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Abstract— The moments produced by the aerodynamic con-
trol effectors on aircraft are typically non-linear functions of
displacement with a region of linearity about zero displacement.
For nominal operation with no locked or floating effectors and
for gentle maneuvers, affine approximations to the moment
displacement curves are sufficient as the effectors operate pri-
marily in the linear region. However, if an actuator has become
locked and/or aggressive maneuvering is required, the control
effectors may require large deflections into the non-linear regions
of the moment-displacement curve in order to maximize the
available control power. As we move away from the linear
region, the affine approximation becomes inaccurate, especially
in cases where the slope of the moment curve changes sign. In
this paper we will briefly review a novel approach that was
developed at AFRL for solving the control allocation problem
where the control moments are piecewise linear functions of
the control displacement. The advantages of this approach are
that it avoids cumbersome, high-order polynomial curve fits of
the aerodynamic data and thus avoids solution of a non-linear
programming problem. Stability and control derivatives are
almost always stored in multi-dimensional look-up tables where
it is assumed that the data is piecewise linear. The approach
that is presented utilizes this piecewise linear assumption for the
control effector moment data and accounts for non-linearities in
the moment-effector relationships and position constraints on the
effectors as well. The control allocation problem using piecewise
linear functions is posed as a mixed-integer linear program
(MILP) and solved using a freely available GNU-licensed mixed-
integer linear programming code.

We will demonstrate two applications of the piecewise linear
control allocation (PLCA) approach. The first application to
be considered is to use the PLCA approach in the inner-
loop control law of a re-usable launch vehicle on approach
and landing. Body axis angular rates are controlled using a
dynamic inversion controller. The vehicle will be subjected to
two stuck control effectors, and recovery of the vehicle using
only control effector reconfiguration provided by the control
allocator and without trajectory reshaping will be demonstrated.
However, the downside of the MILP formulation is that the
optimization problem cannot be solved fast enough for real-
time implementation on the current generation of flight control
computers.

The second application that will be demonstrated is constraint
estimation for trajectory reshaping and re-targeting. In order
to successfully re-target a trajectory when an aircraft has
experienced degraded performance due to a failure or damage
to the vehicle, the effects of the failure or damage on the lift,
drag, and “trimmability” of the vehicle must be known a priori
over the entire flight envelope. We present a method that allows

for the effects of a locked or floating control effector to be
estimated over the flight envelope. This method has the advantage
of including six degree-of-freedom effects (i.e., trimmability) in
the point-mass models used by trajectory synthesis algorithms.
For situations where there are stuck or floating control effectors,
the aerodynamic data does not change; therefore, the effects
of the failure can be estimated over the entire flight envelope.
We will show how to determine constraints on the trajectory
using the PLCA approach that was outlined above. However, the
“preference vector” used in the control allocator requires careful
consideration along with the specific type of trajectory desired
(e.g., computation of the maximum downrange vs. minimum
downrange for the footprint), otherwise adverse interactions
between the control allocator and the trajectory synthesizer may
occur.

I. PRINCIPLES OF CONTROL ALLOCATION

Our interest in control allocation is motivated by the de-
velopment of re-configurable control laws for autonomous
aerospace vehicles. One such class of vehicles is the next
generation of re-usable launch vehicles. The next generation
of RLVs will be characterized by a minimal control effector
suite to facilitate control re-configuration when the aircraft
experiences either failures in the flight control system or
damage to the vehicle. Typically, at the inner-most control
loop, the control system is controlling body-axis angular rates
to meet the outer-loop guidance commands. When the number
of effectors exceeds the number of controlled variables, it is
quite common that the desired commands can be achieved in
many different ways. A control allocation algorithm can be
used to find a set of control effector positions that meet some
desired objective in addition to delivering the desired angular
rates. Additionally, the control effectors are subject to position
and/or rate limiting constraints that can be enforced by a well
designed control allocation algorithm.

Control allocation can be stated simply as follows: Given
the mapping

ddes =G(δ) (1)

subject to:

δ ∈[δmin, δmax] (2)

δ̇ ∈[δ̇min, δ̇max] (3)
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where ddes ∈ R
m and δ ∈ R

n and n > m, we desire to find
the inverse mapping such that

δ = G−1(ddes) (4)

such that the constraints δ ∈ [δmin, δmax] and δ̇ ∈
[δ̇min, δ̇max] are not violated.

To solve the control allocation problem, it is usually as-
sumed that the control moments produced by the control
effectors are linear functions of the effector displacement

G(δ) = Bδ (5)

This has led to much research being devoted to various
methods for solving what we will call the linear control
allocation problem. The linear control allocation problem is
often re-stated as an equivalent optimization problem (either
a linear or quadratic program) in order to ensure that the
limits on the control effector positions and rates are satisfied
(see References [1], [2], [3]). Non-optimization approaches do
exist, primarily those attributed to Durham [4].

The assumption that the moments are linear functions of
the effectors is quite valid for most control effectors about
their primary control axis, thus linear control allocation ap-
proaches are successful under nominal flight conditions. In
this case small non-linearities are seen as disturbances or
model uncertainty and the control laws are robust enough
that system stability and performance are not compromised.
However, there are situations where the effectors must operate
away from the linear region, or when it may be beneficial
to take advantage of the non-linear effects. In these cases,
we want to include the effects of the non-linearities in the
control allocation. One situation is when the aircraft has a
stuck effector, and the moment producing capability about a
secondary axis is highly non-linear. For example, for left-right
pairs of effectors, there is a quadratic relationship between
the yawing moment and the effector displacement. In this
case, deflection of a single effector on one side of the vehicle
induces a yawing moment to that side of the vehicle due to the
asymmetric drag distribution. This yawing moment occurs for
both positive and negative deflections of the control surface.
In this case a linear fit can only be applied to one side of the
curve, otherwise we have a gross mismodelling of the moment-
effector relationship.

One approach that was designed to account for benign
non-linearities, and has been successfully flight-tested, was
developed at AFRL by Oppenheimer and Doman [5]. Their
approach added an “intercept-correction” term that made the
relationship between the controls and the moments affine:
Bδ + ε = ddes. However, this approach is still limiting
because there may be slope reversals in the aerodynamic data.
The possibility exists where the allocator could become cap-
tured in this non-linear region, resulting in actuator saturation.

To further improve control allocation and to maximize the
performance of the effector suite on the aircraft requires taking
advantage of the non-linearities present in the data. Non-linear
programming approaches were not of interest due to the fact
that polynomials on the order of 5 or higher were typically

needed to accurately fit the aerodynamic data, thus resulting
in a rather difficult set of equations to solve. A more natural
approach is to utilize the inherent piecewise linear nature of
the aerodynamic data. This is the approach that we pursued
in Reference [6], and is outlined here for completeness.

II. PIECEWISE LINEAR PROGRAMMING

Piecewise linear programming is an optimization method
that allows one to approximate non-linear programming prob-
lems that are comprised of separable functions. To solve
the resulting approximation problem, a linear program can
be formulated and then solved using a modified simplex
method [7]. A second option is to formulate the non-linear
program as a mixed-integer linear program [8].

In terms of control allocation, the restriction of approxi-
mating separable functions by piecewise linear functions may
appear to be overly restrictive. For most aircraft, the control in-
duced moments can be considered as separable since, in many
cases, there are no significant aerodynamic interactions among
the control effectors. In some instances the cross-coupling of
control effectors cannot be neglected, such as when control
effectors are located downstream of other surfaces or when
two effectors are located adjacent to one another.

For purposes of illustration, we will approximate a single-
valued function, f(x), by its piecewise linear approximation
and show how to formulate the minimization of f(x), x ∈
[a, b] as a piecewise linear program. The approach given below
for a single variable function can be generalized for multi-
variable, separable functions rather easily. Furthermore, we
are not restricted to only approximating the objective function
by a piecewise linear approximation since it is also possible
to consider piecewise linear approximations of the constraints,
if they are separable, within the same framework. A detailed
discussion can be found in Reklaitis, et.al. [7].

Without loss of generality, we begin by considering a
single variable function, f(x), defined on an interval, [a, b].
Begin by defining a grid of K points spaced on the interval
[a, b] and denote these points as x(k), k = 1, . . . , K where
a = x(1) < x(2) < · · · < x(k) < · · · < x(K) = b. Note
that we are not restricted to a uniform spacing of the x (k).
Furthermore, let f (k) denote the value of f(x(k)). A piecewise
linear approximation of f(x) can then be constructed by
connecting (x(k), f (k)) and (x(k+1), f (k+1)) with a straight
line as shown in Figure 1. The equation of the line connecting
the points (x(k), f (k)) and (x(k+1), f (k+1)) is given by

f̃(x) = f (k) +
f (k+1) − f (k)

x(k+1) − x(k)
(x − x(k)) (6)

where x ∈ [x(k), x(k+1)]. There will be K −1 such equations,
one for each subinterval. Observe that on a given subinterval,
x can be written as

x = λ(k)x(k) + λ(k+1)x(k+1) (7)

where λ(k) ≥ 0 and λ(k+1) ≥ 0. The λ(k) are normalized such
that

λ(k) + λ(k+1) = 1 (8)

2



It can then be shown that Equation 6 can be written as

f̃(x) = λ(k)f (k) + λ(k+1)f (k+1) (9)

Therefore, in the interval [x(1), x(K)], a given value of x and
the approximate value f̃(x) can be determined by assigning
appropriate values to λ(k) and λ(k+1) that correspond to the
subinterval in which x lies. Since x can only be defined on a
single subinterval, all the λ(k) which are not associated with
that particular interval all must be equal to zero. As a result,
we can express Equations 7 and 9 as

x =
K∑

k=1

λ(k)x(k) (10)

f̃(x) =
K∑

k=1

λ(k)f (k) (11)

subject to the following conditions:

K∑
k=1

λ(k) = 1 (12)

λ(k) ≥ 0, k = 1, . . . , K (13)

and

λ(i)λ(j) = 0 if j > i + 1; i = 1, . . . , K − 1 (14)

Equation 14 is necessary to ensure that only points lying on
piecewise linear segments that connect adjacent breakpoints
are considered as part of the approximating function. For
example, given a value of x, no more than two of the λ (k)’s
are allowed to be non-zero and positive, and the two λ (k)’s
also must be adjacent. If we consider a value of x where
λ(3) and λ(4) are positive, with λ(1) = λ(2) = 0 and
λ(k) = 0, k = 5, . . . , K , then the value of f̃(x) lies on the
approximating function between x(3) and x(4). On the other
hand, if λ(4) > 0 was to be replaced by λ(6) > 0, and all other
λ(k) = 0, then the line connecting x(3) and x(6) would not be
part of the approximating function. Furthermore, if we chose
a value of x such that x = x(k) and f̃(x) = f(x), then from
Equation 12, λ(k) = 1 and all other values of λ = 0. Lastly, it
is important to note that one can always obtain a more accurate
approximation of f(x) by increasing the number of gridpoints;
however, this obviously increases the size of problem.

Given that we now have a piecewise linear approximation
to f(x) and the additional constraints that result from the
transformation, we are able to state the Piecewise Linear
Program that corresponds to the minimization of f(x) on the
interval a ≤ x ≤ b.

min f̃(x) =
K∑

k=1

λ(k)f (k) (15)

(x(k+1), f (k+1))

(x(k), f (k))

x

f(x)

f(x)

f̃(x)

(x(k−1), f (k−1))

Fig. 1. Piecewise Linear Function Approximation

subject to

K∑
k=1

λ(k) = 1 (16)

λ(k) ≥ 0 (17)

Once the solution to the piecewise linear program is obtained,
one uses Equation 10 to find the corresponding value of x that
gives an approximate minimum to f(x). Finding a solution to
a piecewise linear program requires an approach that ensures
that Equation 14 is satisfied. Recall that Equation 14 requires
that no more than two adjacent λ(k)’s are allowed to be
non-zero. Therefore, to find an optimal feasible solution to
the piecewise linear program, one of two approaches must
be taken. One approach is to solve the problem using the
simplex method with a restricted basis entry rule. [7] A
second approach is to formulate Equation 14 using binary
decision variables [8] that will constrain x to be on only one
subinterval. The result will be yet another increase in the size
of the problem beyond what was necessary for the piecewise
linear approximation. The addition of the binary variables
transforms the piecewise linear programming problem into a
mixed-integer linear program (MILP). We will take the latter
approach because it is sufficient for demonstrating the validity
of the approach, and also because of the availability of an
open-source code (GNU Linear Programming Kit) that solves
linear programs and mixed-integer linear programs.

A. Transformation of the Piecewise Linear Program to a
Mixed-Integer Linear Program

Begin by considering the piecewise linear approximation
shown in Figure 1. Note that if there are K breakpoints, then
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there are K−1 linear segments. We assign a variable y (k) that
corresponds to the kth linear segment of the piecewise linear
approximation such that

y(k) =

{
1 if λ(k) �= 0 and λ(k+1) �= 0,

0 otherwise
(18)

for k = 1, . . . , K − 1. Next, we make the observation that if
λ(1) �= 0 and λ(2) �= 0, then

λ(1) ≤ y(1) (19)

λ(2) ≤ y(1) (20)

where y(1) = 1. However, if we are on the segment where
λ(2) �= 0 and λ(3) �= 0, such that y(2) = 1, then

λ(2) ≤ y(2) (21)

λ(3) ≤ y(2). (22)

If we proceed in this manner, we observe that the following
restrictions can be placed on the λ(k)

λ(1) ≤ y(1), (23)

λ(k) ≤ y(k−1) + y(k), k = 2, . . . , K − 1 (24)

λ(K) ≤ y(K−1). (25)

The rationale behind Equation 24 is as follows: the λ (k) that
correspond to points that are interior to the interval (i.e., they
are not the endpoints of the interval on which x is defined) can
be associated with one of two line segments. A particular λ(k)

is an endpoint for the line segment immediately preceding it
in addition to the line segment that comes immediately after it.
Only one of these two line segments may be “active” at any
time; therefore, the right-hand side of Equation 24 is never
greater than one. In addition to Equations 23-25, we have an
additional constraint to ensure that only one of the K −1 line
segments is active, hence only one of the y (k) can be equal to
one:

K−1∑
k=1

y(k) = 1 (26)

By including Equations 23-26 into the piecewise linear
program for the arbitrary single valued function being min-
imized in the example above, we transform it into a mixed
integer linear program. The transformed optimization problem
is stated as follows:

min f̃(x) =
K∑

k=1

λ(k)f (k) (27)

subject to

K∑
k=1

λ(k) = 1 (28)

λ(k) ≥ 0 (29)

λ(1) ≤ y(1) (30)

λ(k) ≤ y(k−1) + y(k), k = 2, . . . , K − 1 (31)

λ(K) ≤ y(K−1) (32)
K−1∑
k=1

y(k) = 1 (33)

y(k) ∈ {0, 1} (34)

By including the additional constraints which are necessary to
complete the transformation of the piecewise linear program,
we have added an additional K − 1 decision variables to
the problem. This does not include any slack or surplus
variables that may be required by the solver to convert
inequality constraints into equality constraints. The slack and
surplus variables will further increase the number of decision
variables. The solution to the mixed integer linear program
is obtained by using a branch-and-bound algorithm. Technical
details on the branch-and-bound algorithm can be found in
Bertsimas [8].

III. PIECEWISE LINEAR MIXED OPTIMIZATION CONTROL

ALLOCATION

The control allocation problem solved in Reference [6] used
two distinct performance indices that were similar to those
used in Buffington’s [2] multi-branch approach. However,
instead of a linear relationship between the control effector
displacements and the control moments, a non-linear relation-
ship was used. Let the non-linear vector-valued function G(δ)
denote the relationship between the control effector positions
and their moments. The function G(δ) maps R

n into R
m

where n ≥ m and n is the number of control effectors and
m is the number of controlled variables. Let ddes denote the
controlled variables. In this case the controlled variables are
the rolling, pitching and yawing moments. Buffington’s multi-
branch approach requires that two optimization problems be
solved. The first optimization problem is called the control
deficiency branch. The objective of the control deficiency
branch is to minimize ‖W a(G(δ)−ddes)‖1 subject to position
and rate constraints on δ. The value of the performance index
for this optimization problem indicates whether or not ddes

is feasible. If feasibility of the control allocation problem
has been ascertained, a second optimization problem is then
solved that minimizes some secondary objective. The objective
function of this second optimization is typically taken to be
‖W u(δ−δp)‖1 subject to G(δ) = ddes and position and rate
constraints on δ. This is commonly referred to as the control
sufficiency branch.

The mixed optimization problem that was formulated by
Bodson [3] combines the two branches of the multi-branch
control allocation problem into a single optimization problem.
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A new parameter ε is introduced for the purpose of prioritizing
either control deficiency or control sufficiency. The mixed
optimization problem is stated as:

min J =||W a(G(δ) − ddes)||1 + ε||W u(δ − δp)||1 (35)

subject to:

δmin ≤ δ ≤ δmax (36)

where W a = diag(wa1, wa2, wa3, . . . , wam) is a weight-
ing matrix used to prioritize a given control axis, G(δ)
is a non-linear, vector-valued function that maps R

n to
R

m, δ is an n × 1 vector of control effectors, W u =
diag(wu1, wu2, wu3, . . . , wun) is a weighting matrix on the
control effectors, and δp is an n × 1 vector of “preferred”
control effector displacements. Again it is assumed that n ≥
m. For the moment we will make the assumption that G(δ) =
Bδ. The mixed optimization problem can then be posed
as a linear programming problem. The corresponding linear
program can then be solved by any readily-available linear
programming software.

Bodson [3] gives one possible transformation to a linear
programming problem for the optimization problem defined in
Equations 35 and 36; however, we selected a transformation
approach that can be found in Bertsimas [8]. The transforma-
tion relies on the observation that |x| is the smallest number
xs that satisfies both x ≤ xs and −x ≤ xs. As a result, we
are able to pose the mixed optimization problem as follows:

min J = W aδs + εW uus (37)

subject to:

δs ≥ 0 (38)

us ≥ 0 (39)

Bδ + δs ≥ ddes (40)

−Bδ + δs ≥ −ddes (41)

δ + us ≥ δp (42)

−δ + us ≥ −δp (43)

δmin ≤ δ ≤ δmax (44)

The vectors δs and us are vectors of “slack variables”. The
reason for selecting this particular transformation as opposed
to the one in Bodson [3] is that this formulation allows us to
easily implement the piecewise linear function approximation.

To convert the linear programming problem into a piecewise
linear programming problem, we simply replace Bδ above
with a piecewise linear representation of each control moment
curve, (i.e., L̄i(δi), Mi(δi), and Ni(δi)). We choose a set of

breakpoints for each δi, i = 1, . . . , n such that:

δi =
Ki∑

k=1

λ
(k)
i δ

(k)
i (45)

Ki∑
k=1

λ
(k)
i = 1 (46)

λ
(j)
i λ

(k)
i = 0, if k > j + 1, j = 1, . . . , Ki − 1 (47)

where λ
(k)
i is a non-negative interpolating coefficient cor-

responding to the ith control effector at breakpoint k, and
Ki denotes the number of breakpoints for the i th control
effector. Equation 47 is necessary in order ensure that δ i is
approximated by no more than two adjacent values of λ

(k)
i . If

δi falls at a breakpoint, there will only be one value of λ
(k)
i

that is non-zero and Equation 47 is still valid.
For inner-loop flight control, we assume that our objective

is to find a set of control deflections δ such that a specified
rolling moment L, pitching moment, M , and yawing moment
N are simultaneously achieved. The piecewise linear approxi-
mations for the control moments as a function of δ i are written
as

L̄i = L̄(δi) =
Ki∑

k=1

λ
(k)
i L̄

(k)
i (48)

Mi = M(δi) =
Ki∑

k=1

λ
(k)
i M

(k)
i (49)

Ni = N(δi) =
Ki∑

k=1

λ
(k)
i N

(k)
i (50)

where L̄
(k)
i , M

(k)
i , and N

(k)
i are the values of the rolling,

pitching, and yawing moment curves evaluated at the k th

breakpoint for the ith control effector. We are now able to
replace Bδ with B̃Λ where

B̃ =

⎡
⎢⎣ L̄

(1)
1 L̄

(2)
1 . . . L̄

(k)
i . . . L̄

(Kn)
n

M
(1)
1 M

(2)
1 . . . M

(k)
i . . . M

(Kn)
n

N
(1)
1 N

(2)
1 . . . N

(k)
i . . . N

(Kn)
n

⎤
⎥⎦ (51)

and

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
(1)
1

λ
(2)
1
...

λ
(k)
i
...

λ
(Kn)
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(52)

The vector Λ is of length
∑n

i=1 Ki and B̃ is a matrix of size
nc×

∑n
i=1 Ki where nc is the number of controlled variables.

In the piecewise linear optimization problem, the constraints
δmin ≤ δ ≤ δmax are replaced by λ

(k)
i ≥ 0. The upper and

lower bounds on δ are accounted for in the selection of the
breakpoints for each δi. Once we obtain an optimal solution
to the problem, we compute each δi using Equation 45. It is
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also necessary to include in the problem the n constraints that
correspond to Equation 46.

The resulting optimization problem is

min J =W aδs + εW uus (53)

subject to:

δs ≥ 0 (54)

us ≥ 0 (55)

B̃Λ + δs ≥ ddes (56)

−B̃Λ + δs ≥ −ddes (57)
Ki∑
k=1

λ
(k)
i δ

(k)
i + us,i ≥ δp,i, i = 1, . . . , n (58)

−
Ki∑
k=1

λ
(k)
i δ

(k)
i + us,i ≥ −δp,i, i = 1, . . . , n (59)

λ
(k)
i ≥ 0, i = 1, . . . , n, k = 1, . . . , Ki

(60)
Ki∑
k=1

λ
(k)
i = 1, i = 1, . . . , n (61)

λ
(j)
i λ

(k)
i = 0, if k > j + 1, j = 1, . . . , Ki − 1

(62)

The constraint given by Equation 62 is enforced using bi-
nary variables and a set of explicit constraints on the segments
of each piecewise linear control moment as described above.
The resulting optimization problem is then a mixed-integer
linear program. The additional constraints are

λ
(1)
i ≤ y

(1)
i , i = 1, . . . , m (63)

λ
(k)
i ≤ y

(k−1)
i + y

(k)
i , i = 1, . . . , m, k = 2, . . . , Ki − 1

(64)

λKi

i ≤ y
(Ki−1)
i , i = 1, . . . , m (65)

Ki−1∑
k=1

y
(Ki−1)
i = 1, i = 1, . . . , m (66)

y
(k)
i ∈ {0, 1} (67)

IV. APPLICATIONS

There are two important applications for control allocation
algorithms that take into account the non-linear relationship
between the control effectors and the control moments. Our
original motivation for the use of non-linear control allocation
was adaptive/reconfigurable control systems as a means to
maximize the performance by optimally selecting the control
deflections to meet the commanded body-axis rotational rates.
As will be discussed below, the benefits of non-linear control
allocation occur when there are effector failures that require
the remaining control effectors to operate in their non-linear
regions. In this section, we will compare the performance of
the piecewise linear control allocation approach to a linear
allocation method in a simulation of a re-entry vehicle that

Desired
Dynamics

Control
Allocation

Aircraft
Dynamics

f(ω, P )

+

−
+

−
ωdes ω̇des ω

ω

ω̇

δ

Fig. 2. Block Diagram of Inner-loop Dynamic Inversion Control Law

uses a dynamic inversion control law for inner-loop control.
A second application of non-linear control allocation is the
determination of constraints for use with trajectory reshaping
algorithms [9]. Here it is necessary to be able to accurately
determine the range of angles-of-attack over which the vehicle
can be trimmed in the presence of control effector failures. An
additional benefit of solving the constraint estimation problem
is that trim lift and drag effects can be included in the tra-
jectory reshaping problem with little additional computational
burden. The trim maps and the lift and drag perturbations can
re determined off-line and stored on-board in the guidance
computer to facilitate real-time trajectory re-shaping.

A. Dynamic Inversion Flight Control

Dynamic inversion controllers attempt to cancel and replace
the dynamics of the plant being controlled with a set of desired
dynamics. If the fidelity of the on-board reference model is
high enough, then the dynamic inversion control law results
in a closed-loop system that behaves like a decoupled bank of
integrators. In the context of flight control, a common objective
of a dynamic inversion control law is to provide good body-
axis angular rate tracking.

It is assumed that a pilot or an outer-loop guidance system
generates body-axis angular velocity commands P c, Qc, Rc.
The inner-loop dynamic inversion control law is designed such
that the aircraft tracks these angular velocity commands (see
Figure 2). The rotational dynamics for an aircraft can be
written as:

Iω̇ = GB − ω × Iω (68)

where ω =
[
P Q R

]T
, I is the moment-of-inertia tensor,

and GB are the moments acting on the vehicle. We can express
GB as a sum that includes moments that are due to the wing-
body aerodynamics and propulsion system, which we will
collectively refer to as the base moments, and moments due
to the control effectors:

GB = Gbase(ω, P )+G(P , δ) =

⎡
⎣ L̄
M
N

⎤
⎦

base

+

⎡
⎣ L̄(δ)
M(δ)
N(δ)

⎤
⎦ (69)

where Gbase(ω, P ) is the moment generated by the base
engine-aerodynamic system and G(P , δ) is the sum of the
moments produced by the control effectors. The parameter
vector P denotes measurable or estimable quantities that
influence the body angular accelerations and includes variables
such as Mach number, angle of attack, sideslip angle and
vehicle mass properties such as moments of inertia. Thus we
define

f (ω, P ) �= Gbase(ω, P ) − ω × Iω (70)
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The model used for the design of the dynamic inversion control
law then becomes:

Iω̇ = f(ω, P ) + G(P , δ) (71)

and our objective is to find a control law that provides direct
control over ω̇ such that ω̇ = ω̇des, i.e.,

Iω̇des = f(ω, P ) + G(P , δ) (72)

therefore, the inverse control must satisfy:

Iω̇des − f(ω, P ) = G(P , δ) (73)

Since there are more control effectors than controlled vari-
ables, a control allocation algorithm must be used to obtain
a solution. Solution of this control allocation problem will be
discussed in detail in a later section. Equation 73 states that the
control effectors are to be used to correct for the difference
between the desired accelerations and the accelerations due
only to the base moments.

B. Simulation of Dynamic Inversion Control Law

The mixed-integer linear programs for the mixed-
optimization control allocation discussed above were imple-
mented in a Simulink simulation of a re-entry vehicle. This
particular vehicle has six control surfaces: left and right
rudders, left and right flaperons, a body flap, and a speed
brake. The simulation models the descent, final approach, and
touchdown of the vehicle.

The performance of the piecewise linear approach is com-
pared to that of a linear control allocation method. The linear
control allocator assumes that the moments are linear functions
of the effectors. The slope of the control moment curve is
calculated with respect to the current control effector position
using a forward difference approximation. An intercept correc-
tion [5] term is then applied to account for mild non-linearities
in the aerodynamic data.

The results that follow give the closed-loop vehicle per-
formance when there are two failures injected into the flight
control system at different times during the approach and
landing phases. It is assumed that there is some type of
fault detection capability on-board the aircraft to identify
the failures. The failure information is immediately passed
to the control allocation algorithm in order to facilitate re-
configuration of the vehicle’s effectors. The aircraft’s tra-
jectory begins at an altitude of about 15,000 ft above the
runway and 4 miles downrange from the runway threshold.
The first failure occurs 30 s into the simulation, and involves
the body flap being locked at −5 deg. This failure contributes
a constant pitching moment to the aircraft. A second failure,
where the right rudder becomes locked at 1 deg, occurs at
40 s. This particular failure adds not only a pitching moment
to the aircraft, but also rolling and yawing moments. This
particular failure combination was chosen because it requires
the flaperons to operate in a highly non-linear region of the
control moment curve. After the failures are introduced, the
aircraft tries to follow the nominal approach trajectory to the
runway threshold. The aircraft extends the landing gear at

about 68 s and flares immediately before touchdown. The
simulation ends at touchdown when the weight-on-wheels
switch is triggered.

For the control sufficiency branch of the control allocator,
a “preferred” control position, δp, is required. There are
several different objectives that may be used to determine
δp. These include, but are not limited to, minimum control
deflection (δp = 0), minimum 2-norm of deflection, and null-
space injection [2], [10]. The preference vector used in this
simulation is the minimum 2-norm of the control surface
deflection. This particular δp minimizes δT Wδ subject to
Bδ = ddes where W is a positive definite weighting matrix.
For our results, we take the weighting matrix, W , as the
identity matrix. The corresponding solution to this problem
is then δp = BT (BBT )−1ddes. Note that this particular
preference vector has the advantage of facilitating robustness
analysis with the control allocator in the loop since the control
allocator can be represented in closed-form for local linear
analysis . For the piecewise linear control allocation, we found
that it was sufficient to compute the right pseudo-inverse
solution, δp, with a B matrix that uses local slopes of the
control moments at the last control surface position.

We will measure the performance of the two control alloca-
tors by their ability to produce deflections, that when applied
to the non-linear aerodynamic database, produce the desired
moments about each axis. This metric is an indication of the
error that results from the selection of a particular model in
the control allocation algorithm.

1) Simulation Results: The results for the piecewise linear
control allocator as compared to a linear control allocator with
intercept correction are given in Figures 3 and 4. Figure 3
shows the base 10 logarithm of ‖ddes − G(P , δ)‖2, where
G(P , δ) is the moment that is applied to the vehicle when
given the control deflections returned by the control allocator.
It is evident that the piecewise linear control allocator returns
control surface deflections that produce the desired moments.
On the other hand, the linear control allocator has a significant
error. Note that at the 40s mark, when the second failure
is introduced, both control allocators indicate that there is a
moment deficiency due to control effector saturation. Beyond
60s the performance of the piecewise linear control allocator
improves once the effectors are no longer saturated. The poor
performance of the linear control allocator is primarily due
to the modelling errors inherent in the linear approximation
of the control moment curves. The control surface commands
from each control allocator are shown in Figure 4. We see
that after the second failure is injected into the simulation that
the flaperon deflections saturate at their upper limit. Note that
the flap and speedbrake commands for the piecewise linear
allocator oscillate after about 65 sec. This appears to be due
to an oscillatory ddes and δp that result from body-axis rate
loop closures. For the linear control allocator, we see that
the flaps, left rudder, and speedbrake exhibit large amplitude
oscillations. Note that for this failure case, the vehicle that
flew with the piecewise linear control allocator maintained
controlled flight.
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It should be noted that both the linear and non-linear control
allocation approaches were solved using the GNU Linear
Programming Kit’s linear programming simplex library for
the former and the branch-and-bound solver for the latter.
The simulation with the non-linear control allocator and the
branch-and-bound solver ran extremely slow when compared
to the simulation with the linear program solver used for
the linear control allocator. It was observed that it took
approximately 8.5 times longer on average to find a solution
to the MILP control allocation problem as compared to the
linear programming approach. This computational burden may
limit one’s ability to utilize the MILP approach in a real-time,
digital flight control system in the near future. Performance
gains may be achieved by solving the piecewise linear control
allocation problem via the simplex method with the restricted
basis entry rules [7].

C. Application to Trajectory Re-shaping

The intent here is to show a second important application
of non-linear control allocation. One of the areas of active
research regarding reusable launch vehicles is the on-line
determination of new feasible trajectories following a control
effector failure. It is desired to safely guide the aircraft from
the time that the failure occurs to a safe abort and to recover
the vehicle if possible. An important part of the determination
of feasible trajectories is having accurate estimates of the

ranges of angle-of-attack, for a given Mach number, at which
the aircraft can be trimmed. Also, it is important to be able
to estimate critical parameters, such as the maximum lift-
to-drag ratio, that will impact the optimal trajectory [9]. It
is not desirable to use a linear control allocation approach
to determine whether or not the vehicle can be trimmed.
The reason is that a linear control allocator would require
a single line of best fit to approximate the moment-deflection
curve at a fixed flight condition, thereby introducing significant
modelling errors. These modelling errors would then result
in an inaccurate determination of the range of trimmable
angles-of-attack. On the other hand, using a non-linear control
allocation algorithm allows one to more accurately estimate the
range of angles-of-attack over which one may trim the aircraft
as well as the critical parameters that affect the trajectory, such
as trim lift and trim drag.

To solve for the range of angles-of-attack over which the
vehicle can be trimmed, we want to determine where in the
flight envelope there exists enough available control power to
null the wing-body rolling, pitching, and yawing moments.
The procedure for this is outlined below in Algorithm 1. If
we consider Equation 73, and set ω = ω̇ = 0, then we have
−f(0, P ) = G(P , δ). The desired moment vector will then
be defined as ddes = −f(0, P ). Thus, we have

ddes = −
⎡
⎣ L̄base(M, α)
Mbase(M, α)
Nbase(M, α)

⎤
⎦ =

⎡
⎣ 0
−Mbase(M, α)

0

⎤
⎦ (74)

where L̄base is the wing-body rolling moment, Mbase is the
wing-body pitching moment, and Nbase is the wing-body
yawing moment. Typically symmetric flight (i.e., zero sideslip
angle) is assumed; therefore, the side force and L̄base and
Nbase are taken to be zero. Note the presence of the minus
sign above in Equation 74. The minus sign is present because
we want to counteract the wing-body moment with the control
effectors to achieve rotational equilibrium; therefore, we desire
the moment produced by the effectors to be of opposite sign
to that of the base moments. More details on the algorithm
can be found in Reference [11].

Shown in Figure 5 is an example of the moment deficiency
for the X-33 vehicle model used by Shaffer [12]. The X-33
has a suite of 8 effectors: right and left body flaps, right and
left rudders, and right and left inboard and outboard elevons.
In Figure 5 the contours of the trim deficiency as a function
of Mach and α are given. The failure that is considered is a
double body-flap stuck at 26 deg trailing edge down. A non-
zero value of the control deficiency, ‖ddes−G(δ)‖2, indicates
that vehicle cannot be trimmed at that particular Mach number
and angle-of-attack. Notice that the region over which the
aircraft can be trimmed is significantly reduced. Only below
bout Mach 0.25 can the vehicle be trimmed at any angle-of-
attack. Figures 6 and 7 demonstrate the change in lift and drag
over the flight envelope. Note that a negative ΔCD indicates
an increase in drag and a negative ΔCL indicates an increase
in lift compared to the un-failed case.

Of particular importance when computing the trim map
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Algorithm 1 Trim Map Generation
Define a grid for Mach number and angle-of-attack and
discretize such that M = {M1, . . . , Mi, . . . , MM} and
α = {α1, . . . αj , . . . , αN}
for i = 1 to M do

for j = 1 to N do
Determine the wing-body moments, ddes =⎡
⎣ 0
−Mbase(Mi, αj)

0

⎤
⎦

Pick the preference vector, δp

Solve the control allocation problem for δ given ddes

and δp

Compute the control deficiency

Δi,j = ‖ddes − G(δ, P )‖2

Compute the lift and drag at (Mi, αj) using δ obtained
above.

end for
end for
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Fig. 5. Moment Deficiency for a 26 deg Body Flap Failure

is the selection of the preference vector, δp. The moment
deficiency is independent of the preference vector since it
is determined solely by the control deficiency branch of the
cost function: ‖ddes − G(δ, P )‖1. At the trimmable Mach-
α points, there may exist non-unique solutions to the control
allocation problem, thus the trim effects on the lift and drag
are effected by the deflection of the remaining effectors.
Computing the lift and drag effects allows us to capture 6
degree-of-freedom effects in the reduced order models used
for trajectory synthesis. Figures 8 and 9 show the effects
of the preference vector on the lift and drag coefficients for
the nominal, unfailed case. The two preference vectors being
compared are a minimum drag preference vector, u pref = 0,
and a maximum drag case where upref was set at the upper
limit for all effectors. Figures 8 and 9 indicate the level of
sensitivity of the lift and drag coefficient to the preference
vector.

The objective that one is trying to obtain when performing
trajectory synthesis must be kept in mind when selecting the
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preference vector. An obvious situation where an inappropriate
choice of the control preference vector in the control allocation
can have a negative implication is when determining the land-
ing footprint [12]. For example, selecting a preference vector
to minimize the drag on the vehicle when trying to compute
the minimum downrange will produce an erroneous solution.
In order to minimize downrange, it is desired to minimize total
L/D for the vehicle. Therefore, the control allocator should
be set to meet the moment demand while increasing the trim
drag and decreasing the trim lift. Conversely, to maximize
the downrange, one wants to maximize L/D. Therefore, to
minimize the trim drag, the preference vector should be set
to δp = 0. Poor selection of the preference vector will result
in the control allocation having unintended, adverse effects on
the trajectory.

V. CONCLUSIONS

A method was presented for the solution of a class of non-
linear control allocation problems. Control allocation has his-
torically been performed by assuming that a linear relationship
exists between the control induced moments and the control
effector displacements. Since aerodynamic data almost always
exhibits non-linear behavior, such assumptions can lead to
degraded performance or vehicle loss when secondary non-
linear effects must be used to control a vehicle, particularly
after control effector failures have occurred. Aerodynamic
databases are usually discrete-valued and are almost always
stored in multi-dimensional look-up tables where it is assumed
that the data is connected by piecewise linear functions.

The approach that was presented assumes that the control
effector moment data is piecewise linear. This assumption
allows us to cast the control allocation problem as a piecewise
linear program. In order to solve the piecewise linear program,
it was re-formulated as a mixed-integer linear program and
solved using a readily available branch-and-bound algorithm.
Simulation showed that the piecewise linear programming
formulation results in improved tracking performance of the
desired moments when compared to a more traditional control
allocation approach that uses the linear assumption, especially
when the aircraft is forced to operate with its control ef-
fectors in non-linear portions of the control moment curves
as a result of control effector failures. The piecewise linear
control allocator was able to maintain control of the aircraft
and land after the failures were introduced while a control
allocation algorithm that utilized a simple linear relationship
along with an intercept correction term did not. The piecewise
linear control allocator was applied to the determination of
regions of trimmable angle-of-attack and Mach number for the
purposes of trajectory reshaping under failure conditions. We
also discussed the effects of the choice of preference vector to
estimate trim lift and trim drag in conjunction with the reduced
order trajectory optimization algorithms.
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