Domain-Oriented Design Environments 179

Bridging the Gap .. 187

Summary... 189

CHAPTER 8: Conclusions... 191

Summary of Approach... 191

Summary of Findings... 193

Contributions of this Research ... 195

References.. 197

vii

LIST OF TABLES

Table 3.1: Subprocesses and computational model considerations in
supporting “use”... 51

Table 3.2: Subprocesses and computational model considerations in
supporting “elaboration”. ... 55

Table 3.3: Subprocesses and computational model considerations in
supporting “modification”. .. 60

Table 4.1: Toolbelt support for USE... 93
Table 4.2: Toolbelt support for ELABORATION.. 94
Table 4.3: Toolbelt support for MODIFICATION....................................... 96
Table 4.4: New Practices, skills and knowledge required by the

Toolbelt Model. ... 98
Table 5.1: VDDE support for USE. .. 128
Table 5.2: VDDE support for ELABORATION... 133
Table 5.3: VDDE support for MODIFICATION.. 136
Table 5.4: New Practices, skills and knowledge required by DODE

Model... 146
Table 6.1: Comparison of Toolbelt and DODE Models............................... 151
Table 6.2: Comparison of three data models... 156
Table 6.3: Comparison of three architectural styles................................... 159
Table 6.4: New Practices required by Toolbelt and DODE Models........... 164

viii

LIST OF FIGURES

Figure 1.1: The structure of this research.. 6
Figure 2.1: Protocol analysis story... 15
Figure 2.2: Multimedia story. .. 19
Figure 2.3a: Supremacy of textual specifications (pre-1991)........................ 22
Figure 2.3b: Augmentation of textual representation with simple flow

charts and tables (pre-1991). ... 23
Figure 2.3c: Introduction of complex flow charts and tables as the primary

representational system (1991).. 23
Figure 2.3d: Flow charts and tables become the preferred representational

system (1992). .. 24
Figure 2.4: Relationship between design languages, products, tools, and

practices.. 27
Figure 2.5: Evolution of domain distinctions in the voice dialog

community from 1991 through 1994... 32
Figure 2.6: Evolution of the voice menu representation.......................... 33
Figure 2.7: Four types of relationships. ... 38
Figure 2.8: Patterns of change in design languages..................................... 42
Figure 3.1: Relationship between use and evolution of design

languages. .. 46
Figure 3.2: Processes supporting the evolution of design languages from

tacit to explicit to formal... 60
Figure 3.3: Overview of the Domain Construction Framework............. 64
Figure 4.1: Toolbelts – Traditional and High-tech...................................... 69
Figure 4.2: The toolbelt and representations used by the protocol

analysts... 71
Figure 4.3: Protocol analysis project timeline.. 72
Figure 4.4: The toolbelt and representations used by the lead multimedia

designer.. 77
Figure 4.5: Multimedia title project timeline. ... 78
Figure 4.6: The toolbelt and representations used by some of the voice

dialog designers.. 84

ix

Figure 4.7: Voice dialog timeline showing five designers engaged in a
series of projects over a three year period. 86

Figure 4.8: Generalized architecture of the Toolbelt computational
model.. 97

Figure 5.1: The DODE multifaceted architecture.. 105
Figure 5.2: The Voice Dialog Design Environment. 111
Figure 5.3: Design units provided by the VDDE gallery. 113
Figure 5.4. Parts of the prompt design unit.. 114
Figure 5.5: The Three Placement Rules in VDDE.. 115
Figure 5.6: VDDE System Architecture .. 117
Figure 5.7: VDDE project timeline during the period of domain

expansion... 121
Figure 5.8: VDDE project timeline during the period of domain

shrinking. .. 125
Figure 5.9: The two main DODE architectures. .. 142
Figure 6.1: Shared Object Model and Coalition Architectures................. 160
Figure 6.2: Extending the substrate-based architecture. 163
Figure 7.1: Designing interfaces for interoperability. 177
Figure 7.2: The SmartMedia architecture. .. 185
Figure 8.1. Overview of Research Approach ... 192

1

CHAPTER 1

INTRODUCTION

This thesis considers the problem of providing small, independent
design teams working in innovative and dynamic domains with
computational design support tools. This research differs from other
efforts in that the emphasis is on understanding and supporting the

evolutionary patterns of change inherent in dynamic domains. This
dynamic aspect places new challenging burdens on computational
design support tools. Specifically, in innovative and dynamic domains,
design tools must:

(1) Meet the traditional goal of providing direct support for
individual design activities, and

(2) Meet the new goal of being flexible enough to support
design communities to continually evolve their design
practices to support changing domain needs.

These two goals pose a challenging system design problem because
they are diametrically opposed. Providing direct support for individual
design activities usually requires enriching a system with an
understanding of the task or the domain; i.e., building a domain model
into the system. However, building a rich domain model into a system
often limits the system’s flexibility in that it is no longer capable of
dealing with significant, or even small, changes in the domain. The
purpose of this research is to investigate computational architectures,
extension mechanisms, and interfaces that enable practitioners in
design communities to create and progressively modify design support
tools that meet these two paradoxical goals.

2

MOTIVATING PROBLEM

In today's workforce, many design professionals work in emerging
high-technology domains such as computer network design, user
interface design, or multimedia title design. These designers are
usually members of small, independent, cross-functional teams, with
diverse educational and organizational backgrounds, that come
together only for the duration of a specific project or related set of
projects. Projections on the workforce of the next century indicate that
design teams such as these will become increasingly prevalent in the
years ahead [85, 90]. Thus, there are very pragmatic reasons why it is
important that the tools used by these designers effectively support
their design activities and enable them to create better designs more
efficiently.

In their daily design activities, these designers face traditional

problems due to the inherently open-ended [92] and ill-structured [109]
nature of design. For any design problem, there is an infinite number
of possible solutions and no single correct answer. Additionally,
designers need to look into the future and envision how their artifact
will be used before it is built in order to evaluate the benefits and
limitations of their approach [51]. Finally, designers must integrate
knowledge from multiple domains in order to arrive at a solution [15,
49]. Typically, this knowledge does not reside in the head of any single
person but instead, is distributed across other team members involved
in the design process [101]. A large part of the designer’s job is
communicating various aspects of the design under construction to
other design stakeholders so that they may contribute their respective
expertise and ideas.

There are numerous research efforts focused on creating design
support environments that address these traditional design problems
[10, 22, 25, 50, 59, 99, 111]. A commonalty across these research efforts is
that the systems advocated provide specialized task-specific or domain-
oriented design representations. Domain-oriented systems embody a
model of the entities to be manipulated and the tasks to be performed
and use the model to provide active support to the user. An example is

3

a kitchen design environment enabling users to construct floorplans
from objects such as cabinets and stoves, which can then be analyzed by
the system for compliance with design guidelines [29]. Proponents of
these approaches claim these specialized design representations
provide better cognitive support for the design activity because users
interact with familiar entities and do not need to build up domain
entities from other lower-level operations [28, 80, 99]. Additionally, the
rich domain models embedded in these systems enable them to directly
support design tasks by providing simulation facilities and active
knowledge-based assistance [10, 29, 30, 33, 76, 78, 108, 111].

However, designers also face new problems in that innovative
domains are characterized by rapid and continual change as underlying
technologies and design practices evolve. For instance, in the mid-
1980’s most user interfaces were based on character-oriented command
lines. By 1990, graphical user interfaces based on windows and direct
manipulation techniques were prevalent. Now, in the mid 1990’s,
alternate modalities are starting to gain prominence such as voice
dialog interfaces and interfaces based on 3-D virtual reality metaphors.
In effect, the domain of user interface design has undergone at least
three major revolutions in technology and design practices in the last
10 years. Such periodic revolutionary upheavals are important
components of evolutionary change in innovative and dynamic
domains.

In these domains, evolutionary change also involves continual
incremental elaborations and refinements. Sometimes, incremental
changes are in response to a minor innovation in technology such as
the introduction of a new pointing device in the realm of user
interfaces. Many times, these changes are brought about as designers
continually strive to improve their design practices. Many of these
designers are engaged in product design activities and in the new,
highly-competitive global economy there is continual pressure to make
better products and to shorten product lifecycles [85]. Towards this end,
these designers are organizationally empowered, and indeed many
times required, to make significant decisions concerning their own

4

design process. In effect, part of their job is devising better ways to do
their work and they are rewarded for continually improving their
process.

It is not clear that domain-oriented software is flexible enough to
address these new design problems. Specifically, the specialized design
representations and embedded domain model may need to be
continually modified to reflect changing conditions just to keep pace
with the rate of evolutionary change in dynamic domains. In fact,
recent empirical studies indicate that professionals need generic tools
that are flexible enough to support a wide range of practices and
representations. Generic tools are applications like word processors,
graphics packages and databases seem to be more flexible because they
do not focus on a particular task or domain. Instead, these applications
support the creation and manipulation of a particular type of
representation, such as documents or drawings, by providing a wide
range of formatting features and flexible editing commands. Nardi and
Johnson found that professional slidemakers preferred collections of
generic graphic tools to slide making-specific software because of the
generic tools’ greater power and flexibility [81]. Sumner also observed
how the flexibility of generic tools enabled designers to evolve design
representations to better support changing work practices [116].
However, this same study also showed that practitioners were trying to
use generic applications in very domain-specific ways; the tools’ generic
nature had several negative side effects such as introducing cognitive
and manual burdens on constructing and maintaining designs and
hindering iterative design.

In summary, designers in innovative and dynamic domains need
computational support tools because they are an important part of the
future economy and it would behoove us to provide them with better
tools to do their job. However, creating software tools to support these
designers is challenging because what constitutes the domain is
continually evolving in response to changes in technology, the
surrounding business milieu, and design practices. On the one hand,
these designers could benefit from the support provided by domain-

5

oriented tools; on the other hand , they seem to need the flexibility
inherent in generic tools. Thus, the motivating problem investigated
in this thesis is how to strike a balance between supporting use and
supporting change. Particularly, the question considered is:

How can systems provide direct (i.e., domain-oriented)
support for individual, daily design activities yet still be flexible

enough to accommodate evolutionary patterns of change (i.e.,
periodic revolutionary upheavals and continual incremental
elaborations) in the domain and design practices that occur
over time?

APPROACH

The general approach taken to investigate this question combines
empirical studies, development of theoretical frameworks, and system
building and assessment. Figure 1.1 shows the empirical and
theoretical foundations, the core contributions, and the results of this
research.

First, empirical studies of designers are used to characterize and
analyze the patterns of change in a specific innovative and dynamic
domain – user interface design. The results of these studies, combined
with existing theories of design, provide the motivation for the
domain construction theoretical framework. This framework builds
upon existing theories of design and organizational communication to
characterize how cognitive, communicative, and social aspects of
design interact to drive evolutionary changes within a design domain.
A detailed analysis of domain construction processes suggests the
functionality that design environments and their underlying

computational models must provide in order to effectively support
designers working in innovative and dynamic domains.

6

Empirical
Studies of
Designers

The
Foundations

 Core
Contributions

Results
of Analyses

Existing
Theories of

Design

Existing
Theories of

Design Support

Theory of
Domain

Construction

The
Toolbelt
Model

VDDE:
Building a

DODE for the
workplace

Framework for
Comparing

Design Support
Tools

Suggestions for
Improving

Existing Tools

Suggestions for
the Next

Generation of
Design Tools

Figure 1.1: The structure of this research.

This framework is then used to analyze and compare two
computational models at seemingly different ends on the support /
flexibility spectrum. The Toolbelt model, where practitioners assemble
and evolve collections of generic software applications, seemingly
offers more flexibility. The Domain-Oriented Design Environment
(DODE) model, where customized domain-oriented tools are created for
a specific community, seemingly provides better support but is less
flexible. The purpose of this analysis is to investigate these intuitions
in order to better understand which particular aspects of a model help
or hinder its use and overall flexibility.

Two specific design support systems instantiating each of these
models were developed to support a particular group of user interface
designers during the course of this research. One system, based on the
Toolbelt computational model, was created over time by the user
interface designers themselves and characterized and studied as part of
this research [116]. The other system , the Voice Dialog Design
Environment (VDDE) [99, 117], is based on the domain-oriented design
environment computational model [25]. This system was

7

collaboratively constructed by myself and the same user interface
designers concurrently with the development of the toolbelt model.

These two different design support systems – Toolbelts and DODEs –
are individually analyzed and then compared according to the domain
construction framework. This analysis particularly looks at the
flexibility of each model; examining how well various aspects of the
underlying computational model (e.g., architecture, object model, and
tailoring mechanisms) support the different domain construction
processes. The results of these analyses are used to derive
recommendations for improving each individual model and to
motivate recommendations for the next generation of design support
systems.

WHO SHOULD READ THIS THESIS?

For people interested in developing domain-oriented or task-
specific systems, this thesis provides insights into what constitutes a
“domain,” where this shared understanding of the domain comes
from, and how this understanding changes over time.

For design theorists, the empirical studies provide insights into
macro design processes by characterizing the ongoing interaction
between design stakeholders, design tools, and design representations.
Specifically, the studies illustrate long-term patterns of change in
design representations in response to communicative needs between
stakeholder groups and tool affordances and hindrances.

For developers of design support systems, this thesis stresses the
notion that “one size does not fit all” when creating design support
tools; i.e., that design environments for small teams in dynamic
domains have different requirements than those targeted at large
design efforts (e.g., designing space shuttles) or mature design domains
with well-defined practices and representations (e.g., architecture).
With respect to supporting small design teams in dynamic domains,
this thesis enumerates guidelines for improving existing design

8

environments and offers recommendations for the next generation of
design support systems. Additionally, developers can reuse the domain
construction framework developed in this thesis to assess and compare
other models of design support systems not considered here.

For researchers and practitioners in human-computer interaction,
this thesis contributes to the ongoing debate concerning the benefits of
domain-oriented or task-specific tools versus generic software tools.
Furthermore, the findings suggest considerations to be taken into
account when creating interfaces and tailoring mechanisms to enable
domain practitioners to configure and tailor interoperable sets of
software components.

READING GUIDE

This dissertation moves through three main stages: empirical
studies, theoretical development and analyses of systems.

Chapter 2 puts forth the central claim of this thesis: that the concept
of “domain” is a valuable one, both from a cognitive and a human-
computer interaction perspective. Empirical studies are used to
illustrate how domains are socially constructed over time and the
patterns of change within a particular domain are concretely analyzed.
Theoretical arguments are made as to why social domain construction
is a desirable phenomena that should be supported by design
environments.

Chapter 3 presents the domain construction framework used for
analyzing and comparing the flexibility and support provided by design
support systems. Processes to be supported consider are organized into
those supporting use and those supporting change. The framework
considers how different aspects of the underlying computational model
affect these various processes.

Chapters 4 and 5 present and analyze the two models considered in
this dissertation – the Toolbelt Model and the DODE Model. Each

9

chapter begins by defining the model under consideration and
explaining its significance. The centerpiece of each chapter is a
description of the specific design environment instantiating the model
developed during this research and an analysis of project experiences
from the domain construction perspective.

Chapter 6 compares and contrasts the two models. The objective is
to determine how well various aspects of a particular model support
the evolutionary and revolutionary patterns of change found in
dynamic domain construction. These findings form the basis for
Chapter 7, which offers a vision of the next generation of design
environments to support designers in innovative and dynamic
domains.

Chapter 8 summarizes the key findings of this research and
enumerates the core contributions this work has made to the fields of
design and computer science.

11

CHAPTER 2

THE WAY WE DO THINGS AROUND HERE

This chapter examines the nature of design in small, independent
design teams working in innovative and dynamic domains. In these
types of domains, there are no standard design representations or
practices. Rather, it is part of the designers’ job to continually create and
evolve appropriate representations and practices. In doing so,
communities of practice (i.e., a group of design stakeholders) construct
their domain over time by defining important domain objects, creating
multiple representations for viewing these objects, and establishing
relationships between objects and representations.

This process of domain construction is illustrated with three stories
drawn from user interface design. User interface design concerns the
design, evaluation, and sometimes the actual construction, of the part
of a software system that end users see and interact with. User interface
design is an ideal example of an innovative and dynamic domain
because it is in constant flux due to changes in computational
platforms, new interaction devices, and new research findings.

These three stories also illustrate the particular context focused on
in this thesis: small, independent design teams working on relatively
small projects. They show the pervasiveness of domain construction in
a variety of design settings ranging from a university team doing a
short, one-off design project to industrial designers working on a
continual stream of upgrades to an existing product line. In these
different settings, what constitutes the “domain” can assume a wide
range of complexity – ranging from a simple set of conventions to
elaborate sets of representations and practices.

12

In this chapter, these design stories are first presented and then
analyzed in detail. The first part of the analysis examines what
constitutes the domain: design tools, representations, practices, and
design languages. Design languages are conventions that design
communities construct and evolve to bind together tools,
representations, and practices. Finally, the stories are further analyzed
to identify the core processes involved in domain construction.

THREE DESIGN STORIES

Every organization has its own rules, operating procedures, and
general approaches to doing business. Many people, after changing jobs
or institutions, have heard the phrase “that’s not the way we do things
around here” when trying to apply old practices to their new job
context. In this section, I present three stories that illustrate that “the
way we do things around here” is not just an organizational
phenomenon, but it is also a situation-specific design phenomenon. In
each story, what constitutes the “domain” or “the way we do things
around here” is situation-specific in that the domain is constructed
over time by the particular community of practice to solve their specific
design problems.

Story 1: Protocol Analysis

Over the course of a year, myself and three cognitive psychologists
conducted a series of experiments to ascertain the effects of using a
prototype design environment on the activities of professional
designers [9, 10]. As part of the experiment, we asked designers to
“think aloud” while using the system to perform a design task. We
then transcribed and analyzed the designers’ verbal protocols.

While this methodology is a standard technique for evaluating user
interfaces, the exact nature of the analysis differs for every system and
experimental situation since the analysis depends upon the effects of a
specific system on a specific task performed by selected individuals.
Thus, analyzing the protocol data is very much a design activity since

13

the protocol analysts must: (1) design an initial analysis framework, (2)
create representations for viewing and filtering large amounts of verbal
data, and (3) continually redesign the analysis framework and
representations to reflect patterns emerging from the data being
analyzed.

During the series of experiments, we collected and analyzed nine
protocol sessions. Figure 2.1 illustrates how the representation we used
to support the analyses evolved over these nine sessions. For the first
analysis, we simply transcribed the verbal protocols into MS WORD, a
word processing tool. The representation we used was a simple double-
spaced document with some identifying header information. All
knowledge of the analysis task resided in our practices, as we
painstakingly marked up and annotated the protocol document with
colored pens and highlighters and later compared our marked up
documents with each other and with the initial analysis framework.

We quickly realized that double spaced documents were not a good
representation – there was not enough room for annotations and the
verbal data were too spread out to be easily viewed. We went to a single
column format. By the fourth analysis (see Figure 2.1), we had
standardized header information but, more importantly, we are
starting to use formatting to visually distinguish essential data
(designer verbalizations) from typically extraneous data (observer
comments). The long protocol documents are beginning to be broken
into multiple sections corresponding to subtasks in the activity. At this
point, our representation has been modified to better support our task
but much of the task knowledge still resides in our practices with
highlighters and colored pens.

By the ninth analysis, we are working much smarter (see Figure
2.1). We have standardized on a set of named formatting styles that
make important things visible (e.g., bold face subtasks) and less
important things less visible (e.g., small font, italicized
observer/comments). Key items from our analysis framework are
starting to appear as named formatting styles (e.g. underlined critics).

14

Entities such as these did not used to be part of the representation but
instead were identified later during the highlighting phase of our
practices.

There are several reasons for these improvements. First, our
approach improved simply by virtue of doing it over and over again.
After every analysis, our understanding of the task deepened and
distinctions, that we had previously only been tacitly aware of, emerged

and became explicitly incorporated into our representation. In natural
language, the term “distinctions” refers to articulated objects and
qualities that arise through recurrent patterns of breakdown in
concernful activity [124]. In this thesis, domain distinctions are
articulated objects and qualities that are important for expressing
solutions to re-occurring design problems. These domain distinctions
are usually articulated by emerging conventions concerning their
appearance or, in some cases, by explicit naming. Our representation
evolved considerably as we enriched our word processing tool with
knowledge, in the form of domain distinctions, important to our
specific task.

Second, our awareness of how our tool could support our task
changed considerably over time. Besides supporting changing the look
of our representation, we realized that the ability our tool gave us to
name emerging distinctions was very useful. Naming insured
consistency in look and supported our communication process. By this
time, the analysis team resided in two different countries and we no
longer had the luxury of sitting side-by-side and comparing
highlighted, marked up documents to see if we had marked the same
things in pink versus green or so on. Now, we could send our partially
“marked up” analyses documents back and forth via electronic mail
without losing the markings.

15

F
o

rm
 o

f
In

it
ia

l R
ep

re
se

n
ta

ti
o

n
:

F

ul
l p

ag
e

te
xt

D

ou
bl

e
sp

ac
ed

T

w
o

pa
rt

s
-

he
ad

er
 a

nd
 b

od
y

 s

ep
ar

at
ed

 b
y

di
vi

di
ng

 li
ne

 H
ea

d
er

 A
re

a:

N
o

sp
ec

ia
l f

or
m

at
s

O

ne
 li

ne
 o

f s
es

si
on

 in
fo

rm
at

io
n

O

ne
 li

ne
 o

f o
bs

er
ve

r
in

fo
rm

at
io

n

 B
o

d
y

A
re

a:

N

o
sp

ec
ia

l f
or

m
at

s

O
bs

er
ve

r
co

m
m

en
ts

 p
re

ce
de

d
by

 n
am

e

O
bs

er
va

tio
ns

 in
 p

ar
en

th
es

is

"S
ub

ta
sk

s"
 b

eg
un

 b
ut

 n
ot

 fo
llo

w
ed

 th
ro

ug
h

F
o

rm
 o

f
R

ep
re

se
n

ta
ti

o
n

:

S
in

gl
e

co
lu

m
n

te
xt

S

in
gl

e
sp

ac
ed

T

w
o

pa
rt

s
-

he
ad

er
 a

nd
 b

od
y

 s

ep
ar

at
ed

 b
y

di
vi

di
ng

 li
ne

 H
ea

d
er

 A
re

a:

S
ta

nd
ar

di
ze

d
co

nt
en

t e
m

er
gi

ng

T
w

o
di

ffe
re

nt
 fo

rm
at

s:

B

ol
d,

 1
4

po
in

t,
ce

nt
er

ed
 ti

tle
 in

fo
rm

at
io

n

N

or
m

al
, 1

2
po

in
t,

le
ft

al
ig

ne
d

"o
th

er
"

in
fo

rm
at

io
n

 B
o

d
y

A
re

a:

T
w

o
ty

pe
s

of
 fo

rm
at

s:

Ita

lic
s

fo
r

ob
se

rv
er

 c
om

m
en

ts
 a

nd
 o

bs
er

va
tio

ns

N

or
m

al
 te

xt
 fo

r
al

l o
th

er

S
ub

ta
sk

s
oc

cu
r

bu
t n

o
sp

ec
ia

l f
or

m
at

F
o

rm
 o

f
R

ep
re

se
n

ta
ti

o
n

:

S
in

gl
e

co
lu

m
n

te
xt

S

in
gl

e
sp

ac
ed

N

 p
ar

ts
 -

 h
ea

de
r

an
d

so
m

e
nu

m
be

r
of

 s
ub

ta
sk

s

 H
ea

d
er

 A
re

a:

S

ta
nd

ar
di

ze
d

co
nt

en
t

T

w
o

na
m

ed
 o

bj
ec

ts
 w

ith
 d

iff
er

en
t f

or
m

at
s:

su
bj

ec
t i

nf
o

 in
fo

rm
at

io
n

-
B

ol
d,

 1
2

po
in

t

ob

se
rv

er
/c

om
m

en
ts

 k
ey

 -
 It

al
ic

s,
 9

 p
oi

nt

O
ne

 u
nn

am
ed

 li
ne

 w
ith

 a
 d

iff
er

en
t f

or
m

at
:

N
or

m
al

, 1
0

po
in

t,
ob

se
rv

er
 in

fo
rm

at
io

n

 S
u

b
ta

sk
 A

re
as

:

F
ou

r
na

m
ed

 o
bj

ec
ts

 w
ith

 d
iff

er
en

t f
or

m
at

s:

S

ub
ta

sk
 ti

tle
 in

fo
rm

at
io

n
-

B
ol

d
w

ith
 p

re
ce

di
ng

 d
iv

id
in

g
lin

e

ob

se
rv

er
/c

om
m

en
ts

 -
 It

al
ic

s,
 9

 p
oi

nt

cr

iti
c

 -
 U

nd
er

lin
e,

 1
0

po
in

t

te

xt
 (

al
l o

th
er

)
-

10
 p

oi
nt

T
h

e
F

ir
st

 A
n

al
ys

is
T

h
e

F
o

u
rt

h
 A

n
al

ys
is

T
h

e
N

in
th

 A
n

al
ys

is

Figure 2.1: Protocol analysis story.

Evolution of domain distinctions and representations
over time.

16

I say “partially” marked up because the tool had several limitations
that hindered this marking methodology further. First, only paragraph
styles could be named. However, a paragraph is too large in granularity
for protocol analysis; we need to be able to select single sentences or sets
of words and assign them a named style. Second, one big motivation
for using named styles rather than just establishing formatting
conventions was that we wanted to manipulate the text using the
named items to construct different views; i.e., show me only the text
labeled critics and anticipations. However, the word processor's simple
show/hide text facility was insufficient for creating the views we
desired and we were unable to create them.

Story 2: Multimedia Title Design

This next story discusses experiences of a university team creating
an innovative multimedia “title” for presentation at an upcoming
conference. The title was an interactive presentation that mixed video
clips, still photos, sound, and text to present a vision about the future
of programming in the year 2010 [18]. The video clips and the main
themes of the title were based on a two day research symposium that
had been previously filmed. The design and implementation of the
title took approximately four months. The design team consisted of a
lead designer from the computer science department, a computer
science professor, and two design students from the environmental
design department. The details of this story are drawn from a
presentation by the lead designer about the design process and
subsequent interviews where we examined the tools and
representations used during the title’s design and production.

The design of the title was an interplay between designing the form
and designing the content. Over the course of the project, the team
created two primary representations to support this dialectical process
that emphasized these different aspects of the design (Figure 2.2).

One representation was a set of six templates illustrating the general
form or look of the individual screens. This set of templates was
created in Macromind Director, a multimedia authoring tool. One

17

template (filled in) is shown on the right side of Figure 2.2. Each
template consisted of a vision statement in green text followed by an
elaboration on the vision in blue text. There were two main sorts of
templates – those with single line visions and those with two line
visions. This distinction affected the placement of the dividing line

between the vision and its elaboration. Each of these two template
flavors came in three variations for each of three different background

colors.

The other representation was a pseudo-hypermedia outline
showing the title's overall structure and content; i.e., what individual
screens actually said. This outline was created with WORD, a word
processing tool. Part of this outline representation is shown on the left
side of Figure 2.2. This representation had five main parts. Similar to
the template representation, it contained vision statements and
elaborations. However, it also represented different distinctions named
scenarios, summaries, and presentations.

The designers had created special looks for several of the
distinctions. Visions were represented in a large green font and
elaborations were in a black, boldface font. The fonts and colors of these
latter two distinctions were chosen to match the representation of the
same distinctions in the templates to, in the designer’s own words,
“help minimize the cognitive load” when moving back and forth
between the two representations.

Also, only three of these distinctions (summaries, presentations,
and visions) were explicitly named in the representation. These
distinctions were not named using the word processor’s style naming
facility; instead the names were embedded in the text. The reason was
that the design team wanted to use the word processor’s outline facility
for selectively viewing tagged text. To do so, they had to use the word
processor’s standard text tags of “header 1 - header 4.” Thus, a scenario
such as “software tools” (Figure 2.2) was tagged with header 1, while
elaborations were tagged with header 4. This use of the outline facility
was designed to help minimize the cognitive load between the two

18

design representations. For instance, by choosing not to show header 4
(i.e., collapsing the display so elaborations were not shown), WORD

could be configured to display all the visions associated with a
particular scenario on one page; this page view of all the visions was
identical to their display in the final multimedia title.

As in the protocol analysis story, these designers evolved a set of
related domain distinctions to express their design with. The title
revolved around five main scenarios that had been developed during
the research workshop. The original idea behind the presentations

distinction was to describe how the scenario was presented at the
research workshop; however, this idea was never followed through,
though it remained in the outline representation. After choosing to
interact with a particular scenario in the title, the viewer first hears an
audio recording of a summary sentence or two. After hearing the
summary, the viewer can choose from a set of visions concerning the
outcome of that particular scenario. The viewer can visit separate
screens corresponding to each vision to view further elaborations on
the vision and to make comments concerning the vision. Like the
protocol analysis story, these distinctions were incorporated into the
design representations and distinguished by conventions regarding
their form and/or explicit names.

However in this design story, multiple, interrelated design

representations were essential for both design construction and

communication among all design stakeholders. The publishing tool
was good for designing the look of screens; i.e. color, placement, etc.
However, it was not good for easily iterating the design of the content
(i.e., the words) during collaborative design sessions since its text
editing features were clumsy. Thus designers needed two
representations – one targeted at form and one at content – to address
these two different aspects of the design. The lead designer reported
that he created the hypermedia outline representation to facilitate
collaboration with co-designers when primarily designing the content
of the title. He said he “needed something to take over there that [they]
could all look at and modify... easily.”

19

E
x
p
l
i
c
i
t

D
o
m

a
i
n

D
i
s
t
i
n
c
t
i
o
n
s

:

V
is

io
n

E

la
b

o
ra

ti
o

n

D
iv

id
in

g
 L

in
e

B

a
c

k
g

ro
u

n
d

E
x
p
l
i
c
i
t

D
o
m

a
i
n

D
i
s
t
i
n
c
t
i
o
n
s

:

S
c

e
n

a
ri

o

S
u

m
m

a
ry

P

re
s

e
n

ta
ti

o
n

V

is
io

n

E
la

b
o

ra
ti

o
n

V
is

io
n

E
la

b
o

ra
ti

o
n

s

B
ac

kg
ro

u
n

d

"C
o

n
te

n
t"

 D
es

ig
n

 R
ep

re
se

n
ta

ti
o

n
"F

o
rm

"
D

es
ig

n
 R

ep
re

se
n

ta
ti

o
n

T
h

e

ab
o

ve

sc
h

em
at

ic

il
lu

st
r

a
te

s

th
e

re
la

ti
o

n
sh

ip
 b

et
w

ee
n

 o
ne

p

ar
t

o

f
th

e
c

o
n

te
n

t
r

ep
r

es
e

n
ta

ti
o

n
 w

it
h

 o
n

e
p

ar
t

o
f

th
e

fo

rm

re
p

re
s

e
n

ta
ti

o
n

.

T
o

e

m
p

h
a

s
iz

e

t
h

is

r
e

la
ti

o
n

s
h

ip
,

v
is

io
n

s

a
n

d

e
la

b
o

r
a

t
io

n
s

a

r
e

r
e

p
re

s
e

n
te

d

w
it

h

th
e

s
am

e

fo
n

t
in

b
o

th

r
e

p
re

se
n

ta
ti

on
s.

V

is
io

ns

a
ls

o
a

r
e

r
ep

re
s

en
te

d
 w

it
h

 t
h

e
sa

m
e

g
re

en
c

o
lo

r
in

b

o
th

re

p
re

s
e

n
ta

ti
o

n
s

.

Figure 2.2: Multimedia story.

Relationships between multiple representations are based
on domain distinctions.

20

The overall design process involved a dialectical interplay between
these two representations. The distinctions mediated between the two
representations in that they established relationships between the
representations’ various parts (see Figure 2.2). Vision statements in the
outline corresponded with vision statements in the templates. When a
vision statement changed in one representation, it also needed to be
changed in the other. However, making the change was not a matter of
a simple cut-and paste; it was a non-trivial effort involving a complex
sequence of steps using multiple special effects tools. These well-
defined steps transformed basic, unformatted text from the word
processor into formatted text on a special paper-textured background in
the multimedia publishing tool. Since there were 23 of these
individual vision screens in the final title, this was quite a laborious
effort. The lead designer reported that, once transformed, only glaring
mistakes such as a spelling errors motivated them to iterate through
this process again and, as a consequence, small refinements to the
content were not made.

In this project, the designers were able to enrich individual tools
with some knowledge of important domain distinctions. However, the
designers’ tools did not support establishing or maintaining
relationships between parts of the two representations created with
different tools. It was the designers themselves; i.e. their practices, that
took care of establishing and maintaining correspondences between
domain distinctions in the different representations.

Story 3: Voice Dialog Design

The story presented here is drawn from a three year collaboration
between user interface designers at US WEST Advanced Technologies (a
regional phone company) and researchers at the University of
Colorado. This analysis is excerpted from a case study of these
designers’ practices [116, 119] and resulted from a combination of
collected qualitative data [127] including workplace observations, field
notes, analyses of existing design tools and representations, videotape
analyses, and open-ended interviews with seven members of the

21

design group. These members included the group's manager, lead
designers, other designers, simulation builders, and student interns.

The task is the design of voice dialog applications; i.e., software
applications with phone-based user interfaces. These interfaces consist
of a series of voice-prompted menus requesting the user to perform
certain actions; e.g., “to listen to your messages, press 1.” The caller
issues commands by pressing touch-tone buttons on the telephone
keypad and the system responds with appropriate voice phrases and
prompts. Typical applications are voice information systems and voice
messaging systems. Designing in this domain means specifying the
interface for an application at a detailed level. During this study, most
of the interfaces designed involved modifications and additions to an
existing voice messaging product.

There are two main facets to the designer's job: constructing the
design and communicating the evolving design to other stakeholders
such as marketing and the vendor organization. As one designer
noted, "the critical problem is communicating the design to other
people in a way that doesn't require a lot of specialized training [on
their part]." As in the multimedia story, the designers have created
multiple design representations that emphasize different aspects of the
design. In this case, each of the four major representations – flow
charts, tables, test plans, simulations – is tailored to the special needs of
each of the major stakeholder groups.

Flow charts are the primary design representation and are
constructed to communicate the essential aspects of the interface such
as spoken prompts, menus, and control flow to the marketing,
customer support and vendor organizations. Additional detailed
design information is presented in a separate table representation that
is constructed primarily for the vendor organization. Test plans are
semi-structured text documents that detail the actions to be performed
and the audio output to be heard along each path through the interface;
this representation is constructed for testers who are hired to test all
features of the final product. Simulations are functioning prototypes of

22

Two t ypes o f sy ste m
r e s p o n s e s a r e
d i s t i n g u i s h e d :
phra ses (a ll caps)
a n d m e s s a g e s
(i t a l i c s). Pos s i b l e
us er ac t i o ns ar e
d e s c r i b e d i n
i nd e n t e d t e x t .
Co nt r o l f l o w i s
d e s c r i b e d us i ng
natural language.

5.3 Personal Options Menu

This section describes the Personal Options menu in the new mailbox type.

 (O) “Personal options.
 To change your security code, press 1.
 TO CHANGE YOUR RECORDED NAME, PRESS 2.
 To disconnect, press *. “

 This menu matches the standard Personal Options menu seen in previous mailbox types. A
 new feature is being added to the Personal Options menu. This is a new option that will
 allow the user to change their “recorded name.” This requirement is detailed in section
 5.3.2.

 All phrases are interruptible.

 If the user does not respond, the system plays “are you still there?” and repeats the
 menu.

 If the user requests help, the menu is repeated.

 If the user presses *, the system backs out to the Main Menu.

 If the user presses 3-9 or #, the system plays “you have pressed an incorrect key”
 and repeats the menu.

 If the user presses 1, the system responds as described in section 5.3.1.

 If the user presses 2, the system responds as described in section 5.3.2.

 Note: The numbers in the “Go To” section of the chart represent section numbers.

5.3.1 Security Code Entry

 When the user presses 1 at the Personal Options menu, the system plays (P) “Choose a
 security code that is easy for you to remember. Enter the new security code now, then
 press #.”

 If the user enters too few digits, the system plays “SECURITY CODE MUST CONTAIN AT
 LEAST 4 DIGITS” and repeats the prompt.

Figure 2.3a: Supremacy of textual specifications (pre-1991).

critical or contentious parts of the interface and are constructed for the
marketing organization and for usability testing.

However, as Figure 2.3a-d shows, both the representations and the
distinctions these representations depict have changed considerably
over time. At the beginning of the period of study, designs were
represented using primarily textual specification documents (Figure
2.3a). These textual specifications distinguished between voice menus

(using document sections) and phrases and messages (using formatting
conventions). Important information such as dynamic conditions and
help messages were buried in the middle of paragraphs.

23

ENTER YOUR SECURITY CODE

Phrase (P): "Choose a security code that is easy
for you to remember. Enter the new
security code now, then press pound."

ACTION EXPECTED RESPONSE GO TO

timeout "Are you still there?" (P)
too few "Security code must contain at least ..." (P)
too many "Security code may not exceed ..." (P)
digits, * "Reenter your security code, then press #." (P)
press 0 "Your current security code is (DIGITS)." (P)
press * "Command cancelled. Previous code saved." (O)
press # "Enter the new security code now ..." (P)
digits "For your security code ..." (Q)
digits, # "For your security code ..." (Q)

PERSONAL OPTIONS MENU:

Phrase (O): "Personal Options.
To change your security code, press 1.
TO CHANGE YOUR RECORDED NAME, PRESS 2.
To disconnect, press *.

ACTION EXPECTED RESPONSE GO TO

timeout "Are you still there?" (O)
press 1 "Security code..." 5.3.1
press 2 "Recorded name..." 5.3.2
press 3 "You have pressed an incorrect key." (O)
press 4 "You have pressed an incorrect key." (O)

press 5 "You have pressed an incorrect key." (O)
press 6 "You have pressed an incorrect key." (O)
press 7 "You have pressed an incorrect key." (O)
press 8 "You have pressed an incorrect key." (O)
press 9 "You have pressed an incorrect key." (O)
press 0 "Personal Options..." (O)
press * "Main Menu..." (I)
press # "You have pressed an incorrect key." (O)

These t abl es depi ct possi ble acti ons aft er
phrases or voic e menus reques t users t o do
some t hing. Phrases are assi gned i dent if ier s
which are bold l et t er / number comb inat i ons. The
i dent if ier s are i nt ers pers ed in t o t he t ex t t o t ie
it to the tables.

Figure 2.3b: Augmentation of textual representation with
simple flow charts and tables (pre-1991).

Listen1

Main Menu

MM.01

2

*

Personal Options

Disconnect

Security Code

Personal Options

Greeting

Disconnect

"Choose a security code that
is easy for you to remember.
Enter the new security code
now, then press #. "

PO.02

At least 4
digits

entered?

PO.c3

yes

no

"Security code must contain at
least 4 digits. "

PO.05

"The security
code you have
entered is xx."

PO.04

Flow Chart

1
2

*

Table

Menu Number: PO.01 Menu Name: Personal Options Type: Menu

Access From: MM.01, 2 PO.01, ti

Menu Dynamic? no How?

Notes: This menu allows the user to select to either change their security code or
 their recorded greeting.

Prompt : To change your security code, press 1. To change your recorded name,
 press 2. To disconnect, press *.

Outflow 1: PO.02 2: PO.09 3:
To: 4: 5: 6:
 7: 8: 9:
 *: SDSH_c 0: HelpMsg #: PO.01

Help You are being asked to choose either to change your security code or to
Msg: change your recorded name.

Timeout? PO.01 Type Ahead? menu Disconnect? initialize

PO.01

The phr ase t ab l es have
e v o l v e d i n t o t w o
di s ti nct i ons: pr ompt s and
voi ce menus. Messages are
s t i l l p r e s e nt . A n e w
di st i nct ion, dec is i on poi nt s ,
ar e now r epr esent ed i n th e
f low chart s . Cont r ol fl ow is
depi ct ed gr aphic al l y wit h
l i nks . Ever y obj ect in th e
f low chart has an i dent i fi er
t h a t t i e s i t t o a
c o r r e s p o n d i n g t a b l e
representation.

Figure 2.3c: Introduction of complex flow charts and tables
as the primary representational system (1991).

24

The f our d is tin cti ons in t he or igin al
f lo w chart and ta bl e rep res enta ti ons
are st il l pr esent: pro mpt s, vo ic e
me nus, me ssages , and dec i si on p oin ts .
Shaded tit les are sta r tin g t o be used
t o di st ing uish vo ic e menus w it h
spok en titl es in th e inter f ace. Three
new d is tin cti ons have e merge d: d at a
i nput ters , e rro r handler s, and dig it
col lectors.

Dif fe ren t typ es of control
f l o w ar e d i s t i ng ui s he d
gr aphical ly – solid arr ows f or
f o rw ard f lo w and d ashe d
arr ows f o r b ack ward f low.
The ta ble orga niz atio n has
ch ang ed co nsi d e ra bl y t o
em phasiz e th e pos sibl e audi o
messages.

You have 2 new messages.
To listen to your messages,
press 1. For personal
options, press 2. To
disconnect, press *.

Listen 1

Main Menu

MM.01

2

*

Personal Options

Disconnect

To change your security
code, press 1. To change
your recorded name, press
2. To disconnect, press *.

Security Code 1

Personal Options

2

*

Greeting

Disconnect

Choose a security code that
is easy for you to remember.
Enter the new security code
now, then press #.

PO.02

At least 4
digits

entered?

PO.03

yes

no

Security code must contain at
least 4 digits. Please enter a
longer security code, then
press #.

PO.06

The security code
you have entered
is (xxxx).

PO.05

Input
Digits

PO_DP.04

Flow Chart

Name: Personal Options Type: Menu Number: PO.01

This menu allows the user to select to either change their security code or their recorded
greeting.

Standard Prompt OR Message Text: Rapid Prompt: Outflow for 0:

To change your security code, press 1. Security code, 1. You are being asked to
To change your recorded name, press 2. Recorded name, 2. choose either to change
To disconnect, press *. Disconnect, * your security code or to

change your recorded
name.

Type Ahead
Yes

Disconnect: SDSH_DP

SDSH_DP

Timeout: PO.01 PO.10

PO.01

Dynamic
No

Dynamic Context: Inflow:
MM.01

Maxdigits:

Outflows:
1 2 3
4 5 6
7 8 9

0* #You are being

PO.02

Table

PO.01

Figure 2.3d: Flow charts and tables become the preferred
representational system (1992).

Later, these textual specifications were augmented with simple
tables and flow charts at the request of the vendor organization (Figure
2.3b). The simple flow charts did not contain the full text of all audio
messages and phrases in the interface. The tables augmented the
textual description of prompts and menus by depicting all possible
actions and responses. The relationships between entries in the table
and parts of the textual document were indicated using bold-face
identifiers based on a letter or letter.number naming convention; e.g.,
B.1, where the first phrase in the document was named “A” and cycled
through the alphabet in sequence from there.

In 1991, one designer was asked to create one of the most complex
applications to date. He decided it was time for a whole new approach.
The textual specifications were getting so large and complex that few
people bothered to read them. Those who did had trouble
understanding them. This designer established a personal convention

25

of using flow charts and a new, complex table as the primary design
representations (Figure 2.3c). His flow charts contained four different
domain distinctions (types): voice menus, prompts , messages , and
decisions. Each node in the flow chart had a corresponding entry in the
table representation. Correspondence was indicated using a new two

letter.two digit number naming convention where the two letters
indicate the design subcomponent; e.g., PO.01 indicates the first node in
the personal options design subcomponent. The tables contained
design information not found in the flow chart (such as dynamic

conditions and help messages) and redundant information (such as
access from and outflows which are represented using links in the flow
chart).

The two representational systems – textual versus flows and tables –
coexisted for about one year. Other designers were reluctant to switch
for two reasons. First, several had long-term relationships with their
vendors and marketers and were reluctant to switch representations on
them. Second, constructing the flow charts was tedious and time-
consuming. Even simple design modifications were cumbersome
since, using existing tools, links (arrows) did not track the movement
of nodes (boxes) and had to be manually redrawn.

By mid-1992, several events led to the emergence of flows and tables
as the primary design representations. First, new versions of flow
charting tools made it much easier to construct the flow chart
representation. Second, new designers were hired to embark on a long
series of enhancements to an existing product. These new designers
readily adopted the flow and table representations.

The new designers began to elaborate on the flow and table
representations (Figure 2.3d). New domain distinctions emerged such
as inputters, error handlers, and digit collectors. Some designers began
to use patterns such as solid versus dashed lines to differentiate
between different types of flow control. The layout of the table
representation has been redone to emphasize the different kinds of
voice output (standard prompts, rapid prompts, and help prompts

26

(outflow for 0). The vendor liked the formality of the table
representation and suggested ways to formalize the representation of
dynamic context using pseudo-code.

It would be a mistake to assume that these current flow chart and
table representations contain all relevant domain distinctions and
relationships; i.e. that these are the final "picture" and will never
change. There are many aspects of this domain that are still being
developed and will be furthered refined as the result of ongoing design
activities. Also, further signs of major change are looming on the
horizon. One designer has started working with a new vendor who (so
far) has not required the table representation. In another recent design,
the marketers were dissatisfied with the increasing complexity of the
flow charts; they think simplification might be in order.

As shown in Figure 2.3a-d, the design representations and the

distinctions these representations depict have continually evolved

throughout the three years that this study encompasses. These

evolutionary patterns of change included both periodic upheavals and

continual incremental elaboration and refinement. The voice dialog
domain, as practiced by this design community, continually evolved as
existing distinctions were refined and new distinctions emerged and
were incorporated into existing design representations. However, the
domain also underwent periodic upheavals as new representational
systems were introduced, either to augment existing ones or to replace
systems that no longer met design needs.

WHAT IS A DOMAIN?

The previous three stories provided a flavor for how design
communities construct their “domain” over time. However, the
question remains, what is a domain? Central constituents of the
domain are the tools and practices used by a design community to
create products pertinent to solving their design problems. But tools,
practices, and products do not by themselves constitute a domain. The
essential aspect of a domain is the shared understanding between

27

domain practitioners that enables a community to use tools in a
practiced way to create products in a consistent manner. For instance,
in the voice dialog design story, off-the-shelf software tools such as
flow charting packages and databases were used in a constrained way to
create design representations or products (e.g., flow charts and tables)
with a very specific content and look.

This shared understanding binds tools, practices, and products into
a domain. I call this shared understanding a “design language” (see
Figure 2.4). Over time, design languages take on a tangible form: in the
stories we observed how domain distinctions gradually emerged
through practice and became incorporated into progressively elaborate
and standardized design representations. Design languages consist of a
vocabulary of domain distinctions, one or more representational
systems highlighting important aspects of and relationships between
these distinctions, and evaluative knowledge for judging or assessing
the qualities of a design product.

Practices

Tools

Products

Design
Languages

Figure 2.4: Relationship between design languages,
products, tools, and practices.

Tools, practices, and products can take a variety of forms
as indicated by their surrounding circles. It is the design
language (shaded triangle) that binds together the tools,
practices, and products into a domain.

28

Vocabularies of domain distinctions are the core constituent of any
design language. In natural language, “distinctions” are articulated
objects and qualities that arise through recurrent patterns of breakdown
in concernful activity [124]. Likewise, in design languages, domain
distinctions are articulated objects and qualities that are important for
expressing solutions to re-occurring design problems. In the voice
dialog design story, designers articulated distinctions such as voice
menus, prompts, and messages. In the multimedia title story, designers
articulated distinctions such as visions, elaborations, and scenarios.

Representational systems are visual formalisms that have been
tailored to support the work practices of a specific design community.
According to Nardi, visual formalisms are diagrammatic displays with
well-defined semantics for expressing relations and these semantics are
broadly applicable across many domains [79]. She cites generic table and
flow chart representations as examples of visual formalisms. The
visual formalisms observed in this work were continually tailored by
the designers themselves over extensive periods of time. They were
tailored such that their look and structure were modified to make
important domain distinctions and relationships visually apparent.
For instance, the notion of a hypermedia outline is an example of a
generic visual formalism; but the specific hypermedia outline used by
the multimedia designers is an example of a tailored representational
system. These designers extensively modified the outline to reflect
their domain-specific vocabulary (e.g., scenarios, visions, elaborations,
etc.) and to emphasize the relationships between the hypermedia
outline and the template representation.

The third constituent of design languages is articulated evaluative

knowledge concerning what constitutes a good design. Evaluative
knowledge are criteria and constraints that designers use to judge the
quality and deficiencies of a given design with respect to certain goals
[8]. As such, this knowledge is not tied to a particular representational
system but rather a good system will make it easier for designers to
evaluate their design. Neither the protocol analysts or the multimedia
title designers had explicitly articulated any heuristics. However, the

29

voice dialog designers had articulated numerous design heuristics,
namely in the form of lengthy user interface guideline documents.
These documents contained heuristics such as “voice menus should
not contain more than four prompted menu items” or “menu
commands should be in ascending, numerical order.” In their practices,
creating designs consistent with the existing product line is an
important design heuristic. However, what it means for designs to be
“consistent” is not explicitly articulated.

Over time, these three design communities all evolved increasingly
well-defined design languages that supported their specific design
practices. Design languages are well-defined when practitioners use
them to create products with a reproducible, consistent look and
structure that are reliably interpretable by members of the design
community. In the following section, we will examine the processes by
which well-defined design languages come into being.

THE EVOLUTION OF A DOMAIN

In the previous section, I argued that well-defined design languages
are the crucial element binding tools, practices, and products of a
specific design community into a “domain”. Domain construction

refers to the processes by which well-defined design languages come
into being. In this section, we will look across the three design stories to
derive a better understanding of these processes. First, we will examine
the processes by which tacit understandings evolve into articulated
domain distinctions. Second, we will look at how and why design
communities evolve generic visual formalisms into multiple,
interrelated representational systems. Finally, we will look at how
changes in tools, products, and practices lead to both evolutionary and
revolutionary changes in existing design languages.

From Tacit Understandings to Articulated Domain Distinctions

Polanyi [88] noted that professionals know more than they can say;
i.e., that much professional knowledge is tacit in nature. Schoen, in his
studies of professional practice, also argued that professional action is

30

highly tacit and situated [103]. However, Schoen observed that
occasionally during the course of design, situated action breaks down
and designers engage in periods of “reflection-in-action” during which
new explicit knowledge may be created or existing knowledge applied
in novel ways.

Stahl carried these arguments further in his philosophical analysis
of the role of interpretation in design [111]. Stahl argued that a central
part of the design process is the successive transformation of
information from tacit preunderstandings to codified knowledge.
Specifically, he claims that during the course of design, knowledge may
go through the following transformations:

(1) Designers begin with a tacit feeling that they have
uncovered a design problem or opportunity.

(2) This tacit preunderstanding is interpreted by the designers
in a specific way, resulting in an explicit understanding of
the problem or opportunity.

(3) Designers then make assertions about the design issue;
these externalized expressions in language enable the issue
to be discussed and communicated.

(4) To preserve their interpretation of the issue, designers
predicate this knowledge using some semi-formal or
formal method such as IBIS resulting in codified design
knowledge.

Stahl further argues that design knowledge existing at the tacit
preunderstanding and the explicit understanding stages is in the realm
of individual human understanding. It cannot be shared by a design
community until it is transformed to externalized expressions or
codified knowledge.

In the two stories for which we have process data, the protocol
analysis and the voice dialog design story, we observed the basics of
Stahl’s interpretative process. However, domain distinctions were the

31

primary form of design knowledge observed to be externalized and
codified. In both stories, individual reflection-in-action and pressures
to communicate effectively with other design stakeholders appeared to
drive the articulation of domain distinctions.

In the beginnings of the protocol analysis and voice dialog stories,
the design representations consisted mainly of ill-defined, natural
language text documents that contained very few, explicitly
distinguished domain distinctions. The early voice dialog textual
specifications only had three distinctions: messages, phrases, and voice
menus. The first protocol analysis representation did not contain any
domain distinctions.

Some distinctions found in later representations are entirely
missing from early representations. Other domain distinctions found
in later representations were only tacitly represented in early
representations in the sense that important objects and relationships
were often buried, unmarked and even unnoticed, in the middle of
paragraphs. In the voice dialog design case, caller input, such as the
system pausing for a fixed period of time while the caller enters a 4
digit security code, is designated by a special inputter object in later
design representations. However, this information is only implicitly
represented in earlier representations and must be pieced together by
reading surrounding phrases and error messages. This lack of explicitly
distinguished domain distinctions reflected the tacit nature of the
designers’ existing preunderstandings.

As the designers repeatedly practiced their craft, domain distinctions
emerged in the sense that designers began to explicitly signal their
presence using special notations. Figures 2.1 and 2.5 illustrate the
distinctions that emerged during the protocol analysis and voice dialog
design stories respectively. Towards the end of the stories, all three
design groups had developed vocabularies consisting of several
articulated domain distinctions.

32

Menus
Prompts
Messages
Decisions
Input
Error Handlers
Digit Collectors

92-94

Menus

Prompts
Messages

Decisions

91-92
Phrases
Messages
Menus

Pre 91

Figure 2.5: Evolution of domain distinctions in the voice
dialog community from 1991 through 1994.

In Stahl’s analysis, the primary mode of externalized expression is
naming; i.e., assigning a meaningful identifier to a design concept. His
transformation stages indicate that naming is a precondition to
codification of knowledge. Certainly naming of domain distinctions
was an important process in our design stories. However, it was not
necessarily a precondition to codification. An equally important process
we observed that combined aspects of externalized expression with
codification was graphical refinement, a process whereby designers
incrementally elaborate on the look of a distinction within the context
of a particular representational system. In our design stories, many
times graphical refinement occurred before a distinction was named
and in some cases, the distinction being elaborated on was never
explicitly named. For instance as shown in Figure 2.1, the protocol
analysts had performed many graphical refinements by the fourth
analysis but did not begin to name these distinctions until later
analyses.

The protocol analysis story provides a good example of graphical
refinement (Figure 2.1). By the fourth analysis, the analysts are
articulating domain distinctions graphically using formatting features
such as bold, italics, and different size fonts. At that point, none of the
distinctions distinguished graphically are explicitly named. By the
ninth analysis, many of those distinctions are named but new
unnamed distinctions are also beginning to emerge graphically.

33

Thus, in all three design stories, domain distinctions were
articulated by being named and being given a specific graphical look.
Graphic looks can serve many purposes. At the shallowest level, they
serve to visually distinguish between the different domain
distinctions. At a deeper level, they also convey crucial information
about the particular distinction such as its components, its function or
behavior, or its relationship to other distinctions. In the multimedia
case, color and fonts were used to indicate relationships between
distinctions (e.g., elaborations and visions) across different design
representations; specifically to reinforce the reminder that these
distinctions should be kept consistent across representations. The voice
dialog designers had the most developed distinctions in terms of using
graphic looks to convey detailed information concerning function and
components. For instance, the look of voice menus in the flow chart
indicate both modality and component information. Figure 2.6 shows
how the graphic look of voice menus in the flow chart representation
evolved over time to show more behavior and component
information.

To change your security
code, press 1. To change
your recorded name, press
2. To disconnect, press *.

Security Code 1

Personal Options

PO.01

2

*

Greeting

Disconnect

Security Code

Personal Options

Greeting

Disconnect

1

2

*

PO.01

1991 1994

Figure 2.6: Evolution of the voice menu representation.

When flow charts were first introduced in 1991, voice
menus had a very simplistic look and content. By 1994,
voice menus have evolved an elaborate look and content:
shading indicates voiced menu titles, miniature touch
tone buttons emphasize legal key presses, and the menu
prompt is shown.

34

From Visual Formalisms to Interrelated Representational Systems

The three stories illustrate how representational systems are central
to the design languages used by the design communities and how a
large part of the communities’ activities revolved around the creation
and continual modification of their representational systems. These
observations correspond with empirical findings in other design
domains. Schoen’s analysis of professional designers such as architects
revealed how a major part of a designer's job is to create and evolve
external representations of the design being constructed [103]. In
software design, an important activity for expert designers is figuring
out what representational systems to use or even creating new ones if
necessary [15].

In all three stories, initial generic visual formalisms such as flow
charts, tables, or text documents were continually tailored by designers
to better support their specific design needs. In the previous section, we
saw that an important part of this tailoring process is the articulation of
domain distinctions in the context of design representations. Over
time, the representations in all three design stories contained
progressively more domain distinctions depicted with greater levels of
detail.

A second aspect of the tailoring process is the refinement of other
aspects of the representational systems such as layout and other
markings that are not part of the design language’s vocabulary. In the
protocol analysis case, the analysts’ refined the basic protocol text
representation by parceling the protocol text into more and more
subareas with distinct header information (see Figure 2.1). In the voice
dialog design story, the initial flow charts were difficult to read due to
the large number of arrows connecting nodes. Designers began to
experiment with various refinements to reduce the number of arrows.
Specifically, some designers only showed backwards flow arcs when the
flow behaved in a non-standard way. All designers began to use “go to”
labels to replace backwards arcs that would cross large areas of the
diagrams. Additionally, while the distinctions contained in the voice

35

dialog table representation stayed about the same, the layout of the
table representation changed considerably over time to increase the
emphasis on the various voice recordings associated with each item
(see Figures 2.3 C-D). These refinements are analogous to the
development of secondary notations in CAD design observed by Petre
[86]. According to Petre, secondary notations are valuable layout clues
that are not part of the formal notation that exhibit relationships and
structures that would otherwise by less accessible [86]. In our stories,
many layout practices that began as informal secondary notations
eventually were incorporated as explicit entities into the
representational systems.

A third aspect of the tailoring process is the creation of multiple,
interrelated representational systems to support design construction
and communication. In the multimedia and voice dialog design
stories, multiple external representations were essential to the overall
design processes. The multimedia designers constructed two
representations – a hypermedia outline and presentation templates.
The voice dialog designers constructed four major representations –
flow charts, tables, simulations, and test plans.

Multiple design representations are required for several purposes.
First, representations at different levels of abstraction support design
construction by enabling designers to engage in opportunistic design.
Opportunistic design refers to how designers interleave decisions at
various levels of abstraction during solution decomposition as a
consequence of the ill-structuredness of problems in the early stages of
design [48]. The two representations used by the multimedia designers
illustrate representations supporting opportunistic design. The
hypermedia representation was targeted at higher-level design issues
such as planning the overall structure and content of the title. The
presentation templates supported designing the more detailed form or
look of the title. The lead designer reported that these two
representations were used continually throughout the project’s design
process.

36

Second, design activities in the workplace usually involve several
different stakeholders from a variety of backgrounds [101]. Often,
designers must construct several external representations to facilitate
communication and collaboration with each stakeholder group [20].
Several researchers claim that this process of developing shared
artifacts such as external design representations is not only desirable,
but fundamental to the design process. These researchers note that
design is really an iterative process of cooperative learning between
stakeholders and such shared representations are crucial for providing
a frame of reference in which to ground successive learning cycles [60,
84].

In our three design stories, we saw that improving communication
with other design stakeholders was a major factor motivating the
creation of and changes in representational systems. The lead
multimedia designer reported that he created the hypermedia outline
because he needed a representation to take over to his colleagues in
environmental design that facilitated iterative, collaborative design.

The voice dialog designers provide an extreme example of creating
representational systems primarily to facilitate communication with
other stakeholders. Each of their four major representations is targeted
at the needs of a specific stakeholder group. The flow charts are the
primary representation and are used by all design stakeholders, but
their particular content is inspired by the needs of the marketing group
and customer support. Both the early and the later, more complex table
representations were created to satisfy the vendor organization. The
simulation representation, which is accessible via a standard
telephone, facilitates long-distance collaboration with the marketing
group which resides in a different state. And the test plans are
constructed primarily for testers which are often contractually hired to
verify that the delivered product meets the design specification.

Though each representation emphasizes different aspects of the
design, many domain distinctions are shared by several
representations. Figure 2.2 shows some of the distinctions shared by the

37

hypermedia and presentation representations in the multimedia
project. This sharing of distinctions results in many complex
relationships and dependencies between different design
representations. Figure 2.7 shows the different types of relationships
between the flow chart and table representations in the voice dialog
design case.

Relationships between representational systems fall into four main
categories. Correspondence relationships indicate which parts of
different design products are related; no attempt is made to relate to the
content of the distinctions. In Figure 2.7, the entire Personal Options
menu representation corresponds to the personal options table entry.
Equality relationships indicate which distinctions and their subparts
should have identical content. In Figure 2.7, the prompt in the flow
chart menu and the standard prompt in the table should be identical.
T r a n s f o r m a t i o n relationships indicate that content in one
representation can be mechanically derived from content in the related
representation without recourse to domain-specific knowledge. For
instance, the outflows in the table representation can be derived
through the transformation process of noting the identifiers of nodes
connected by outgoing links (Figure 2.7). Heuristic relationships refer to
how content in one representation is related to content in another
representation through the application of domain-specific knowledge.
The rapid prompt in the table representation in heuristically related to
the prompt in the flow chart representation.

Establishing , evolving , and maintaining relationships between
representations is a large part of the design process. Some relationships
are established when the representational systems are initially created.
For instance, the basic relationships between the flow chart and the
table representation were established at their creation in 1991 (see
Figure 2.3c).

38

To change your security
code, press 1. To change
your recorded name, press
2. To disconnect, press *.

Security Code 1

Personal Option s

PO.01

2

*

Greeting

Disconnect

PO.01

PO.02

Your current security
code is 1234. Enter
four digits after the
tone.

Standard Prompt OR
Message Text:
To change your security code, press 1.
To change your recorded name, press 2.
To disconnect, press *.

Number: PO.01

This menu allows the user to select to either change their
security code or their recorded greeting.

Rapid Prompt:
Security code, 1.
Recorded name, 2.
Disconnect, *

Inflows: Outflows:MM.01
PO.02
PO.10

PO.01

Name: Personal Options

Transformation

Equality

Heuristic

Figure 2.7: Four types of relationships.

The entire Personal Options Menu in the flow chart
corresponds to the related entry in the table representation. In
addition, there are equality , transformation , and heuristic
relationships between different distinctions in the flow chart
and table representations. See text for more details.

Many relationships evolve as representational systems co-evolve to
better support design construction and communication processes. The
correspondence relationship between the menu prompts in the flow
chart and the table representation could obviously not exist until menu
prompts were added to the flow chart representation in 1992 (see Figure
2.3d). In the multimedia case, the steps required to transform visions
and elaborations in the hypermedia outline into their final appearance
were not completely known until the design of the form was finalized
towards the end of the project. Representational systems also co-evolve
to emphasize or make apparent important relationships. A good
example of this phenomena is how the look of visions and
elaborations in the hypermedia outline were made to match the same
distinctions in the presentation template to lessen the multimedia
designers’ cognitive load.

39

When engaging in opportunistic and iterative design, maintaining
relationships across representations is a large part of the overall design
process. As designers modify one representation, related distinctions in
all other representations must be modified to ensure design
consistency. As an example from the voice dialog case, imagine that
usability testing reveals that most callers want to hear their existing
security code before they change it. The designer decides to add a new
confirmation message between the Personal Options menu (PO.01) and
the change security code prompt (PO.02) (see Figure 2.3d). This requires
the designer to adjust all subsequent identifiers to make room for the
new message. Additionally, each table corresponding to a changed
entity in the flow chart must also be updated with the new identifier
and all the inflow /outflow lists must be reworked. If the designer
decides that this change should undergo usability testing, the design
simulation must also be modified. Finally, any test plans traversing the
path containing the new message must then be updated.

In summary, tailoring generic visual formalisms to create
representational systems is an important domain construction process.
Tailoring activities include the articulation of domain distinctions, the
refinement of secondary notations and other layout considerations,
and the development of multiple, interrelated representational
systems to facilitate design construction and communication with
other stakeholders in the design community.

From Ill-defined to Well-defined Design Languages

The design languages used by the three communities went through
a maturation process as they progressed from being ill-defined to well-
defined. In the voice dialog case, the original textual specifications were
ill-defined because important aspects of the domain were not made
explicit by the representation. Key interface features were buried in the
middle of paragraphs and this resulted in design errors and
communication breakdowns. As designers recognized common
breakdowns in the design process, they created objects and
representations to overcome these breakdowns. The outcome was a

40

progression towards well-defined design languages that made explicit
significant domain objects and their relationships. These well-defined
design languages were more consistently reproducible and
interpretable by the design community.

In all three stories, as practitioners worked, they constructed their
domain by refining existing distinctions and representations and by
creating new distinctions and representations. Sometimes these new
representational systems augmented existing ones; other times, they
replaced existing systems that no longer met design needs. Thus, the
progression towards well-defined design languages was not a simple,
accretionary process where more and more distinctions were
articulated and more representational systems were created. Rather,
periods of elaboration on existing design languages were punctuated
with periods of revolutionary upheaval as existing design languages
were replaced. We observed periods of elaboration and upheaval in
both stories for which we have process data. The protocol analysts
quickly replaced their initial full page, single column representational
system when they realized it did not support their design needs; this
was followed by a long period of elaboration on the new, two column
representation (see Figure 2.1). The voice dialog designers went
through a radical change in their design language when textual
specifications were replaced with flow charts and tables. This change
was followed by a long period of elaboration as the content and look of
the flow charts and tables were refined (see Figure 2.8).

The concept of genres of organizational communication [126]
provides insights into these elaboration and upheaval episodes.
According to this concept, the nature and role of communication is
always evolving as individual actors interact with social institutions
over time. Genres of organizational communication are widely
recognized types of discourse (e.g., letters, memoranda, audit reports)
that are characterized by structural, linguistic, and substantive
conventions or rules. A genre has common subjects (i.e., content) and
common formal features (e.g., graphic look and layout) that make it
recognizable and interpretable by others; these shared conventions and

41

rules are the by-products of a history of negotiations among social
actors in a community. Genres emerge within a particular context and
are reinforced; i.e., their rules for consistent reproduction are
strengthened, as a situation re-occurs over time.

Design products can be considered a form of organizational
communication. Design languages are the genre rules that define a
product’s content and look and enable the product’s consistent
production and interpretation. These genre rules arose from
negotiations over effective communication within the design
communities. A good example is how one voice dialog designer
pioneered the flow chart and table representations because he feared
other stakeholders were no longer reading the textual specifications.
Initially, the marketing group was skeptical concerning the merits of
the new representations. However, after a period of continual
modifications, often at the marketers’ behest, the group now prefers the
new representations. Sometimes other stakeholders suggested changes
to products, such as the request from the vendor organization to
augment the textual specifications with phrase tables.

Yates [126] observed the basic processes of maintenance, elaboration,
and modification in the evolution of “memos” as a communicative
genre over the last one hundred years. Maintenance occurs when
individuals enact genres using the rules of substance and form without
alteration. Elaboration occurs when individuals consistently but
slightly adapt genre rules to reflect new conditions. Modification of
genres occurs when individuals depart significantly and persistently
from existing rules, such as when prose reports are replaced by tabular
numeric reports in organizations.

We observed all three processes in our stories. Figure 2.8 tracks the
genres used by the voice dialog designers over a three year period. The
primary difference between our design stories and Yates’ findings
seems to be the rate of change. In Yates study of memos, genre
maintenance was the dominant process. In innovative and dynamic
design domains, genres (i.e., design languages) evolve at a faster rate

42

and therefore elaboration and modification (i.e., revolutionary
upheaval) are the dominant processes. In design languages, elaboration
processes consists of vocabulary articulation via naming and graphical
refinement and the establishment of new relationships between
representational systems. Modification processes involve creating new
representational systems to either augment, co-exist with, or replace
existing systems.

After 1994Pre 1991

In troduct ion of
flows and tables as
p r i m a r y
re p r es en t at iona l
systems (mid 1991)

Emergence of flows
and tab les as
p r e f e r r e d
r ep r e se n ta t iona l
system (late 1992)

C o n t i n u e d
elaborat ion of
flows and tables

Mainte nance
o f t e x t ua l
specifications Coexistence o f

d i f f e r e n t
represe ntational
systems

Elaboration of
t e x t u a l
specifications by
a ugm e n ta t i on
w it h si mp l e
tables and flows

Modification of Existing Genre

Figure 2.8: Patterns of change in design languages.

The design language used by the voice dialog design community
went through cycles of elaboration and modification over a three
year period from 1991 to 1994.

SUMMARY

In summary, the three design stories showed how:

• Designers gradually evolve specialized representations
tailored to their particular needs by continually refining their
form and their content.

• Design communities created multiple, interrelated
representations that emphasized different aspects of the
design.

• Periods of elaboration on existing representations were
punctuated with periods of revolutionary upheaval as
existing representations that no longer suited practices were
radically modified or replaced.

I argued that domains are not static entities that objectively exist,
but instead are dynamic entities that are constructed over time by
design communities. Domains consists of design tools, products, and
practices bound together by design languages. Domain construction

43

refers to the processes, illustrated in the stories, by which well-defined
design languages come into being.

In this chapter, I concentrated on the complex relationships between
design products, design languages and design stakeholders. In design
communities, individual communicative actions (e.g., construction of
design products) both shape and are shaped by socially constructed
genres (e.g., design languages). Such recursive interactions between
human actors and social institutions are referred to as adaptive
structuration processes [83, 126].

However, another factor influencing the structuration process is
technology. According to adaptive structuration theory: “humans
create technology with particular physical features, and in their
encounters with those technologies, behave in ways that are partly a
function of pre-existing patterns (i.e., genres) and partly a function of
the opportunities and constraints made manifest in the technology,”
page 156 [35]. This co-adaptive phenomena is also documented in
Mackay’s studies of the introduction of customizable tools into work
groups. She observed people to not only adapt tools to better support
their practices but also to adapt their practices to make more effective
use of the tools [68]. Thus, what ultimately constitutes a domain is the
result of a co-evolutionary process between design tools, products,
practices, and design languages. The remainder of this thesis will focus
on tools, exploring how two specific models of computational tools
may hinder or support domain construction processes.

45

CHAPTER 3

DOMAIN CONSTRUCTION FRAMEWORK

In Chapter 1, I argued that small, independent design teams
working in dynamic domains are increasingly important segments of
the economy that could benefit from computational support. However,
this raised the question of how to strike a balance between supporting
use and supporting change; i.e., how much and what types of flexibility
do design environments need?

Chapter 2 investigated the flexibility required. Analyses of three
design communities characterized the patterns of change in design
tools, practices and products. These analyses showed how design
communities gradually construct their domain by defining and
refining domain objects, creating and evolving multiple
representations, and establishing complex relationships between
objects and representations. This process was labeled d o m a i n

construction.

This chapter analyzes in detail the subprocesses involved in
domain construction. These analyses help to deduce requirements
indicating the ideal functionality that design environments should
provide in order to strike a balance between supporting use and
supporting change. However, the ability of environments to support
these processes depends upon several aspects of the overall
computational model the environment is based on, such as the
underlying data model, provided integration mechanisms, supporting
infrastructure, and software architecture. Together, these processes, and

the aspects of computational models affecting them, comprise the

domain construction framework. The purpose of this chapter is to

46

Maintenance:
 use without change

Elaboration:
 use with slight adaptions

Modification:
 use with radical modifications

EVOLUTION of Design Language

Des
ign

Pro
du

ct

Des
ign

Pro
du

ct

Construct

Evaluate

USE of Design Language

Iterate

Figure 3.1: Relationship between use and evolution of
design languages.

describe the basic features of this framework. In Chapters 4 though 6,
this framework will guide our analyses and comparison of different
design environments.

This chapter begins by reviewing how high-level domain
construction processes involve the use and change of design languages.
Next, what I mean by “computational model” is discussed. The core of
this chapter examines the processes involved in domain construction –
use, elaboration, and modification – looking at what are their
subprocesses and how these subprocesses depend on various aspects of
computational models.

DESIGN LANGUAGE ENACTMENT

Our empirical analyses indicated that the central constituent of a
domain is the shared understanding between domain practitioners that
enables a community to use tools in a practiced way to create design
products in a consistent manner. This shared understanding was called
a “design language.” Design languages consist of a vocabulary of
domain distinctions, one or more representational systems
highlighting important aspects of and relationships between
distinctions, and evaluative knowledge and processes for judging or
assessing the qualities of a design product. While creating individual
design products (use), designers change the design language used to
create these products (evolution) (see Figure 3.1).

47

Use refers to the basic iterative processes of constructing design
products, evaluating these products against various design goals, and
feeding the results of evaluation back into the next construction cycle.
The design language guides the use of tools to create design products in
a consistent manner.

However, the world the designers operate in is not static; designers
continually refine design products and thus evolve the underlying
design language. Three basic patterns of evolutionary change to design
languages were identified and characterized: maintenance, elaboration,
and modification. Maintenance occurs when individuals enact design
languages using the (sometimes implicit) rules of substance and form
without alteration. Elaboration occurs when individuals consistently
but slightly adapt design languages to reflect new conditions.
Modification of design languages occurs when individuals depart
significantly and persistently from existing rules, such as when prose
documents are replaced by tabular representations.

Domain construction refers to the processes involved in these three

modes of design language enactment. These are the processes that
design environments need to support in order to simultaneously
accommodate both use and change. In this thesis, maintenance is
subsumed under the category of supporting use. Supporting change is
divided into the two subcategories of supporting elaboration and
supporting modification. Together, elaboration and modification
define a particular form of design-in-use [56] specific to design
environments.

DEFINITION OF A COMPUTATIONAL MODEL

The processes of use, elaboration, and modification are complexly
related in that supporting one process sometimes comes at the expense
of another. Thus, it will be difficult for any particular design
environment to support all processes equally well. As we will see in
the following chapters, the ability of environments to support these
processes depends upon several aspects of the overall computational

48

model. In this thesis, a two-part, socio-technical definition of a
computational model is adopted. On the technical side, a
computational model consists of a particular configuration or
architecture of tools, data, infrastructure, and integration services. On
the social side, a computational model may require special practices,
skills, and knowledge by those using it. Each of these aspects will be
introduced below.

Tools are the various components required to construct design
products. Thus, tools minimally support creating and editing
representational systems.

Data , in the most general sense, refers to the way information
concerning domain objects is represented in the computational model.
We will consider two major types of data representations: domain
models and underlying data models.

Issues surrounding domain models include the representation of
presentation (i.e., look) and semantic information (i.e., content and
behavior) and the ability of the domain model to be modified. In this
dissertation, domain models representing mostly presentation
information are referred to as “shallow” models; domain models
representing additional semantic information are referred to as “deep”
models.

The underlying data model refers to the formalism used by the
domain model such as the abstract data type [37] or object-oriented
formalism [6, 112, 113]. Issues to be considered include the flexibility of
the underlying formalism with respect to: (1) representing domain
information at different levels of formality and (2) support for
modifying (i.e., adding and removing) domain information. Shipman
defined formalization as “the process of identifying machine-
processable aspects of information” (p.285) [107]. He classified
information according to three basic levels of formality: informal,
semi-formal, and formal. Informal information is not machine-
processable; an example of informal information is a text document.

49

With semi-formal information, often the structure but not the content
is machine-processable. An example of semi-formal information is
design rationale in the gIBIS format [14]. With formal information,
both the structure and the content is machine-processable and an
example is a domain model represented in an object-oriented
formalism.

Integration services refers to the interfaces, mechanisms, or
programming languages available for integrating or linking domain
information across design product and tool boundaries [24]. Issues to be
considered include the granularity of integration supported; i.e.,
collections of objects, single objects, or parts of objects.

Infrastructure refers to the common parts of the computational
model shared by tools or other services. Issues to be considered include
how much of the domain model and integration services are provided
by the infrastructure (and therefore shared by all the tools) versus
provided by individual tools.

Architecture refers to the configuration or structural pattern of
components (such as tools, data, and infrastructure) and connectors
(such as integration links) [37, 105]. Issues to be considered include how
robust the overall configuration is; i.e., can parts be significantly
changed without adversely affecting other parts.

In addition to the technical aspects of a computational model, we
will also consider the social or organizational aspects. For instance,
often times, enabling practitioners to enrich or modify their
computational environments requires new skills or knowledge on
their part [36, 38, 80, 119]. As noted by Guindon, extending or
programming software typically requires integrating knowledge from
many different problem domains [49, 51]. Thus, when analyzing what
knowledge or skills are required by a model, I will attempt to classify
the required knowledge into categories such as application problem,
programming language, tool architecture, etc. Examining the skills and
knowledge required in this manner will better enable us to postulate

50

what organizational support mechanisms are required or would
facilitate domain construction processes.

Thus, the computational model aspects to be considered in this
thesis are:

• Which p r o c e s s e s are supported or favored by the
computational model?

• What technical aspects of the computational model help or
hinder a particular process?

• What new skills or knowledge are required by the
computational model?

• Is it likely that designers possess the necessary skills and
knowledge or is organizational support required?

In the following sections, each of the domain construction processes
of use, elaboration, and modification will be discussed from two
perspectives. First, the detailed subprocesses involved in each of these
categories will be derived from our empirical studies, other existing
design studies, and theories of design. Second, the aspects of
computational models that may affect these subprocesses are
enumerated and questions and issues to be considered in the following
chapters are posed.

SUPPORTING USE

In their daily work, designers use design languages to create design
products. Use of design languages may be tacit; i.e., the rules of
substances and form may be implicit and unstated. Or, use may be
explicitly understood such as when a group shares standardized design
representations. Use can even be formalized such as when tools
support the creation of specialized, machine-interpretable design
representations. Subprocesses of use include constructing individual
design products, evaluating designs, and iterating the design (Table 3.1).
Each of these subprocesses will be considered in turn.

51

Constructing

The basic design process followed by the communities in Chapter 2
was construct-evaluate-iterate. As we saw in Chapter 2, the design
products constructed in these communities were based on a range of
ill-defined to well-defined design languages. When design languages
were ill-defined, the design products created were informal (not
machine interpretable) design representations such as prose
documents. As design languages became more well-defined, more
explicit and even formal representations such as database tables began
to emerge. And, as shown in both the multimedia and protocol
analysis stories, design products often contain mixed informal and
formal elements.

Table 3.1: Subprocesses and computational model
considerations in supporting “use”.

Supporting USE

Domain
Construction
Processes

Constructing individual
design products.

Evaluating designs.

• inspecting

• analyzing

• relating

• envisioning and
experiencing

Iterating the design by
continually changing
design products.

• maintaining consistency

Computational
Model
Considerations

• Can the tools or
infrastructure be enriched
with a domain model at the
presentation level?

• Does the data or domain
model support the full
formality spectrum?

• Do the tools support
mixed palettes for reusing
design languages?

• Can the tools or
infrastructure be enriched
with a domain model at the
semantic level?

• Can tools or the
infrastructure be enriched
with awareness of
relationships between
design products; i.e., are
there integration services?

• Does the provided
integration services
include notification
mechanisms signaling
when changes have been
made?

To promote the use and maintenance (i.e., use without change) of
design languages, individual designers should be supported in
constructing representations using existing domain vocabularies as
building blocks. For instance, the voice dialog designers constructed
design products from vocabulary items such as voice menus, prompts,
and messages into flow charts. Minimally, these vocabularies must be
formalized at the presentation level and made available for reuse. For
instance, a prompt vocabulary item from voice dialog design could be

52

defined as a rectangle with embedded text. Using domain vocabularies
as building blocks has been theorized to have several benefits. First, it
supports practitioners in conceptualizing their problem by giving them
pertinent objects to interact with instead of low-level system-oriented
primitives [28, 64, 99]. Second, it facilitates beneficial iterative design
construction [41, 48] by not requiring practitioners to continually build
up domain-specific units from low-level primitives [64]. However, the
challenging issue is that sometimes all or parts of design languages are
ill-defined. Thus, tools supporting constructing need a flexible data
model capable of accommodating domain vocabularies at mixed levels
of formality.

Evaluating

Designers do not simply construct representations, they also
evaluate designs to see if design goals are being met by the artifact being
constructed. Evaluation refers to the activity of analyzing a design to
see if it conforms to various criteria and constraints [8]. For instance,
the voice dialog designers continually evaluated their design
representations for compliance with existing user interface guidelines.
These designers used a combination of visual inspection and mental
simulation to aid in their evaluation process. For experienced
designers or small designs, these practices work fine. However, as
designs grow large and complex, relying on visual inspection can be
problematic as important features and relationships become difficult to
spot. Relying on mental simulations can also be problematic. In her
studies of software designers, Guindon found that designers had
difficulty simulating designs due to cognitive limitations with
mentally managing relationships between parts of the design [51]. Also
not all designers are equally experienced; in the voice dialog
community, many newly hired designers lacked detailed knowledge of
the interface guidelines and thus did not know some of the relevant
evaluation criteria.

Also, in all communities, a single design representation was
insufficient to support their design process. As noted by Norman, a
good representation emphasizes the important objects and

53

relationships and de-emphasizes the less important things [82].
However, there are many important aspects of any particular design
and no single representation can show them all equally well. As a
result, these communities created multiple representations that made
different aspects of the design more inspectable and readily apparent.
However, multiple representations created an evaluation burden; i.e.,
members in all communities reported that going back and forth across
the representations was hard work, both manually and cognitively.

Thus, as noted by others, relying solely on experience and practices
is fraught with potential error and designers could benefit from tools
that support their evaluation activities [9, 10, 27, 29, 50, 78]. Tools
supporting evaluation can help designers with analyzing design
representations, relating design representations, and simulating the
design. To support analyzing and simulating, design environments
need to be able to parse and execute design products; this requires
design products to be machine interpretable and based on a formal
model of the domain. Supporting relating also requires that the
relationships between design products be formally represented in the
design environment.

Iterating

Following an iterative design process is not only desirable [40]; it is
often necessary, because existing requirements change and new ones
are uncovered as design proceeds [15, 48]. As indicated by the
multimedia and voice dialog design stories, complex relationships exist
between the various parts of different design representations. As
designers continually reconstruct individual representations,
inconsistencies with related representations are introduced. That is,
changes in one representation trigger required changes in other
representations, a phenomena Green called “viscosity” [42]. Viscosity
hinders iterative design by imposing tedious maintenance and
cognitive burdens on designers that result in design errors [42, 51].
Thus, in addition to the evaluation burden, multiple representations
created a maintenance burden. Two design communities reported that
this maintenance burden negatively affected their iterative design

54

practices. The problem was that the tools used by the designers did not
support them at all in maintaining consistency across representations;
the tools did not support locating affected objects or making the
necessary changes.

Supporting iterative design requires design environments to
contain a formal model of both domain objects and relationships
between objects. Additionally, environments should provide a
notification mechanism to signal design products (or the tools used to
create them) that objects in them may have changed.

SUPPORTING ELABORATION

While use of design languages is a fundamental process, as we saw
in our design stories, evolution of design languages was also important
to the communities’ overall practices. This section and the next will
analyze the change processes of elaboration and modification observed
in these communities.

Elaboration occurs when individuals consistently but slightly adapt
design languages to reflect new conditions. These changes to design
languages occur all along the explicitness spectrum as designers
gradually enrich design products and tools with awareness of design
languages. Subprocesses of elaboration include articulating and

refining domain vocabularies, establishing relationships across design
representations, and extending domain models and tools (Table 3.2).

Articulating Vocabularies

As discussed in chapter 2, design communities articulate domain
vocabularies through the processes of graphical refinement and
naming. Graphical refinement and naming help designers make the
transition from tacit to explicit design languages as previously tacit
assumptions become explicitly incorporated into design products.

55

Table 3.2: Subprocesses and computational model
considerations in supporting “elaboration”.

Supporting ELABORATION

Domain
Construction
Processes

Articulating
domain
vocabularies; i.e.,
the tacit to explicit
transition:

• graphical
refinement

• naming

(e.g., defining simple
objects by
specifying name /
look mappings)

Refining domain
vocabularies; i.e.,
the explicit to
formal transition:

• object refinement

(e.g., defining
complex objects
containing multiple,
named components
by specifying
whole / part
mappings)

Establishing
relationships
within and across
design products:

• correspondence

• equality

• transformation

• heuristic

Extending domain
models and tools:

• object behaviors

• tool extensions

Computational
Model
Considerations

• How flexible is
the data model?

• Can vocabularies
be graphically
refined in situ in
design products?

• What special
skills or knowledge
are required?

• How flexible is
the data model?

• Can formalized
objects continue to
undergo refinement
at the class and/or
instance level?

• What are the
effects of
refinements on
existing design
products?

• What special
skills or knowledge
are required?

• What integration
services are
provided?

• Are integration
services provided
by individual tools
or the supporting
infrastructure?

• What granularity
of integration is
supported?

• What special
skills or knowledge
are required?

• What extension
mechanisms or
languages are
provided ?

• Can behaviors
and other
procedural actions
be associated with
domain objects?

• Can tools (menu,
commands, etc.) be
extended with new
functionality?

• What special
skills or knowledge
are required?

Graphical refinement refers to how designers incrementally
elaborate on the look of domain distinctions within a particular design
product. An example of graphical refinement is the way the protocol
analysts used fonts and formatting commands to emphasize different
aspects of their analysis document. Graphical refinement helps
designers make the transition from tacit to explicit design languages as
previously tacit assumptions become explicitly incorporated into
design products. Supporting graphical refinement requires tools to
have a rich and flexible set of formatting commands. Ideally, tools
would enable designers to refine distinctions in situ; i.e., by directly
operating on them in the design product using direct manipulation.

56

Naming enables designers to assign a meaningful identifier to a
class of distinctions. At the articulation stage, naming establishes a
mapping between an identifier and a particular look or presentation.
The voice dialog designers created names for some of the distinctions
in the initial textual specifications. These names were explicit in the
sense that they embedded a key in the textual design product specifying
the mapping between graphic looks (presentations) and distinction
types. However, some tools supported designers to go a little further
and enrich tools with awareness of these name / look mappings. These
mappings are a form of simple object or data type definition. An
example is how the protocol analysts used named styles in WORD to
classify their vocabulary items and to associate a specific look with
particular classes of items. Once defined, WO R D made these
distinctions available in a palette (pulldown menu) for later reuse. At
the most minimal level, supporting naming requires tools to enable
designers to enrich design products with keys specifying name / look
mappings. Preferably though, tools can be enriched with these
mappings. Essentially, mechanisms supporting a form of prototype
instance definition [66] are required. Prototype instance definition is a
type of object-oriented model where existing object instances are used
as templates for creating desired classes. Such a mechanism would
allow designers to incrementally elaborate on specific instances of
vocabulary items from within a design product and when ready, save
the elaborated instance as a class for later reuse. Ideally, creating such a
class should not preclude further elaborations.

Refining Vocabularies

Design communities refine domain vocabularies by incrementally
defining complex objects containing multiple, named components; i.e.
by specifying or modifying whole / part mappings. Refining domain
vocabularies in this way helps designers make the explicit to formal
transition as design products and tools are enriched with more detailed
models of design languages. The voice dialog community specified
whole/part mappings at both the explicit and the formal levels. At the
explicit level, voice menus in the later flow chart representations had
been substantially refined to have more subparts since their

57

introduction in the initial flow chart representation. These designers
went a step further and enriched their database tool, used for
constructing the table representation, with formal (machine-
processable) awareness of these whole / part relationships. We also
observed that even after objects had been formalized, their evolution
was not over. Designers continued to refine both the look
(presentation) and content of formalized domain objects by adding new
parts, modifying existing parts, and removing parts. As the voice menu
example shows, evolution was not a simple, linear march towards
progressively more elaborate objects. Many steps focused on
simplifying existing representations by removing or refining existing
parts; e.g., the “phrase” attribute in the phrase table representation
(Figure 2.3B) did not appear in the initial flow chart menu
representation (Figure 2.3C).

To support refining domain vocabularies, tools need to be able to be
enriched with domain models containing whole/part mappings. This
requires tools to have an underlying data or object model capable of
representing such relationships such as a frame [125] or object/attribute
[113] type of representation. The data model must be flexible enough to
accommodate further refinements in the form of adding new parts and
removing new parts. A critical issue is how changes to the data model
are reflected in existing design products based on previous versions of
the model; i.e., are these design products invalid or can changes to the
data model be smoothly reflected in the products?

Establishing Relationships

As designers articulate and refine domain vocabularies, they also
continually establish relationships, based on these evolving domain
vocabularies, between different design products. This differs from
maintaining relationships in that “establishing” focuses on how
relationships come into being whereas maintenance just examines pre-
existing relationships. In our design stories, several types of
relationships were identified – correspondence, equality, derivation,
and transformation. Correspondence relationships indicate which parts
of different design products are related; no attempt is made to relate to

58

the content of the distinctions, only their place in the design product.
The remainder of the relationships pertain to the content of domain
distinctions. Equality relationships indicate which vocabulary items
and their subparts should have identical content. Transformation
relationships indicate that content in one representation can be
mechanically derived from a related representation without recourse
to domain-specific knowledge. Heuristic relationships require content
in one representation to be transformed through the application of
domain-specific knowledge to create or point to related content in
another representation. These different forms of relationships reflect
different positions in the explicitness spectrum: correspondence is
primarily a tacit form of relationship whereas transformations are
more formal relationships.

In our stories, designers had established relationships of all four
types across their design products. However, it was their practices that
maintained these relationships between design products; their tools
provided no support. Ideally, integration services would be provided
for establishing and maintaining these relationships. These services
can be provided by individual tools or by the supporting infrastructure.
All of these types of relationships require: establishing, notifying, and
navigating facilities. Establishing refers to how the initial relationship
between design products is established. Notifying refers to how the
environment signals designers or tools that domain objects involved
in relationships have changed. Navigating refers to how the
environment supports moving from one end of the relationship (e.g.,
design product A) to the other end (e.g., design product B). A critical
issue is the granularity of integration supported; i.e., can relationships
be established between parts of domain objects (fine-grained) or can
only entire objects (coarse-grained) be related? In our design stories,
many relationships were very fine-grained, such as the complex
relations between the flow chart and table representations in the voice
dialog story.

59

Extending Domain Models and Tools

A fourth type of elaboration process is the extending of domain
objects and tools. Extending is very formal form of elaboration probably
involving programming. One form of extension is the ability to extend
objects in domain models with procedural attachments. Procedural
attachments can be used to give objects behaviors (e.g., make objects do
something during design simulation). Another form of extension is
modifications to design tools such as adding new functions or menu
commands. Environments supporting such extensions need to provide
an open, extensible architecture that includes a flexible data model and
powerful programming facilities, perhaps in the form of general-
purpose programming languages.

The elaboration processes described above involve issues that have
been considered under the various rubrics of end-user modifiability
[38], end-user programming [64, 80], and tailorability [70, 75]. Thus, it
should be noted that many of the issues and techniques surrounding
the subprocesses of establishing relationships and extending domain
models and tools involve open research questions in HCI and AI.
While the concepts are related, elaboration is not synonymous with
either end-user modifiability or programming. Elaboration refers to the
processes involved in both enriching design products and tools;
whereas end-user modifiability and programming deal exclusively
with enriching tools. The elaboration processes described here can be
considered a subset of the general tailoring processes identified by
Morch [75] – customization, integration, and extension – specialized
towards enriching design environments with design languages.

Our design stories show that elaboration is a predominant domain
construction process. However, if conditions significantly change in the
domain, elaboration processes may be insufficient; incremental
changes to existing design products may be inadequate for expressing
newly emerging domain concepts. When existing representational
systems significantly break down, modification processes come into
play. Figure 3.2 summarizes the processes involved in elaboration and
modification.

60

Tools

Practices

Products

From
Tacit ...

to
Explicit ...

to
Formal

Object
Model

Infra-
structure

Elaboration

Design Language
at any given point

• graphical refinement

• naming
 - name / look mappings

• object refinement
 - whole / part mappings

• integration

• extension
 - object behaviors
 - tool extensions

Modification

• experimentation

• creation

• introduction
 - augmentation
 - replacement

• retrofitting

Figure 3.2: Processes supporting the evolution of design
languages from tacit to explicit to formal.

SUPPORTING MODIFICATION

A hallmark of dynamic domains is representational instability.
While elaboration processes are the most frequent manifestation of
instability, modification is also an important factor in the overall
domain construction process. Modification of design languages occurs
when individuals depart significantly and persistently from existing
representational systems. Subprocesses of modification include
experimenting with and creating new representational systems,
introducing new representational systems into the design
environment, and retrofitting design products created with old
languages to conform to new or significantly modified design
languages (Table 3.3).

Table 3.3: Subprocesses and computational model
considerations in supporting “modification”.

Supporting MODIFICATION
Domain
Construction
Processes

Experimentation with and
creation of
representational systems.

Introduction of new
representational systems -
either augmenting or
replacing existing systems.

Retrofitting of products
created with old languages
to conform to new design
languages.

Computational
Model
Considerations

• Are new tools required?

• What knowledge or
special skills are
required?

• How difficult is it to
integrate new tools with
existing ones?

• How much of the domain
model is lost when an old
tool is replaced?

• Can design products in
old languages still be
opened?

• Does the model manage
versions of design
languages?

• Is there support provided
for merging versions?

61

Experimentation and Creation

In all three design stories, experimenting with and creating new
representational systems played an important role in the evolution of
the communities’ design languages. The protocol analysts created a
single column text representation to better support their analysis
process. The lead multimedia designer created the hypermedia outline
representation to support collaborative design of the title’s content.
One voice dialog designer created flow charts and tables because he
suspected stakeholders were no longer reading the thick textual
specifications. In all cases, experimentation with new representational
systems was motivated by the realization that existing representations
were inadequate for supporting some important aspect of the design
process. In the protocol analysis case, the existing full page
representation did not support the construction practice of annotating
the protocols. In the voice dialog design case, the existing text
representation did not adequately support communicating the design
to other stakeholders. The multimedia case involved breakdowns in
both construction and communication; it was tedious to modify the
content of screens in Macromind Director and this hindered making
real-time modifications to the content during collaborative design
sessions with other stakeholders.

Design environments can support experimenting with and creating
new representations in several ways. First, individual tools could
provide a wide range of formatting and structuring features that enable
them to support the construction of a range of representational
systems. Many applications currently in the marketplace, such as word
processors and spreadsheets, fall into this category. Second, if
individual tools only support a narrow range of representational
systems or an entirely new system is being explored, new tools may
have to be located. Another consideration is the skills or knowledge
required to experiment and create; i.e., can designers explore new
representations at the tacit (presentation) level or must they formally
define possible domain objects during exploration.

62

Introduction

Once a new representational system is created, the next challenge is
introducing it into the design environment. As illustrated in our
design stories, there are two categories of introduction – augmenting
(in addition to) and replacing (instead of) existing representational
systems. The protocol analysts replaced their full page text
representation. The multimedia designers augmented their template
representation with the hypermedia outline. The voice dialog
designers did both. First they augmented the text representation with
simple tables; when that design language significantly broke down,
they replaced it with flow charts and complex tables.

There are many possible ways that design environments could
support the introduction of new representational systems. When
analyzing different computational models, I will focus on three aspects.
First, if a new tool is required, is the architecture modular in the sense
that it allows new tools to be “plugged-in” [54, 87, 121, 122]? Second, I
will try to understanding how much of the existing domain model and
integrating links are rendered invalid or have to be re-implemented
when new tools or representational systems are introduced. Third,
how difficult is it to integrate new tools or representations with those
already present?

Retrofitting

Finally, when design languages have been significantly modified,
design products created with old languages may have to be retrofitted
to conform to the new design language. In some cases, retrofitting may
be a necessary first step before re-use can occur; i.e. design products
have to be brought up to date before any changes or additions can be
made. Other times, retrofitting may be necessary to support evaluation
and analysis activities. These activities often involve extensive
comparisons across design products. These types of comparisons are
much easier when the products being compared are based on the same
representational system.

63

Retrofitting can be accomplished both manually and with
environment support. Minimally, to at least enable manual
retrofitting, design environments need to be able to open design
products created with old design languages (i.e., presentation and
semantic parts of domain models). To provide support for retrofitting
activities, environment must first be able to store and manage
previous versions of the domain model. Environments providing
active support for merging versions need mechanisms for resolving
differences at both the presentation and semantic levels.

LIMITATIONS OF THIS COMPARISON

Just because functionality is provided to enrich design
environments with domain-specific concepts doesn’t mean that
designers will necessarily take this step. Empirical studies have shown
that there are many barriers inhibiting practitioners from taking this
step, including lack of time, lack of awareness of possibilities, and lack
of motivation [13, 36, 38, 69]. Also there are the issues of cost, effort and
benefit. Studies have shown that people will not extend their tools
when the perceived effort outweighs the perceived benefit to
themselves [46, 47]. Others have done more traditional cost/benefit
analyses; comparing the actual monetary cost of buying or extending
tools with productivity gains [63]. While these are all important
considerations, they are not the focus of this comparative analysis.
Instead, this analysis is focused on understanding the long term
patterns of change in design languages and how these change processes
can best be accommodated by computational design environments. As
shown in previous chapters, understanding and supporting flexibility
is an important step towards the success of design environments in
workplace settings.

SUMMARY

In summary, Figure 3.3 presents the domain construction
framework, relating ideal processes to computational model
considerations. Ideally, tools supporting use would enable designers to

64

EVOLUTIONUSE

Design Language Enactment

Modification

 Experimentation
and Creation

 Introduction

 Retrofitting

Elaboration

Graphical
Refinement

Naming

Object
Refinement

Establishing
Relationships

Extending Domain
Models and Tools

Construct

Evaluate

Iterate

Maintenance

Technical and Social Computational Model Considerations

TOOLS
DOMAIN
MODELS

DATA
MODELS

INTEGRATION
SERVICES

INFRA-
STRUCTURE

ARCHI-
TECTURE

New Practices, Skills, and Knowledge

Figure 3.3: Overview of the Domain Construction
Framework.

The framework relates a theoretical model of design
language enactment processes with aspects of
computational models that affect these processes. In the
following chapters, the framework will be used to
analyze the flexibility of two design environments based
on different computational models, comparing their
support for use and evolution.

work continuously along this explicitness spectrum since, at any given
time, different aspects of design languages exist at different points along
a spectrum of explicitness: ranging from tacit understandings emerging
in practices, to explicit domain distinctions reflected in products, to
formalized domain models embedded in tools (Figure 3.2). Formal
models are particularly required to support design evaluation and
iteration. Thus, to support use, tools must allow domain distinctions to
exist at different levels of explicitness. This requires environments to
provide a flexible data or domain model.

65

Tools supporting design language elaboration should enable
designers to incrementally change design products and tools by
supporting a spectrum of tailoring functionality including: graphical
refinement, naming, object refinement, integration across
representations, and extensions such as adding behaviors. Some aspects
of computational models affecting these mechanisms include: the type
of underlying data or object model, the programmability of tools, and
the integration mechanisms provided.

Tools supporting design language modification would ideally
enable designers to experiment with new forms of representations,
create new representations, introduce these representations into the
design environment, and retrofit products created with old design
languages to conform to new languages. Some aspects of
computational models affecting these mechanisms include: the overall
structure of the computational architecture, how much of the domain
model resides in individual tools versus the infrastructure, and how
much presentation information is tied to semantic information in the
domain model.

In the following two chapters, the domain construction framework
will be used to analyze and compare design environments based on
two different computational models that seemingly occupying different
ends of the support / flexibility spectrum. The purpose of these
analyses is to look at which particular aspects of these models help or
hinder their use and overall flexibility. Chapter 4 will examine three
design environments based on the Toolbelt model. In this model,
designers assemble and evolve collections of generic, off-the-shelf
software packages such as word processors, graphics packages, and
databases to create different design representations. Chapter 5 will
examine the Voice Dialog Design Environment, which is based on the
domain-oriented design environment model (DODE). In the DO D E

model, knowledge-based systems support the creation of specialized
design representations. These two chapters will be similarly structured,
beginning with a description of the general computational model
followed by an discussion of the specific design environment(s) based

66

on the model. Next, project timelines from each design environment
will be examined; these timelines combined with the resulting design
environment will then be analyzed from the domain construction
perspective.

67

CHAPTER 4

THREE TOOLBELT ENVIRONMENTS

In our three design stories, we observed an emerging software
development context – the toolbelt model. In this context, many
professionals assemble and evolve collections of generic, off-the-shelf
software tools to create “systems.” These systems may serve to support
their ongoing work practices (e.g., the voice dialog design story) or they
may be created for a specific project (e.g., the multimedia title story).
We refer to these systems as “toolbelts” because each worker assembles
her personal collection of tools just as a carpenter assembles a
collection of hammers, screwdrivers, tape measures, etc. into a
personal toolbelt.

Toolbelts are part of the end-user computing phenomena which is
defined as the adoption, use, and development of software applications
in support of organizational tasks by personnel outside of the
organization’s information systems department [11]. Currently, such
end-user computing applications account for 50% of all corporate
computing cycles in the United States; many researchers project end-
user computing to account for most (75%) processor cycles by the end of
the decade [11, 73]. Thus, the toolbelt model is part of the entrenched
status quo and will probably continue to be so in the future.

While toolbelts are the entrenched model, they are also not without
their faults. In this chapter, we’ll analyze the toolbelt model’s support
for domain construction to better understand its strengths and
weaknesses. This chapter begins by describing the general toolbelt
model. The core of this chapter examines three specific toolbelts
studied as part of this research. Finally, we generalize across

68

experiences with each of these toolbelts to analyze the general Toolbelt
Model according to the domain construction framework presented in
Chapter 3.

THE TOOLBELT MODEL

As illustrated by the design stories, a major part of a designer's job is
to create and evolve external representations of the design being
constructed [15, 103]. These representations occur in many forms such
as textual, tabular, or diagrammatic. Often, these design professionals
assemble collections of off-the-shelf software tools as needed to create
the necessary design representations.

Typical off-the-shelf software tools include word processors,
spreadsheets, databases, graphics packages, and flow charting tools.
These applications are “generic” in that they are not targeted at
supporting any particular domain. Instead, they are focused on
supporting the creation of a particular type of representation. For
instance, spreadsheets provide a lot of support for making tabular
representations while flow charting packages make it relatively easy to
construct node-link types of representations.

I refer to these software collections as “high-tech toolbelts” in
analogy to the toolbelts used by craftspeople such as carpenters (see
Figure 4.1). Carpenters assemble personal collections of hammers,
screwdrivers, tape measures, etc. into toolbelts as needed to support a
particular task. Toolbelt’s are personal in that they are under the
craftsperson’s control (i.e., he or she chooses what tools are in it) and
they go where the person does (i.e., when a carpenter changes sites, he
takes his toolbelt with him). Often, a craftsperson will have several
different toolbelts to support different tasks.

69

FoxProMS Word

Canvas

Mac Flow

1-2-3

Figure 4.1: Toolbelts – Traditional and High-tech

Designers assembles collections of software tools to
support different tasks (right side) just as carpenters
assemble collections of screwdrivers, tape measures, etc.
into toolbelts (left side).

For instance, Tom (Figure 4.1, left side) spends a lot of time working
on Victorian homes. He has two toolbelts – a small one for touch-up
work and a larger one for more complex tasks such as repairing
wooden clapboard. When new tasks are encountered, he initially tries
to apply old tools to the new task. For instance, he initially tried to use
a simple hand held scraper to remove the paint off the clapboard. But
due to the sheer volume of wood, he found he needed a more
specialized tool that better supported this particular task. As Tom’s
understanding of the new task changes or new tools are discovered, he
replaces old tools with new ones. Thus over time, the composition of
tools in a toolbelt evolves to better support the tasks being performed.

Likewise, high-tech toolbelts (Figure 4.1, right side) are personal
collections of software applications that an individual has assembled
and evolved to support particular tasks. As the following toolbelt
stories reveal, we see many of the same phenomena with high-tech

70

toolbelts as we see with the more traditional variety: the emphasis on
assembling and evolving to tools to support a particular task, applying
old tools to new tasks, replacing old tools with new ones, and the
personal nature of these collections.

In the upcoming sections, we'll revisit the design stories to examine
how the designers’ toolbelts helped or hindered domain construction
processes. For each design story, we’ll look at three things. First, we’ll
look at how things ended up; i.e., the key design representations and
the toolbelt used to create them at the end of the project or analysis
period. Next, we’ll see how things got to be that way by examining
project timelines from a domain construction perspective. Afterwards,
we’ll critique the specific affordances and hindrances of the particular
toolbelts used in each story. In the final section, we will try to
generalize across each of these three stories and analyze in detail the
toolbelt model’s support for domain construction processes.

TOOLBELT 1: PROTOCOL ANALYSIS

As shown in Figure 4.2, the toolbelt used by the protocol analysts
was very simple, consisting of only one word processing application –
WORD. However, two different representations were being constructed
with this tool. The primary representation was the single column
protocol analysis document described in Chapter 2. This representation
was a structured text document consisting of explicitly designated
subsections and numerous domain objects. Towards the end of the
project, another representation, “analysis views”, was created. This
tabular representation was an alternative view of a subset of the
domain objects shown in the single column representation.

71

Protocols

Representations

Analysis Views
ACME Experiment #2
Subject #3
Task #1: Voice Message Design

Observer: Mary Jane (MJ)
Observer comments and clarifications of action are in small font italics.

Begin Designing

So I suppose we'll move this over like this. Then add... a menu.
We'll need one, two, three, four, five.. including.. and then the
invalid;.... one, two, three, four, five, and the invalid one.

Then they want to go forward, which is 3.
They do want pause, that's 2, we'll have 2 in there.
They want forward so we'll have 3
Play the remainder,... louder, that's 9.
Yep. Should have no gaps. At this point, we don't have a choice.
We need to stay consistent and we need to give them this
functionality.
And we have hash mark for skip.

MJ: Shift 3.

Keys should have no gaps. Yep. Just to humor it let's see what it
says.

Tools

L-E Designer

“cancel should be assigned the * key” (+) solution modification
 (-) already dealt with

“should have no gaps” (-) impossible
 (A) already presented during the current session
 (-) already dealt with
 (-) consistency issue

“first item should be one” (?) looked for further information
 (+) solution modification
 (-) already dealt with
 (-) mistake

Word

Figure 4.2: The toolbelt and representations used by the
protocol analysts.

Examining the Timeline

The high-level sequence of domain construction processes
occurring in the protocol analysis project are shown in Figure 4.3. In
this story, the evolution of their design language was primarily driven
by the changing needs of different project activities. However,
affordances and limitations of WORD also impacted the evolutionary
process.

The project consisted of three main activities. During the first
activity (experiment #1), three protocols were collected and analyzed.
WORD was chosen because it was the de facto standard word processing
tool used by all group members. The first two protocols used the full
page representation. However, as soon as analysis activities were
attempted, the limitations of the full page representation were
apparent. The single column representation was created and used for
the remainder of that activity. The flexibility of WORD supported the
significant restructuring of the overall form necessary to create the new
representation. The first two protocols were then retrofitted to conform
to the new design language.

72

Modification

Augmentation

Experimention
Creation

Retrofitting

Modification

Replacement
Creation

Retrofitting

Elaboration
Naming,
Graphical
Refinement

Elaboration
Graphical
Refinement

Single ColumnFull Page

Views

Word

Exp #1 :

Detailed
information
analysis

Style facility
 breaks down!

No support for
analysis!

Exp #1:
Design;
Information
collection;
analysis

Exp #2:

Information collection;

Preliminary analysis

0 9

T
o

o
ls

A
ct

iv
it

ie
s

R
ep

re
se

n
ta

ti
o

n
s

P
ro

ce
ss

es
 &

Figure 4.3: Protocol analysis project timeline.

The project lasted approximately 9 months, during which 9
protocols were collected and analyzed. The timeline on the
top is provided for a sense of relative scale only and should
not be used to make absolute temporal measurements.
During this time, the analysts evolved a design language
consisting of two representational systems and numerous
vocabulary items. Only large scale changes in representational
systems are shown here (light gray bars).

The second activity began about one month later (experiment #2)
and six more protocols were collected. This activity started with the
state of the single column representation at the end of activity 1. As
each protocol was collected, more vocabulary items were explicitly
added to the representation. In the beginning, WORD’s style
functionality was used to support this process. Styles are named classes
of graphical looks (e.g., observer comments = 9 point, italics). Once a
named style is created, it automatically appears in a pulldown menu at

73

the top of the document window; enabling this menu to act as a palette
of reusable vocabulary items to choose from.

About midway through, mostly items pertinent to the general
activity of protocol analysis had been defined and named (e.g., observer
comments). As activities shifted towards some preliminary analysis,
items specific to this round of experiments started to emerge. Attempts
were made to use WORD’s named style feature to define these items
but it quickly broke down. Firstly, these items were small segments of
text embedded in the middle of paragraphs; however, in this version of
WORD, named styles only operated on entire paragraphs. A second
problem was that some text passages participated in several different
classes of vocabulary distinctions (e.g. acted as examples of both
“anticipation” and “conflict awareness”). Since WORD’s style sheet
facility was designed to support document formatting, built into the
facility was the constraint that text could not have two named formats
at the same time. As a result of these early attempts, there are several
extraneous named vocabulary items in the style sheet that were never
used. Conventions were established to work around these limitations
by using only graphical refinement (e.g., all underlined passages are
examples of “critics”). Since these items were not explicitly named, they
did not appear in the menu of reusable vocabulary items. Since the
group relied on informal communication to relay what the mappings
were, anyone outside of the initial project team looking at these
documents will not know what all the symbols mean.

The focus of the third activity was to analyze the protocols from
both experiments to look for patterns across subjects. However, the
design language had evolved considerably by the ninth protocol and
the previous eight protocols all had to be retrofitted to match the new
design language before this could begin. The way WORD merges style
sheets supported retrofitting fairly well. Old protocol documents could
be opened and the new style sheet read in; the result was a style sheet
combining both the old and new named items. New items overwrote
old items with the same name, and objects in the document with this
name were changed to reflect the new style definition. In this

74

retrofitting task, this type of overwriting was exactly the desired
behavior. However, there were some other problems encountered
while retrofitting. In the early documents, many items found in later
documents were missing or were not explicitly named and only
graphically refined. For instance, observer comments were depicted in
9 point italics for a couple of documents before a named style was
created. Unfortunately, when retrofitting, WORD did not assist in
reconciling unnamed formatted items with named items; i.e., suggest
to convert all 9 point italic passages to be “observer comments.” While
it may have been possible to write macros to assist in this process, this
step was never taken.

For the third activity, a new representation – analysis views – was
required (see Figure 4.2). These views were a combination of existing
information extracted from the protocol documents and new
information. The representation was tabular, with items in the
leftmost column corresponding to key events extracted from the
protocol documents. Items in columns to the right, though new
information, were related to information in the protocol documents,
being classifications of subevents that occurred either before or after the
key events. The extreme flexibility of WORD enabled us to create this
new table-based representation without introducing a new tool into the
toolbelt. However WORD did not help us to maintain the relationships
between the two, closely related representations. And as the analysis
proceeded, this lack of support for the interrelationships had two
negative impacts. First, we had to rather tediously copy-and-paste or
manually retype all the key events from several protocol documents to
create the analysis view. However, the bigger negative impact was the
cognitive and manual burdens incurred during analysis when
classifying subevents. When reviewing classifications, there was no
explicit link back to the corresponding subevent in the protocol
document. You had to first find the approximate area in a typically
lengthy protocol document and then browse until you found the
proper subevent, which could be one of many. Likewise, we could not
go the other way and select a subevent in the protocol document and be
linked to the corresponding classification in the analysis view.

75

Analyzing the Toolbelt

Support for use. W O R D provided moderate support for
constructing individual representations. The palette of re-usable
named, styles facilitated the consistent production of protocol
documents. However, the workaround use of unnamed formats
required the analyst to establish, remember and consistently apply
existing conventions during document production. Where WO R D

really broke down was in supporting analysts at evaluating the
protocols; i.e., their basic analysis task. This required extensive cross-
design product comparisons for which the tool provided no support.

Support for elaboration. WORD’s formatting features and style
facility supported articulating domain vocabularies in many respects.
The formatting features enabled domain objects to undergo continued
graphical refinement. The style facility supported naming by allowing
users to establish mappings between names and graphic looks. Styles
can be defined by selecting an existing object in the text and using it as a
prototype for a style definition or a style can be constructed from the
style sheet by choosing from available formatting commands. Once
defined, the style is made available for reuse in a pulldown menu in
the top level toolbar.

However, there were some drawbacks to WORD’s support for
elaboration processes. At the time, WORD did not support character
styles; i.e., only entire paragraphs could be formatted with named
styles. This severely limited the articulation of domain vocabularies.
While, a workaround was available and used (i.e., unnamed formats),
the mappings between names and looks were never explicitly recorded
which could hinder future analyses of the documents. Where WORD

particularly fell short was in supporting establishing correspondence
and equality relationships between the different design products. What
was really needed was a simple mechanism allowing links to be
established between related parts of the two representations. To be
effective, the links would have to support bidirectional navigation.
Given the quantity of potential links (about 75) and their dynamic

76

nature (the analysts were continually debating and changing the
classifications), the overhead to create these links would have to be
low.

Support for modification. WORD’s flexibility in terms of formatting
and editing commands supported experimentation with and creation
of new representations without requiring new tools. The way styles
could be merged across two documents supported important
retrofitting activities when old design products were changed to reflect
new design languages.

TOOLBELT 2: MULTIMEDIA TITLE DESIGN

In contrast to the previous example, the toolbelt used by the
multimedia title designers was quite complex. Figure 4.4 shows the
toolbelt used by the lead designer. It consisted of eight tools. Two tools
– WO R D and Director – were used to create the major design
representations. Director was used to create two representations used
for designing the look or form of the title – the template and the score
representations. WORD was used to create the hypermedia outline
representation for designing the content of the title. The remaining six
tools were used for special effects such as textured backgrounds and for
creating information in alternate modalities such as audio or video.
The outline and template representations were used to design how all
these various effects and information modalities would fit together
into a coherent and entertaining whole.

In this story, some of the individual nature of toolbelts starts to
become apparent. Contrary to the previous story, not all project
participants shared identical toolbelts – some participants focused on a
subset of the tools shown, other participants used these tools and
others that are not shown. Thus, there was only a partial overlap
between the toolbelts of all participants. To some extent, this reflected
the division of labor within the project and peoples’ individual tool
preferences.

77

Templates

Vision

Elaboration

Background

Elaboration

Hypermedia Outline

Painter

Tools

Representations

Special
Effects
and
Alternate
Modalities

Ofoto

Photoshop

SoundEdit Pro

Capture

Premier

Score

Director

Word

Figure 4.4: The toolbelt and representations used by the lead
multimedia designer.

Examining the Timeline

Figure 4.5 shows the sequence of domain construction processes
occurring in the multimedia title project. Similar to the protocol
analysts, the evolution of their design language was driven by the
changing needs of different project activities. However, in this story,
tool affordances and hindrances also affected evolution.

In the beginning, designing the form of the title was the main
activity. Early on, they decided to use Director to implement the final
title and also to design the initial form. However Director did not
support the range of visual and auditory effects wanted, so much initial
effort was spent experimenting with different tools and sequences of
tools to get the desired effects. Particularly troublesome was an effect
needed for the opening screen and other screen transitions in the title.
The designers wanted a series of five Polaroid-like images to slide onto
the background from different trajectories and end up in non-
rectangular orientations. This proved very difficult to do since Director
only supported animating rectangular “sprites”. A large part of the
initial project effort was spent experimenting with workarounds in
Director and sequences of tools to support this one effect.

78

CombiningCreating effects and modalities

SoundEdit Pro

Ofoto

Photoshop

Word

Director

Mixture of tools Painter

Premier

Capture

Viewing and Styles
 breaks down!

Locating good tools
is hard!

Modification

Creation

Elaboration
Graphical Refinement
Extending Behaviors

Modification

Introduction

Experimention
Creation

Templates

 Hypermedia Outline

T
o

o
ls

R
ep

re
se

n
ta

ti
o

n
s

P
ro

ce
ss

es
 &

Score

Elaboration
Graphical

Refinement
Naming, Relating

Designing the form

Designing the content

Experimenting with tools

40

A
ct

iv
it

ie
s

Little support for
combining!

Vision Document

Figure 4.5: Multimedia title project timeline.

The project lasted approximately 4 months, during
which time a multimedia title was created to be
shown at an upcoming conference [18]. The timeline
on the top is provided for a sense of relative scale only
and should not be used to make absolute temporal
measurements.

Once the various techniques for creating the desired effects and
modalities had been ironed out, they could be applied en masse. The
middle part of the project was concerned with producing all the
various effects and information modalities to be included in the final
title. This involved things like scanning in and touching up images,

79

recording audio information, and preparing video snippets. A file
structure was created to contain all these information “pieces” in an
orderly fashion.

Some of elaborating on the form of the title involved programming
Director. However, the central part of the title’s final form was 23
screens showing textual entities called visions and elaborations. Six
graphic template representations were created when designing this part
of the form. These templates specified background colors, auditory
information, and the position, font, and color of the different kinds of
textual information (i.e., the content). During collaborative design
sessions, this text needed to be continually modified. However,
modifying text in Director was slow and cumbersome, so the lead
designer created a hypermedia outline representation to support
collaborative design of the title’s content. During the time it took to
create and co-evolve the template and hypermedia representations, the
team articulated seven domain vocabulary items, one of which was
never used.

W ORD, which had previously been used to collect and manage
vision statements from workshop participants (vision document
representation), was now used to create the new representation. The
lead designer wanted to make the content representation closely
resemble the template representation in order to support envisioning
and to minimize the cognitive load when performing modifications
across the two representations. Using WORD’s formatting features, the
font, color, and size of the text in the hypermedia outline was made to
match the final look in the template. In this story, the designers did not
make use of WORD’s style facility to articulate domain vocabularies;
instead they simply embedded the vocabulary names in their design
product. One reason for doing this is that the outline facility only
operated on standard styles such as heading 1, heading 2, etc. The
designers wanted to use the outline facility for viewing parts of the
content representation, similarly to how it would appear in the graphic
templates form. Thus, the designers had to apply the standard style
names to their domain items and remember that heading 3 was used

80

for vis ion statements and heading 4 was used for e l abora t i on

statements, etc. A side effect of using standard headers was that all
domain objects with the same heading name (which determined their
position in the outline view) had identical formats. As a result,
completely different objects ended up looking alike (e.g., “summaries”
looked like “visions”).

During the final phase of the project, all the various parts of the title
had to be integrated into the score representation in Director. These
parts included the audio recordings, video clips, scanned images (all
organized in the file structure), and the text segments (found in the
hypermedia outline representation). Several difficulties were
experienced during this “combining” phase. First, each media element
had to be individually imported into Director, using the Import File
command, which yielded a “cast member.” Each resulting cast member
was then placed into the score and the member’s numeric reference
had to be manually adjusted. These numeric references are used when
executing a title to determine which cast members to load at any given
time. Unfortunately, these references were absolute, which meant that
if a new cast member needed to be inserted in the middle of the score,
all subsequent numbers had to be manually adjusted. Thus, it was very
tedious to make such alterations.

More difficulties arose when transforming the text in the
hypermedia outline into the graphics templates. One problem was that
only flat ASCII text could be transferred between WORD and Director;
i.e. all formatting information such as font, size, and color was lost.
The designer compensated for this by including this information as
part of the specification for each of the six templates. However, the
main problem was that the sequence of operations required to
transform the data was lengthy and this needed to be done 23 times;
once for each screen. This complexity arose because the designers
wanted screens to have a textured background and such texturing was
not supported by Director. For each of the 23 screens, the following
transformation process was manually followed:

81

(1) Paste vision statement from WORD into provided area in
Director template.

(2) Paste elaboration statements from WORD into provided
areas in template.

(3) Take a screen snapshot of the filled in template using
Capture.

(4) Import the snapshot into Painter.

(5) Change to the textured background using Painter’s “Apply
surface texture” command.

(6) Copy the result and paste it back into Director.

While it only took a few days to do this for all the screens, the lead
designer reported that they were reluctant to make changes to any text,
i.e., iterate, once this process was complete. They would only make
changes for “glaring errors such as typos.”

Analyzing the Toolbelt

Support for use . Their particular toolbelt broke down during the
final “combining” activity in that their individual tools provided them
with no support for constructing (combining their separate products
into the final score) and iterating the design. There were two
interrelated problems: lack of support for named domain vocabularies
in Director, and a lack of support for relationships across design
products. Directors provision of only absolute numeric references,
instead of relative naming, made it difficult to modify the score. This,
combined with a lack of integration services in the various tools,
hindered the designers ability to iterate their design.

Support for elaboration. The designers’ tools enabled them to
quickly articulate domain vocabularies, mostly at the presentation
level, in the template and the hypermedia outline representations. The
lead designer reported that this took at matter of days. They were able
to easily co-evolve the look of the text segments in the outline

82

representation to visibly match the same distinctions in the template
representation using WORD’s formatting features.

However, they experienced a minor breakdown when trying to use
WORD’s outline feature to create an alternate view of the hypermedia
representation; it only operates on standard style names. Thus to be
able to manipulate their domain objects in this view, the designers
were required to name their domain objects the standard style names.

The tools particularly broke down in their lack of support for
establishing relationships across products. Ideally, a programmatic
transformation process could be described between WORD and Director
such that any changes to the text in WORD would be automatically
flushed through to Director.

Some off-the-shelf applications enable such links to be established
using direct manipulation. Because there are 23 screens, it is unlikely
that direct manipulation would be a satisfactory approach. A few
applications provide high-level event scripting languages such as
Apple Script. In theory, such a scripting language would have been able
to capture and automate the transformation process between WORD

and Director. In practice however, most of the tools being used did not
support such scripting.

Other options for establishing relationships between applications
are integration protocols and integration languages such as Visual
Basic, DDE (Dynamic Data Exchange) or OLE (Object Linking and
Embedding) [74] on Windows-based machines or OpenDoc [87] on
Macintosh platforms. However, two problems arise with these
integration approaches. First, similar to high-level event scripting,
many existing applications do not support the same protocols in
compatible ways. Second, these integration services are low-level
programming languages targeted at developers, not end users. To
create the transformation script required by the multimedia designers
would require a considerable amount of programming and knowledge
from several different areas including object-oriented programming,

83

imperative programming, and detailed internal knowledge of the
applications being integrated. One sample OLE script taking data from a
database and linking it into a table in a spreadsheet required about nine
pages of code specifying low level event details such as opening and
closing applications, setting window focus, and redrawing windows
[110]. Given the one-off nature of this project, it would not be cost
effective, in terms of time and effort, to go to such lengths to tailor
tools to better support work practices. In this case, “customizing
themselves” to act as the glue binding their individual tools into a
coherent system was the only viable alternative.

Support for modification. As in the previous story, we saw that
designers were able to create new representations specialized towards
their specific needs. We also saw how these designers rapidly evolved
their toolbelt to better fit their project-specific needs. In this story,
multiple tools were required to create all the parts (special effects and
modalities) associated with the final score representation. These
designers spent much time figuring out which particular tools they
needed in the initial part of the project. As this experience shows,
while the toolbelt model offers significant freedom, it is not without a
price. End users sometimes need to expend significant effort and energy
in searching for, learning, and experimenting with various tools. The
lead designer said he was surprised at how long it took to figure out
how to achieve the non-rectangular animation effect and that he
probably “spent too much time” on it.

TOOLBELT 3: VOICE DIALOG DESIGN

The toolbelt used by some of the voice dialog designers is shown in
Figure 4.6. It consists of three tools – WORD, FoxPro, and TopDown.
TopDown, a flow charting application, is used to create the primary
flow chart representation depicting the content and structure of the
phone-based interface being designed. This representation is used for
communicating the design to other stakeholders such as marketing
and customer support. WORD is used for creating structured document
representations such as high-level design specifications and detailed

84

Name: Personal Options Type: Menu

This menu allows the user to select to either change their security
code or their recorded greeting.

Standard Prompt OR Message Text: Rapid Prompt:

To change your security code, press 1. Security code, 1.

To change your recorded name, press 2. Recorded name, 2.
To disconnect, press *. Disconnect, *

Type Ahead: Yes

Disconnect: SDSH_DP
Timeout:

Tables

FoxProWord

Mandatory Requirements:
(1) All new features must conform to
user interface guidelines

(2) All new features must meet
existing performance guidelines.
Response times should be less than 2
seconds, 95% of the time.

(3) As much as possible, new features
should be consistent with similar
features in the existing product line.

Future Requirements:
(1) The product should support the
end user in modifying all of the
personal greetings and prompts.

(2) The porduct should enable the

Test Plan #57

Output: "Main menu. You have two
new messages. To listen to your
message, press 1. For personal
options, press 2. To disconnect, press
*."

Action: Press 2

Output: "Personal Options. To
change your security code, press 1.
To change your recorded name, press
1. To disconnect, press *.

Action: Press 1

Output: "Choose a security code that
is easy for your to remember. Enter

Test Plans

To change your security
code, press 1. To change
your recorded name, press

2. To disconnect, press *.

Security Code 1

Personal Options

PO.01

2

*

Greeting

Disconnect

Choose a security code that
is easy for you to remember.

Enter the new security code
now, then press #.

PO.02

At least 4
digits

entered?

PO.03

no

Security code must contain at
least 4 digits. Please enter a
longer security code, then
press #.

PO.06

PO.01

Input

Digits

PO_DP.04

TopDown
Tools

Representations

Flow Charts

Figure 4.6: The toolbelt and representations used by some of
the voice dialog designers.

test plans. The specifications are constructed for marketing; the test
plans are constructed to verify the final application against the design.
FoxPro, a database application, is used for creating a structured table
representation depicting low level details of the interface. This
representation is primarily constructed for the vendor company that
implements the final application.

Examining the Timeline

The voice dialog design story is both similar and different to the
previous two stories. In the previous stories, small groups of people
came together for an individual project and disbanded when the
project was completed. All toolbelts and design languages created
pertained only to those single project. The voice dialog story chronicles
the experiences of part of a design group who received a series of voice
dialog design contracts over a several year period. Some of these design
contracts were for new applications; others were for redesigns to parts
of existing applications. An additional difference was the dynamic
group composition, old designers left, new designers joined, and new
marketing and vendor stakeholders also entered the picture. Thus, the
story covers many design projects carried out by different people.

85

While the various members of the group would agree that they
were all doing voice dialog design, the specifics of what it meant to
design in this domain continually changed as design languages,
products, tools, and practices co-evolved. The top of Figure 4.7 shows
the high-level sequence of domain construction processes occurring in
the voice dialog design story. The bottom half of Figure 4.7 shows the
accompanying evolution of tools and representational systems. What
is particularly different in this story is how representational systems
differed across designers as they tuned them to their specific needs and
how these representational needs drove designers’ toolbelts to evolve
in different ways.

Prior to 1991, primarily textual design specifications were being
used. Designer A was the lead designer and had been working with the
same marketing and vendor organizations on a series of additions and
redesigns to an existing product for quite some time. Using WORD, she
had evolved a structured text representation that graphically
distinguished three, named domain objects and the name/look
mappings were specified in an explicit key incorporated into her design
product. She augmented this representation with simple flow charts
and simple phrase tables created in MacDraw.

In early 1991, Designer B was hired to design one of the most
complex applications to date. In his mind, the textual representations
did not scale up to the new task. He pioneered two new design
representations – detailed, complex flow charts and tables – to replace
the existing text representation and he assembled an initial toolbelt to
support making these representations. He was able to use an existing
tool, MacDraw, to experiment with the new flow chart representation.
Essentially, this use of an old tool enabled him to preview the new
representation without any monetary cost and little application
learning cost. He did have to locate a new tool, FoxPro, to create the
new complex table representation as the layout was too complicated for
Excel at that time. WORD was still used for the remaining textual parts
of the design specification.

86

E

C
om

pl
ex

 F
LO

W
S

, s
om

e
te

xt

W
or

d
M

ac
F

lo
w

E
xc

el

si
m

pl
e

ta
bl

es

W
or

d

M
ac

F
lo

w

B
C

D

C
om

pl
ex

 F
LO

W
S

 &
 T

A
B

LE
S

; t
es

t p
la

ns
, s

om
e

te
xt

 s
pe

ci
fic

at
io

ns

M
ac

D
ra

w

W
or

d

F
ox

P
ro

T
op

D
ow

n

W
or

d

F
ox

P
ro

R
ep

re
se

nt
at

io
ns

br
ea

k
do

w
n!

W
or

d
A

T
E

X
T

 +
 S

im
pl

e
T

ab
le

s
&

 F
lo

w
s

M
ac

D
ra

w

W
or

d

M
ac

D
ra

w

E
xc

el

19
94

19
91

In
tr

o
d

u
ct

io
n

o

f
fl

ow
s

an
d

ta
b

le
s

as
p

r
i

m
a

r
y

re
p

re
se

n
ta

ti
o

n
a

l
sy

st
em

s
(m

id
 1

99
1)

E
m

er
g

en
ce

 o
f

fl
o

w
s

a
nd

ta
bl

es

as
p

r
e

f
e

r
r

e
d

re
p

re
s

e
n

ta
ti

o
n

a
l

sy
st

em
 (

la
te

 1
99

2)

C
oe

xi
st

en
ce

of

d
i

f
f

e
r

e
n

t
re

pr
es

e
nt

at
io

n
al

sy
st

em
s

C
o

n
t

i
n

u
e

d
el

ab
or

at
io

n

o
f

fl
ow

s
an

d
ta

bl
es

M
od

if
ic

at
io

n
of

 E
xi

st
in

g
Sy

st
em

E
la

bo
ra

ti
on

of

t
e

x
t

u
a

l
sp

ec
if

ic
at

io
ns

 b
y

a
u

g
m

e
n

ta
ti

o
n

w
it

h

si
m

p
le

ta
bl

es
 a

nd
 f

lo
w

s

19
92

19
93

M
od

if
ic

at
io

n
of

 E
xi

st
in

g
Sy

st
em

C
o

ex
is

te
n

ce

of
d

i
f

f
e

r
e

n
t

re
p

re
se

n
ta

ti
on

al
sy

st
em

s

In
tr

od
u

ct
io

n
a

nd
el

ab
or

a
ti

on

o
f

al
te

rn
at

e
fl

ow
s

an
d

ta
bl

es

as

p

ri
m

ar
y

re
p

re
s

e
n

ta
ti

o
n

a
l

sy
st

em
s

(b
eg

 1
99

4)

P
ro

ce
ss

es

Lo
ca

tin
g

go
od

 to
ol

s
is

 h
ar

d!
R

ep
re

se
nt

at
io

ns
br

ea
k

do
w

n!

R
el

uc
ta

nt
 to

sw
itc

h
re

ps
!

R
el

uc
ta

nt
 to

sw
itc

h
re

ps
 o

r
to

ol
s!

N
ew

S
ta

ke
ho

ld
er

s!

Figure 4.7: Voice dialog timeline showing five
designers engaged in a series of projects over a three

year period.

87

Designer A was reluctant to adopt these new representations for
several reasons, First, she was reluctant to switch representations on
the other stakeholders which had grown accustomed to receiving and
interpreting her text representations. Second, constructing flow charts
in MacDraw was very tedious and time-consuming work. Designer B
reported looking at flow charting packages and finding that they did
not have the capacity to accommodate large designs. Designer A
continued to do things her way and even introduced a new tool into
her toolbelt, Excel, that better supported making the simple phrase
tables.

The marketing group decided to cancel the project Designer B was
working on and the new representational systems were not used until
the next year. In the middle of 1992, two new designers were hired into
the group to work on a lengthy series of additions and redesigns to the
same product that A had previously been working on. About the same
time, Designer A transferred to a new project. The new designers, C
and D, together with Designer B, sat down and discussed the pros and
cons of B’s new representational systems. In the meantime, a new tool
had been found that better supported making the flow charts –
TopDown. Designers C and D decided to adopt B’s representations and
his, now modified, toolbelt.

C and D began to elaborate on B’s representations. In the flow charts,
both designers used the new, more elaborate voice menu
representation (though D did not adopt shaded titles) and both
incorporated the new inputter object. However, they both,
individually, began to experiment with new graphic distinctions which
the other one did not adopt. One problem with the flow chart
representation was that all the links clutter it up and make the flows
difficult to read. Both designers took advantage of different features in
TopDown to create different graphic conventions that they thought
made the links in the flow chart easier to read.

88

The table representation was reorganized to improve the layout of
information and new fields were introduced. Both designers adopted
the new table layout. However, Designer D began to elaborate on the
table representation by introducing a few new domain object types and
by modifying the pseudocode notation for expressing conditionals.
Designer C was not too concerned with these innovations because she
structured her practices to avoid making the table representation. She
considered it not particularly helpful for designing the application
interface and avoided constructing the tables until the very end; in fact,
she usually found a student intern to construct this representation for
her. Designer D experienced his own problems with the table
representation. He completed all the tables (a little more than 100!)
associated with a design when the marketing group decided the
interface needed to be substantially changed. The proposed changes
required modifying virtually all of the tables; a very tedious and
laborious manual process. At that time, the feeling was starting to
emerge that it was best to delay constructing the tables until you were
through iterating the design.

Designers C and D continued to work on this related series of
designs, though C eventually moved to part time status in the project.
In the beginning of 1994, Designer E was hired to create a series of small
applications for the same marketing group (but different people in the
group). He was also working with a different vendor organization.
Before E was hired, a contractor had been doing some of the initial
design work and was using a somewhat different flow chart
representation than that used by Designers B, C, and D.

Designer E decided not to adopt the representations used by the
others for several reasons. First, similar to Designer A, he also used the
argument that other stakeholders were already used to the alternate
flow chart representation. However, he had an additional reason. The
new vendor organization used a different development platform and
this platform had a flow chart-like interface. His different flow chart
representation was formatted to, somewhat, resemble the vendor’s
flow chart interface. He was thinking about promoting this similarity

89

of look even more to make it easier for the vendor. Initially, Designer E
did not adopt any form of the table representation because he felt its
complexity was overkill for his simpler applications and his partner in
the vendor organization did not need it.

Designer E also decided not to adopt the other designers’ toolbelt. He
chose instead to use MacFlow since he used this tool in his previous
job appointment. By mid 1994, Designer E decided he did need a table
representation of some sort (though still a different one) and he was
experimenting with using Excel. Shortly thereafter, he reported that he
might have to eventually move to from Excel to a database package for
more flexibility.

Analyzing the Toolbelt

Support for use. Overall, designers were able to construct the
necessary design representations. In a few cases though, they needed to
adjust their practices to compensate for their tools’ lack of support for
articulating domain vocabularies. One problem was the lack of support
for naming and reuse in the flow chart tools. While it is not especially
difficult to create a prompt unit from scratch (merely a rectangle and
some text), it is a considerable effort to create the elaborate voice menu
representation from scratch every time. One designer had evolved a
copy/paste strategy to deal with this and whenever a new menu was
needed, opened an existing design or scrolled until a menu could be
found.

A bigger problem stemmed from the lack of support for
relationships across design products which hindered iterative design.
Similar to the multimedia story, these designers had to act as the
human glue manually binding their representations together. Besides
being hard, due to the complexity of the interrelationships, it was also
error prone. Designers had to remember which nodes they changed in
the flow chart and figure out which tables would be affected by this
change, and then carry out the changes without making mistakes. This
manual burden hindered iterative design by raising the cost and effort
associated with iterating the design. Contrary to the multimedia story,

90

these designers did not have the luxury of deciding not to iterate.
Instead, we saw that these designers began to modify their practices and
defer constructing the table representation until later in the process.
One possible negative consequence of this deferment is that some
design information, found only in the table representation, is not
considered until (possibly too) late in the design process.

Another problem, not discussed in the previous story, was the
“medium gap” between the visual design products and the final audio
interface. Designers had some difficulties evaluating designs because it
was difficult for designers to look at a visual design product and
imagine what it would sound like. They needed to actually hear the
audio prompts in sequence. The solution adopted was to have
simulation builders in the group construct prototypes of parts of the
design using specialized simulation programming languages. While
this approach had several benefits, one problem was the ensuing delay
(days to weeks) between creating a design product and experiencing the
prototype. However, this approach was really the only option given the
level that existing tools could be extended.

Support for elaboration. Some tools such as WORD and FoxPro
supported designers to articulate domain vocabularies and to evolve
the structure of their representational systems. Other tools such as
TopDown and MacFlow supported designers to graphically refine their
flow chart representations but did not support them in taking the next
step to enrich their tools with some awareness of the domain objects at
either the presentation (name/look) or semantic (whole/part) levels.
Specifically, these tools did not support naming or any form of object
refinement.

As discussed above and in Chapter 2, complex relationships existed
between the flow chart and the table representations used by Designers
B, C, and D (see Figures 2.7). At that time, neither TopDown or FoxPro
provided any facilities establishing relationships across design
products. Later versions of FoxPro now support the OLE object linking
protocol. However, similar to the multimedia case, neither existing

91

direct manipulation or programmatic interfaces are appropriate. With
over 100 tables in a design and about a dozen relationships per table,
establishing each relationship using direct manipulation is not viable.
Also, some of the relationships are transformation ones that cannot be
specified via direct manipulation techniques. One could argue that, if
they located a flow charting tool that supported the same object
protocol, the programming effort required to link the two
representations using OLE might be worth it since this is a reoccurring
need. This is debatable since, in mid-1994, both the community using
the table representation and the popularity of the representation itself
seemed to be waning. However, a bigger problem was that when asked
in 1994, none of the designers had ever heard of OLE or its competitor
protocol, OpenDoc. It is difficult to take advantage of features that you
don’t realize exist.

Support for modification. Similar to previous stories, we observed
how designers assembled the toolbelts necessary to support the creation
of their design representations. In this story, we particularly observed
how designers took advantage of the flexibility of the model to create
representations specialized towards the needs of their specific
stakeholder partners. However, this level of variance in individual
toolbelts was not without its costs.

First, these individuals bore the burden of locating, learning, and
experimenting with the necessary tools. One benefit of the toolbelt
model was that designers could use old tools in new ways to preview
new representational systems without incurring much monetary or
learning cost. However, as we saw with the flow charts of Designer B
and the tables of Designer E, this was often a temporary measure until a
new tool could be found. Unfortunately, designers were not always
successful in locating the necessary tools and sometimes other
designers delayed adapting new representations due to lack of tool
support.

Second, the group undoubtedly suffered some overhead associated
with managing such as diverse work environment such as difficulties

92

sharing current designs and difficulties reusing past designs. When
Designer C began to redesign a feature in an existing product originally
designed by someone in the same group, she had to reverse engineer
the design as the first step. She spent considerable time retrofitting; i.e.,
putting the existing interface into a flow chart representation readable
by TopDown.

REFLECTIONS ON THE GENERAL TOOLBELT MODEL

This section generalizes across the stories to consider how the
general Toolbelt model supports domain construction. First, we’ll
examine support for processes involved in use, elaboration, and
modification. Next, we’ll discuss the impact of technical aspects of the
computational model on these processes. Finally, the new practices,
skills and knowledge required by the model are considered.

Support for USE

Table 4.1 summarizes toolbelt support for use processes of
constructing, evaluating, and iterating designs. The toolbelts we
observed supported the construction of design products but did not
support evaluation or iteration. This lack stemmed from most tools’
inability to be enriched with “deep” domain models. In general,
individual tools only supported very shallow domain models. None of
the graphics packages allowed any form of domain model at all.
Shallow domain models have a limited representation of domain
vocabularies, focusing mainly on presentation (name/look mappings)
and limited semantic information. Deep models provide flexible
whole/part mappings, relationships between objects, and procedural
attachments to objects; deep models are required to support evaluation
and iteration activities. Representations of relationships between
objects are required to support iterating and evaluating across design
products. Procedural attachments are required to provide simulation
and other active behaviors supporting design evaluation. In summary,
the toolbelt model mainly supports design languages at the tacit and
explicit levels only; i.e. most of the design language resides in practices
and design products only.

93

Table 4.1: Toolbelt support for USE.

Support for
 USE Toolbelt Model

• full DL spectrum supported? mainly tacit / explicit

• constructing Yes

• relating No

• evaluating

 - inspecting

 - analyzing

 - relating

 - envisioning & experiencing

Limited

- visual inspection only

• iterating No

Support for ELABORATION

Table 4.2 summarizes toolbelt support for elaboration processes. In
general, the individual tools mainly supported designers to make the
tacit to explicit transition by graphically refining design products. Some
tools supported making the transition to formal domain models in
limited ways, primarily through the definition of simple objects; i.e.,
the creation of name/look mappings. The only tool supporting the
definition of complex objects with multiple, named components was
the database tool. This tool enabled designers to specify whole/part
mappings. However, due to its relational nature, all objects were
required to have the same whole/part mapping. This limitation made
it difficult to tell incomplete objects (individual database tables) from
objects where all the various parts did not apply. None of the tools
supported extending objects with behaviors or other procedural
attachments. A particular shortcoming was the lack of support for any
form of elaboration within graphics packages which are important
tools for creating many design products.

 None of the design communities took advantage of the integration
services provided to establish relationships across design products and
tools. There are several possible reasons for this. First, the integration

94

services provided are very uneven and ad hoc. Many tools, especially
graphics packages, provide no services at all. Second, integration
services are mostly left at the discretion of individual tools and not
provided in the infrastructure (Figure 4.8). The result is that different
tools supply different integration methods and interfaces, each of
which must be learned. Third, to establish the type of relationships and
the fine-grained granularity of relationships that we observed requires
extensive low-level programming effort, which for one-off projects or
dynamic domains may not be worth the effort.

Table 4.2: Toolbelt support for ELABORATION.

Support for
ELABORATION Toolbelt Model

• DL transitions supported? mainly tacit to explicit

• graphical refinement Yes

• naming

 - defining simple objects by

 specifying name / look

 mappings

Limited

 - No support in graphics tools

• object refinement

 - defining complex objects by

 specifying whole / part

 mappings

 Very Limited

 - In few tools only

• establishing relationships

 - correspondence

 - equality

 - transformation

 - heuristic

Possible, but difficult

 - Limited Direct Manipulation

 - Collection of ad hoc mechanisms

 - Low-level programming

• extension

 - object behaviors

 - tool extensions

Limited

 - tool extensions

95

Support for MODIFICATION

Table 4.3 summarizes toolbelt support for modification processes. In
general, the toolbelt model did very well at supporting modification
processes. The flexibility of individual tools enabled designers to
experiment with a range of representations without requiring new
tools. The tools’ support for graphical refinement enabled
experimentation to occur at the tacit and explicit levels without forcing
designers to enrich tools with formal knowledge of a design language
which might never be adopted. Sometimes, designers used old tools in
new ways to preview new design languages; this supported
experimentation without the cost of learning or exploring new tools.
However, other times new tools were required. As we saw in the
stories, locating new tools required new tool shopping and exploring
skills from designers.

Since most of the individual tools in the Toolbelts have no or
shallow domain models, there is no appreciable side effects associated
with introducing them. However, once an individual tool has been
enriched with a significant domain model or effort has been spent to
establish programmatic relationships across tools, then there is
considerable costs associated with introducing tools. If an old tool is
replaced out right, all the domain knowledge embedded in that tool is
lost (Figure 4.8). If a new tool is added to augment existing tools,
considerable effort must be spent up front to enrich the individual tool
since there is no knowledge-sharing across tools in the Toolbelt model.

For the most part, the tools in the toolbelt model neither helped nor
hindered retrofitting activities. Since most tools had limited awareness
of design languages, retrofitting mainly involved re-opening old
design products and reformatting them to graphically conform to new
languages. Some tools with presentation-level domain models
provided a limited form of design language versioning by storing these
shallow models with each individual design product and providing
mechanisms for merging different models.

96

Table 4.3: Toolbelt support for MODIFICATION.

Support for
MODIFICATION Toolbelt Model

• experimentation and

 creation

Yes

- tacit experimentation

- previewing

 - requires tool shopping and

 exploration skills

• introduction

 - augmentation

 - replacement

Yes and No

- Yes, if shallow model

- No, if deep model

• retrofitting Limited.

 - Mostly manual.

 - Active support limited

Technical Aspects of the Computational Model

Figure 4.8 illustrates the generalized toolbelt computational model.
where individual tools are used in isolation to construct particular
design products. Tools are the centerpieces of this model; there is little
infrastructure support beyond basic operating system services such as
file management. Data models reside in individual tools; there is no
provision for data sharing or integration across tool boundaries. For
the most part, individual tools do not support evolving their general
data models beyond simple presentation and semantic enriching.

Feiler and Wallnau refer to this type of model as a “coalition
environment” because the integration services provided reflect
political and economic coalitions between different vendors [24].
Coalition environments are characterized by the “point-to-point
integration of coalition tool services with each other, rather than with
underlying framework services” (i.e., infrastructure) pg.4 [24]. As a
result, integration services tend to be ad hoc and control-oriented (as
opposed to data-oriented) since this requires less coordination and
consensus between coalition participants.

97

Presentation Presentation;
Limited

Semantic

Design
Products

Tool C
(graphics
package)

Domain
Models

Infrastructure
Control-oriented integration protocols

Operating system / File managment

Tool A Tool B

Progammatic
Integration
Interfaces

Figure 4.8: Generalized architecture of the Toolbelt
computational model

In the personal computer arena, coalitions are coalescing around
two different compound document architectures – OLE and OpenDoc.
Compound document architectures provide inter-application
communication protocols that specify a standard way for applications
to expose their internal objects for extensibility and programmatic
control [54, 74, 87, 121, 122]. OLE (by Microsoft, [74]) provides such
facilities on MS Windows-based personal computers and is now
beginning to appear in some Macintosh applications. OpenDoc (by the
Component Integration Laboratory, [87]) is currently being
implemented for the Macintosh and other hardware platforms. While
these protocols provide some form of consistent across-tool
infrastructure integration services, the way applications choose to
support these protocols and the interfaces applications provide in this
area are still highly individual. For instance, in one well-known
“integrated suite” of four applications provided by the same vendor,
each application provided a different level of OLE integration support
and provided a different variant of programming language to access
these integration services [110].

Overall, this type of architecture is very flexible in certain
conditions. However, there is limited support for customizing,

98

integrating, and extending individual tools; where support is provided
it is difficult since every tool offers different interfaces and extension
languages. Also, since there is no data sharing, there is a lot of
redundant effort since each tool must be enriched with its own version
of the domain model. Once tools have been significantly enriched,
either at the domain model level or the relationship (integration)
level, then the model is no longer very flexible as all that elaboration
effort is lost or invalid when the tool is replaced.

New Practices, Skills and Knowledge Required

The toolbelt model both enables new ways of working and requires
new skills and new types of computational literacy. Table 4.4 lists the
new practices required by the model and the new skills and knowledge
needed to be successful.

Table 4.4: New Practices, skills and knowledge required by
the Toolbelt Model.

New Practices New Skills &

Knowledge

Minimal

• Locating Tools / Shopping

• Experimenting with Tools

• Assessing Tools

• expertise on tool availability

• expertise on market trends

• tool learning and exploration skills

• tool evaluation skills (features,
programmability, interoperability)

Preferred

• Customizing Tools

• Extending Tools

• Linking Tools

• detailed application knowledge

• macro and scripting languages

• application linking protocols

The toolbelt model creates a tool-mastery burden different from past
models of computer-supported work. In the past, the tool mastery
burden has focused on the difficulties users have learning to use a tool.
While learning is still an issue, as discussed above, selection of tools
and "gluing" of individual tools into systems are adding significantly
to the burden on designers.

Minimally designers need skills associated with locating and
assessing tools in order to assemble their initial toolbelts. Sometimes,

99

the search for new tools that supported specific objectives was
unsuccessful. Designers do not know if the tools really do not exist or
they simply were not able to find them. One problem is that keeping
abreast of the software market is a full time job in itself. One large
supplier of off-the-shelf software carries 2,000 items in stock and is
prepared to special order from a selection of 10,000 items total. Two
warehouse suppliers specializing solely in Macintosh products carry
2,000 and 5,000 items in stock respectively (hardware and software).

Also, designers need to experiment with and assess the suitability of
tools for supporting specific work practices. This requires learning and
exploration skills in order to evaluate the current features of a specific
tool. However, many people lack well-formed strategies for these two
activities [100]. Besides assessing just the features and interface, deeper
assessments regarding the tools programmability and interoperability
may also need to be made to estimate long term suitability. In addition,
knowledge of market trends is also required to assess the longer term
suitability of a tool. Questions such as will the tool manufacturer go
out of business soon and will they continue to support this product
need to be investigated. For instance, the voice dialog designers are
slowly phasing out the use of one simulation tool because the
manufacturer has gone out of business.

These skills and others associated with extending and linking tools
are additionally required to support evolving toolbelts to better support
work practices. As previously mentioned, currently the designers’
practices bind the applications together into a design environment. The
advent of commercially available compound document architectures,
such as OLE and OpenDoc, indicates that the technology for automating
some of this tedious and error-prone dependency management may
soon be in place. However, simply providing the technology is
insufficient for ensuring that it is properly understood and used. For
instance, most designers probably do not know that architectures such
as OLE or OpenDoc even exist or what their potential uses are. In the
voice dialog group, none of the designers had ever heard of either
architecture.

100

Also, a fairly detailed knowledge of such architectures is required
when selecting tools to support the long-term evolution of work
practices. For instance, how an application “supports” a protocol is
quite a tricky issue in that there are many different ways that an
application can provide support. In the case of OLE, many applications
currently only output OLE objects and cannot accept objects as input.
Other issues that need to be investigated prior to selecting a tool
include granularity (e.g., Are objects entire flow charts or can
individual nodes be an object?) and support for programmability (e.g.,
Can dependencies only be established by direct manipulation or can
they be established automatically such as generating the corresponding
table entry whenever a new node in the flow chart is created?)
Answering these questions already requires a large amount of technical
savvy, and these are just the questions to be asked when buying

software tools. Actually extending the tools to interoperate using
provided programming interfaces still remains to be addressed!

As the stories show, the designers themselves were able to adapt to
meet many of the new demands of the toolbelt model. However,
tuning toolbelts to better support work practices, beyond the limited
forms we saw in our stories, would undoubtedly require organization
support for the reasons discussed above. This issue of organizational
support will be reconsidered in Chapters 6 and 7.

SUMMARY

This chapter illustrates how a large part of these designers’ job is
“designing their design process” which consists of their design
languages, products, tools, and practices. Overall, the toolbelt model,
where designers assemble and evolve collections of off-the-shelf
generic software packages supported this co-evolutionary process. The
toolbelt model supported domain construction areas such as
modification and tacit to explicit elaboration processes. Support for
some use processes, such as evaluation and iteration, were lacking. The
toolbelt model may be monetarily cheap but it is not without costs. It

101

requires domain professionals to spend time locating and extending
tools and it requires them to acquire new practices, skills and
knowledge. The findings in this chapter will be used in Chapter 6,
when comparing toolbelts with the DODE model. Chapter 7 will use
these analyses on the strengths and weaknesses of the toolbelt model to
inform the next generation of tool design.

103

CHAPTER 5

THE VOICE DIALOG DESIGN ENVIRONMENT

Innovative design support environments have been developed by
several researchers [22, 25, 94, 111]. One thing these efforts all have in
common is their emphasis on providing domain-oriented support.
Domain-oriented systems embody a domain model of the entities to be
manipulated and can use the model to provide active support to the
designer. An example is the ProNet computer network design
environment enabling designers to construct logical network maps
showing the positions of workstations, printers, and gateways [115].
The system’s domain model represents these common domain objects
(i.e., workstations and printers), the relationships between these
objects, and rules guiding device connectivity. The system uses the
domain model to analyze logical maps for compliance with the
connectivity rules.

As illustrated with the network design example, providing active
computational support for individual design activities often requires
enriching the system with an understanding of the domain; e.g.
building a domain model into the system. However, building a rich
domain model into a system might limit the system’s flexibility; i.e., it
might no longer be capable of dealing with significant, perhaps even
small, changes in the domain. Thus, as discussed in Chapter 1, our
intuition is that systems with rich domain models provide better
design support, but offer less flexibility. The purpose of this chapter is
to investigate these intuitions; particularly, to deepen our
understanding of the particular aspects of a domain-oriented system
that help or hinder its overall flexibility.

104

To investigate these intuitions, we’ll examine in detail our
experiences creating and using a particular domain-oriented system –
the Voice Dialog Design Environment (VDDE). VDDE is based on the
domain-oriented design environment (DO D E) model, where
specialized design representations and domain knowledge-bases are
provided to support designers in constructing and evaluating design
solutions. VDDE was constructed in collaboration with the same voice
dialog design community discussed in Chapters 2 and 4. Its
development was concurrent with the voice dialog toolbelt described
in Chapter 4.

This chapter begins with a brief overview of the general domain-
oriented design environment model and its theoretical underpinnings.
The central core of the chapter details the experiences from the Voice
Dialog Design Environment project. Next, these specific experiences are
analyzed from the domain construction perspective. Finally, the
chapter concludes by reflecting on how generalizable the VD D E

experiences are to the general DODE computational model.

THE DOMAIN-ORIENTED DESIGN ENVIRONMENT MODEL

The general DO D E model has been thoroughly described in
numerous publications [25, 26, 28-30, 33, 34]. A brief overview of the
general model is provided here. DODEs provide tools for creating
design representations, information repositories for storing domain
knowledge, and knowledge-based mechanisms that link the design
representations and the stored domain information. DODEs instantiate
the multifaceted architecture shown in Figure 5.1.

105

Key:

Design Tool

Knowledge-based Link

Information Repository

Specification

Construction
Kit

Argumentation
Illustrator

Construction
Analyzer

Specification
Linking
Rules

Catalog
Explorer

Catalog

Argumentation

Catalog
Explorer

Specification
Linking
Rules

Figure 5.1: The DODE multifaceted architecture.

The multi-faceted architecture provides tools
for design construction, information
repositories, and knowledge-based links
integrating these various components. Figure
reprinted courtesy of J. Ostwald.

The architecture contains design creation tools in the form of a
construction component and a specification component. The
construction component is the principal medium for modeling a
design. The goal of the construction component is to support design by
composition and design by modification. To do so, it uses a
construction kit approach [28], providing a palette of domain-oriented
design units which can be arranged in a work area using direct
manipulation.

The specification component allows designers to describe abstract
characteristics of the design they have in mind. The specification
provides the system with an explicit representation of the user’s goals
which can be used to tailor the activities of the knowledge-based
linking mechanisms towards the specific design being constructed [76].

106

Design information repositories are provided in the form of
argumentation, catalog, and simulation knowledge-bases. The
argumentative hypermedia component contains design rationale [14,
72] that users can annotate and add to as it emerges during the design
process. The catalog component [77] provides a collection of previously
constructed designs and is intended to support reuse [89] and case-based
reasoning [61, 62]. A simulation component (not shown) enables
designers to carry out “what-if” exercises and simulate usage scenarios
of the artifact being designed [98, 115].

The architecture is multifaceted because these components provide
multiple representations of both the current design and underlying
domain knowledge. The knowledge-based linking mechanisms serve
to integrate these facets in the DODE architecture. Computer-based
critics are the primary form of linking mechanism. Computer-based
critics are made up of sets of rules or procedures for evaluating
different aspects of a design; sometimes each individual rule or
procedure is referred to as a critic [29, 33, 78]. The critiquing mechanism
analyzes the design construction for compliance with the currently
enabled set of critic rules. When a potential problem is detected, the
critic signals the designer and provides entry into the argumentative
hypermedia component where an explanation is located. It is left up to
the designer to choose whether or not to modify the design in response
to a critic message.

In the following sections, these DO D E components will be
considered in the specific context of the Voice Dialog Design
Environment.

INITIAL TASK ANALYSIS: CHALLENGES FACING DESIGNERS

Voice dialog designers create software applications with phone-
based user interfaces. Typical applications are voice information
systems and voice messaging systems. These applications consist of a
series of voice-prompted menus requesting the user to perform certain
actions; e.g., “to listen to your messages, press 1.” The caller issues

107

commands by pressing touch-tone buttons on the telephone keypad
and the system responds with appropriate voice phrases and prompts.
Designing in this domain means specifying the interface for an
application at a detailed level. The designs are then usually given to
some other person or organization to be implemented on specialized
hardware platforms.

In early 1991, we began a collaborative research project with two
voice dialog design groups within US West. One group specialized in
the design of large-scale voice dialog applications such as voice
messaging systems. This is the same design community discussed in
Chapters 2 and 4. The other group, composed of voice dialog account
executives, specialized in small-scale customized voice information
systems. Some members of these groups were dissatisfied with their
current design tools; i.e., the toolbelts discussed in the previous
chapter. Two representatives for these groups approached us with a
compelling presentation of the problems and challenges faced by voice
dialog designers. This section reviews some of the findings from our
initial task analysis that led us to believe that voice dialog design was a
good candidate domain for the DODE approach.

In order to better understand the domain and the design challenges,
members of the voice dialog design groups were interviewed, design
sessions were observed, a few sessions were videotaped and analyzed,
and existing tools and design representations were analyzed. Four core
challenges facing designers were identified [9, 10, 98, 117]:

• Inconsistent Design Representations

• The Audio/Visual “Medium” Gap

• Knowing and Applying the Design Guidelines

• Coping with Conflicting Design Guidelines

Inconsistent Design Representations. In 1991, voice dialog
applications were a relatively new design domain. Historically,
applications had been small in scale, with most applications offering
only a handful of features; e.g. providing three options to hear a

108

selection of recorded information. However, in the early 90’s, voice
dialog applications mushroomed in size. It is not unusual to have
voice mail systems with 50-page instruction manuals, hundreds of
features, and a two-year development cycle. Industry deregulation
combined with advances in hardware triggered a rapid spread of voice
dialog technology into new application areas. Key challenges facing
designers, both then and now, are large increases in complexity and
rapid innovation within the application domain. As a result of this
rapid change, there are no standard design representations used by
most voice dialog designers. One common representation is the
traditional written specification. Some designers, in an attempt to deal
with increasing complexity, have moved to graphical representations
similar to flow charts. Both voice dialog groups participating in this
project were using graphical representations. However, while these
representations were similar on the surface, there were many
differences both graphically and semantically.

The Audio/Visual “Medium” Gap. The design process of voice
dialog applications is complicated by the “gap” between the visual
medium of design representations and the audio medium of the end
product. Halstead-Nussloch [53] identifies many important differences
between screen-based (visual) and phone-based (audio) interfaces.
Screen-based interfaces display information on the screen for a
duration that is under user control. In phone-based interfaces,
information is presented auditorally as spoken messages and signals
and must therefore be processed serially with no memory aids
whatsoever. Short term memory limitations are an important design
consideration. It is difficult for the designer working with a visually-
oriented, long duration design representation to mentally bridge this
medium gap and envision the auditory, serial, short-term-memory
constrained end product. Simply put, it is difficult for designers and
end-users of these applications to anticipate what the final audio design
will sound like by simply looking at a static, visual diagram. Thus,
simulations are built that allow designers and end-users to directly
experience the final audio interface. Unfortunately, using current
software packages, a simulation for a simple design takes a professional

109

programmer several days to build; a simulation for a complex design
can take a couple of weeks to produce.

Knowing and Applying the Design Guidelines. Building
applications that conform to existing design guidelines requires
knowing and being able to apply the guidelines. This was problematic
for the group designing small-scale voice information systems. Their
“designers” were not trained user interface designers but instead were
small business systems salespeople. These salespeople went to the
clients’ place of business and co-designed a system on the spot using
flow chart sketches and paper forms. For the most part, these people
did not know the user interface guidelines and ended up designing
systems that did not comply. Existing members of the group designing
large-scale voice messaging systems did not have many problems in
this area; primarily because they were the authors and maintainers of
the guidelines document. However, the group’s manager noted that
about 50% of all newly hired designers had little previous experience
designing phone-based interfaces. Thus, the first thing many new
designers needed to do was learn the existing design guidelines.

Coping with Conflicting Design Guidelines. One challenge facing
voice dialog designers is that their design task is influenced by many
conflicting design objectives such as compliance with different sets of
user interface guidelines (regional, national, and international) and the
desire to create designs that are consistent with related products or
existing applications in the installed product base. Unfortunately, many
applications in the installed base predate the interface guidelines and so
do not conform to these guidelines. Thus, the designer must make
difficult trade-off decisions between these competing objectives.

In spring of 1991, we began to design and prototype a voice dialog
design environment. The group creating small-scale voice information
systems was disbanded before the end of 1991. However, the
collaboration with the large-scale group continued until the middle of
1994. During this period, a voice dialog design environment
instantiating many parts of the DODE model (except the catalog) was

110

designed, developed, and evaluated. From the beginning, the project’s
emphasis was on creating a combined construction / simulation
component, targeted at providing consistent design representations
and bridging the audio/visual medium gap. Later on in the project, a
critiquing system was added containing encoded design rules, a
hypermedia design rationale component, and a simple specification
component. This addition was targeted at supporting designers to learn
and apply the different user interface guidelines and to assist designers
in making difficult trade-off decisions between the different guidelines
and product consistency.

The remaining sections will describe the final VDDE system and our
experiences creating the system. Analogous to the toolbelt stories in the
previous chapter, I’ll first describe the state of the system at the end of
the project. Then, I’ll discuss how it got to be that way by examining the
project timeline. Finally, the resulting system and our experiences
creating it will be analyzed from the domain construction perspective.

THE FINAL VDDE SYSTEM

The Voice Dialog Design Environment provides a construction kit
that allows designers to quickly sketch out the flow of an audio
interface by arranging domain-oriented design units such as voice
menus and prompts into a flow chart-style representation. Designers
can hear what their audio interface design sounds like by attaching
audio recordings to components in the interface and simulating the
design. Computational design critics embedded in the system watch
designers' actions and comment on potentially problematic aspects of
the design under construction.

The VDDE system, as it stood at the end of the project, is shown in
Figure 5.2. The top two windows show the combined construction /
simulation subsystem. The lower window and rightmost window
show the critiquing subsystem. Each of these subsystems and the final
system architecture will be described below.

111

Figure 5.2: The Voice Dialog Design Environment.

Designers arrange design units from the gallery (top window)
in a worksheet (left window) to create a graphic representation
of the audio interface. A critiquing component analyzes the
design for compliance with interface guidelines and product
consistency. Problems are signaled in the critic message pane
(lower window). The designer can elect to see the rationale
behind the rule and can also add more arguments into the
hypermedia knowledge-base (right window).

The Construction / Simulation Subsystem

The construction / simulation subsystem is the core of the Voice
Dialog Design Environment and is built using the Agentsheets visual
programming substrate [94, 95, 99]. This section assumes the reader has
familiarity with the Agentsheets substrate. This subsystem was
targeted at solving the inconsistent design representations and
audio/visual medium gap challenges. The DODE model, combined
with the construction kit and visual programming capabilities of the
Agentsheets substrate, suggested possible solutions.

To support the creation of standardized design representations,
V DDE provides a construction component consisting of a gallery
containing domain-oriented design units and worksheets (see Figure
5.2). Designers create designs by selecting voice dialog interface units
from the gallery and arranging them in worksheets according to three
standardized placement rules.

112

To support bridging the audio/visual medium gap, VDDE enables
designers to construct executable design representations. Designers can
attach sounds to design units in the worksheets and simulate the
design at any time. Simulation consists of a visual trace of the
execution path combined with an audio presentation of all prompts
and messages encountered.

The gallery (Figure 5.3) consists of 19 voice dialog design units.
Thirteen design units (top 5 rows) are based on the domain
vocabularies found in the flow chart and table representations. These
design units are more specialized than related units found in the flow
chart representation; i.e., instead of one inputter unit, there are three
design units for different types of input. Likewise, there are two units
for creating menus, and five design units for expressing conditionals.
This degree of specialization was necessary for the design
representation to be executable. Towards the end of the VDDE project,
the “Note” design unit was introduced mimicking generic flow-
charting node capabilities. This design unit basically does nothing.
Designers can replace the blank depiction with a small, three word
label; when simulating the design, flow passes right through the unit.

Five new design units (bottom two rows) were introduced
specifically to support design simulation. The Start, End, and
Subsystem units direct the flow of the simulation process. The
Subsystem unit was introduced to encourage designers to hierarchically
decompose designs into modular subsystems; each unit represents a
nested worksheet. When simulation control enters a Subsystem design
unit, the corresponding nested worksheet is opened and control passes
to that worksheets’ Start unit. When the simulation reaches either
blank space or an End unit, control returns to the calling worksheet.
Two units – Set Data and Global Data – were added to manage data
during design simulation. The Set Data unit is required for
conditionals operating on data items, such as the Get Data unit, to work
correctly during simulation. The Global Data unit is for debugging
purposes; it enables designers to observe when data values change
during the course of design simulation.

113

Notes and
Placeholders

Audio
Output

Input
Collectors

Voice
Menus

Data

Simulation
Control

Conditionals

Figure 5.3: Design units provided by the VDDE gallery.

As in all other Agentsheets applications, each design unit is an
agent having a specific look (bitmap depiction in the gallery) and a
behavior (associated object class). In VDDE, many design units also
have special methods and interfaces for configuring their various
attributes. Most configuration methods and interfaces deal with
recording and managing audio prompts. Figure 5.4 shows the typical
parts of a VDDE design unit. Some design units, such as the prompt
unit, allow the designer to replace or augment the graphic bitmap
depiction with a small text label.

114

Class Definition specifying State
(attributes) and Behavior (methods)

Configuration Dialog Box

Textual DepictionGraphic Bitmap Depiction

Figure 5.4. Parts of the prompt design unit.

A fundamental feature of Agentsheets is that worksheets have an
underlying grid structure, consisting of unlabeled rows and columns.
The grid structure guides the placement of design units.
Communication between design units, i.e., the flow of information, is
based on both relative and absolute spatial positions in the grid
structure. In VDDE, these spatial communication relationships were
used to create a simple, executable representational system. Three
placement rules describe the order of execution flow when simulating
the design representation (Figure 5.5). To create a design, designers
assemble language components in the worksheet following these three
rules. The borders of design units (i.e., dashed versus solid lines) also
reflect these placement rules by indicating how design units can be
legally joined.

The Critiquing Subsystem

The critiquing subsystem is described more thoroughly in [9, 10, 55,
78]; key points are reviewed here. As previously discussed, this
subsystem was targeted at supporting designers to learn and apply

115

The Horizontal Rule:
Desi gn uni ts pl aced physi cal ly
adj acent t o each ot her wi th in a
r ow ar e execute d f rom l ef t- to-
r ight .

The Vertical Rule:
Desi gn uni ts pl aced physi cal ly
adj acent to each ot her wi t hi n a
col umn descr i be t he set of
opt io ns or choi ces at th at poi nt
i n t i me i n t he execut i on
sequence.

The Arrow Rule:
Connect in g t wo desig n uni ts
w i th an arr ow al so defi nes an
execut i on or der i ng and i s
i dent ic al t o pl aci ng desi gn uni ts
next to each other horizontally.

Figure 5.5: The Three Placement Rules in VDDE.

interface guidelines and to make trade-offs between the different
guidelines and product consistency. The critiquing subsystem contains
several DO D E components: a knowledge-base of design rules, a
hypermedia design rationale component, and a simple specification
component.

Different from other DODEs, the knowledge-base is partitioned at
the top level into four sets of critic rules that analyze design
representations using different evaluation procedures. These different
evaluation procedures and the content of the knowledge base were
derived by analyzing existing user interface design guidelines and by
analyzing the verbal protocols of designers during actual design
sessions. Three sets of critic rules correspond to the regional, national,
and international phone-based user interface standards. An analytical
evaluation procedure is used to compare design solutions for

116

compliance with these three rule sets. A fourth rule set – the
consistency set – uses a comparative evaluation procedure to compare
two designs for inconsistencies. Each rule set is further partitioned by
application type; e.g., voice mail, call answering, voice message
delivery, and voice bulletin board.

The specification component provides a simple interface enabling
designers to control the activities of the critiquing system. Using the
specification interface, designers select and prioritize which rule sets to
use during a design session; designers can selectively enable more
specialized evaluative knowledge by specifying the type of application
being developed. Designers can also control the intrusiveness of the
critiquing system by adjusting the frequency with which designs are
analyzed.

When the critiquing system is invoked, it analyzes the
representation for compliance with all the enabled rule sets. When a
possible violation is detected, a brief message signaling the violation is
presented in a separate critic message window (see Figure 5.2). To help
designers identify the source of a detected problem, each message is
preceded by a symbol indicating the particular rule set the critic is part
of. The system provides deeper explanations of critiquing messages by
linking the messages with portions of the relevant user interface
guidelines documented in the hypermedia knowledge-base. At any
time, the designer can add new rationale, such as reasons why he or
she is breaking a design guideline, to the hypermedia knowledge-base.

Architecture of VDDE

The final system architecture is shown in Figure 5.6. As previously
discussed, VDDE is constructed using two tool substrates – Agentsheets
and Hypercard [39, 123]. These are referred to as tool substrates because
end-users do not interact with them directly in VDDE, but instead
interact with specialized tools created using these substrates. Hypercard
was used to create the specification and hypermedia design rationale
components. Agentsheets was used to create the combined
construction/simulation area. The two tool substrates are integrated at

117

Presentation;
Limited

Semantic

Construction /
Simulation

Area

Hypercard

Domain
Models

Infrastructure

Operating system / File managment

Language-level
Integration

Appleevents application communication protocol

Macintosh Common Lisp

OPUS Object-Oriented System

Representation Model

Domain Objects

Tool
Substrate Agentsheets

Critic
Manager

Construction Analyzer

Tool
Substrate

Hypermedia
Design
Rationale

Domain
Model

Tool Extensions

Design
Products

Figure 5.6: VDDE System Architecture

VDDE is built on two tool substrates – Agentsheets and
Hypercard. The components of VDDE are integrated with
each other using Apple events (shown here with rectangles
and arrows).

a few points using the Apple event communication protocol provided
by the Macintosh operating system. Communication is achieved by
passing shared keywords back and forth. The receiving substrate will
take a specific action depending upon the keyword received.

The combined construction/simulation area consists of several
layers of domain models and tool extensions built on top of
Agentsheets, the OPUS object-oriented system [93], and Macintosh
Common Lisp (MCL) [1]. The domain model consists of two layers: the
representational model layer and the domain object layer.

Above Agentsheets is the representational model layer defining the
representation specific to VDDE; i.e., agent classes implementing the
three placement rules. These classes are domain independent and not
based on voice dialog design. This architecture evolved over time to
facilitate experimentation with the representational system and to
facilitate the introduction of new design units into the system.

118

Above the representation model layer is the domain objects layer.
This layer includes classes defining the behavior of nested worksheets
and classes defining the semantics and behavior of design units such as
prompts, voice menus, beep tones, and digit collectors. Above the
domain model layer is a tool extensions layer. This layer contains new
or modified menu commands that have been added to the basic
Agentsheets menu bar.

The remaining components belong to the critiquing subsystem. The
critiquing system architecture is built on top of Hypercard, OPUS,
Agentsheets, and VDDE’s domain models. The specification and the
hypermedia rationale components are built on top of Hypercard. These
components communicate with the critic manager (Figure 5.6) using
Apple event protocols.

The critic manager is the core of the critiquing system. It both
contains the critic rules and coordinates which rules are enabled based
on the current specification component settings. The critic manager
consists of several, very large, specialized object classes created using
OPUS. The construction analyzer controls the actual firing of critics and
checks each enabled rule against the current worksheet (i.e., design
product). The operation of the construction analyzer is based on objects
and methods defined in the domain object and representation model
layers. Additionally, several of the domain object classes in the domain
model contain special hooks which trigger the activation of the
construction analyzer. In essence, the critic manager and the
construction analyzer are integrated at the language-level (i.e.,
programming code level) with the remainder of the VDDE system by
the provision of special hooks in lower layers and by building on the
content of lower layers. Thus, changes to these lower layers impact the
operations of the construction analyzer and the critiquing system.

119

EXAMINING THE VDDE PROJECT TIMELINE

The VDDE project was concurrent with the voice dialog toolbelt
story presented in Chapters 2 and 4. As the timeline shows (Figures 5.7-
8), VDDE was in a continual state of change. Some of this change was
inherent to the development process; i.e., our efforts to create an initial
design environment. However, the rate of change never subsided. Two
external factors contributed to the continual evolution of VD D E:
innovations in the voice dialog domain and innovations in the
Agentsheets substrate. This section will look at the interplay between
these external factors and the evolution of VDDE.

Innovations in the Domain

Innovations in the domain arose both from within a particular
design group and from the introduction of new design groups and new
voice dialog products into the VDDE collaboration. What should be
represented in VDDE and how it should be represented were in a
continual state of flux. Basically, we were continually striving to strike
a balance between expressiveness and facility [4, 65]. Expressiveness
refers to the ability to state a solution given a particular set of
abstractions in a language or representational system. Facility refers to
how easy it is to state the solution given the abstractions of the
language or representational system. Ideally, abstractions should be
expressive enough to allow users to state solutions to commonly
occurring problems, yet constrained enough to shield users from
decisions and details they don't want to be bothered with.

To determine the appropriate level of abstractions, we employed a
system design approach that was both problem-centered [65] and
participatory [5, 20, 43, 44, 104]. A collaborative process was followed
where voice dialog designers and system developers worked together
to design and evolve domain-specific abstractions through use [99].
VDDE evolved through repeated attempts at solving real voice dialog
design problems. Overall, its “domain-orientation” was the result of
analyses of existing design tools and representations, analyses of voice
dialog products in the marketplace, and collaborative design sessions

120

over the course of the project. These collaborative design sessions
typically occupied a couple of hours and involved a voice dialog
designer and the system developer sitting down next to each other and
using VDDE to solve a real design task. As breakdowns in VDDE’s
abstractions were encountered, new design units were added or existing
design units were modified or removed. In the following subsections,
we will examine changes in the expressiveness, facility, and
abstraction-level of the VD D E language as the result of these
collaborative design sessions and other analysis activities.

Period of Domain Expansion: The Search for Expressiveness

Figure 5.7 illustrates VDDE’s period of domain expansion. Version 1
shows the initial prototype, created in just a few hours. This prototype
was shown to members of the voice messaging group to help gauge the
suitability of the Agentsheets substrate for the future VDDE system.
This prototype had no domain model and merely consisted of nodes
that could be linked and could beep.

Version 2 shows the prototype after the first six months. By this
time, the basic domain model had been created containing 12 design
units and the three placement rules. The three placement rules were
introduced to eliminate many of the arrows cluttering previous
representations. In collaborative sessions, some designers used this
early version to create simple voice dialog designs and found that
VDDE’s exclusive reliance on graphic bitmap depictions made the
resulting design products unreadable. To address this problem, we
introduced the notion of text overlays allowing all or parts of graphic
depictions to be replaced with short text labels of one to three words.
Also, this version did not yet support audio recordings; instead, it
relied on MacinTalk to voice the prompts and messages encountered
during design simulation. The voice messaging designers noted that
they had tried MacinTalk unsuccessfully before; they had found that
the sound quality was not high enough to show to potential users or
customers.

121

•
2

G
al

le
rie

s
•

30
 D

es
ig

n
U

ni
ts

•
3

pl
ac

em
en

t r
ul

es
•

3
re

pr
es

en
ta

tio
ns

 fo
r

co

nd
iti

on
s:

 S
im

pl
e,

F

le
xi

bl
e

, C
on

d
•

co
nd

iti
on

s
op

er
at

e
on

3

da
ta

 ty
pe

s:
 n

um
er

ic
,

da

te
, t

im
e

V
er

si
o

n
 3

H
yp

er
ca

rd

V
oi

ce
 M

es
sa

gi
ng

 P
ro

du
ct

s
S

ch
ed

ul
in

g
In

fo
rm

at
io

n
D

el
iv

er
y

S
m

al
l B

us
in

es
s

In
fo

rm
at

io
n

S
ys

te
m

s
F

ax
 S

er
vi

ce
s

C
U

 C
on

ne
ct

C
om

pe
tit

or
's

 P
ro

du
ct

s
/ O

th
er

 D
es

ig
ne

rs

19
91

19
92

19
93

Domain VDDE Design
Environment

Substrates

P
ro

bl
em

s
w

ith
W

or
ks

he
et

R
ep

re
se

nt
at

io
n!

N
ot

ifi
ca

tio
n

M
ac

In
T

al
k

un
su

ita
bl

e!
D

es
ig

n
U

ni
ts

T
oo

 L
ow

 L
ev

el
!

•
12

 D
es

ig
n

U
ni

ts
•

3
pl

ac
em

en
t r

ul
es

•
S

im
pl

e
nu

m
er

ic

co
nd

iti
on

s

V
er

si
o

n
 2

•
4

D
es

ig
n

U
ni

ts
•

Li
nk

s
O

nl
y

•
N

o
co

nd
iti

on
s

V
er

si
o

n
 1

D
es

ig
n

U
ni

ts
 T

oo
Lo

w
 L

ev
el

!

P
ro

bl
em

s
w

ith
S

pe
ci

al
iz

ed
W

or
ks

he
et

s!

C
an

't
S

av
e

an
d

R
es

to
re

!

V
er

si
o

n
 4

•
36

 D
es

ig
n

U
ni

ts
•

3
pl

ac
em

en
t r

ul
es

•
F

le
xi

bl
e

co
nd

iti
on

s

op
er

at
in

g
on

 5

da
ta

 ty
pe

s:

nu
m

er
ic

, d
at

e,

tim
e,

 a
lp

ha
nu

m
er

ic
,

en

um
er

at
ed

•
C

rit
iq

ui
ng

 S
ys

te
m

S
el

ec
tio

n
D

oe
sn

't
W

or
k!

D
es

ig
n

U
ni

ts
 N

ot
E

xp
re

ss
iv

e
 E

no
ug

h!

P
iz

za
 A

pp
S

im
ul

at
io

n
no

lo
ng

er
 a

 p
rio

rit
y!

P
ro

bl
em

s
w

ith
W

or
ks

he
et

R
ep

re
se

nt
at

io
n!

S
ys

te
m

 6
ca

n'
t d

ea
l w

ith
S

ou
nd

s!

N
ee

d
H

yp
er

te
xt

S
up

po
rt

!

N
ee

d
to

 P
rin

t!

C
an

't
de

al
 w

ith
S

ou
nd

s!

P
ro

bl
em

s
w

ith
S

ou
nd

 Q
ua

lit
y!

D
es

ig
n

U
ni

ts
 N

ot
E

xp
re

ss
iv

e
 E

no
ug

h!

N
ew

 O
S

 S
ou

nd
M

an
ag

er
!

N
ew

 M
C

L
 O

bj
ec

t M
od

el
!

N
ew

 A
S

 S
ou

nd
M

an
ag

er
!

N
ew

 D
oc

um
en

t
M

an
ag

er
!

A
ll

N
ew

 C
ol

or
A

ge
nt

sh
ee

ts
!

B
la

ck
 &

 W
hi

te
 A

ge
nt

sh
ee

ts

G
al

le
ry

 /
F

ile
s

to
o

co
m

pl
ex

!

C
ol

or
 A

ge
nt

sh
ee

ts

C
an

't
C

ut
, C

op
y,

P
as

te
!

C
an

't
Lo

ad
 C

ol
or

A
ge

nt
sh

ee
ts

!

Figure 5.7: VDDE project timeline during the period of domain
expansion.

122

Version 3 shows the design environment by the end of 1992. The
V D D E system had exploded to include multiple galleries with
approximately 30 design units in each gallery. Each gallery was created
to experiment with different ways of representing conditionals. An
analysis of competitors’ voice dialog products, a new collaboration with
a fax services group, and new design contracts for notification and
scheduling features in the voice messaging group had all highlighted
the system’s insufficient expressivity in this area. We added new design
units addressing different data types (e.g., alphanumeric, date, and
time) and experimented with new conditional representations (called
“cond”, “flexible”, and “simple”). Additionally, we were now using
third party software and recording devices to create high-quality audio
prompts. While the resulting sound quality was excellent, the use of
these applications was cumbersome since they were completely
unintegrated with VDDE. Designers had to save each recording in a
separate, named sound file and then input this file name into the
associated design unit in VD D E . Unfortunately, there was no
alternative at the time: the Macintosh operating system at that time
(version 6) did not provide any built-in support for recording sounds,
so we had to use these third-party applications and the third-party
applications being used were not extensible or integratable.

By version 4, we had settled on the flexible conditional
representation. This choice was based on the results of extensive
programming walkthroughs [3, 4] performed by eight groups of
interface designers comparing the different forms of conditionals [118].
There were now 36 design units in the gallery; six new ones had been
introduced to support simulating designs operating on enumerated
data types.

Overall, two factors drove the expansion that characterized the first
four versions of VDDE: the desire for amortization and the desire to
support design simulation. As noted by Prieto-Diaz and Arango, to be
cost effective, the effort of building a domain-oriented system must be
amortized across a community [2]. The desire for amortization, or
broader applicability, inspired us to understand the design needs of

123

multiple design groups and to analyze competitor’s products and other
types of voice dialog products. This favored emphasizing
expressiveness in the VDDE language as we modified the contents of
the gallery (i.e., the design units) to be able to state a wider range of
design solutions. In our case, expressiveness corresponded to a
proliferation in the number of design units.

As each new group or new product entered the collaboration, we
minimally had to introduce new design units into the gallery to cope
with the new demands placed on the system. Sometimes, even the
underlying representational system, particularly in the area of
conditional actions, was not expressive enough and it too had to be
changed.

Another factor contributing to the drive towards more
expressiveness was the goal of supporting design simulation. At the
start of the project, the designers wanted to bypass using existing
simulation languages when building prototypes for user testing and
the marketing groups. These languages were essentially general-
purpose programming languages enriched with special constructs for
handling phone hardware and audio recordings. Robust simulations
could be built using these languages but they were hard to learn and
hard to use. Many new designers did not know the simulation
languages and were unwilling to learn them.

So in the first half of the project, a central design goal was being able
to create simulations supporting “full-blooded” action. Full-blooded
simulations are detailed simulations that provide realistic use
experiences [16]. In voice dialog design, full-blooded action means
providing functionality such as driving phone hardware, high quality
sound, and the ability to interrupt sounds with key presses. For a
design to be simulatable or executable in a full-blooded sense, it must
be explicitly and precisely stated. In effect, this requires the
representational system to also serve as a programming language.
Thus, the goal of realistic simulation also led to more design units,
with each design unit having a more narrowly defined definition. As

124

shown in Figure 5.3, the resulting VDDE gallery provided multiple,
specialized versions of many of the basic types of design units found in
the existing flow chart representation.

Period of Domain Shrinking: The Search for Facility

A competing factor began to counter the drive towards greater
expressiveness and promote the drive towards facility instead. This
factor was the desire to support upstream design activities; i.e., more
conceptual design and problem-solving activities as opposed to more
downstream, detailed specification activities.

By now, in our collaborative sessions, we were trying to use VDDE

to create designs for contracts currently being handled in the voice
messaging group; i.e., real design tasks. In a series of design sessions, we
saw that the expressiveness of the design units in the gallery
significantly changed the design task. Levels of detail that used to be
handled in downstream design activities, or even not at all, were now
moved to the forefront of upstream activities. For the design to be
simulatable, designers had to specify detailed conditional actions and to
define operations on underlying data items such as schedules or
mailboxes. Using flow charts and text design representations,
conditional actions were not specified until further downstream in the
process. Operations on underlying data items were often not expressed
at all but instead left implicit; the vendor implementing the
application dealt with these issues. Because of this enforced level of
detail and explicitness, designers were often not able to sit down and
design using VDDE; they first constructed a higher-level representation
and then transcribed this representation into VDDE.

These design sessions indicated that the abstraction level of VDDE’s
design units was too low, oriented more towards supporting detailed
design simulation than supporting upstream design construction. To
remedy this situation, we began to aggregate and eliminate existing
design units to simplify the gallery; i.e., VDDE began to undergo a
period of domain shrinking (Figure 5.8).

125

C
ol

or
 A

ge
nt

sh
ee

ts
P

ro
je

ct
 F

ol
de

rs

V
oi

ce
 M

es
sa

gi
ng

 P
ro

du
ct

s
In

fo
rm

at
io

n
D

el
iv

er
y

D
en

ve
r

G
ro

up
C

on
fig

ur
at

io
n

19
94

19
93

19
95

Domain Substrate

D
es

ig
n

U
ni

ts
 N

ot
E

xp
re

ss
iv

e
 E

no
ug

h!

D
es

ig
n

U
ni

ts
T

oo
 L

ow
 L

ev
el

!

H
yp

er
ca

rd

•
24

 D
es

ig
n

U
ni

ts
•

3
pl

ac
em

en
t r

ul
es

•
S

im
pl

e
co

nd
iti

on
s

•
M

or
e

D
at

a
U

ni
ts

•
B

itm
ap

 "
T

he
m

es
"

V
er

si
o

n
 5

P
ro

bl
em

s
w

ith
W

or
ks

he
et

R
ep

re
se

nt
at

io
n!

S
el

ec
tio

n
D

oe
sn

't
W

or
k!

S
im

ul
at

io
n

to
o

ha
rd

!

P
ro

bl
em

s
us

in
g

T
oo

ls
 a

nd
 W

in
do

id
!

S
im

ul
at

io
n

no
lo

ng
er

 a
 p

rio
rit

y!

N
ee

d
H

yp
er

te
xt

S
up

po
rt

!

C
an

't
Lo

ad
 C

ol
or

A
ge

nt
sh

ee
ts

!

•
19

 D
es

ig
n

U
ni

ts
•

3
pl

ac
em

en
t r

ul
es

•
S

im
pl

e
co

nd
iti

on
s

•
C

on
di

tio
na

ls
 o

pe
ra

te
 o

n
th

re
e

da

ta
 ty

pe
s

on
ly

: e
nu

m
er

at
ed

,

tim
e,

 n
um

er
ic

•
N

ew
 "

N
ot

e"
 D

es
ig

n
U

ni
t

A
ll

N
ew

 C
ol

or
A

ge
nt

sh
ee

ts
!

VDDE Design
Environment

V
er

si
o

n
 6

N
ew

 T
oo

lb
ar

s
&

 W
in

do
id

s!

N
ew

 W
ay

 to
O

rg
an

iz
e

R
es

ou
rc

es
!

C
an

't
in

te
rr

up
t

S
ou

nd
s!

P
ro

bl
em

s
M

an
ag

in
g

S
ou

nd
F

ile
s!

N
ew

 S
ou

nd
M

an
ag

er
!

Figure 5.8: VDDE project timeline during the period of domain
shrinking.

126

Version 5 shows VDDE after a period of aggregation. Many of the
design units representing atomic actions had been combined to create
higher-level design units (such as combining messages and touch tone
buttons to create voice menu units). Additionally, the initial design
goal of supporting full-blooded simulation was no longer a priority. By
that time, the voice messaging group had somewhat modified its
practices so that specialized simulation builders located in the group
developed all of the prototypes; thus designers did not need to learn or
use the simulation languages. This shift in practices led us to shift
V D D E design goals towards the sketchpad concept. Since the
environment no longer needed to express complex conditional actions,
we reverted back to the “simple form” of conditional representation
and this eliminated several more design units from the gallery. To
help designers cope with the, still large, number of design units in the
gallery, the notion of visual depiction themes were introduced. Visual
themes were used to indicate design units all belonging to a similar
functional class, such as the theme of butterfly nets to distinguish input
collectors. We continued to eliminate functionality, mostly in the area
of conditional operations, and eventually reduced the number of
design units to 18 (Version 6).

However, later use sessions indicated that we still had not gone far
enough in simplifying the VDDE language. The design representation
was still oriented towards expressiveness and programmability; there
were still too many low-level design units. As we saw in the voice
dialog stories in Chapters 2 and 4, designers seemed to prefer between
four and eight domain abstractions; VDDE had eighteen. However,
even though VDDE had too many design units, it still couldn’t express
all the concepts that needed to be expressed. It was a catch-22 situation.

Our solution to the expressiveness problem was to introduce the
Note design unit (Figure 5.3), which was a textual placeholder that did
nothing. As one designer said during a later design session, “I've fit
this on a number of other designs even, in trying to use more
conventional flow charting, where there's just certain things that don't

lend themselves to the representation you’re using. And actually,

127

well I can see why I can get really carried away with this notes stuff. I
like this. I want to do one more.” [italics added for emphasis]

Innovations in the Substrate

What is particularly interesting was the considerable impact
innovations in the Agentsheets substrate had on the evolution of
V D D E . As Figures 5.7-8 show, innovations were periodically
“mushrooming up” from below. Some of these innovations resulted
from changes in Agentsheets; other innovations stemmed from
changes to MCL and even the underlying operating system.

Some of the Agentsheets’ innovations were in response to
breakdowns identified in the VDDE system and were crucial for the
success of VDDE. For example, innovations in the sound manager were
required to meet the simulation needs of the project. Sometimes,
innovations were introduced for the benefit of other Agentsheets
applications (e.g., Color Agentsheets, Windoids, Toolbars). Several of
these innovations did not just impact implementation issues; they
represented major changes to the overall look, interface, and
functionality of the VDDE system.

 In summary, the evolution of VDDE was driven from two ends:
mostly from the domain above, but also from the substrate below.
While it is not surprising that both the domain and the substrate
exhibited innovations, what is surprising is both the rate of change and
the extent of the changes in both. Between the two of them, the VDDE

system was continually undergoing fairly significant modifications to
simply stay abreast of their innovations.

ANALYZING THE VDDE PROJECT

In this section, we’ll examine the VDDE project from a domain
construction perspective (i.e., support for use and support for
evolution in the form of elaboration and modification processes).
Chapter 4 analyzed commercial products, which the designers were
using on their own. This chapter analyzes a research effort during the

128

course of its collaborative development with some of the same
designers. Thus, this section differs from the analogous section in
Chapter 4 by analyzing what both the designers and the system

developers were able to do with VDDE prototypes.

During this analysis, I will also look at the type and extent of
modifications performed to the system over the course of the project
and point out places where the special skills of the developers were
required. In the discussion, I will try to make educated judgments as to
where those skills might not be necessary in a more complete VDDE

product; i.e., which skills were required for initial development
purposes versus the skills required to normally use and evolve the
system.

Support for Use

Table 5.1 summarizes VDDE’s support for use processes. Overall,
VDDE provided mixed results at supporting designers to construct
representations using domain vocabularies. From the project timeline
discussion, it is clear that the level of abstraction of the domain
vocabularies was too low level to support the creation of upstream
design representations.

Table 5.1: VDDE support for USE.

Support for
 USE VDDE

• full DL spectrum supported? explicit / formal only

• constructing downstream favored

• evaluating

 - inspecting

 - analyzing

 - relating

 - envisioning & experiencing

Yes, with limitations

- little support for inspection

- analyzing supported in

 unexpected ways (anticipations)

- experiencing partially supported

• iterating No

129

However, in terms of supporting voice dialog designers to quickly
create their own simulations, the environment was quite successful.
Many designers who were unable to create their own simulations
using existing languages were able to create simulations in VDDE.
Additionally, these simulations only took “hours,” rather than the
customary “days” to build. In one informal bake-off between an
existing simulation language and VDDE, two designers constructed
simulations for the same design. It took one designer 3 hours to
construct the VD D E simulation; it took the designer using the
simulation language the better part of a week. Unfortunately
supporting these two processes – upstream design and simulation –
seemed to be in opposition and very difficult to do with a single
representational system.

VDDE’s support for design evaluation was quite positive with some
limitations. These designers engaged in three basic kinds of evaluation:
visual inspection, envisioning, and analyzing designs with respect to
design goals and guidelines. The observations presented in the
following paragraphs are based on workplace observations and analysis
of videotaped design sessions of designers working both with and
without VDDE. More information on these results can be found in [9,
10].

The limitation stemmed from VDDE’s lack of support for visual
inspection. Basically, the representational system provided by VDDE did
not support visual inspection processes very well. In early use
situations, designers complained that they couldn’t tell what design
they were working on when looking at a worksheet; their design could
be any phone-based interface. This was due to the use of graphic bitmap
depictions that emphasized the functionality or behavior of a class of
design units rather than the specific content of any instance. For
example, the lips in the prompt design unit indicated that its function
was to play recorded voice input but provided no information
concerning the content of the specific prompt. We tried to rectify this
problem by modifying the depictions to include some textual

130

information but were limited with how far we could go with this
approach given the affordances of the substrate at that time.

Additionally, these problems with visual inspection got
significantly worse as designs increased in size, even more so than in
the existing flow chart representations. In part, this was also due to
problems designers had in laying out designs using the three
placement rules. As noted by Petre, over time experts evolve secondary
notations guiding their production of design representations that make
resulting design products easier to inspect and interpret [86]. While the
three placement rules were simple to follow, quite a bit of learning and
use seemed to be required to derive secondary notations for making
these representations more readable.

It should be noted that recent versions of the substrate (released
since the end of the VDDE project) now provide significantly more
support for larger depictions containing text and subparts. It might now
be possible to create a representational system that overcomes the “lack
of content in depiction” inspection problem and create depictions
containing the full text of prompts and messages. However, the layout
problems with the three rules raises more general questions
concerning the design of information representations. The lesson we
learned was that usability of an information representation is a factor
of both the explicit and the implicit rules of form and both need to be
considered when creating representational systems.

VDDE’s simulation facility did support envisioning the future audio
product. Several designers detected design defects in the audio portions
of their design using the simulation features. Interestingly, the act of
recording triggered designers to notice potential problems just as much
as hearing the simulation did. However, sometimes the effort
associated with recording audio messages discouraged many designers
from using the simulation facility. Some of the perceived effort
stemmed from the system’s multiple step interface for recording
prompts (which has since been redesigned to be more streamlined).

131

Other aspects of the perceived effort may have stemmed from the
extra explicitness required to record prompts. Most designers used the
“traditional” practice of voicing (speaking out loud to themselves)
audio messages during design. VDDE’s simulation features did not
appear to replace this method, but rather to augment it. Often designers
using VDDE’s simulation component still did the “traditional” voicing
before creating recordings. With the voicing method, designers often
did not actually say the entire, exact audio message, but instead an
approximation of the message. When using VDDE’s simulation feature,
they seemed to always try to record the exact message to be heard in the
final audio product. Sometimes, this took two or three attempts to get
the recording and phrasing right. This extra explicitness sometimes
pointed out problems in their design; however, it may also have
contributed to the perception that taking advantage of the simulation
feature required extra work. Further evaluation of the simulation
system needs to be performed to gauge if the perception of effort has
changed as a result of the new streamlined design.

V D D E ’s critiquing system was expressly created to support
evaluation activities such as analyzing design solutions for compliance
with design rules. Observations and empirical studies indicate that the
critiquing system did support such evaluation activities but often in
surprising ways. For experienced designers, the critiquing system had
little direct effect on design products; i.e., rarely did designers modify
either the solution or the specification in response to critic messages.
This seemed to result from two factors. First, experienced designers
rarely broke design rules, thus the critiquing system was often inactive
during design sessions. Second, designers anticipated critiquing system
activity. Sometimes these anticipations caused designers to change
their design activities in advance and thus prevent the anticipated
critic from firing. Other times, by the time the anticipated critic fired,
designers had already decided to not follow the critic rule anyway and
so did not modify their design products. Analysis of protocols and
subsequent interviews with designers indicated that the awareness of
the critiquing system being present did lead experienced designers to
deeply reflect on their design actions and particularly, why they were

132

choosing to break various design rules. Thus, the critiquing system did
enhance evaluations but in an unexpected and indirect way. More
detailed analyses of the critiquing system and its differential effects
based on the domain-skill level of designers can be found in [10].

VDDE did not affect the designers ability to iterate their design as
described in Chapters 2 and 4. The designers still constructed the flow
chart and table representations; when used, VD D E served to
supplement these activities. Since these representations were totally
outside the scope of the system, VDDE did not help with the original
maintenance problem and possibly contributed more to the problem by
introducing a third design representation to maintain.

Support for Elaboration

Table 5.2 summarizes VDDE’s support for elaboration processes. As
illustrated in Figures 5.8-9, we (voice dialog designers and system
developers) were able to articulate new and refine existing domain
vocabularies (in the form of design units) continually throughout the
project. We were also able to extend the domain model to include
object behaviors (to support simulation) and tool extensions (new
menu commands) were added to the Agentsheets substrate. However,
there was a wide range in the effort and special knowledge required to
create and modify different design units.

For some design units, the effort was very small, requiring only
slight extensions to existing functionality already provided in VDDE.
Some of these design units could be created in minutes, on-the-fly,
during actual use sessions [99]. While these real-time extensions were,
for the most part, successful, there were also a few difficulties in the
area of smoothly reflecting changes in open design products. If the
extensions involved adding new attributes or methods to an existing
design unit class, then open worksheets needed to be closed and
reopened for the changes to affect the design units already in the
worksheet. It is conceivable that technically knowledgeable designers,
such as local developers [36], could make extensions such as these
without the presence of a system developer.

133

Table 5.2: VDDE support for ELABORATION.

Support for
ELABORATION VDDE

• DL transitions supported? explicit to formal only

• graphical refinement Limited.

- Can Require Technical
Knowledge

- Class level refinements only

• naming

 - name / look mappings

Limited.

- Requires Technical Knowledge

• object refinement

 - whole / part mappings

Yes, with limitations

 - Additions and deletions

 problematic for design
products

• establishing relationships

 - correspondence

 - equality

 - transformation

 - heuristic

Possible, but difficult

 - No Direct Manipulation

 - Collection of ad hoc mechanisms

 - Low-level programming

• extension

 - object behaviors

 - tool extensions

Possible, but difficult

 - object behaviors

 - tool extensions

 - Requires Programming
Knowledge

Other design units required moderate programming effort lasting
several days. These units typically transcended the existing
functionality of VD D E and required extensive Agentsheets
programming (e.g., introducing enumerated types or Digit Collectors).
Still other design units required extensive programming effort to
create, lasting from several weeks to dragging out over the course of
months. These units needed functionality that transcended the
Agentsheets substrate and required extensive MCL programming (e.g.,
configuration methods and dialog boxes for prompts, phrases and voice
menus). In some cases, design units required functionality not
available in the current release of the operating system and we had to
wait for future releases for the desired functionality (e.g., waiting for
new sound managers).

134

On the one hand, this level of effort might be attributable to
“development pains” that would not normally appear in a more
complete VDDE. On the other hand, maybe this represents the normal
state of affairs in innovative domains. I’m inclined to think the answer
is somewhere in the middle. Certainly as our architecture evolved, we
were able to make additions and changes more smoothly and easily.
However, even towards the end of the project, occasional needs would
arise that required extensive programming changes to VDDE. Perhaps
some of these changes could be carried out by technically
knowledgeable designers using new end-user programming
approaches such as Visual AgenTalk [97]. However, I think it would be
overly optimistic to believe that system developers would not be
needed on a periodic basis to make the necessary changes.

As demonstrated by the critiquing system, we were able to establish
heuristic relationships across representations. The critics in the system
represented heuristic relationships between parts of a design solution
in the worksheet (in Agentsheets) and parts of the design rationale (in
Hypercard). It would require extensive programming knowledge, and
probably developer support, to add new or modify existing critics rules
as the system currently stands. No provisions are made for establishing
other forms of relationships.

For the most part, the supported elaboration processes emphasized
making the explicit to formal design language transition. There was
limited support for the tacit end of the design language spectrum; i.e.,
in situ graphical refinement and naming. As discussed in Chapter 2,
supporting this part of the spectrum is important for design processes
in innovative domains where designers continually articulate and
refine domain vocabularies during design. System supporting this end
of the spectrum cannot require the continual presence of system
developers for making minor changes to the design language. Ideally,
systems would also not require the designer to step too far out of the
design process and engage in a seemingly separate modification activity
to perform simple presentation-level changes.

135

On the one hand, Agentsheets does support some level of tacit
exploration when first creating design units. Any new depiction in the
gallery can immediately be used on the worksheet without having to
formally define an associated class; these depictions get automatically
associated with a default class.

On the other hand, the support for tacit exploration is limited when
it comes to modifying existing depictions, particularly in VDDE. VDDE

itself limited the extent of graphical refinement possible with its use of
textual overlays. These overlay positions were built into design units
and any modifications to depictions needed to take these positions into
account. Additionally, depictions needed to be created with particular
color masks for the overlays to be selectable. Between these two factors,
considerable technical knowledge and thus, system developer support,
is required to graphically refine depictions in VDDE.

Additionally, in Chapter 2 we saw that graphical refinements
tended to be performed in situ on specific instances of domain
vocabularies embedded in the representation. Later on, some of the
instance refinements were incorporated into the general class of item.
This kind of instance level refinement is not possible given the object-
oriented model VDDE/Agentsheets is based on, which provides for
class-level refinements only.

Support for tacit exploration in the area of refining existing object
names is also somewhat limited. This is because the names in the
Agentsheets’ gallery provide look/behavior mappings in addition to
name/look mappings. For all design units, there is a mapping between
the depiction name and its associated object class. Modifying the
depiction name requires modifying this mapping or the association
between look and behavior will be lost. Thus, while it is possible to
rename design units in the Agentsheets’ gallery, this action is intended
primarily for system developers and can lead to rendering parts of the
system inoperable if done unawares. While maintaining this mapping
does not require great programming skill, it does nevertheless require

136

awareness of the content of the underlying object hierarchy and such
refinements may require the presence of a system developer.

Support for Modification

Table 5.3 summarizes VDDE’s support for modification processes.
While we were able to experiment with and create new
representational systems, both activities required substrate evaluation
and programming knowledge. Thus, it is unlikely that designers could
experiment with and create new representations without extensive
system developer support.

Table 5.3: VDDE support for MODIFICATION.

Support for
MODIFICATION VDDE

• experimentation and creation Limited

• Requires Programming
Knowledge

• Requires Substrate Evaluation
Skills

• introduction

 - augmentation

 - replacement

No

• retrofitting No.

 - Even manual very limited.

Two representational systems were created during the project. The
core representational system was the schematic flow chart-like
representation used in the worksheets. Halfway through the project, a
second representational system – the design rationale component –
was created to augment the existing environment. In both cases, before
a new representation could be created, a substrate had to be located and
evaluated for suitability. When evaluating substrates, we considered
criteria such as extensibility, affordances, and code stability. During the
first few months of the project, we looked for a suitable substrate and,
after reviewing several, selected Agentsheets. When the critiquing
system was being investigated, previous experience with Hypercard led
us to quickly choose that particular substrate.

137

The two substrates differed in their ability to quickly create and
modify a prototype. Using Agentsheets, we had a rapid start-up time.
We were able to get an initial prototype going in a matter of hours and
a significant design environment prototype going in four months [117].
Also, once created, Agentsheets made it significantly easier to perform
certain modifications to the representational system such as
experimenting with conditional representations and various
placement rules. Once the Hypercard stack was created, it was difficult
to make modifications without having to reorganize significant
amounts of information. Other projects have reported difficulties
modifying Hypercard prototypes [7, 71], noting that its “missing object-
oriented features made it harder to create and modify domain-specific
building blocks” page 63, [71].

As the system developed further, we found there was an
interdependence between the two substrates that reduced our
flexibility. Once the critiquing system was created, our flexibility to
modify the representational system and even the design units was
significantly reduced. It was very difficult to modify the
representational system used in the worksheet because the critiquing
system’s had encoded in its construction analyzer the expected spatial
relationships between the design units. It was difficult to modify some
of the design units because the hooks to activate the critiquing system
depended on both the existence of and the specific internal structure of
certain design units (such as the start, touch-tone button, and voice
menu units). Introducing a new representational system into VDDE (to
replace) the existing worksheet representation (i.e., replacing the
representation model layer) would have rendered the entire critiquing
system inoperable. It should be noted that when the critiquing system
was created, we did not yet understand the critical role that elaboration
and modification processes played in this domain and thus, these
issues were not considered in the subsystems design.

V D D E fell short at supporting retrofitting activities. Once the
domain model was changed, many designs created with previous

138

versions of VDDE were now unreadable. Once a design unit class or
even a design unit attribute was removed, existing designs could no
longer be opened (unless the saved worksheet LISP representation was
edited directly). There was no support at all for retrofitting old designs
to new design languages other than to completely recreate the design
from scratch manually. The only way to ensure that an old design was
not lost completely was to print it out and save the hardcopy. This was
exacerbated by the process for restoring worksheets. If a class was
encountered during restoration which no longer existed, then none of
the design could be restored. This was the case even if the encountered
class corresponded to one undefined design unit out of one thousand
other defined design units.

This problem could be alleviated if only non-monotonic additions
are made to the object hierarchy. However, given the evolutionary
development approach used in this project, following such a strategy
would have resulted in a chaotic and difficult to maintain object
hierarchy and would have hindered our ability to elaborate and
experiment. Very occasionally, there would even be changes at the
substrate level where a class or method would be removed; thus such
conditions are sometimes out of the control of the design environment
developer. Basically, support was needed for managing different
versions of design languages.

REFLECTING ON THE GENERAL DODE MODEL

In the previous chapter, the bulk of the domain construction
analysis centered on the general Toolbelt model. In the case of DODES,
we are limited in our ability to analyze the general model for two
reasons. First, only a single DODE has been directly experienced as part
of this research. Second, while previous DODEs have been created,
these environments were focused on exploring theoretical ideas and
there is little previous experience with use of DODEs by professional
designers in workplace settings that we can generalize over. As a result,
in this chapter, the bulk of the domain construction analysis centers on
VDDE rather than the general DODE model.

139

However, it is still worthwhile to speculate how VDDE experiences
might inform the general model. In this section, we will do just that
and, where possible, compare VDDE experiences with other DO D E

efforts. The following subsections consider each of the three main areas
in the domain construction framework – process support, technical
aspects of the computational model, and special skills and knowledge
that might be required by the model.

Support for Domain Construction Processes

Recall from the introduction our initial intuitions that domain-
oriented systems provide good support for use but could be less flexible
for accommodating change (i.e., elaboration and modification). After
analyzing VDDE, it seems that these intuitions are only partially correct
on both counts.

In VDDE, we saw that the presence of a formal model did provide
support for use activities such as design simulation and evaluation.
However, these benefits were with some costs, namely in the area of
excessive explicitness that adversely affected the system’s ability to
support design construction. It proved to be a challenging system
design task to create an environment providing these benefits without
stumbling into the “tyranny of the explicit” [57] danger zone. Some of
these problems could be VDDE-specific, stemming from our design
decision to use a single representation for both construction and
simulation. However, some aspects of the explicitness problem are
more general; it will always require a certain level of explicitness for
computers to be able to parse and execute design representations as
necessary for this type of knowledge-based support.

We also saw that VDDE exhibited a surprising amount of flexibility,
particularly in the area of design language elaboration processes. By
building on top of the Agentsheets substrate and layering the internal
domain model, VD D E was able to accommodate significant
evolutionary change in domain vocabularies and to some extent, even
the representational system. However, true to our intuitions, the

140

presence of the domain model did hinder some aspects of our
flexibility. Once the critiquing system was in place, the range of possible
design language elaborations was reduced. As a whole, the system fell
short at supporting design language modification processes. It is
interesting to consider how much of this inflexibility is inherently due
to the domain-orientation and how much is due to the specific
architecture and object model adopted in the VDDE project. These
issues will be considered further in the following section and in more
detail in Chapter 6.

In general, many of VDDE’s problems stemmed from the emphasis
of the system on supporting transitions from explicit to formal design
languages only. The tacit to explicit end of the spectrum was completely
unsupported. There were few elaborations and modifications that
designers could perform without the assistance of system developers.
In a dynamic and innovative domain such as voice dialog design, this
is an insurmountable bottleneck.

This lack of support for tacit to explicit transformations, particularly
in the area of the construction component, seems to apply to the
general DODE model. Furthermore, it appears to stem from the model’s
current reliance on the construction kit concept to instantiate the
design construction component.

Previous DODEs supplied end-user modifiablity support tools
(MODIFIER) to help designers modify the construction kit [26, 38].
However, MO D I F I E R did not support making tacit to explicit
transitions. The approach used in MODIFIER required designers to
completely specify the formal model of a domain object at the time of
introduction; thus MODIFIER only supported explicit to formal
transitions.

As discovered by VDDE and other DODE projects [107], end users
seems to be unable and / or unwilling to formalize knowledge at the
time of input; i.e., they both need and prefer to input information in
more tacit (informal) forms. As demonstrated by our experiences in

141

VDDE with the Note design unit, occasionally abstractions arise in
design that fall outside of the current representational system. In many
of these cases, it would be impossible to formalize these abstractions at
the time of input because the designer’s understanding of their form
and content is still at an implicit, tacit level.

In the DO D E argumentation component, this inspired in situ

incremental formalization approaches [107] whereby natural language
annotations and messages are gradually formalized into structured
design rationale and underlying domain objects. Based on the
experiences in VD D E, such an approach seems advisable for the
construction component also; the emphasis should be more on
providing designers with a “construction kit for creating construction
kits” instead of the end product. As discussed in Chapter 2, designers
often start with generic graphic objects and incrementally refine them
over time to be more explicit and detailed in their definition. Based on
these observations, it seems desirable for meta-construction kits to
provide some support for in situ graphical refinements of form and
possibly even content as well. In Chapter 7, these speculations will be
further explored.

Technical Aspects of the Computational Model

When analyzing computational models and architectures, Garlan
and Shaw [37] note that it is crucial to identify the model’s invariants;
i.e., the aspects that are the same across all instantiations. In the case of
DODEs, this is difficult to do at the architectural level. This variance in
architectures is to be expected though considering that DODEs are still
an active research area.

To date, the DODEs constructed fall into two main architectural
categories: component- or substrate-based architectures and shared
object model architectures (Figure 5.9). In this section, these
architectures will be considered with respect to their potential impact
on supporting design language elaboration and modification processes.
Specifically the analysis will consider the computational model parts

142

Shared Object System ???

Shared Programming Language ???

Operating system / File managment

Design
Products

Distributed
Domain Models

Infrastructure

Tool
Substrate

Domain Model

Tool
Substrate

Domain Model

Intermediate
Layers Shared Object System

Shared Programming Language

Operating system / File managment

Design
Products

Domain Model

Infrastructure

Tools Tools

Intermediate Layers

Shared Object Model ArchitectureSubstrate-Based Architecture

Figure 5.9: The two main DODE architectures.

introduced in Chapter 3 – object models, domain models, tools and
substrates, and integration services.

There have been numerous DODEs built on a component-based
architecture (JANUS [31], KID [76], Indy [91]). VDDE and ProNet [115] are
built on a substrate-based architecture. The key difference is whether or
not the tool providing the particular DODE component, such as the
construction or specification component, is built on top of a substrate
such as Agentsheets or implemented from scratch. In VDDE, it seemed
that the substrate approach provided much of the system’s flexibility. It
remains to be seen if the success of the Agentsheets substrate in this
regard can be replicated in other substrates. Probably its support for
incremental refinement can be replicated, but more challenging is its
“construction paradigm” approach [94] for reusing high-level behaviors
and interfaces.

Additionally, another factor contributing to VDDE’s flexibility with
respect to design language elaboration processes was its layered domain
model. Particularly, its separation of the representational model from
the domain object model enabled new objects to be introduced with
less effort and it enabled the representation to evolve without affecting
already defined objects. This separation is similar to the approach used
by Girgensohn to support end-user modifiability in JA N U S [38].
Girgensohn encoded the semantics of the floor plan representation in
terms of spatial relations in a separate underlying layer. All
relationships between domain objects were expressed in terms of these

143

spatial relations. Thus, the semantics of the floor plan representation
could undergo some level of change without requiring existing
domain objects to be modified.

In component- or substrate- based architectures (Figure 5.9, left side),
key similarities are distributed domain models and reliance on point-
to-point integration mechanisms (i.e., components integrate with each
other rather than the infrastructure [24]). In this respect, they are
similar to the coalition architecture used by the Toolbelt Model
(Chapter 4). The parts of the domain model essential to each particular
component in the multi-faceted architecture are localized and usually
cannot be accessed by other DODE components. Since none of the
domain model is shared between components, this results in much
reliance on point-to-point, control-oriented integration mechanisms.
In general, these integration mechanisms make the resulting system
very inflexible. An example is how the critiquing system in VD D E

made it difficult to elaborate and modify the domain vocabulary and
representational system employed in the construction component.

Some of this inflexibility may be VDDE-specific. However, it seems
reasonable to infer that this architectural approach in general will put a
high cost on modification processes such as the introduction of new
representational systems. If an existing representational system and its
associated tool or substrate is replaced, then the domain model
associated with that component will probably not be reusable.
Furthermore, all links or integration points will also probably be
rendered invalid and have to be redone to work with the new
component.

In the DO D E s built to date with this style of architecture, the
presence of a shared object model and shared programming language
has been variable; thus the possibility for data-oriented integration has
not really been present. In VDDE and ProNet, there was no shared
data/object model or shared programming language; each substrate
provided its own. Whether this lack of sharing is endemic to the
substrate model or not, remains to be seen in future DODEs based on

144

this model. Girgensohn claimed that some level of object model
sharing was required to support end-user modifiability and he
introduced a shared, domain-independent, object layer into JANUS.

Other DODEs (Hermes [111], X-Network [106], and EVA-Service [84])
have gone further and proposed that the domain model should be
shared across all design environment components. These
environments are based on a shared object model architecture (Figure
5.9, right side). In this architecture, much of the functionality is
provided in shared infrastructure services instead of in individual
tools or components. One such shared service is an integrated
hypermedia-based object model. In the DODEs created, the exact features
of this object model vary from system to system. These environments
used the shared object model to create a shared domain model used by
all DODE components. As a result, these environments provide both
data-oriented and control-oriented integration services. The control-
oriented integration is provided by intermediate layers of computed
nodes or queries [52, 106, 111]. Proponents of this architecture claim that
it results in better component integration and that the use of a
hypermedia object model provides the system with greater flexibility
[106, 111].

Experiences with X-Network indicate that this architecture can
indeed accommodate flexibility in terms of elaboration processes [107].
Unfortunately, little direct data is available on the flexibility of this
architecture in terms of modification processes. However, there are
some experiences with this architectural model in the related area of
CASE (computer aided software engineering) tools. Feiler and Wallnau
note that this style of integrated architecture was pursued in the 1980’s
with first-generation CASE tools [24]. In the CASE arena, this
architectural style was supplanted with coalition architectures because
it proved unable to keep pace with the rate of change and it did not
provide the expected level of value and integration. It seemed that the
ideal of a completely shared domain model was never actually
achieved; over time, tools usually ended up augmenting the shared
domain model with their own local domain model to service their

145

special needs. Feiler and Wallnau note that some of these problems
may have stemmed from the immaturity of object-oriented technology
at that time.

In summary, it is clear that architecture plays an important role in
an environment’s ability to accommodate evolutionary change. With
respect to elaboration processes, factors such as substrates and the
separation of representational models from domain object models
appear to positively contribute to a system’s flexibility. It is also clear
the integration services deeply affect a model’s ability to accommodate
modification processes; however, it is not at all clear what types of
integration services are best. In Chapter 6, we will revisit these
architectural issues when we compare Toolbelt and DODE approaches.

New Practices, Skills and Knowledge Required

Table 5.4 lists the new practices, skills, and knowledge required by
both designers and system developers in the DODE model. Not many
new skills are required by designers. However, due to the continual
rate of change in dynamic domains and the current DODE model’s lack
of support for tacit (informal) design language extensions, some
designers must be willing and able to engage in end-user programming
as necessary to elaborate their design language. The particular language
or extension mechanisms provided by the model is still an open
research issue. Several new approaches to end-user programming are
being investigated in the Agentsheets substrate [96, 97]. These
approaches offer much promise with respect to empowering designers
to modify and extend the behaviors of domain objects.

However, since both programming approaches emphasize
behavioral extensions (i.e., explicit to formal design language
transitions), there is still little support provided in the DODE model for
tacit exploration. This lack of support for tacit exploration has a
somewhat negative impact on design practices. In Chapters 2 and 4, we
saw that an important practice of these designers is “designing their
design representations.” In this model, designers cannot engage in this

146

practice without system developer support; hence the new “designing
representations” skill required by system developers.

Table 5.4: New Practices, skills and knowledge required by
DODE Model.

Who? New Practices New Skills & Knowledge
Designers • Customizing Tools • end-user programming ?

Developers

• Locating Substrates

• Evaluating Substrates

• Designing Representations

• Extending Substrates

• Designing Environment

 Architectures

• Understanding Work

 Practices

• Linking Tools/Substrates

• expertise on substrate availability

• substrate evaluation skills (extensibility,
affordances, code stability)

• participatory / collaborative design
approaches

• work practice analysis

• domain analysis

• general purpose programming languages

• substrate-specific programming languages

• tool linking protocols, integration services

While not many new skills are required by designers, the DO D E

model may require a new breed of system developer. Most of the new
skills required by the model fall squarely in the realm of the developer.
Many of these skills are probably new to the “average” system
developer (e.g., work practice analysis, participatory design, domain
analysis, substrate evaluation, tool linking and integration). This
complex skill list raises the question of whether a single system
developer can provide these services or whether a team of system
developers is needed. While in principle a team approach is a viable
solution, in practice, the design teams examined in this dissertation are
quite small and there are important cost issues to consider. This issue
of organizational support will be reconsidered in Chapter 7.

SUMMARY

This chapter presented and analyzed our experiences creating the
Voice Dialog Design Environment. This domain-oriented design
environment provided voice dialog designers with specialized design
representations and knowledge-based mechanisms to support them in

147

constructing, simulating, and evaluating their designs. Overall, VDDE

was successful at supporting design simulation and evaluation.
However, it had surprising difficulties supporting design construction
activities. In part, this was due to the rate of change in the domain; in
part, it was due to the construction kit approach being rigidly applied to
this dynamic domain. VD D E showed surprising flexibility,
accommodating continual changes to domain vocabularies and some
changes to the underlying representational system. However,
considerable special skills and knowledge were required to make these
changes. It is unlikely that designers would posses such skills and
system developer support was required to make even minor changes to
the system’s design language. As our intuitions suspected, the presence
of a rich domain model did hinder some aspects of the system’s
flexibility. In part, this inflexibility was due to the architecture and
integration services adopted by the system. The findings in this chapter
will be used in Chapter 6, when comparing DODEs with the Toolbelt
model. Chapter 7 will use these analyses to inform the next generation
of DODE design.

149

CHAPTER 6

COMPARING COMPUTATIONAL MODELS

In Chapter 4, three design environments based on the Toolbelt
computational model were presented and analyzed. In this model,
designers assemble and evolve collections of generic software
applications to support making various design representations. The
analysis revealed that our initial intuition concerning the flexibility of
toolbelts was partially correct: the toolbelts examined seemed to favor
some elaboration and modification processes. However, we also saw
that the flexibility of toolbelts was limited at supporting other aspects of
evolutionary change.

In Chapter 5, experiences from the Voice Dialog Design
Environment project were analyzed. VDDE is based on the Domain-
Oriented Design Environment (DO D E) model. In this model,
knowledge-based tools supporting the construction of customized
design representations are created for specific design communities. Our
experiences here also revealed that our initial intuitions concerning
the support versus flexibility of DODEs were only partially correct.
VDDE supported some aspects of use, such as design evaluation, quite
well. However, we also saw that VDDE fell short as supporting other
aspects, such as upstream design construction. Contrary to our
intuitions, we saw that VDDE was surprisingly flexible at supporting
some elaboration processes.

In this chapter, we’ll compare the strengths and weaknesses of the
general Toolbelt and DODE models using the domain construction
framework outlined in Chapter 3. The purpose of this comparison is to
better understand which aspects of these computational models help or

150

hinder particular domain construction processes. The chapter begins
by comparing each models’ support for domain construction processes.
Next, key aspects of the underlying computational models – both
technical and social – are compared and contrasted. Finally, other
computational models besides these two are briefly considered.

DOMAIN CONSTRUCTION PROCESSES

This section compares how each model supports the domain
construction processes involved in use, elaboration, and modification.
Table 6.1 summarizes each model’s support; the table entries for each
model are based on the general reflections at the ends of Chapters 4 and
5. The purpose of these comparisons are to review the findings from
previous chapters and to indicate which technical or social aspects of
the underlying computational model appear to affect the process being
considered. These aspects will be further discussed in the following
sections.

Supporting Use

The two models support design languages at different ends of the
tacit to explicit to formal spectrum. Toolbelts emphasize the tacit and
explicit ends of the design language spectrum; i.e., most of the design
language resides in practices and design products, not in formal
domain models in tools. DODEs on the other hand, emphasize the
formal end of the spectrum, providing tools or components with deep
domain models. Construction components in particular, tend to
provide little support for the tacit end of the spectrum. These
differences appear to affect the models’ respective abilities to support
upstream design construction versus more downstream construction
activities.

151

Table 6.1: Comparison of Toolbelt and DODE Models
Domain Construction

Processes Toolbelt Model DODE Model
USE
• full DL spectrum supported? tacit / explicit only explicit / formal only
• constructing upstream favored downstream favored
• evaluating
 - inspecting
 - analyzing
 - relating
 - envisioning & experiencing

Limited
- visual inspection only
- little support for relating

Yes, with limitations.
- little support for relating
except for heuristic types of
relationships encoded in
critiquing rules

• iterating No No

ELABORATION
• DL transitions supported? tacit to explicit only explicit to formal only
• graphical refinement Yes Some.

- In situ refinements not
supported

• naming
 - simple data types
 (e.g., presentation-oriented
 name / look mappings)

Limited
 - No support in graphics tools

Limited.
Requires Programming
Knowledge

• object refinement
 - complex data types
 (e.g., semantic-oriented
 whole / part mappings)

 Very Limited
 - In few tools only

Yes, with limitations
 - Additions and deletions
 problematic for design
products
 - No instance refinements

• establishing relationships /
design product integration

Possible, but difficult
 - Limited Direct Manipulation
 - High-level Event scripting
 - Low-level programming
 - Collection of ad hoc
mechanisms
 - Mostly equality and
 transformation relationships

Possible, but difficult
 - No Direct Manipulation
 - Some form-based interfaces
 - Low-level programming
 usually required
 - Mostly heuristic
relationships

• extension
 - object behaviors
 - tool extensions

Limited
 - tool extensions
 - Requires Programming
 Knowledge

Possible, but difficult
 - object behaviors
 - tool extensions
 - Requires Programming
 Knowledge

MODIFICATION
• experimentation and
 creation

Requires Shopping and
Exploration skills

Requires Programming
Knowledge

• introduction
 - augmentation
 - replacement

Yes and No
- Yes, if shallow model
- No, if deep model

No

• retrofitting
 - no support
 - manual support
 - active support

Limited
- Mostly manual
- Active support limited to few
 tools only

No

152

Toolbelts provide little support for evaluation beyond visual
inspection. In our design stories in Chapter 2, this lack of support had
some negative effects on practices. The knowledge-based components
in DO D E s can provide support for design evaluation activities.
However, this evaluation support also had some negative
consequences for practices. The demands these knowledge-based
components place on representational formality in the construction
component can hinder the model’s ability to support upstream design
construction. In general, both models provide little support for
maintaining relations across different design products, and as a result,
neither support iterative design practices very well.

In summary, both models provide mixed support for use processes
overall. Toolbelts favor use processes requiring informal design
languages. DODEs favor use processes requiring more formal design
languages. As yet, neither model appears to support design languages at
mixed levels of formality, particularly in the area of design
construction tools. This lack of support probably stems from
affordances and hindrances of the underlying data models.

Supporting Elaboration

Again, the two models emphasize different ends of the design
language spectrum. For the most part, toolbelts only support
elaboration processes favoring tacit to explicit transitions. Most tools
support in situ graphical refinement of design products. Some tools can
be enriched with shallow domain models in the form of simple,
presentation-oriented data types consisting of name/look mappings.
Very few tools can be enriched with semantic-oriented domain models
containing more complex data types (e.g., whole/part mappings). In
Chapters 2 and 4, we saw that designers often took advantage of these
semantic-enriching facilities where they were available. Even though
most tools are extensible, it is difficult, if not impossible, to enrich these
tools with deep domain models due to limitations of their underlying
data model.

153

DODEs on the other hand, support elaboration processes favoring
explicit to formal transitions. The underlying object-orientation of
DODE data models favors semantic elaboration processes such as object
refinement (whole/part mappings) and behavioral extensions (i.e.,
modifying existing and adding new attributes and methods to object
class definitions). As we saw in VDDE, with proper structuring and
substrate support, the domain model proved to be quite flexible in
terms of supporting semantic refinements to domain vocabularies.
However, it is unlikely that designers can perform these elaborations
without system developer support due to the special skills and
knowledge required. In the future, new end-user programming
languages such as Visual AgenTalk [97] may enable designers to
perform some extensions on their own; this possibility will be further
considered in Chapter 7. However, in the DODEs constructed to date,
some of the rigidities of the underlying object model have been directly
mirrored in the interface of the construction component. These
rigidities make it difficult for DO D E s to support more tacit,
presentation-level elaboration processes such as graphical refinement
and naming in the construction component.

Toolbelts, in theory, support some forms of integration such as the
establishment of equality and transformation relationships. Some tools
enable equality relationships to be established using direct
manipulation mechanisms similar to existing copy/paste interfaces.
Some tools support across-application high-level, event scripting or
task automation languages capable of representing many
transformation relationships. Many recent application linking
protocols (e.g., OpenDoc or OLE) could support more integration
relationships. However, these protocols are programmatic integration
mechanisms intended for system developers and not end users. In
general, support for any of these integration mechanisms is sporadic
and unpredictable; it appears to be a rare occurrence for all tools in any
given toolbelt to support the same integration mechanisms.

Most DO D Es constructed to date have focused on supporting
heuristic relationships only. For the most part, only programmatic

154

integration interfaces are provided and therefore designers need system
developer support in establishing relationships between design
products. A few DODEs have explored end-user mechanisms for
establishing these relationships with limited success [38, 76]. Recently,
DODEs have been created supporting the establishment of other forms
of relationships using form-based interfaces. EV A [84] supports
establishing correspondence relationships between interface and code
objects by filling in special forms associated with interface objects. X-
Network [106] provides a general-agent mechanism that can be used to
create various types of relationships. A special form-based agent editor
is provided for defining an agent by selecting from provided lists of
attributes and actions. However, these two promising approaches are
still primarily targeted at supporting system developers, rather than
designers, to establish relationships.

In general, both models provide mixed support for elaboration
processes. Toolbelts are less flexible than anticipated in the sense that
they cannot be enriched with deep domain models at all. DODEs were
more flexible than anticipated in the sense that they accommodate a
wide range of elaboration processes, though taking advantage of these
processes requires system developer support. The differences in the
types of elaborations supported appears to stem from differences in the
underlying data models. In general, integration services in both models
only provide designers with limited support for establishing
relationships between design products. Both models provide an overly
diverse collection of integration mechanisms that must be individually
learned. It is rare for a single tool to support multiple forms of
relationships and it is rare for these mechanisms to be usable by
designers themselves. The area of integration services represents
perhaps the single biggest hole in both models with respect to
supporting domain construction processes.

Supporting Modification

The two models are both similar and different in their support for
modification processes. Toolbelts, with their support for informal
design languages, enable designers to experiment with and create new

155

representational systems on their own. DODEs, with their emphasis on
formal design languages, require designers to have developer support
for these processes.

As long as the tools in Toolbelts are not enriched with deep domain
models and relationships across tools, then introduction processes are
straightforward. However, as soon as tools are enriched in these ways,
Toolbelt support for introduction processes begins to resemble that
provided by the DODE model; i.e., introduction of new representational
systems becomes costly. This similarity stems from both models being
based on coalition-style architectures relying on point-to-point
integration services and completely distributed domain models.

Neither model supports retrofitting activities very well; i.e.,
changing old design products to conform to new design languages.
There are basically three levels of support. Level one provides no
support at all; i.e., old design products are probably not even readable by
the design environment. Level two at least enables designers to
manually retrofit by allowing old design products to still be opened in
the evolved design environment. At level three, design
environments actively support designers in the retrofitting process by
assisting them to resolve differences between design language versions.
In general, Toolbelts provide manual (level 2) support; a few tools
provide limited forms of active (level 3) support. In DODEs, even the
ability to manually retrofit can be hindered if the underlying object
model cannot restore a design product based on an old design language
version.

TECHNICAL ASPECTS OF THE COMPUTATIONAL MODEL

The previous section identified several technical areas of
computational models that affect domain construction processes: data
models, architectures, domain models and integration services. In this
section, we will compare and contrast the Toolbelt and DODE models in
these areas in order to better understand the benefits and limitations of

156

the different approaches and to identify where more work needs to be
done.

Data Models

In previous analyses, it emerged that two types of flexibility should
be supported by the underlying data model:

• in situ refinement of design vocabularies and

• mixed levels of design language formality.

In situ refinement refers to the ability to refine individual instances
of domain vocabulary items directly within the context of a specific
design product. Mixed levels of formality refers to how tools should
support the full spectrum of elaboration processes and make the results
of these elaborations available to designers for reuse. The underlying
data model used in the design environment appears to impact these
two types of flexibility. This section will compare three different data
models – procedural-based, object-oriented class inheritance, and
object-oriented prototype inheritance – with respect to their support for
these two types of flexibility (Table 6.2). The tools in toolbelts have
procedural data models while DODEs have object-oriented data models.

Table 6.2: Comparison of three data models.

Procedural Class

Inheritance

Prototype

Inheritance
in situ refinements Yes No Yes

mixed levels of
formality

Informal Formal Mixed

Procedural Data Models

For the most part, the tools in toolbelts support in situ refinement,
but only support design languages in the tacit to explicit end of the
spectrum. Even though most tools in toolbelts are extensible, it is
difficult, if not impossible, to enrich these tools with formal domain
models. This is because most tools do not support the concept of
domain “objects”, at even the superficial naming level. It is only

157

recently that extension languages in these tools have looked beyond
simply providing procedural hooks and into exposing the underlying
data model also. (See [87, 121, 122] for more details.) Both access to the
underlying data model and extensibility of the data model are crucial
for supporting deeper domain models. This emphasis on procedural
versus data model extensibility is probably historical, stemming from
the fact that most of these tools are implemented (or used to be
implemented) in procedural rather than object-oriented programming
languages. However, as we shall see in the following discussion, this
lack of object-orientation probably contributed to the tools’ overall
flexibility, particularly in the area of supporting in situ refinements.

Class Inheritance Data Models

Many DODEs constructed to date have used class inheritance object
models [113]. For the most part, the object models have been mirrored
directly in the interface of the construction component. Specifically,
each domain vocabulary item in the construction kit has a
corresponding class definition in the object hierarchy. To introduce a
new vocabulary item requires introducing a new class definition.
Modifying a single vocabulary item requires modifying the entire class
definition, and thus the change is applied to all instances uniformly. In
effect, elaborating the construction component requires some
awareness of the underlying object hierarchy.

Mirroring the object model in the construction component’s
interface contributes towards the increased level of formality required
to make any modifications and makes it difficult to support less formal
elaborations such as graphical refinement and naming. The names of
vocabulary items provide the mappings between the construction kit
interface and the underlying object model. Thus, they are the province
of the object model, not the designer; changes cannot be made without
severing the link or affecting the object hierarchy. The strict mirroring
of the class inheritance mechanism in the interface inhibits supporting
in situ graphical refinements of instances; refinements can be
performed at the class level only.

158

Prototype Inheritance Data Models

The procedural orientation of toolbelts appear to favor informal
design languages and tacit elaboration processes, but also appear to
hinder the elaboration of more formal domain models. The class
inheritance orientation of some DODEs favors formal design languages
but appears to lack the flexibility required to support more tacit,
instance-level elaboration processes. Some DO D E s have been
constructed using an alternative object model based on prototype
inheritance mechanisms [66]. According to Shipman [106], the benefit
of this approach is that it removes the system-oriented class/instance
distinction from the interface which makes it more suitable for
supporting mixed levels of formality and in situ refinements.

Shipman constructed a special prototype-based hyper-object
substrate (HOS) and studied its use in several graduate class projects.
Initial experiences using HOS indicated that prototype inheritance did
support many forms of in situ elaborations. However, the particular
instantiation in HOS had some shortcomings with respect to
supporting radical modification activities involving the extensive
modification and removal of domain information. Also, this approach
was applied mainly to textual information. The one DODE created (X-
Network) assumed a static representational system (a logical map) in
the construction component, thus it remains to be seen how well this
specific object model substrate could support the evolution of graphic
design language elements.

In general, the prototype inheritance object model looks like a
promising approach for design environments constructed for dynamic
and innovative domains. More work needs to be done to investigate:
(1) how such mechanisms can better support radical modifications and
removal of existing information, and (2) how to apply the model to
graphic information in the construction component to support
elaborations and modifications to representational systems.

159

Architectures

In previous analyses, several issues surrounding architectures
emerged; specifically, the notion that domain models and integration
services affected the overall flexibility of the environment. In this
subsection, we will consider how these issues affect the type of
evolution supported by a particular architecture by examining the
effects of:

• distributed versus shared domain models, and

• point-to-point versus data-oriented integration services.

In this dissertation, a domain model includes computational
representations of domain vocabularies, representational systems, and
relationships between these two. This domain model can be shared by
all tools or components in a design environment or distributed across
them. Integration services refers to the mechanisms available for
integrating or linking domain information across components; i.e., the
mechanisms for representing the relationships between domain
objects. Two types of mechanisms are considered: point-to-point
mechanisms where components are integrated with each other or data-
oriented mechanisms where components are integrated with
underlying shared domain models. These choices appear to impact the
type of evolutionary processes favored by particular architectural styles.
This section will compare these features across three different
architectural styles – coalition, shared object model, and extended
substrate – in order to better understand how these choices affect
flexibility. Table 6.3 summarizes the results of this analysis.

Table 6.3: Comparison of three architectural styles.

Shared

Object Model

Coalition Extended

Substrate
Domain Model Shared Distributed Mixed

Integration Services Data-oriented Point-to-Point Mixed

Type of Evolution
Supported

Elaboration

(Vertical)

Modification
(Horizontal)

Both ??

160

Shared Object System

Shared Programming Language

Operating system / File managment

Design
Products

Domain Model

Infrastructure

Tools Tools

Intermediate Layers

Shared Object Model Architecture

E
vo

lu
tio

n

Presentation Presentation;
Limited

Semantic

Design
Products

Tool C
(graphics
package)

Domain
Models

Infrastructure
Control-oriented integration protocols

Operating system / File managment

Tool A
Tool B

Progammatic
Integration
Interfaces

Coalition Architecture

Evolution

Figure 6.1: Shared Object Model and Coalition Architectures.

Figure 6.1 shows two different architectures examined in this
dissertation. Coalition style architectures are used by Toolbelts and by
some earlier DODEs. Shared Object Model architectures are used by
other later DO D E s. Feiler and Wallnau examined these two
architectural styles in the historical context of CASE tools [24]. According
to their analysis, the two architectural styles support different types of
evolution.

Shared Object Model Architectures

Environments based on shared object model architectures support
vertical evolutionary processes (Figure 6.1, left side). In CASE tools,
environments evolved upward as shared object systems evolved into
shared data models and then tools were created using the shared data
models. In DODEs based on this architecture (i.e., X-Network, EVA,
Hermes), we also observed downward evolution in the sense that
designers and system developers were able to further refine shared
object models using the provided tools and integration service
mechanisms. According to Feiler and Wallnau, CASE tools based on
this architecture tend to offer better integration between tools. In this
architecture, individual tools integrate with the infrastructure and
integration across tools is achieved by data sharing. When one tool
changes the data model, the change is visible to all tools. Thus, this
data-centric architectural style seems to favor supporting elaboration
processes involving enriching tools with domain objects and domain
relationships.

161

However, as Feiler and Wallnau noted, this architectural style does
not favor horizontal evolution in the sense of supporting new tools or
components being added as needed. For one thing, this architectural
style requires consensus across components about what should be in
the shared object model. New components have to be constructed to
conform to the shared data model and existing components cannot
modify the shared model without considering the possible
consequences to other components. Thus, this model introduces many
component interdependencies that make it difficult to carry out radical
design language modifications.

Coalition Architectures

Most DODEs, Toolbelts, and many CASE environments are based on
coalition architectures which seemingly offer greater flexibility in the
area of supporting radical modifications. Coalition architectures
support horizontal evolutionary processes by enabling new tools to be
more easily introduced into the environment (Figure 6.1, right side).
This tool-centric architecture requires no coordination and consensus
across tool developers. Tools can be developed independently, by
different developers at different periods of time, and can be introduced
into architectures as required. In the VDDE project, the critiquing
subsystem was independently developed and introduced into the
system two years after the initial creation of the VD D E

construction/simulation area. Thus, coalition architectures seem to
favor modification processes such as creating and introducing new
tools and representational systems into design environments.

However, as found in CA S E tools, Toolbelts, and DO D E s ,
environments based on this architecture tend to offer ad hoc
collections of integration services and uneven support for elaboration
processes. Additionally, when individual tools and environments are
enriched with deep domain models (i.e., lots of domain objects and
domain relationships), the resulting environment loses the flexibility
it had. The use of point-to-point integration mechanisms makes it
difficult to replace existing tools. The completely distributed domain
model makes it costly to introduce new tools as they must be enriched

162

completely from scratch since there is no data sharing in this
architecture.

Extended Substrate Architectures

Neither of these two architectural styles, in their extremes, are
satisfactory for supporting both elaboration and modification processes.
Different forms of architectures merging aspects of these two styles are
required to support both modification (horizontal) and elaboration
(vertical) forms of evolution. New architectural trends are already
happening to some degree. In Toolbelts, DODEs, and CASE the trends
are similar in that new intermediate layers are being introduced.
However, in these three kinds of models, different types of
intermediate layers are being investigated.

Currently in the Toolbelt model there is a shift from tool-centered
integration services to document-centered integration services [87].
This shift is an attempt to deal with compound documents containing
a variety of media types in a more seamless fashion. As a result of these
efforts, several competing compound document architecture standards
are emerging [87, 121, 122]. In general, these architectures specify
document layout frameworks that indicate how different parts can be
accommodated in the same document, automation mechanisms for
cross-application scripting, and protocols guiding how applications will
exchange document parts and objects. As such, these services represent
a change in architecture for the Toolbelt model by introducing a new
layer of cross-tool, shared infrastructure support.

Recent DODEs, such as ProNet and VDDE, introduced tool substrates
as intermediate layers in the architecture. As discussed in Chapter 5,
substrates enhance the environment’s overall flexibility for supporting
elaboration processes. However, simply introducing substrates into an
otherwise pure-coalition architecture does not help with modification
processes when deep domain models are present. Changes to
integration services are required that help to reduce the reliance on
point-to-point integration mechanisms. Perhaps trends occurring in
the Toolbelt model could be combined with substrates in the DODE

163

Shared Object System ???

Operating system / File managment

Design
Products

Distributed
Domain Models

Infrastructure

Tool
Substrate

Domain Model

Tool
Substrate

Domain Model

Intermediate
Layers

Substrate-Based Architecture

E
vo

lu
tio

n

Evolution

Shared DomainModel ???

Figure 6.2: Extending the substrate-based architecture.

model to produce a new architectural style. Figure 6.2 offers one
speculative view of what such an extended version of a substrate
architecture might look like. Basically, this extended architecture
postulates that new layers need to be introduced into the infrastructure
that provide for some partial sharing of the domain model and thus
help reduce the reliance on point-to-point integration mechanisms.
This layer might be implemented as a shared object model layer or as
an object exchange protocol similar to the trend in the Toolbelt model.
Either way, introducing such a layer requires reconceptualizing aspects
of substrates; specifically, in the areas of object management facilities
and domain models.

In summary, this analysis showed that architecture is a major
determinant of an environment’s overall ability to support elaboration
and modification processes. Certain architectural models favor some
processes at the expense of others. This analysis in particular
highlighted the impact of domain model distribution and integration
services on an architecture’s ability to support evolution. More
research is needed into architectural styles capable of supporting both
kinds of environment evolution. Emerging architectural trends favor
the introduction of new intermediate layers providing shared
infrastructure services, although the exact nature of these new layers is
still being investigated.

164

SOCIAL ASPECTS OF THE COMPUTATIONAL MODEL

Chapter 3 outlines a socio-technical definition of a computational
model. In the previous section, we considered technical aspects of
computational models. In this section, we’ll consider the social aspects
of computational models. Particularly, we’ll compare the new practices,
skills, and knowledge required by Toolbelt and DODE models and
discuss the implications of these new requirements for environment
ownership and organizational support.

New Practices, Skills and Knowledge Required

Table 6.4 enumerates the new practices required by the two models
as derived in Chapters 4 and 5. New practices fall into two broad
categories: those that can be assumed by the designers themselves and
those that are probably assumed by system developers.

Table 6.4: New Practices required by Toolbelt and DODE
Models.

Who? Toolbelts DODEs

Designers

• Locating Tools / Shopping (*)
• Experimenting with Tools (*)
• Assessing Tools (*)
• Customizing Tools (*)

• Customizing Tools

Developers

• Extending Tools
• Linking Tools

• Locating Substrates
• Evaluating Substrates
• Extending Substrates
• Designing Environment
 Architectures
• Linking Tools/Substrates
• Designing Representations
• Designing Work Practices

Toolbelts introduce many new tool-oriented practices into design
activities. In Chapter 4, we saw that designers assumed many of the
practices themselves. We also saw that designers had difficulties with
some of these new practices and could have benefited from
organizational support in these areas (*). In our stories, many tools

165

were never significantly extended or integrated. For the most part, this
was because tools did not provide compatible extension or integration
mechanisms. However, even if tools were extensible in these areas, the
low-level programming required would probably render such
extensions outside the scope of most designers’ knowledge and
interests. Given current mechanisms, these extensions are probably
best performed with system developer support.

DODEs also introduce many new practices into the workplace. Most
of these new practices are tool-oriented; a few are work practice-
oriented (e.g., design representations and work practices). In Chapter 5,
we saw that system developers were needed to perform many of these
new practices. Making any changes to tools and domain models, even
simple ones, at least requires technical knowledge and oftentimes
requires actual programming effort. Due to the technical knowledge
required, designers cannot design the necessary representations and
related work practices themselves, but instead must rely on
collaborations with system developers to assist them in these activities.

Organizational Support Requirements

Designers could benefit from organizational support in both
Toolbelt and DODE models; however, the two models have quite
different organizational support requirements. Here we will briefly
consider these support requirements and how they vary throughout
the lifecycle of a design environment. Specifically, we will examine the
system developer assistance required during the following lifecycle
processes:

• creating an initial design environment,

• design language elaboration, and

• design language modification.

In the Toolbelt Model, creating an initial design environment
primarily involves assembling tools. Modifying a design language
often involves replacing old tools with new ones. Thus, the practices
pertinent to creating an initial design environment and modifying the

166

design language are very similar: namely, locating tools, experimenting
with tools, and assessing tool suitability. As shown by Table 6.1, while
designers could benefit from organizational support for these activities,
such support is not required. In the three design stories, designers had
taken on these practices themselves. With respect to elaboration
processes, as long as designers are using tools in a generic way or only
enriching tools with shallow domain models, little or no system
developer assistance is required. However, extending tools with deeper
domain models or integrating tools would require developer support.

As implied by Table 6.1, DO D Es in their current form, would
probably require organizational support on a fairly continual basis
during the entire environment lifecycle. When creating an initial
design environment, a team of developers could be required, from the
standpoint of both resources required and skill coverage. Once the
system is deployed, as we saw in the VDDE project, developer assistance
is still required to support most elaboration and modification processes.

This prediction of continued developer support differs somewhat
from the proposed DODE vision. The DODE model advocates a design
environment lifecycle based on the seeding, evolutionary growth, and
reseeding process model[32]. During the seeding phase, system
developers work with designers to create an initial design
environment. In the evolutionary growth phase, designers add
information to the seed as they use it to create design artifacts.
Reseeding occurs when system developers assist designers to
reorganize and formalize information previously added. Thus, in the
S E R model, developer assistance is not required during the
evolutionary growth phase.

There are at least two explanations for these different predictions
concerning developer support. First, the assumed rate of change in the
SER model appears to be slower than that observed in innovative and
dynamic domains. Thus, since changes occur more frequently and
these changes require developer assistance to enact, then more overall
developer support is required. Second, efforts to facilitate evolutionary

167

growth have focused on supporting incremental formalization of
information in knowledge-bases such as design rationale. However, as
we saw in the design stories, domain vocabularies and representational
systems also need to undergo continual change in dynamic domains.
Thus, until DODEs provide mechanisms that support designers to
perform these types of elaborations themselves, more continuous
system developer support will probably be required.

Environment Ownership Considerations

Throughout most of this dissertation, we have considered design
environments from a functionality perspective, examining whether
the proposed environment can provide the necessary support and
flexibility. In this section, we consider how the proposed environment
affects the organizational empowerment of the designers it is intended
to serve.

The previous analyses of new practices and organizational support
requirements show that the toolbelt model requires more, tool-
oriented, potentially burdensome practices to be assumed by designers
than the DODE model. However, the same analyses show that the DODE

model requires designers to share work practice design activities, that
previously were under their control, with system developers, and to
some extent to be dependent upon these system developers. While
such collaborative system development requirements may be
politically empowering for some end-users [84], for the designers
considered in this dissertation, it reflects a loss of control and
ownership.

In [119], we traced the historical motivations behind the toolbelt
model and concluded that part of its success was due to its being a very
politically empowering model. In the early days of system design
(1970’s), MIS departments were powerful, centralized bodies controlling
the software development process, often at the expense of workers.
Whereas the participatory design movement arose in Europe to deal
with the inequities prevalent in this situation, other factors contributed
to an entirely different antidote in the US: the rise of end-user com-

168

puting (EUC) [11]. Personal computers and generic off-the-shelf
software proliferated as workers were able to use their local budgets to
select and purchase the computational tools of their choice. While the
low-cost economics of personal or end-user computing undoubtedly
contributed to its popularity, many claim that the desire of users to es-
cape from MIS dominance and have more control over their tools also
contributed to its rapid success [19].

Now, in the mid-1990's, many industries are faced with increasing
global competition, rapidly changing markets, and decreasing budgets.
This situation is giving rise to flatter organizational structures where
small, self-managed, independent teams are increasingly responsible
for everything [85]. These teams are particularly prevalent in dynamic
and innovative domains such as software design. In these domains, it
is increasingly part of the new “job requirement” for designers to
design how they will do their job and what computational tools they
will use.

Toolbelts are part of this politically empowering end-user
computing phenomena. The design communities considered in this
dissertation are examples of politically empowered, small, independent
teams. To some extent, domain construction is what happens when
these two trends are rubbed together; that is, when empowered
designers are given the means and the opportunity to evolve design
languages to better support changing work practices. Against this
backdrop, DODEs represent a loss in ownership and control in the sense
that power over the design of local work practices is being returned to
the system developers.

Thus, ownership is an important issue to consider when
introducing domain-oriented tools in to the workplace. The key
question is who is in control of the “domain-orienting” process? In
Toolbelts, designers are in control of the domain-orienting process. In
DODEs, this process is shared between designers and system developers.
If the environment being introduced takes control away from
designers, then there could be resistance to its adoption no matter what

169

functionality the system provides. Also, this analysis re-emphasizes the
importance of examining power relations in a specific context; i.e.,
what is gained and what is lost by introducing a specific environment
can only be gauged by comparing it to the current workplace setting.

OTHER COMPUTATIONAL MODELS

This dissertation has focused on comparing design environments
based on two specific computational models. In this section, we will
briefly consider other computational models being investigated from
the domain construction perspective.

Programmable Design Environments

Programmable Design Environments (PDEs) have been created in
graphic domains such as chart making [22] and paper sculpture [23].
PDEs combine direct manipulation interfaces with general-purpose
programming languages that have been enriched with domain-
oriented constructs [21]. As such, the environments are very extensible
by people with considerable programming skills. Some PDEs provide
mechanisms, such as self disclosure [17], to assist designers in acquiring
the necessary programming skills. However, while PDEs are extensible,
they do not directly support the design language evolution processes of
elaboration and modification. Particularly, PDEs do not support
incremental formalization since changes to the environment must be
formally expressed in programming code.

Basically, PDEs are based on a philosophy that may not be congruent
with dynamic and innovative domains. In our design stories, we saw
that design tools and design representations were somewhat short-
term and disposable in the sense that when they significantly broke
down, designers were very willing to replace them. The PDE approach
assumes that designers are willing to invest significant effort to learn
the programming language and to enrich the system with domain-
oriented constructs in the interest of creating an environment to
support them over the long term. As such, PDEs may be better suited

170

for more stable domains or as intermediate substrates in a design
environment architecture.

The Application Construction Environment

The Application Construction Environment (ACE) [59] has been
used to create interactive information-intensive applications, such as
stock analysis applications, where users need to view and analyze
potentially large amounts of data. AC E is a very promising
environment that seemingly supports many domain construction
processes.

A C E consists of a layered architecture with three layers
corresponding to different developer/user roles. At the lowest layer is
A CEKit. ACEKit is a set of C++ libraries providing infrastructure
support services such as saving and restoring objects, object
communication protocols, and object change notification broadcast
mechanisms. In the middle layer, ACE provides libraries of visual
formalisms [79] and user interface selector objects [58]. System
developers combine and specialize visual formalism and selector
classes and add application-specific data types to create individual
applications. At the top layer, ACE provides an end-user programming
language based on spreadsheet formula languages. This language
enables end-users to extend the functionality of visual formalisms, to
operate on the content of visual formalisms, and to add new
application data types.

The support for incremental refinement, the end-user
programming language, and the infrastructure support for integrating
across visual formalisms suggests that ACE supports many of the
proposed elaboration processes. The ability to introduce new visual
formalisms into an environment suggests that ACE provides some
support for modification processes. However, ACE was primarily
designed to meet the rapid application development needs of C++
programmers [128]. Some extensions, such as adding new application
data types or visual formalisms, require the application to be re-linked;

171

thus the extension mechanisms are not as smoothly integrated into the
environment as desirable from the domain construction perspective.

To date, ACE has been used primarily by application developers and
there have been few published reports of end-user experiences. Thus, it
remains to be seen how flexible the particular mechanisms provided by
ACE are and whether end-users (designers) can perform the necessary
extensions themselves. However, ACE does provide a good example of
an architectural approach to environment design; features deemed
desirable at the end-user level influenced choices and design decisions
made at lower, infrastructure levels. Its use of visual formalisms offers
an alternative perspective on intermediate layers that is similar to the
use of substrates in DODEs.

SUMMARY

Toolbelt and DODE models emphasize different ends of the tacit to
explicit to formal spectrum. These differences affect their respective
abilities to support upstream design construction versus more
downstream construction and evaluation activities.

Underlying data models were shown to affect an environment’s
ability to support design language elaboration processes. In Toolbelts,
lack of access to underlying data models inhibits enriching tools with
deep domain models. In DODEs, much of the apparent inflexibility
stems from limitations of the underlying object-oriented class
inheritance formalism that are manifested at the interface level.
Prototype inheritance mechanisms may be more suitable for
supporting design language elaboration processes.

Software architectures were shown to be an important factor
affecting an environment’s ability to support both elaboration and
modification processes. Issues affecting an architecture’s flexibility
include domain model distribution and the type of integration service
provided. The point-to-point integration mechanisms used by

172

Toolbelts and DO D E s hinder both models abilities to support
modification processes.

Both models introduce new tool-oriented practices into the work
place. In the Toolbelt model, many of these new practices can be
assumed by the designers themselves. In the DODE model, system
developers are required to perform the new tool-oriented practices and
to participate in the design of work practices. An analysis of changes in
control (of work practice design) and environment ownership argued
that, in its current form, the DO D E model resulted in a loss of
empowerment for the types of designers being considered in this
dissertation.

173

CHAPTER 7

NEXT STEPS

In previous chapters, we analyzed and compared two
computational models against our empirically-inspired domain
construction framework. We saw that toolbelts had many desirable
qualities but suffered some negative consequences due to their generic
nature. We also saw that the domain-orientation of DODEs provided
several benefits but was perhaps too strict in some respects. The
empirical studies and the previous analyses indicate that the question
of whether generic or domain-specific software is better suited for some
areas of design practice may be too simplistic. In fact, what these

designers need are tools that bridge the gap between these two extremes

by combining elements of both.

In the following sections, we will discuss how the Toolbelt and
DODEs model can be extended to include some beneficial elements of
each other. The comparison of technical and social aspects of
computational models in Chapter 6 pointed towards possible areas
where improvements could be made or more research is required. This
chapter will examine these possible areas in order to make
recommendations for the next generation of design environments
based on each model.

This chapter begins by discussing how the Toolbelt Model could be
improved through tool re-design and new forms of organizational
support. Next, the DO D E model is considered and several areas
requiring further research are enumerated. Finally, the chapter
concludes by speculating on what it means to “bridge the gap” and
whether this ideal requires entirely new computational models.

174

IMPROVING TOOLBELTS

As the design stories in Chapters 2 and 4 show, designers often use
the generic applications in toolbelts in very domain-specific ways. Over
time, design communities create graphic vocabularies for expressing
important domain concepts and well-defined representations for
making important concepts and relationships visible. The flexibility
and formatting features of generic tools enable designers to continually
evolve their vocabularies and representations to better support
changing work practices. However, the tools’ generic nature has several
negative side effects such as introducing cognitive and manual burdens
on constructing and maintaining designs and hindering iterative
design. These problems could be mitigated if designers were able to
enrich tools with some awareness of their design languages; i.e., if
these otherwise generic tools could be made a little more domain-
specific.

However, designers encounter numerous problems when trying to
evolve their toolbelts in this direction. First, many tools do not support
the necessary design language elaboration processes. Second, designers
may lack some of the necessary skills and knowledge to evolve their
toolbelts. Thus, improvements to support toolbelt evolution fall into
two broad categories:

• re-designing tools and

• improving the use of toolbelts through organizational
support.

The following speculations about how to improve future toolbelts
offer both specific recommendations and general pointers to where
additional work is needed in these two categories.

Re-designing Tools

Tool tailoring facilities particularly need to be improved to support
design language elaboration processes in two, specific areas: support for

175

enriching tools with domain vocabularies and support for establishing
relationships across tools. Each of these areas will be considered in
turn.

A key difference between generic and domain-oriented tools is that
generic tools lack domain-specific data types (i.e., domain vocabularies).
However, many tailoring facilities in generic tools are oriented towards
task automation and extending tool functionality. Very few tools
support designers to enrich tools with awareness of domain
vocabularies; where tools offer this functionality, we observed that
designers often took advantage of it. Thus, one recommendation is that
tailoring facilities should enable designers to articulate and refine
domain vocabularies. As enumerated in Chapter 3, this requires tools
to support elaboration processes such as:

• defining simple data types (e.g., specifying and modifying
name/look mappings),

• defining more complex data types with multiple, named
components (e.g., specifying and modifying whole/part
mappings),

• attaching behaviors and procedural actions to vocabulary
items or parts of vocabulary items, and

• making these user-defined vocabulary items available for
reuse.

As discussed in Chapter 6, a big deficiency in the toolbelt model is
lack of support for establishing relationships; i.e., integrating
individual tools to form a coherent “system.” While some integration
is theoretically possible, in practice most tools provide little or no
support for integration. Where possible, it often requires extensive
low-level programming. This is a challenging problem from both the
integration services perspective and the interface perspective. In the
previous chapter, new developments at the integration services level
were described; thus there is hope that integration across tools will be
possible in the near future.

176

However, these developments are targeted at application
developers, not end-users. And, as we saw in our design stories, it is
crucial that end-users be able to establish and modify relationships
themselves. While there is much research interest in end-user
programming and tailoring mechanisms, relatively little attention has
been paid to this specific area of cross-application tailoring by end-users.
More research is needed in this relatively new area of tailoring. If the
current industry trend towards componentware [122] continues and
surfaces at the customer level, then these interoperability interface
issues will become increasingly important.

This dissertation also illustrates how studies of work practices can
provide insights into these issues. Specifically, we observed designers
acting as “human glue” binding applications together. Analyses of
these situations showed that: 1) relationships across applications fell
into four broad categories, 2) relationships were fine-grained in the
sense that there could be complex relationships between many
different object parts across tools, and 3) many relationships were based
on the look and content of domain-specific objects. These findings
should be the starting point when investigating future interfaces for
interoperability lieing between direct manipulation and general
purpose programming (Figure 7.1).

Organizational Support

In our design stories, we saw that designers did experience some
difficulties evolving their toolbelts and could have benefited from
organizational support. The problems observed fell into two categories:
locating tools and extending tools.

Specifically, designers had difficulties locating tools in the diverse
and ever-changing marketplace and they had difficulties assessing the
suitability of tools. Sometimes, designers were not sure if the desired
tools did not exist or if they were simply not able to find them. While it
is already difficult to assess high-functionality tools with hundreds of
features, it becomes even harder when issues such as extensibility and
interoperability also must be considered.

177

Domain Vocabularies:
• Names
• Parts
• Look

Relationships:
• Correspondence
• Equality
• Transformations
• Heuristic

Direct
Manipulation Domain Enriching

Copy / Past e Link

Insert Object

Programming

object.ApplyNames (names,
ignoreRelativeAbsolute,
useRowColumnNames,

omitColumn, omitRow, order,
appendLast)

???

Figure 7.1: Designing interfaces for interoperability.

Most tools offer interfaces at the extreme ends of the
spectrum: end-users can create relationships using direct
manipulation or system developers can create
relationships using integration protocols. The middle
ground between the two endpoint should be explored,
particularly expressing relationships in terms of domain-
specific vocabularies.

Organizations should provide small design groups with support for
locating and assessing tools. It is a full-time job keeping up with
developments in the software marketplace; it is unreasonable to expect
that designers will have the time, interest, and knowledge to fulfill this
role when they have other, primary duties to attend to. Such a role
could be fulfilled by “tool centers” containing people that have
developed expertise in a few specific tools, broad knowledge of a variety
of software tools, tool exploration skills, and awareness of market
trends. Designers and other tool users could use the tool experts on an
as-needed consultant basis. Difficult issues to be resolved include how
centralized or distributed should these tool centers be; i.e., one per
organization or multiple centers dispersed throughout the
organization? In general, this centralization issue is not new in
organizational computing management discussions and is not easily
resolved.

178

It also should be noted that the notion of tool centers does run
counter to many concerns in information system management.
Current debates in managing end-user computing resources fall into
two camps: those advocating control of end-user computing (EUC)
resources and those advocating support [11, 73]. In general, advocates of
control want to limit discretionary purchasing and tool selection.
However, as shown in our design stories, empowering designers to
design their own work practices and tools can yield powerful results;
thus policies emphasizing support seem preferable, in these cases, to
policies emphasizing control.

As previously discussed, designers could benefit from extending
tools with deeper domain models and integrating tools to better work
together. However, most tools providing such extension and
integration facilities currently offer only low-level programming
facilities beyond the scope and interest of many designers. Thus, taking
advantage of these facilities would require developer support. Such
needs could probably be met by a variety of part-time personnel support
forms, each with its own strengths and weaknesses.

One approach is to encourage individual domain professionals to
acquire extended computer knowledge and have these “translators” [67]
or “local developers” [36], support other co-workers in their adaptation
needs. This approach has the benefit of providing part time support
resources with local knowledge. However, local developers often lack
the detailed technical knowledge necessary for making more robust
and in-depth tool adaptations. Therefore, the danger with this
approach is that toolbelt evolution becomes a shortsighted, tinkering
process [119, 120].

Another possibility is to have professional system developers sup-
port the process of toolbelt evolution. Developers possess the in-depth
technical knowledge necessary for adapting and evolving tools and
could be available to workgroups in the form of intermittent, roving
personnel resources. However, the developers lack of local knowledge
will make it difficult for them to support practitioners in consciously

179

evolving their work practices or their design representations. Thus, the
danger with this approach is that toolbelt evolution will become highly
technology driven, ignoring important opportunities for improving
work practices [5].

Some people are concerned that supporting groups to evolve their
tools will lead to diverging group work practices or even “social
demassification” [12]. In many groups and organizations, smooth
functioning depends on shared conventions, tools, and practices. A
primary concern is that practitioners will tailor their tools in radically
individualized ways and this will lead to diverging, and even chaotic,
work practices and working environments. These are valid concerns
that, again, will not be fully understood until we have observed
Toolbelt evolution over a long period of time. However, I believe that
this is an unlikely outcome; that instead, tool tailorability promotes
convergence in work practices. For instance, Trigg and Bodker studied a
work group tailoring Word Perfect to support their work practices [120].
They found that over time, systematization emerged as the group took
advantage of the tool’s tailorability to co-evolve their tools and work
practices. As another example, the three design communities we
observed were using generic off-the-shelf applications which offered
hundreds of features and many forms of customization. These
communities had plenty of opportunities to diverge. However, they
did not. Instead we saw convergence, as they enriched their tools and
evolved practices to promote the production of shared, standardized
design representations.

IMPROVING DOMAIN-ORIENTED DESIGN ENVIRONMENTS

In the VDDE project in Chapter 5, we saw that domain-oriented
design environments can provide support for design evaluation and
design simulation activities. We also saw that, with system developer
support and an underlying substrate, such environments were quite
flexible in terms of supporting design elaboration processes concerned
with creating deep domain models. However, we also observed
problems in two general areas. First, there were unexpected

180

breakdowns in supporting use and elaboration processes concerned
with shallow domain models that stemmed from the environment’s
overall lack of support for informal design languages. These problems
could be mitigated if domain-oriented systems could more flexibly
accommodate informal design vocabularies; i.e., if these otherwise
domain-specific tools could accommodate less-formal, generic
elements also. Second, we also saw that some technical aspects of the
system’s underlying architecture had adverse affects on some
elaboration and modification processes. Thus, suggested
improvements to DODEs fall into three broad categories:

• improving support for informal design languages by re-
conceptualizing some DODE components,

• improving support for elaboration processes with alternative
object models, and

• improving support for modification processes by considering
underlying architectural issues.

The following discussion about how to improve future DODEs in
these areas is admittedly speculative. However, analyses in previous
chapters do indicate both promising directions for future research and
areas where more work is needed. The purpose of this section is not so
much to make specific recommendations but, instead, to enumerate
key areas where future work can contribute towards moving the DODE

model from being primarily a research model to being a viable
workplace model.

Reconsidering Architectures

In chapter 5, we saw in the architecture discussion that there were
few invariants when considering the general DODE architecture. This is
to be expected in a research model where many issues are still at the
exploratory development stage. One contribution of this dissertation
was to compare these existing architectures in a systematic way and to
relate them to previously studied architectures in related fields. Based
on these analyses, we saw that the two existing architecture models –
component-based (coalition) and shared object-based – favored

181

different types of evolutionary processes. We also saw that when deep
domain models were created with extensive cross-component
relationships, the component-based model lost much of its flexibility.
Two problems with the component model were its exclusive reliance
on point-to-point integration mechanisms and a completely distributed
object model. Thus, future research at the architectural level should
focus on ways to reduce the reliance on point-to-point integration and
also consider mechanisms for sharing parts of the domain model
across component boundaries. Chapters 5 and 6 discuss these issues in
more detail. Overall, supporting modification processes in the presence
of a deep domain model is an important issue to be resolved for the
DODE model to be viable in dynamic domains. People will not be
willing to spend the time, effort, and money to enrich tools with
domain knowledge if much of this knowledge is lost during every
modification episode.

Another architectural issue impacting modification processes
concerns support for design language versioning. In general this issue
has been little considered with the exception of Stahl [111] and the
Hermes perspective mechanism. However, as our design stories
indicated, as design languages evolve, this evolution creates difficulties
for past design products. In our design stories, designers spent much
time retrofitting old design products to conform to new design
languages. Often times, this entailed re-constructing the entire design
from scratch using the new design language. Not only are designers not
supported in this process, but oftentimes, old design products may no
longer be readable by the design environment. This readability problem
raises serious concerns for the stated DODE objectives of creating
catalogs of re-usable designs and supporting long-term indirect
communication with design rationale. Specifically, without support for
design language versioning, older items in the catalog can probably not
even be viewed in the evolved design environment. Thus, even
though design rationale may still be readable, the designs or specific
cases that inspired the rationale may not be. Stahl’s perspective
mechanism illustrated how versioning could be achieved in a shared
object model architecture. However, research is required into applying

182

these ideas in the context of substrate-based architectures with all or
partially distributed domain models.

Examining Alternative Object Models

To date, all DO D Es but one have been based on object model
formalisms using class inheritance mechanisms. One DO DE – X-
Network [106] – used an object formalism relying on prototype
inheritance. Shipman claimed such an approach was necessary to
support in situ incremental formalization processes. The operative
phrase in this situation is in situ. As we saw in our design stories, a
crucial part of supporting incremental formalization is allowing
designers to refine concrete, individual instances embedded in design
products instead of forcing them to operate immediately at the abstract
class level.

Supporting instance level refinements appears to be an important
requirement for supporting design language evolution. It particularly
appears successful at promoting design-in-use, i.e., the intertwining of
use and change of design languages, because it does not force excessive
explicitness and formalization upon designers during the design (use)
process. Object models supporting instance level refinements need to
be investigated. It remains to be seen whether “pure” prototype
inheritance models are required or hybrid approaches are sufficient.
Shipman implemented his pure prototype inheritance model (HOS)
from scratch. Others [45] have explored hybrid approaches by building
models with some prototype inheritance properties using existing
object systems based on class inheritance models.

Reconceptualizing the Construction Component

Chapters 5 and 6 discussed many issues surrounding the
construction kit concept underlying the DODE construction component.
In VD D E , several difficulties were encountered that highlight
potentially problematic issues surrounding the current vision of
construction kits. First, it proved difficult to strike a balance between
expressiveness and facility. This was because abstractions representing a

183

middle ground between these two competing goals were difficult, if not
impossible, to identify. Second, what should be represented in the
construction kit and how it should be represented proved to be a fast
moving target. It does not seem viable to provide designers in dynamic
domains with predominantly canned representational systems.
Designers need support for the process of creating the appropriate
domain vocabularies and representations. Third, due to the rate of
change and ownership issues, designers must be in control of this
process of designing their design languages; they cannot rely on, nor
necessarily want to depend on, system developer support in this
particular area. Finally, construction kits as currently envisioned do
not support in situ incremental formalization of design vocabularies.
Construction kits introduce a formality barrier by requiring some
degree of immediate formalization (i.e., at the time of input) when
introducing new vocabulary items into the design language.

These issues indicate that conceptualizing the construction
component in terms of providing designers with construction kits
needs to be reconsidered. Specifically, experiences indicate that
designers need to be provided with construction components more
along the lines of meta-construction kits or kits for creating their own
construction kit, rather than focusing on the end product. In this
subsection, two recent research efforts along these lines – Visual
AgenTalk and SmartMedia Tools – will be briefly considered with
respect to how they address the issues outlined above.

Visual AgenTalk

Visual AgenTalk (VAT) is a new programming mechanism for
Agentsheets [97] targeted at supporting a broader range of users to
extend the functionality of Agentsheets’ applications. VAT changes the
roles of the system developer and the designer. Previously, the system
developer created the top-level, domain-specific agents visible in the
Agentsheets’ gallery; the designer’s role was simply to use these
provided domain-specific agents. Using VAT, the system developer
instead defines a set of more general agents and a set of VAT commands
representing important programming primitives relevant to the

184

domain. Commands in VAT are small interactive language elements
representing programming primitives that can be directly manipulated
using drag/drop techniques. The designer uses the lower-level
commands provided by the system developer to create new and modify
existing domain-specific agents. In order to modify or extend the
behavior of domain-specific agents, designers create rules by dropping
commands into provided rule editors. In addition, designers can define
when each rule gets tested and executed by specifying a trigger. A
number of different triggers are provided to control the execution of
complex simulation applications.

VAT could address several of the issues previously enumerated.
Instead of system developers attempting to provide a complete set of
language components at the “right” abstraction level, they instead
provide a more general set of components and programming
primitives that designers can use to create components that better suit
changing design needs. Ideally, designers could perform many of these
VAT extensions without developer support, thus reducing their overall
dependence on system developers.

However, while VAT is a promising extension to the Agentsheets
substrate, these possible improvements are very speculative in nature.
For one thing, many end-user programming languages have been
proposed that have met with limited success. Thus, it remains to be
seen if designers are able and willing to use VAT as discussed. Second,
there is still the challenge of enumerating a set of general components
and VAT commands that are expressive enough to be able to solve
typical design problems but facile enough to be usable by designers.
This is the same problem encountered with the original construction
kit approach but now pushed down to the next lower level. Finally,
while VAT reduces the difficulty of defining new design units, it does
not completely address the formality barrier previously discussed. New
design units must still be formally defined at the time of input using
VAT programming primitives and in situ instance-level elaborations
are not supported.

185

From
 Generic...

...to
 Domain-Specific

Graphic Explicit Formal

To change your security
code, press 1. To change
your recorded name,
press 2. To disconnect,
press *.

Security Code 1

2

*

Greeting

Disconnect

Personal Options Menu
 • Rect1
 - Color: Gray
 - Text1
 Value: "Personal Options"
 Position: Center
 • Rect2
 - Text1
 Value: "To change your security..."
 - Option1
 Text1:
 Value: Security Code
 Number1: 1 •••

Menu
 • MenuName: "Personal Options"
 • Prompt: "To change your security..."
 • Options
 - Option1
 OptionName: "Security Code"
 OptionKey: 1
 - Option2
 OptionName: "Greeting"
 OptionKey: 2
 - Option3
 OptionName: "Disconnect"
 OptionKey: *

Visual Interaction Layer Presentation Description Layer Semantic Description Layer

Graphic Refinement Name Classes Prototype Definition

Mixed Palettes

Attribute Refinement

Separate Presentation and Semantic Information

Make Object Representations Available and Inspectable

 Evaluation Functions

Figure 7.2: The SmartMedia architecture.

SmartMedia Tools consists of three layers: a visual interaction
layer providing standard drawing tools, a presentation
description layer, and a semantic description layer. In addition to
supporting direct manipulation modifications, special editors
are provided for modifying object descriptions at both the
presentation and semantic levels.

SmartMedia Tools

A series of SmartMedia Tools [102, 114] combining positive aspects
of both generic and domain specific applications have been developed.
SmartMedia Tools enable practitioners to begin with generic graphic
objects and to gradually enrich their tool with domain-specific
vocabularies and relationships. Towards this end, SmartMedia Tools
embody a specialized architecture and corresponding tools for refining
domain objects both graphically and semantically (see Figure 7.2).

In generic graphics applications like MacDraw and flowcharting
tools like Inspiration, graphics objects can be accessed and manipulated
only at the visual interaction layer using direct manipulation.
Similarly to these applications, SmartMedia Tools also provide a visual
interaction layer supporting the direct manipulation of graphic objects.
However, graphic objects in SmartMedia tools have two additional
user-accessible representations: a system-supplied textual description of
the object's presentation in the interface (the "presentation
description") and a user-definable textual description of the object's
meaning in the domain (the "semantic description"). The presentation
description summarizes the visual properties of objects (e.g. shape, size,

186

color) and the semantic description specifies the domain-specific
meaning of a graphic object (e.g. that a number represents a menu
command). This description is saved for use by other applications in an
open, object-oriented database.

Special editors are provided that enable users to inspect, extend, and
modify the object descriptions directly. Relationships between parts of
the presentation and semantic descriptions, such as evaluation
functions, can be defined using spreadsheet-like functions. The
representations are integrated in that changes in any of the object
representations are reflected in all other object representations. Thus,
changes performed by direct manipulation in the visual interaction
layer are mirrored in the object’s presentation description. At any time,
users can select a graphic object in the visual interaction layer and
define a class based on its properties. Once defined, objects are available
in the palette for future reuse.

SmartMedia Tools could address several of the issues previously
enumerated. SmartMedia Tools are designed to support designers to
refine design languages all along the tacit to explicit to formal
spectrum. Thus, SmartMedia Tools appear to lack the formality barrier
found in more traditional construction kit approaches. Since, informal
design languages are supported, the designers dependence on system
developers is also reduced in that designers should be able to make
many presentation-level and some shallow domain-semantic changes
themselves. However, similar to VAT, it remains to be seen if designers
are able and willing to use the end-user programming language
provided to make deeper domain model extensions.

In summary, these two efforts emphasize moving beyond
construction kits in different ways. Visual AgenTalk provides an end-
user programming language extension to the Agentsheets’
construction kit. The envisioned benefits include decreasing the
designers’ dependence on the system developer and increasing the
flexibility of the construction kit. However, the functionality provided
still focuses primarily on supporting designers to make explicit to

187

formal design language transitions; informal design languages are not
addressed. SmartMedia Tools emphasize smoothly incorporating tacit
to explicit to formal transitions by enabling design language
refinements at both the presentation and semantic levels. However,
the end-user programming language provided for making deeper
domain model extensions is a dialect of Lisp and may be too low-level
and difficult for designers to use. Thus, further research beyond these
two promising projects is still required to address the issues
surrounding construction kits in a more comprehensive manner.

BRIDGING THE GAP

As previously discussed, the goal is to make systems that are flexible
enough to accommodate the continual evolution of design languages,
yet capable of providing support for using the design language in its
current state. Two types of evolutionary change were identified and
characterized in this dissertation: continual incremental elaborations

and occasional radical modifications to existing design language. There
are several difficult challenges to overcome to support these two types
of evolution.

Firstly, to support design language elaboration, the key challenge is
providing incremental approaches that enable designers to perform
most of the elaborations themselves. Furthermore, these approaches
must allow designers to begin with informal and ill-defined design
languages and to gradually refine them through the entire spectrum of
design language explicitness; i.e. to progressively transition from tacit
to explicit to formal design languages. As we saw in this dissertation,
generic tools favor the tacit to explicit end of the spectrum by
supporting mainly presentation-level refinements while domain-
oriented tools favor the formal end of the spectrum by supporting
mainly semantic-level refinements.

Secondly, with respect to modification processes, the key difficulty is
to support radical change without invalidating large amounts of
existing domain models or existing design products. If domain

188

vocabulary definitions and established relationships are lost during
every modification event, designers may decide it is not worth the
effort to invest systems with this domain knowledge in the first place.
As we saw in our three design stories, this is especially important in
dynamic and innovative domains where radical modification events
occur with frequency. To support modification processes without
domain knowledge loss requires flexible software architectures, new
forms of integration services, and more flexible object-oriented
formalisms. As yet, neither Toolbelt or DODE models address this
particular challenge.

In the introduction of this chapter it was proposed that designers
need tools that combine elements of both generic and domain-oriented
systems. To expand on this statement, design environments ideally
would turn the current dichotomy of generic versus domain-oriented
systems into a seamless continuum and provide:

(1) the rich, flexible formatting and editing features associated
with generic tools,

(2) the supportive functionality offered by domain-specific
tools,

(3) design language elaboration mechanisms that support
incrementally bridging the gap between the two endpoints,
and

(4) flexible underlying architectures and infrastructures that
can accommodate larger-scale evolutionary changes.

Suggestions were made concerning how toolbelts could start to
bridge this gap by providing more support for design language
elaboration mechanisms. However, the potential to change this model
is limited, particularly at the architectural level. Thus, it is doubtful if
this ideal will be realized by the Toolbelt model.

Suggestions were also made concerning how DODEs could start to
bridge this gap. The suggestions considered changing construction

189

components to incorporate some of the functionality associated with
generic tools and investigating new architectures and infrastructure to
support design language modification processes. Since the DODE model
is an active research area, the potential to move it towards the ideal is
much higher.

However, it remains to be seen if these existing models are flexible
enough to accommodate the ideals outlined above; in the end, new
computational models not envisioned here may be required.

SUMMARY

This chapter discussed possible areas for future work in the context
of both Toolbelt and DODE models. In the Toolbelt model, two areas for
re-designing tools were considered: improving support for articulating
domain vocabularies and improving support for establishing
relationships. Several suggestions for possible forms of organizational
support were suggested to address problems observed in locating and
extending tools. In the DODE model, three areas requiring further
research were discussed. New architectures need to be considered that
better support design language modification processes. Alternative
object-oriented formalisms need to be examined that could better
support incremental design language elaboration processes. And, the
use of construction kits as the basis for the DO D E construction
component needs to be reconsidered before applying the DODE model
to future dynamic and innovative design domains.

191

CHAPTER 8

CONCLUSIONS

This dissertation considered the problem of providing small,
independent design teams working in innovative and dynamic
domains with computational design support tools. The emphasis of
this research was on understanding the evolutionary patterns of
change inherent in dynamic domains and investigating how design
tools could support these patterns. The motivating problem
investigated in this thesis was design environment flexibility,
specifically:

How can design environments provide domain-oriented
support for daily design activities yet still be flexible enough

to accommodate evolutionary changes in the domain that
occur over time?

This chapter begins by summarizing the approach used to
investigate this question. Next, the findings of this research are
reviewed. Finally, this dissertation concludes by enumerating the
contributions of this research.

SUMMARY OF APPROACH

The approach used in this research was divided between empirical
studies, theory development, system building, and system assessment
(Figure 8.1). Empirical studies of three design groups were conducted to
better understand the patterns of change in the communities’ design
products, tools, and practices occurring over extended periods of time.
Analyses of these studies were used to characterize in detail the
observed evolutionary processes and provided the motivation for the

192

Empirical Studies:
• Protocol Analysis
• Multimedia Titles
• Voice Dialogs

Theory
Development:
Domain
Construction
Framework

System Analysis:
Toolbelts
 - Protocol Analysis
 - Multimedia Title
 - Voice Dialog

System Building
and Analysis:

Voice Dialog Design
Environment

System
Assessment:
Comparison
of Two
Models

Findings,

Next Steps,

Contributions

Figure 8.1. Overview of Research Approach

theoretical contribution: the domain construction framework. This
framework was then used to analyze and compare two computational
models at seemingly different ends on the support / flexibility
spectrum. Our initial intuitions were that the Toolbelt model, where
practitioners assemble and evolve collections of generic software
applications, offered more flexibility. The DO D E model, where
customized domain-oriented tools are created for a specific
community, seemingly provides better support but is less flexible.

Specific design environments based on these two different
computational models were developed and analyzed during the course
of this research. Three systems, based on the Toolbelt model, were
created over time by the designers themselves and studied as part of
this research. The Voice Dialog Design Environment (VDDE), based on
the domain-oriented design environment model, was collaboratively
constructed by myself and one group of designers (who were also
concurrently involved in Toolbelt construction). VD D E enables
designers to construct and simulate flow-chart like representations of
phone-based interfaces. An embedded critiquing component analyzes
these representations for compliance with various user interface
guidelines and consistency with related design products.

This comparison looked at which particular aspects of these models
helped or hindered their use and overall flexibility. The purpose of this
analysis was to investigate our initial intuitions in order to better
understand which particular aspects of a model contributed to its

193

flexibility. The findings of this analysis were used to guide
recommendations for the next generation of design support
environments.

SUMMARY OF FINDINGS

The findings of this dissertation fall into two categories: empirical
findings concerned with characterizing macro design processes and
system-oriented findings related to the analyses of computational
models and design environments.

Empirical Findings

Studies of three design communities were used to understand long-
term changes in design tools, practices and products. These groups all
worked in different areas of user interface and software design: protocol
analysis, multimedia title design, and voice dialog design. The
workplace settings were very different, ranging from a university team
doing a short, one-off design project to industrial designers working on
a continual stream of upgrades to an existing product line.

Our empirical analyses indicate that the central constituent of a
domain is the shared understanding between domain practitioners that
enables a community to use tools in a practiced way to create design
products in a consistent manner. This shared understanding takes a
tangible form over time called a “design language.” While creating
individual design products (use of a design language), designers change
the design language used to create these products (evolution).
Specifically, design communities gradually construct and evolve their
design language over time by: (1) defining important domain objects,
(2) creating and evolving multiple representations for viewing these
objects, and (3) establishing relationships between objects and
representations. This observed design-in-use process was labeled
domain construction.

Three basic macro-scale patterns of evolutionary change to design
languages were identified and characterized: maintenance, elaboration,

194

and modification. Maintenance occurs when individuals enact design
languages using the (sometimes implicit) rules of substance and form
without alteration. Elaboration occurs when individuals consistently
but slightly adapt design languages to reflect new conditions.
Modification of design languages occurs when individuals depart
significantly and persistently from existing rules, such as when prose
documents are replaced by tabular representations. The subprocesses
involved in these larger-scale patterns of change were characterized in
detail to create the domain construction analytical framework.

System-Oriented Findings

Two existing computational models – Toolbelts and DODEs – were
analyzed according to the domain construction framework. These
analyses revealed that our initial intuitions about both models were
only partially correct; both Toolbelts and DODEs provided mixed
support for different aspects of use and evolutionary change. Toolbelts
fell short at supporting some aspects of use, such as design evaluation,
due to their overly generic nature. On the other hand, DODEs fell short
at supporting some aspects of use, such as design construction, because
of their overly narrow domain-orientation. Both models provided
mixed support for evolutionary processes due to limitations and
inflexibilities in their underlying data models, integration services, and
architecture.

Thus, the analyses indicated that the question of whether generic or
domain-specific software is better suited for supporting use and
evolutionary change is probably too simplistic. In fact, what these
designers need are tools that bridge the gap between these two extremes
by combining elements of both. To bridge this gap, design
environments need a specialized architecture, a flexible object model,
and corresponding tools for refining domain objects both graphically
and semantically. Specifically, tools should support the domain
construction process by enabling practitioners to begin with generic
objects and to gradually enrich their design environment with
domain-specific vocabularies and relationships.

195

Finally, our analyses show that the question of who is in control of
the domain construction process is a critical issue, both from a
pragmatic rate of change perspective and a political empowerment
perspective. When trying to support politically-empowered designers
in dynamic domains, it is important that environments enable
designers to be in control of the design language evolution process.

CONTRIBUTIONS OF THIS RESEARCH

The contributions of this research were three-fold. One goal was to
contribute to our empirical understanding of macro design processes;
i.e., the evolutionary patterns of change in artifacts and representations
used by design communities over extended periods of time. This goal
was met by studying the three design communities and characterizing
the domain construction process in terms of design language use,
elaboration, and modification.

The second goal was to contribute to design theory by extending
existing theories to account for the observed macro design processes.
This goal was met by analyzing in detail the subprocesses involved in
use, elaboration, and modification and relating these subprocesses to
existing theories of design in order to create the domain construction
analytical framework.

The third goal was to contribute to computational models of design

environments by deriving principled criteria for analyzing and
selecting between different architectural approaches, object models, and
tool-development substrates when creating design environments for a
particular domain. This goal was partially met by analyzing the
Toolbelt and DODE computational models from the perspective of the
domain construction framework. These analyses did not provide
specific guidelines for making a selection between architectural features
but, instead, contributed to the goal by indicating what architectural
and system design issues need to be considered. When embarking on
creating a design environment, issues such as flexibility of the object
model and the software architecture promoted by possible tool or

196

component choices should be carefully considered. As shown in this
dissertation, choices made at lower, infrastructure levels of the design
environment deeply affect the functionality and flexibility available to
designers.

Overall, these goals contribute towards answering the motivating
problem by indicating promising directions for the next generation of
design environments in order to better meet the paradoxical goals of
providing support and flexibility at the same time.

197

REFERENCES

1. Apple Computer, Inc., Macintosh Common Lisp Reference, 1992.

2. Arango, G. and R. Prieto-Diaz, “Introduction,” in Domain Analysis and
Software Systems Modeling, R. Prieto-Diaz and G. Arango, Ed., IEEE
Computer Society Press, Los Alamitos, CA, 1991, pp. 9-32.

3. Bell, B., “Using Programming Walkthroughs to Design a Visual
Language,” University of Colorado at Boulder, Ph.D. dissertation, Dept.
of Computer Science, 1992.

4. Bell, B., W. Citrin, C. Lewis, J. Rieman, R. Weaver, N. Wilde and B.
Zorn, “The Programming Walkthrough: A Structured Method for
Assessing the Writability of Programming Languages,” Technical
Report, CU-CS-577-92, Dept. of Computer Science, University of
Colorado at Boulder, 1992.

5. Blomberg, J. L. and A. Henderson, “Reflections on Participatory Design:
Lessons from the Trillium Experience,” Human Factors in Computing
Systems (CHI '90), 1990, pp. 353-359.

6. Bobrow, D. G., L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales
and D. A. Moon, “Common Lisp Object System Specification,”
Document, 88-002R, 1988.

7. Bodker, S. and K. Gronbaek, “Design in Action: From Prototyping by
Demonstration to Cooperative Prototyping,” in Design at Work:
Cooperative Design of Computer Systems, J. Greenbaum and M. Kyng,
Ed., Lawrence Erlbaum Associates, Hillsdale, NJ, 1991, pp. 197-218.

8. Bonnardel, N., “Criteria Used for Evaluation of Design Solutions,”
Designing for Everyone and Everybody (Proceedings of the 11th
Congress of the International Ergonomics Association), Paris (July),
1991, pp. 1043-1045.

9. Bonnardel, N. and T. Sumner, “From System Development to System
Assessment: Exploratory Study of the Activity of Professional
Designers,” 7th European Conference on Cognitive Ergonomics -
ECCE'7, Human-Computer Interaction: From individuals to groups in
work, leisure, and everyday life., Bonn, Germany (Sept. 5-8), 1994, pp.
23-36.

198

10. Bonnardel, N. and T. Sumner, “Supporting Evaluation in Design: The
Impact of Critiquing Systems on Designers of Different Skill Levels,”
To appear in: ACTA Psychologica, Special Issue on Cognitive
Ergonomics, 1996.

11. Brancheau, J. C. and C. V. Brown, “The Management of End-User
Computing: Status and Directions,” ACM Computing Surveys, Vol. 25,
pp. 437-482, 1993.

12. Brown, J. S. and P. Duguid, “Borderline Issues: Social and Material
Aspects of Design,” Human-Computer Interaction, Vol. 9, pp. 3-36,
1994.

13. Carroll, J. M. and M. B. Rosson, “Paradox of the Active User,” in
Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction, MIT Press, Cambridge, MA, 1987, pp. 80-111.

14. Conklin, J. and M. Begeman, “gIBIS: A Hypertext Tool for Exploratory
Policy Discussion,” Transactions of Office Information Systems, Vol. 6,
pp. 303-331, 1988.

15. Curtis, B., H. Krasner and N. Iscoe, “A Field Study of the Software
Design Process for Large Systems,” Communications of the ACM, Vol.
31, pp. 1268-1287, 1988.

16. Davis, R., “Expert Systems: How Far Can They Go,” AI Magazine, Vol.
10, pp. 61-67, 1989.

17. DiGiano, C. and M. Eisenberg, “Self-Disclosing Design Tools: A gentle
introduction to end-user programming,” Symposium on Designing
Interactive Systems (DIS '95), Ann Arbor, MI (August 23-26), 1995, pp.
189-197.

18. DiGiano, C., C. Lewis and C. Hurtt, “The Future of Programming
Interactive Experience,” Human Factors in Computing Systems (CHI
'94), Boston, MA (April 24-28), 1994, pp. 49-50.

19. Dunlop, C. and R. Kling, “Introduction to Part III: Computerization and
the Tranformation of Work,” in Computerization and Controversy,
Academic Press, New York, 1991, pp. 182-199.

20. Ehn, P., Work-Oriented Des ign o f Computer Art i fac ts ,
arbetslivscentrum, Stockholm, 1989.

21. Eisenberg, M., “Programmable Applications: Interpreter meets
Interface,” A.I. Memo, 1325, MIT Artificial Intelligence Laboratory, 1991.

199

22. Eisenberg, M. and G. Fischer, “Programmable Design Environments:
Integrating End-User Programming with Domain-Oriented
Assistance,” Human Factors in Computing Systems (CHI '94), Boston,
MA (April 24-28), 1994, pp. 431-437.

23. Eisenberg, M. and A. Nishioka, “Creating Polyhedral Models by
Computer,” To appear in: Journal of Computers in Mathematics and
Science Teaching,, 1996.

24. Feiler, P. H. and K. C. Wallnau, “Tool Integration and Environment
Architectures,” Technical Report, CMU/SEI-91-TR-11, Software
Engineering Institute, 1991.

25. Fischer, G., “Domain-Oriented Design Environments,” in Automated
Software Engineering, Kluwer Academic Publishers, Boston, MA., 1994,
pp. 177-203.

26. Fischer, G. and A. Girgensohn, “End-User Modifiability in Design
Environments,” Human Factors in Computing Systems (CHI'90),
Seattle, WA (April 1-5), 1990, pp. 183-191.

27. Fischer, G., A. Lemke, T. Mastaglio and A. Morch, “Using Critics to
Empower Users,” Human Factors in Computing Systems (CHI'90),
Seattle, WA (April 1-5), 1990, pp. 337-347.

28. Fischer, G. and A. C. Lemke, “Construction Kits and Design
Environments: Steps Toward Human Problem-Domain
Communication,” Human-Computer Interaction, Vol. 3, pp. 179-222,
1988.

29. Fischer, G., A. C. Lemke, T. Mastaglio and A. Morch, “The Role of
Critiquing in Cooperative Problem Solving,” ACM Transactions on
Information Systems, Vol. 9, pp. 123-151, 1991.

30. Fischer, G., A. C. Lemke, R. McCall and A. Morch, “Making
Argumentation Serve Design,” Human Computer Interaction, Vol. 6,
pp. 393-419, 1991.

31. Fischer, G., R. McCall and A. Morch, “Design Environments for
Constructive and Argumentative Design,” Human Factors in
Computing Systems (CHI '89), Austin, Texas (May), 1989, pp. 269-275.

32. Fischer, G., R. McCall, J. Ostwald, B. Reeves and F. Shipman, “Seeding,
Evolutionary Growth and Reseeding: Supporting the Incremental
Development of Design Environments,” Human Factors in
Computing Systems (CHI '94), Boston, MA (April 24-28), 1994, pp. 292-
298.

200

33. Fischer, G., K. Nakakoji, J. Ostwald, G. Stahl and T. Sumner,
“Embedding Computer-Based Critics in the Contexts of Design,”
Human Factors in Computing (Interact '93 and CHI '93), Amsterdam
(24-29 April), 1993, pp. 157-164.

34. Fischer, G., K. Nakakoji, J. Ostwald, G. Stahl and T. Sumner,
“Embedding Critics in Design Environments,” The Knowledge
Engineering Review, Vol. 8, pp. 285-307, 1993.

35. Galegher, J. and R. Kraut, “Computer-Mediated Communication and
Collaborative Writing: Media Influence and Adaption to
Communication Constraints,” CSCW '92: Conference on Computer-
Supported Cooperative Work, Toronto, Canada, 1992, pp. 155-162.

36. Gantt, M. and B. Nardi, “Gardeners and Gurus: Patterns of Cooperation
Among CAD Users,” Human Factors in Computing Systems (CHI '92),
Monterey, CA (May 3-7), 1992, pp. 107-117.

37. Garlan, D. and M. Shaw, “An Introduction to Software Architecture,”
Technical Report, CMU/SEI-94-TR-21, Software Engineering Institute,
1994.

38. Girgensohn, A., “End-User Modifiability in Knowledge-Based Design
Environments,” University of Colorado at Boulder, Ph.D. dissertation,
Dept. of Computer Science (Technical Report: CU-CS-595-92), 1992.

39. Goodman, D., Danny Goodman's HYPERCARD Developer's Guide,
Bantam Books, Toronto, 1988.

40. Gould, J. D., S. J. Boies and C. Lewis, “Making Usable, Useful,
Productivity - Enhancing Computer Applications,” Communications
of the ACM, Vol. 34, pp.74-85, 1991.

41. Green, T. R. G., “Cognitive Dimensions of Notations,” People and
Computers V, Nottingham, United Kingdom, 1989, pp. 443-460.

42. Green, T. R. G., “The Cognitive Dimension of Viscosity: a sticky
problem for HCI,” Human-Computer Interaction – INTERACT '90,
1990, pp. 79-86.

43. Greenbaum, J. and M. Kyung, Design at Work: Cooperative Design of
Computer Systems, Lawrence Erlbaum Associates, Hillsdale, NJ, 1991.

44. Gronbaek, K., J. Grudin, S. Bodker and L. Bannon, “Achieving
Cooperative System Design: Shifting From a Product to a Process
Focus,” in Participatory Design: Principles and Practices, D. Schuler and

201

A. Namioka, Ed., Lawrence Erlbaum Associates, Hillsdale, NJ, 1993, pp.
79-97.

45. Gross, M., Using MCL to Create a Prototype Inheritance Object Model,
Personal Communication, 1996

46. Grudin, J., “Seven Plus One Challenges in Understanding Social
Dynamics for Groupware Developers,” Human Factors in Computing
Systems (CHI '91), New Orleans, LA (April 27 - May 2), 1991, Tutorial.

47. Grudin, J., “Evaluating Opportunities for Design Capture,” Technical
Report, , University of California, Irvine, 1992.

48. Guindon, R., “Designing the Design Process: Exploiting Opportunistic
Thoughts,” Human Computer Interaction, Vol. 5, pp. 305-344, 1990.

49. Guindon, R., “Knowledge Exploited by Experts during Software System
Design,” International Journal of Man-Machine Studies, Special Issue:
What Programmers Know, Vol. 33, pp. 279-304, 1990.

50. Guindon, R., “Requirements and Design of DesignVision, An Object-
Oriented Graphical Interface to an Intelligent Software Design
Assistant,” Human Factors in Computing Systems (CHI '92), Monterey,
CA (May 3-7), 1992, pp. 499-506.

51. Guindon, R., H. Krasner and B. Curtis, “Breakdowns and Processes
During the Early Phases of Software Design by Professionals,” in
Empirical Studies of Programmers: Second Workshop, G. Olson, S.
Sheppard and E. Soloway, Ed., Ablex Publishing Corporation,
Norwood, New Jersey, 1987, pp. 65-82.

52. Halasz, F., “Reflections on Notecards: Seven Issues for the Next
Generation of Hypermedia Systems,” Communications of the ACM,
Vol. 31, pp. 836-852, 1988.

53. Halstead-Nussloch, R., “The Design of Phone-Based Interfaces for
Consumers,” Human Factors in Computing Systems (CHI'89), Austin,
Texas, 1989, pp. 347-352.

54. Hansen, W., “Introduction to User Interface Systems for HCI
Developers and Researchers,” Human Factors in Computing Systems
(CHI '94), Boston, MA (April 24-28), 1994, pp. 377-378.

55. Harstad, B., “New Approaches to Critiquing: Pluralistic Critiquing,
Consistency Critiquing, and Multiple Intervention Strategies,”
University of Colorado at Boulder, Masters dissertation, Dept. of
Computer Science, 1993.

202

56. Henderson, A. and M. Kyng, “There's No Place Like Home:
Continuing Design in Use,” in Design at Work: Cooperative Design of
Computer Systems, M. Kyng and J. Greenbaum, Ed., Lawrence Erlbaum
Associates, Hillsdale, NJ, 1991, pp. 219-240.

57. Hill, W. C., “The Mind at AI: Horseless Carriage to Clock,” AI
Magazine, Vol. 10, pp. 29-41, 1989.

58. Johnson, J., “Selectors: Going Beyond User-Interface Widgets,” Human
Factors in Computing Systems (CHI '92), Monterey, CA (May 3-7), 1992,
pp. 273-279.

59. Johnson, J., B. A. Nardi, C. L. Zarmer and J. Miller, “ACE: Building
Interactive Graphical Applications,” Communications of the ACM,
Vol. 36, pp. 40-55, 1993.

60. Keil-Slawik, R., “Artifacts in Software Design,” in S o f t w a r e
Development and Reality Construction, C. Floyd, H. Zullighoven, R.
Budde and R. Keil-Slawik, Ed., Springer-Verlag, Berlin, 1992, pp. 168-
188.

61. Kolodner, J., “Improving Human Decision Making through Case-Based
Decision Aiding,” Vol. 12, pp. 52-68, 1991.

62. Kolodner, J., Case-Based Reasoning, Morgan Kayfmann, San Mateo,
CA, 1993.

63. Landauer, T. K., The Trouble with Computers: Usefulness, Usability,
and Productivity, MIT Press, Cambridge, MA, 1995.

64. Lewis, C. and G. M. Olson, “Can Principles of Cognition Lower the
Barriers to Programming?,” Empirical Studies of Programmers: Second
Workshop , G. Olson, S. Sheppard and E. Soloway, Ed., Ablex
Publishing Corporation, Norwood, New Jersey, 1987,pp. 248-263.

65. Lewis, C., J. Rieman and B. Bell, “Problem-Centered Design for
Expressiveness and Facility in a Graphical Programming System,”
Human-Computer Interaction, Vol. 6, pp. 319-355, 1991.

66. Lieberman, H., “Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems,” First Conference on Object-
Oriented Programming Languages, Systems, and Applications
(OOPSLA '86), Portland, OR (Sept. 29 - Oct. 2), 1986, pp. 214-223.

67. Mackay, W., “Patterns of Sharing of Customizable Software,” CSCW'90:
Conference on Computer-Supported Cooperative Work, Los Angeles,
CA, 1990, pp. 209-221.

203

68. Mackay, W., “Users and Customizable Software: A Co-Adaptive
Phenomena,” Massachusetts Institute of Technology: Cambridge, MA,
Ph.D. dissertation, 1990.

69. Mackay, W., “Triggers and Barriers to Customizing Software,” Human
Factors in Computing Systems (CHI '91), New Orleans, LA (April 27 -
May 2), 1991, pp. 153-160.

70. MacLean, A., K. Carter, L. Lovstrand and T. Moran, “User-tailorable
Systems: Pressing the issues with Buttons,” Human Factors in
Computing Systems (CHI '90), Seattle, WA (April 1-5), 1990, pp. 175-182.

71. Madsen, K. H. and P. H. Aiken, “Experiences Using Cooperative
Interactive Storyboard Prototyping,” Communications of the ACM,
Vol. 36, pp. 57-64, 1993.

72. McCall, R., “PHIBIS: Procedurally Hierarchical Issue-Based Information
Systems,” Conference on Architecture at the International Congress on
Planning and Design Theory, 1987.

73. McLean, E. R., L. A. Kappelman and J. P. Thompson, “Converging End-
User and Corporate Computing,” Communications of the ACM, Vol.
36, pp. 79-92, 1993.

74. Microsoft Corp., Object Linking and Embedding (OLE), Part No. 098-
31727, Redmond, WA., 1992.

75. Morch, A., “Three Levels of End-User Tailoring: Customization,
Integration, and Extension,” Computers in Context: Joining Forces in
Design (Third Decennial Conference), Aarhus, Denmark (August 14-
18), 1995, pp. 157-166.

76. Nakakoji, K., “Increasing Shared Understanding of a Design Task
Between Designers and Design Environments: The Role of a
Specification Component,” University of Colorado at Boulder, Ph.D.
dissertation, Dept. of Computer Science (Technical Report: CU-CS-651-
93), 1993.

77. Nakakoji, K. and G. Fischer, “Catalog Explorer: Exploiting the Synergy
of Integrated Design Environments,” Software Symposium'90 (Kyoto,
Japan), , pp. 264-271, 1990.

78. Nakakoji, K., T. Sumner and B. Harstad, “Perspective-Based Critiquing:
Helping Designers Cope with Conflicts among Design Intentions,”
Artificial Intelligence in Design '94, Lausanne, Switzerland (August),
1994, pp. 449-466.

204

79. Nardi, B. A., “Beyond Models and Metaphors: Visual Formalisms in
User Interface Design,” Journal of Visual Languages and Computing,
Vol. 4, pp. 5-33, 1993.

80. Nardi, B. A., A Small Matter of Programming, The MIT Press,
Cambridge, MA, 1993.

81. Nardi, B. A. and J. A. Johnson, “User Preferences for Task-specific vs.
Generic Application Software,” Human Factors in Computing Systems
(CHI '94), Boston, MA (April 24-28), 1994, pp. 392-398.

82. Norman, D. A., Things That Make Us Smart, Addison-Wesley
Publishing Company, Reading, MA, 1993.

83. Orlikowski, W. J. and J. J. Baroudi, “Studying Information Technology
in Organizations: Research Approaches and Assumptions,”
Information Systems Research, Vol. 2, pp. 1-29, 1991.

84. Ostwald, J., “The Evolving Artifact Approach to System Development,”
University of Colorado at Boulder, Ph.D. dissertation, Dept. of
Computer Science, 1996.

85. Peters, T., “Re-Inventing Civilisation,” CROSSBORDER, the Economist
Intelligence Unit's Journal of Multinational Management, V o l .
Summer, pp. 12-15, 1993.

86. Petre, M., “Why Looking Isn't Always Seeing: Readership Skills and
Graphical Programming,” Communications of the ACM, Vol. 38, pp.
33-44, 1995.

87. Piersol, K., “Under the Hood: A Close-Up of OpenDoc,” BYTE, Vol. 19,
pp. 183-188, 1994.

88. Polanyi, M., The Tacit Dimension, Doubleday, Garden City, NY, 1966.

89. Prieto-Diaz, R. and P. Freeman, “Classifying Software for Reusability,”
Vol. 4, pp. 6-16, 1987.

90. Quinn, J. B., Intelligent Enterprise, The Free Press, New York, N.Y.,
1992.

91. Reeves, B. N., “Supporting Collaborative Design by Embedding
Communication and History in Design Artifacts,” University of
Colorado at Boulder, Ph.D. dissertation, Dept. of Computer Science
(Technical Report: CU-CS-651-93), 1993.

92. Reitman, W. R., Cognition and Thought: An Information Processing
Approach., Wiley, New York, 1965.

205

93. Repenning, A., “The OPUS User Manual,” Technical Report, CU-CS-
556-91, Dept. of Computer Science, University of Colorado at Boulder,
1991.

94. Repenning, A., “Agentsheets: A Tool for Building Domain-Oriented,
Dynamic, Visual Environments,” University of Colorado at Boulder,
Ph.D. dissertation, Dept. of Computer Science (Technical Report: CU-
CS-693-93), 1993.

95. Repenning, A., “Programming Substrates to Create Interactive
L e a r n i n g E n v i r o n m e n t s , ” Journal of Interactive Learning
Environments, Vol. 4 (Special Issue on End-User Environments), pp.
45-74, 1994.

96. Repenning, A., “Bending the Rules: Steps toward Semantically
enriched Graphical Rewrite Rules,” Proceeding of Visual Languages,
Darmstadt, Germany, 1995.

97. Repenning, A. and J. Ambach, “Tactile Programming: Unifying the
Application World and the Programming World,” Submitted to:
Advanced Visual Interfaces (AVI '96), Gubbio, Italy, 1996.

98. Repenning, A. and T. Sumner, “Using Agentsheets to Create a Voice
Dialog Design Environment,” Symposium on Applied Computing
(SAC '92), Kansas City, MO., 1992, pp. 1199-1207.

99. Repenning, A. and T. Sumner, “Agentsheets: A Medium for Creating
Domain-Oriented Visual Languages,” IEEE Computer (Special Issue on
Visual Programming), Vol. 28, pp. 17-25, 1995.

100. Rieman, J. F., “Learning Strategies and Exploratory Behavior of
Interactive Computer Users,” University of Colorado at Boulder, Ph.D.
dissertation, Dept. of Computer Science, 1994.

101. Rittel, H. and M. M. Webber, “Planning Problems are Wicked
Problems,” in Developments in Design Methodology, N. Cross, Ed.,
John Wiley & Sons, New York, 1984, pp. 135-144.

102. Schneider, K. and M. Stolze, “SMArT CASE: Supporting Co-
Improvement of Process, Tools, and Notations,” Submitted to:
International Conference on Software Engineering (ICSE-18), Berlin,
Germany (March 26-30), 1996.

103. Schoen, D. A., The Reflective Practitioner: How Professionals Think in
Action, Basic Books, New York, 1983.

206

104. Schuler, D. and A. Namioka, Participatory Design: Principles and
Practices, Lawrence Erlbaum Associates, Hillsdale, NJ, 1993.

105. Shaw, M., “Software Architecture for Shared Information Systems,”
Technical Report, CMU/SEI-93-TR-3, Software Engineering Institute,
1993.

106. Shipman, F. M., “Supporting Knowledge-Base Evolution with
Incremental Formalization,” University of Colorado at Boulder, Ph.D.
dissertation, Dept. of Computer Science, 1993.

107. Shipman, F. M. and R. McCall, “Supporting Knowledge-Base
Evolution with Incremental Formalization,” Human Factors in
Computing Systems (CHI '94), Boston, MA (April 24-28), 1994, pp. 285-
291.

108. Silverman, B., “Survey of Expert Critiquing Systems: Practical and
Theoretical Frontiers,” Communications of the ACM, Vol. 35, pp. 106-
127, 1992.

109. Simon, H. A., The Sciences of the Artificial, The MIT Press, Cambridge,
MA, 1981.

110. Solomon, C., “Integrating Office Applications with OLE,” in
Developing Applications with Microsoft Office, Ed., Microsoft Press,
Redmond, Washington, 1995, pp. 387-450.

111. Stahl, G., “Interpretation in Design: The Problem of Tacit and Explicit
Understanding in Computer Support of Cooperative Design,”
University of Colorado at Boulder, Ph.D. dissertation, Dept. of
Computer Science, 1993.

112. Steele, G. L., Common LISP: The Language (2nd Edition), Digital Press,
Burlington, MA, 1990.

113. Stefik, M. J. and D. G. Bobrow, “Object-Oriented Programming: Themes
and Variations,” AI Magazine, Vol. 6, pp. 1986.

114. Stolze, M. and T. Sumner, “SmartMedia Tools: Bridging the Gap
Between Generic Applications and Domain-Oriented Systems,”
Technical Report, CU-CS-792-95, Dept. of Computer Science, University
of Colorado at Boulder, 1995.

115. Sullivan, J., “A Proactive Computational Approach to Learning While
Working,” University of Colorado at Boulder, Ph.D. dissertation, Dept.
of Computer Science, 1994.

207

116. Sumner, T., “The High-Tech Toolbelt: A Study of Designers in the
Workplace,” Human Factors in Computing Systems (CHI '95), Denver,
CO (May 7-11), 1995, pp. 178-185.

117. Sumner, T., S. Davies, A. C. Lemke and P. G. Polson, “Iterative Design
of a Voice Dialog Design Environment,” Technical Report, CU-CS-546-
91, Dept. of Computer Science, University of Colorado at Boulder, 1991.

118. Sumner, T., C. Marra and C. Lewis, “Results from Programming
Walkthroughs are Wildly Inconsistent, But...,” Technical Report, CU-
CS-745-94, Dept. of Computer Science, University of Colorado at
Boulder, 1993.

119. Sumner, T. and M. Stolze, “Evolution, Not Revolution: PD in the
Toolbelt Era,” Computers in Context: Joining Forces in Design (CIC '95),
Aarhus, Denmark (August 14-18), 1995, pp. 30-39.

120. Trigg, R. and S. Bodker, “From Implementation to Design: Tailoring
and the Emergence of Systemization in CSCW,” Conference on
Computer Supported Cooperative Work (CSCW '94), Chapel Hill,
North Caroline (October 22-26), 1994, pp. 45-54.

121. Udell, J., “Beyond DOS: Visual Basic Custom Controls Meet OLE,”
BYTE, Vol. 19, pp. 197-200, 1994.

122. Udell, J., “Componentware,” BYTE, Vol. 19, pp. 46-56, 1994.

123. Winkler, D. and S. Kamins, Hypertalk 2.0: The Book, Bantam Books,
Toronto, 1990.

124. Winograd, T. and F. Flores, Understanding Computers and Cognition:
A New Foundation for Design, Addison-Wesley, Menlo Park, CA, 1986.

125. Winston, P. H., Artificial Intelligence, Addison-Wesley, Reading, MA,
1984.

126. Yates, J. and W. Orlikowski, “Genres of Organizational
Communication: A Structurational Approach to Studying
Communication and Media,” Academy of Management Review, Vol.
17, pp. 299-326, 1992.

127. Yin, R., Case Study Research: Design and Methods, SAGE Publications,
Newbury Park, CA, 1984.

128. Zarmer, C. L. and C. Chew, “Frameworks for Interactive, Extensible,
Information-Intensive Applications,” Symposium on User Interface
Software and Technology (UIST '92), Monterey, CA (November 15-18),
1992, pp. 33-41.

