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ABSTRACT 
 
 
 

Friction Stir Processing (FSP) is currently being developed for applications 

including as-cast Nickel-Aluminum Bronze (NAB).  Fabrication and repair of the United 

States Navy’s NAB propellers involve fusion welding of as-cast NAB and so it is 

probable that FSP is likely to encounter as deposited weld metal as well as the more 

slowly cooled as-cast material.  Here, the microstructure and resulting distribution of 

mechanical properties was examined for a fusion weld overlay, an FSP stir zone and an 

FSP stir zone that was placed in fusion weld metal.   As-deposited weld metal exhibited a 

refined Widmanstätten morphology and higher yield and ultimate strengths as well as 

increased ductility in comparison to base metal.  However, the heat affected zone (HAZ) 

exhibited severely reduced ductility.  Strength and ductility varied throughout the FSP 

stir zone.  The reduction in ductility in the thermo-mechanically affected zone (TMAZ) 

and HAZ was less for FSP than for the fusion weld.  FSP over a fusion weld resulted in 

strengths and ductilities similar to those produced by FSP alone, although a region of low 

ductility was observed at a location where stir zone weld metal and base metal were all 

present. 
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I. INTRODUCTION 

A.  OVERVIEW 
Friction Stir Processing (FSP) is a surface modification technology that can be 

employed with a myriad of metallic alloys. When applied to cast metals, FSP can 

eliminate casting defects and improve the mechanical properties of component surfaces.  

FSP is a derivative of Friction Stir Welding (FSW), a solid state joining process invented 

by Thomas at TWI in December 1991[1].  FSP, as well as FSW, does not involve 

exceeding the melting temperature of the metal that is to be processed.  FSP utilizes 

frictional and adiabatic heating to soften the material, while simultaneously exposing it to 

a stirring action resulting in homogenous mixing and refined grain structures.  The 

metallic surface that results from this process has improved properties, such as increased 

strength, ductility, and corrosion resistance [2].  FSP is currently being extended to 

include specific surface engineering applications.  The application that is the focus of this 

research involves the United States Navy’s Nickel-Aluminum Bronze as-cast propeller 

surfaces.    

Porosity is inherent in the fabrication of cast components, and it exists throughout 

the cast material.  Fusion weld repair for porosity defects is employed during propeller 

fabrication processes. However, after the fusion weld is applied, machining of the 

propeller surface often uncovers additional pores. The result of this is repeated repair 

cycles that can extend the fabrication period up to 18 months.  Once a propeller is placed 

into service, the erosion of the propeller surface can expose pores and result in 

inefficiency and increased propeller noise.  Again, if fusion welding is utilized, a tedious 

repair cycle may be involved.  Some of the specific issues involved with fusion welding 

and with FSP will be discussed later.  However, fusion welding in fabrication and repair 

is costly due to the time and labor it involves. 

Past research on FSP and fusion weld processes has considered the resulting 

mechanical properties of each separately.  However, with the application of FSP for NAB 

propeller material, the use of FSP over a previously fusion welded region is highly likely. 

In addition fusion welds may be used during fabrication and repair for large pores, 
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subsequently followed by FSP.  Given this, it is imperative that the resulting mechanical 

properties and microstructures be analyzed when combining friction stir processing over 

fusion welding in NAB cast material. This is the starting point of the research detailed 

herein.   

In the attempt to identify the cost and benefits associated with the combination of 

FSP and fusion welding, the initial phase of this research consisted of experiments that 

were designed to allow the deductive separation of thermal effects from mechanical 

distortion effects on the mechanical properties of NAB material. These experiments 

involved a series of heat treatments including both air and water quenching, and 

subsequent tensile testing, optical microscopy and scanning electron microscopy.  Of 

course research in this same vein has been conducted previously.  However, the research 

herein is unique in the sense that the various experiments that were performed were done 

on the same series of Ni-Al Bronze and all processes performed on this material were 

done by the same entity- Naval Surface Warfare Center (NSWC), Carderock Division.  

Furthermore, the distribution of mechanical properties were evaluated by use of miniature 

tensile test coupons that were obtained by electric discharge machining.  These miniature 

coupons were designed to identify the variations in tensile properties and microstructures 

throughout the fusion weld zone, stir zones, and the surrounding material.   The 

additional studies that were conducted involved mechanical tensile testing, optical 

microscopy, and scanning electron microscopy as well.  These tests were performed on 

fusion weld, single-pass friction stir processed, and single-pass friction stir processed 

over a fusion weld material.   
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II. BACKGROUND 

A.   NICKEL ALUMINUM BRONZE 

1.  Constitution of NAB 
Nickel Aluminum Bronze (NAB) is a copper based alloy with aluminum, nickel 

and iron as the primary alloying additions.  The chemical composition of NAB is 

summarized in Table 3.1.  In the development of NAB, Cu-Al alloys were considered due 

their high strength and ease of casting.  However, Cu-Al alloys that contain greater than 

9.4wt% Al solidify as a single phase body-centered cubic (bcc) β.  When this 

solidification process involves slow cooling such as that involved in propeller casting, i.e. 

~10-3 o C/s, β will transform at a lower temperature in a eutectoid reaction to form face-

centered cubic (fcc) α, and an intermetallic gamma (γ) phase.  The production of γ results 

of increased corrosion susceptibility of aluminum-bronze in sea-water environments and 

reduction in desirable mechanical properties.  Because of this, aluminum-bronze 

propellers are not practical for use in marine environments [3, 4].  

By adding nickel and iron at nominally 5% wt. and 4% wt., respectively, the α 

phase is extended, allowing for an increased amount of aluminum addition without the 

formation of γ.  Also, with the addition of Ni and Fe, intermetallic kappa (κ) phases form 

from α and β.   Some of the benefits from alloying with Ni and Fe at the nominal values 

stated above are increased strength, wear/abrasion resistance, and fatigue endurance 

limits [5].  The increase in aluminum content and the formation of κ phases, results in the 

increase of mechanical properties in NAB materials.  It is important to note that above 

1000oC, only β is present in NAB.   

2. Effect of Cooling Rates and NAB Microstructures 
The aforementioned processes occur during equilibrium cooling of NAB at 

cooling rates of ~10-3 oC/s.  However, at high cooling rates, different transformations of β 

occur.  These β transformation products may include martensitic and bainitic 

constituents, which are typically low in ductility.  In addition, α with a Widmanstätten 

morphology, which is apparently a most desirable constituent for both increased strength 

and ductility, can result at intermediate cooling rates.  In addition, there are four κ phases 

that may also result during the equilibrium cooling of NAB.  
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Of the four κ phases that can result during equilibrium cooling of NAB, the κi ,   κii, 

and  κiv  phases are iron-rich, having a Fe3Al composition, and a D03 lattice structure.  The 

κiii phase is nickel-rich and has a lamellar eutectoid form, and NiAl composition, with a 

B2 lattice structure. (See Fig. 2.2)  During analysis of the processed NAB for this 

research only the κi phase was not observed. The κi  phase is only observed when the 

NAB’s iron content is greater than 5 wt.% [6, 7] (see Table 3.1).  The κi and κii  phases are 

dendritic particles that often have globular shapes. The κii phase has been observed to act 

as a substrate for κiii formation.  The interaction distances in DO3 κii and κiv, and in B2 κiii 

are within about 3%, therefore these phases are difficult to differentiate by diffraction 

methods alone.    Figure 2.1 summarizes the transformations that occur at the equilibrium 

cooling rate and at higher cooling rates in NAB.  The various α phases are indicated and 

the lamellar α + κiii constituent is also apparent. 

 

 
Figure 2.1. Transformation of NAB Phases during Cooling of NAB Material. (From:  

T. McNelley, NPS) 
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Figure 2.2. Transformation products of β during equilibrium cooling of NAB. The 

material shown is NAB in as-cast condition. 

 α 
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B. FRICTION STIR PROCESSING 
Friction stir processing is a localized, solid state method of modifying the 

microstructures of near surface layers in a metallic component [8, 9, 10].  This is done via 

the application frictional and adiabatic heating to soften the material while exposing it to 

a stirring action.  This is accomplished by rotating a tool consisting of a smaller-diameter 

pin and a larger-diameter shoulder at a prescribed RPM, plunging the tool into the surface 

of the material until the shoulder is in contact with the surface, then transiting the tool at a 

certain IPM/velocity through the material (see Figure2.3).  The tool shoulder also acts to 

constrain the upward flow of material [11].  The result of this action is the production of 

zones throughout the material (see Figure 2.4).  The stir zone is characterized by high 

strain and strain rates, and refined microstructures.  The microstructure refinement and 

homogenization contribute to increased corrosion resistance and even super-plasticity in 

some materials [11].  The thermo-mechanically affected zone (TMAZ), is located just 

outside the stir zone (SZ), and is characterized by the appearance of distorted base metal 

grains due to relatively small deformation and lesser heating.  The darker etched areas in 

this region are β transformation products formed as a result of the reversion of α+κiii as 

temperatures rise above 800oC followed by rapid cooling after the transiting of the tool 

[11].   The heat affected zone (HAZ) is the interface between the processed zones and as-

cast based material, and is generally characterized by low ductility.   The temperatures 

that are reached in the stir zone are important in determining the extent and type of β 

transformation products that will result.  It has been noted that in some NAB alloys when 

temperature is above 1000oC, only β is present.   Subsequently, upon cooling, the type of 

β transformation products will depend on the cooling rate that is experienced.  

Equilibrium cooling (10-3oC/s) will give κiv , κii , and κ iii , while accelerated cooling 

yields the aforementioned in addition to Widmanstätten α morphology, or Bainitic α, or 

even Martensitic β’.  Figure 2.5 illustrates the three fundamental microstructures 

associated with the friction stir processing of NAB.   
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Figure 2.3. Friction Stir Process Illustration 

 

 
Figure 2.4. Illustrates FSP of NAB process zones.  The Stir, Thermo-mechanically 

Affected Zone (TMAZ) and Heat Affected Zones (HAZ) are delineated. 
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Figure 2.5. Illustrates the three primary microstructures observed following FSP of 
NAB.  Top left: lamellar; Top right; fine grain; Bottom center. Widmanstätten α  

. 
 
 

C.  FUSION WELDING 
Gas-metal arc welding (GMAW) was used to provide the weld overlays on the 

NAB plate provided by NSWC Carderrock.  GMAW is widely used in welding of 

metallic materials that require only inert gas protection of weld metal (i.e., many 

aluminum alloys) [12].  The GMAW overlay was primarily intended to simulate the 

fusion weld repair of a NAB surface and not joining of NAB material.  Nevertheless, the 

issues that are inherent in raising the temperature of the metal above its melting 

temperature (Tmelt), followed by subsequent cooling and re-solidification are still present.  

The most prevalent of these are the effects of constitutional supercooling in alloys and 

solidification cracking.  In essence, constitutional supercooling in alloys results in 

departure of the solid/liquid (S/L) interface from a planar morphology to cellular, 

columnar dendritic, or equiaxed dendritic [8,9].  Departing from planar morphology to 

cellular or dendritic, results in segregation of solutes and reduced weld ductility.  

Solidification cracking, occurs during the later stages of solidification [10].  Cracks are 

introduced by stresses that result from thermal gradients and insufficient liquid in the 
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weld zone.  These tensile stresses are directional and are inevitably applied across grain 

boundaries. When these stresses exceed the strength of the nearly solidified weld metal, 

cracking is induced. 

Solidification cracking is also observed in casting as well as in fusion welding 

[10]. Critical to the severity of both aforementioned issues is cooling rate.  In the NAB 

sample plate, there was no pre-heating.  However, six weld passes were performed. The 

plate was not allowed to cool to ambient between successive passes and so cooling rates 

were lower on the later passes.  In other words, with each successive pass, the amount of 

heat input into the material was increased, resulting in a raised To, and a lower cooling 

rate (see equation 3.1).  For the weld pass configuration, see Figure 2.6. 

 

 

 
Figure 2.6. Illustrates six pass weld overlay in a machined flat bottom grove with 

beveled sides on the NAB block provided by NSWC, Carderrock. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 
3 5 4 

6 
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III. EXPERIMENTAL PROCEDURES AND TESTING 

A. MATERIAL  
A  UNS C95800 NAB as-cast plate was provided by NSWC Carderrock Division, 

Bethesda, Maryland.  The plate has the following dimensions:  width- 14.85cm; 

thickness-3.46cm; length-~32.9cm.(Fig.3.1)  Three stages were involved in processing 

the plate.  Initially, a grove was machine in the plate along its longitudinal axis down the 

centerline. The groove dimensions are:  width-1.6cm; depth .6cm-; length-32.9cm.  

Following the machining, a Miller Delta Weld 651 CV machine was used to place a six 

pass Gas Metal Arc Weld (GMAW) in the grove.  The weld passes were ~33cm in 

length.  The electrode was Amptrode 46, which has a similar composition as the NAB 

plate.  The welding was conducted at 24.5V and 239Amps.  The travel speed during 

welding was 8.5 IPM.  The chemical composition of the NAB plate is detailed in Table 

3.1.  No preheating was used prior to commencing the welding process, and so the 

cooling rate of the weld and surrounding material was a maximum after the first pass.  

The average weld time per pass (six passes total) was ~90sec, so the initial temperature 

increased during welding.  From Rosenthal’s 3-dimensional equation the cooling rate 

along the weld center line behind the heat source is given by [12]:    

                                                      
2( )2T T TokV

t Q
π∂ −

= −
∂

                                            (3.1) 

where:  k= thermal conductivity 

 V=  weld speed  

            T=  temperature 

 To= starting temperature of material to be welded (will change with each 

successive pass). From equation 3.1 the cooling rate decreases as To increases. 

Once the welding was complete along the entire longitudinal axis of the plate, the 

sections that were to contain single pass and muti-pass friction stir processing were 

machined to attain a flat surface.  This flat surface was then exposed to a single pass and 

4-step raster multi-pass friction stir process, using a ¼ inch step spiral pin that was 
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transited across the NAB block at 3 IPM and rotating at 1000 RPM.  Figure 3.1 illustrates 

the aforementioned processes.   

 
Element Base Chemistry MIL STD: MIL-B-24480A 

Copper 81.8 79 min 

Aluminum 8.72 8.5-9.5 

Nickel 4.31 4.0-5.0 

Iron 3.59 3.5-4.5 

Silicon 0.42 0.10 max 

Manganese 1.41 0.8-1.5 

Tin 0.017 ------- 

Carbon 0.007 ------- 

Sulfur 0.003 ------- 

Phosphorus 0.011 ------- 

Lead 0.0029 0.03 max 

Tungsten <0.002 ------- 

          
Table 3.1. Table gives the chemical composition of  UNS C95800 NAB block 

received from NSWC, Carderrock Division 
 

 
Figure 3.1. Image of UNS C95800 NAB Fusion Weld and Friction Stir Processed 

Block.  Test Sample Provided by Naval Surface Warfare Command (NSWC), 
Carderrock Division.   
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As indicated in the illustration, tensile blocks were sectioned from the various 

processed areas with the intent of conducting detailed analysis of the microstructure and 

mechanical property relationship associated with the various processes. Particular 

attention was to be given to variation of tensile properties with location in the various 

process zones.  An illustration of the tensile specimens that were sectioned can be viewed 

in Figure 3.2. 

 

 
Figure 3.2. Schematic of miniature tensile specimen.  All dimensions are given in 

millimeters.  Actual thickness of tensile specimens varied based on amount of 
sample preparation required to remove stress concentrators.  All samples were 

sectioned to have a thickness of 1.4mm.  
 

B. STATIC ANNEALING 
Static annealing was conducted on selected tensile specimens. The annealing 

temperatures ranged from 800oC to 1000oC.  The annealing was conducted using a 

Linberg Furnace Model 51442, which has ratings of 4880W and 240V, with maximum 

temperature capability of 1200oC.  The furnace was brought up to the annealing 

temperature and stabilized.  Temperature monitoring inside the furnace was 

accomplished by using a mounted temperature monitoring device.   Subsequently, the 

sample was placed into the furnace on a heat resistant ceramic bed, and a Digi-Sense 

Model 8528-40 thermocouple was used to monitor the sample’s temperature. The 

samples temperatures were measured by placing the thermocouple wire through a breach 

in the furnace cover.  The breach was designed for this purpose. Once the thermocouple 

reading stabilized for the tensile specimen, a 30 minute hold was commenced.  At the 
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completion of the 30 minute hold at annealing temperature, the sample was removed 

from the furnace, and either air cooled or immersed in a container of room-temperature 

water for quenching.  

C. MECHANICAL TESTING 
Mechanical testing consisted of over 300 tensile tests of miniature tensile samples 

(see Figure 3.2).  These miniature tensile samples were sectioned using a Charmilles 

Andrew EF630 electric discharge machine (EDM).  The EDM was used to extract tensile 

specimen blanks. Subsequently, these blanks were sliced to provide miniature samples 

that were sectioned vertically from the surface to the bottom of the NAB plate to allow 

identification of the distribution microstructure and mechanical properties throughout the 

material (see Figure 3.3).  The EDM wire used has a diameter of 0.30mm.  Therefore, 

~0.30mm of material is estimated as lost during each cutting evolution.   

 
Figure 3.3. Illustration of sample sectioning in NAB Block Front View. 

 

The sectioned miniature tensile specimens were prepared for tensile testing by 

carefully removing stress concentrators and surface residue due to EDM cutting, by light 

sanding with 400 grit SiC paper.  Tensile testing was conducted with an INSTRON 

Model 4507 machine with GPIB interface control.  The INSTRON Series IX software 

was used to control the machine and collect and process the data. Upon loading, the 

tensile specimens were carefully centered and secured by tightening one portable grip 

connected to a universal joint, around the one end of the specimen’s grip section.  The 
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portable grip containing the tensile specimen was meticulously aligned in the INSTRON 

machine, and the other tensile grip was secured in a fixed miniature vice, so that the 

tensile specimen was configured in the vertical position.  From this point, the samples 

were loaded to failure by constant displacement of the lower fixed grip in the downward 

direction.  Following the pull of each sample the cross-arm providing the constant 

downward displacement was zeroed, the load cell and extension length were reset and 

balancing at the INSTRON control panel was conducted.  The text files that were created 

by the software data collection resulted in force/displacement matrices that were later 

input into a Matlab Version 6.5 program design to convert this raw data into engineering 

stress vs engineering plastic strain curves.  Within the Matlab program allowance was 

made for the elasticity of the INSTRON machine parts and the grips used.  This was 

necessary because of the inability to use an extensometer during miniature sample 

testing.   

D. OPTICAL MICROSCOPY 
Optical Microscopy (OM) was used to evaluate the grain structure and 

morphologies of selected cross sections and tensile samples.  Cross-sectional and/or 

longitudinal montages were created for the fusion weld, single pass friction stir processed 

material, and fusion weld material subjected to single pass friction stir processing. A Carl 

Zeiss JENAPHOT 2000 was used to perform optical microscopy.  The microscope 

provided visual output via a PULNIX TMC-74-CCD camera.  Also, a digital output was 

provided to allow for capture of digital images and the formulation of montages.  The 

software that was used for this purpose is SEMICAPS photo capturing and measurement 

software.   

The preparation of the cross-sections and tensile samples for OM involved 

sectioning the samples using the EDM, followed by mounting them in red phenolic discs.  

These mounted samples were polished using Table 3.2.   The polishing was accomplished 

using ECOMET 3 and ECOMET 4 polishing wheels along with the AUTOMET 2 

powerhead.  Subsequent to steps 4-7, the mounted samples were ultrasonically cleaned in 

methanol for 15 minutes and then blown dry prior to proceeding to the next polishing 

step.  On several occasions steps 4-7 would have to be repeated to remove surface 

scratches that were visible during optical microscopy.  The etching of the sample 
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occurred in two steps, utilizing two separate etching solutions.  Etching solution #1 

contains 40ml ammonium hydroxide, 40ml of water, and 2ml of hydrogen peroxide.  The 

sample was etched in the first etching solution for 2-3 seconds, rinsed with water, and 

then etched in the second etching solution.  Etching solution #2 contains 30ml of 

phosphoric acid, 60ml of water, and 10ml hydrogen peroxide.   Several montages were 

produced as a result of the optical microscopy performed.  

 
Table 3.2.  Polishing Procedure  

 
 
E. SCANNING ELECTRON MICROSCOPY 

Scanning electron microscopy (SEM) was conducted using a Tobcon Model SM-

500/510 (SEM), operating in the secondary electron imaging mode to identify the 

prevalent fracture mode for failed tensile specimens.  The tensile specimens were chosen 

with particular attention to those that displayed low ductility.  The samples just above and 

below the low ductility sample were also analyzed.  This was done for selected fusion 

weld, single pass friction stir process, fusion weld subjected to a friction stir process, and 

annealed base material.    
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. STATIC ANNEALING  
The annealing studies were conducted over a series of temperatures ranging from 

800oC to 1000oC.  The cooling rate of the air-cooled samples was ~3oC/s, from the 

observation that the samples required approximately 5 minutes to cool to ambient 

temperature.  This rate exceeds that for equilibrium cooling for NAB.  As a result, the 

‘high cooling rate’ β transformation products (i.e., Widmanstätten α, Bainitic α, or even 

Martensitic β’) will be observed and the dark-etched areas of the optical micrographs in 

Figures 4A.1.1 and 2   will be designated as ‘β transformation products’ only. 

Figure 4A.1.1 shows that as temperature increases above 800oC, the lamellar 

α+κiii reverts to solution.  Nickel and aluminum from the α+κiii , diffuse into the 

surrounding material and result in the formation of  β.  Subsequently, the cooling rate that 

is experienced after the 30 minutes annealing, results in the formation of β transformation 

products, as illustrated by the dark etched areas.  The dark particles in Figure 4A.1.1 may 

be un-dissolved  κii.   The dark-etching regions in this micrograph suggest that time-at-

temperature was insufficient for homogenization of nickel and aluminum in the β  formed 

during heating.  

Figure 4A.1.22 illustrates the transformation products of β (dark etched areas), 

and primary α (light areas), without the presence of κ particles due to their complete 

dissolution.  According to past studies, at temperatures of 1000oC or more, the complete 

transformation to β should occur[11].  The more uniform appearance of β is a function of 

both the aforementioned temperature range and the time period for which this 

temperature range is held.  The fact that the complete transformation to β is not observed 

is a function of alloy composition. 

After the annealing of various tensile samples was conducted, mechanical tensile 

test were performed and the resulting mechanical properties for base material and for 

each annealing temperature were recorded and plotted.  A summary  of this data can be 

found in Appendix A.  Two sets of data that will be reviewed are for 850oC and 1000oC.   
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Figure 4A.3 and 4 illustrate the affects on static annealing on the mechanical 

properties of NAB. Ultimate tensile strength for NAB material increases with annealing 

temperature, while ductility is lowest for the highest annealing temperature-1000oC, and 

highest for 850oC.  The ductility for the 1000oC sample suggests that  the β 

transformation products illustrated by the dark etched areas of Figure 4A.1.2 are Bainitic 

α, or even Martensitic β’.  The high ductility at 850oC may reflect lower fraction of β 

transformation products. This is consistent with the flow diagram illustrated in Figure 

1.1.  In addition, the increased ductility at 850oC may also be attributed to recovery of 

residual stress effects introduced during casting of the material.  

 Figure 4A.3 illustrates that ultimate tensile strength (UTS) increases over all 

annealing temperatures, while yield strength for annealed conditions is less than base 

material until ` 850oC.   

Figure 4A.4 illustrates the ductility of annealed NAB is above the base material 

ductility until ~870oC, at which temperature it decreases until it reaches its minimum 

value ~4.5% following annealing at 1000oC.  Altogether, these results suggest that 

increased fractions of β transformation products involving Bainitic α, and even 

Martensitic β’ constituents are detrimental to ductility.  

Figure 4A.5 illustrates the SEM fractography for the base material.  In this figure 

it is apparent that both brittle (cleavage) and ductile failure (microvoid formation and 

coalescence) modes are present on the tensile specimen fracture surface.   The average 

ductility measured for the base material was ~9.5%. 

Figure 4A.6 illustrates the SEM fractography and ductility data for the material 

statically annealed at 850 oC.  The microvoids are both elongated and equiaxed, and the 

fraction of cleavage cracking appears to have decreased compared, to that observed in the 

base metal fracture surface.  This would indicate that the mode of failure experienced for 

the 850oC annealed tensile specimen was  more ductile in nature than the base sample.  

The mechanical data supports this in that the average ductility for 850oC annealed tensile 

samples is 11.13%.   

Figure 4A.7 illustrates the SEM fractography, optical microscopy and ductility for 

NAB material statically annealed at 1000oC.  The SEM fractography shows large 
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fractions of cleavage and few areas of ductile fracture.  A primary α band and Prior β 

band are delineated.  These two bands have a shared interface that appears to be a crack.  

In addition, cracks are apparent in the OM taken on the same tensile specimen.  As 

discussed earlier, β transformation products have not been conclusively identified, but are 

likely to be Bainitic or Martensitic in nature.   

 

 
Figure 4 A.1.1,2. Figure 4A.1.1 and 2 illustrate the microstructure of as-cast NAB 

base material when statically annealed at 850oC and 1000oC respectively.  
Magnification shown is 370X. 

 

 



20 

 
Figure 4A.2. Illustrates the affects of static annealing at various temperatures on 

ultimate tensile and yield strengths in NAB.   

 
Figure 4A.3. Illustrates the affect of static annealing at various temperatures on 

ductility. 
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Figure 4A.4. Illustrates SEM fractography on NAB base material.  Both ductile and 

brittle failure modes are observed. 
 
 
 

 

 

 

850oC Statically Annealed NAB 
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Figure Set 4A.5. Illustrates SEM Fractography and ductility data for 850oC 
statically annealed NAB. 
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1000oC Statically Annealed NAB 

 
 

Figure Set 4A.6. Illustrates the SEM Fractography  and OM of 1000oC statically 
annealed NAB material. 

 
B. FUSION WELD 

Six GMAW passes were performed (see Figure 2.4) on the as-cast NAB plate.    

The tensile samples that were sectioned from the fusion weld portion of the plate were 

aligned parallel to the weld’s axis of travel.  The data that is presented and analyzed in 

this section is for the fusion weld with particular emphasis on the center block.  Seven 

blocks of data that were collected, and they are illustrated in the Appendix.   

Figure 4B.1 illustrates a montage of images of the longitudinal section from the 

weld.  Four areas of varying morphology are shown here.    Melting temperature for this 

NAB alloy is ~1070oC.  Upon cooling the liquid re-solidified at this temperature. Just 

below this temperature, the alloy is expected to be entirely β.   Rapid cooling will occur 

in welding.  The cooling rate will decrease with each successive pass.  Slower rates will 

form the transformation of β to Widmanstätten α.  Transiting down the montage, starting 
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at the top of the fusion zone, Widmanstätten α is present but becomes finer with depth.  

This likely reflects that the heat input that with each successive pass, allows for the 

coarsening of Widmanstätten α. Region two of the montage reveals the fusion line.  

Outside the fusion line is the HAZ.  The HAZ microstructure is characterized by large 

primary α grains that contain κiii and κii particles.  The primary α grains are surrounded by 

dark etched areas which represent β transformation products.  The β transformation 

products are most likely bainitic α or martensitic β’ in nature.   Region four is base NAB 

material. 

Figure 4B.2 illustrates engineering stress vs. engineering plastic strain for the 

fusion welded material. The ductility of the fusion weld material is high when compared 

to the base material. Indeed, the solidified weld metal is also higher in yield and ultimate 

strengths and, so, this filler material over-matches the base metal properties.    Deeper 

into the material in regions two and three at the fusion line, the ductility decreases 

drastically. From annealing study, at 1000oC reduced ductility was also observed.  Upon 

further observation of the optical and scanning electron microscopy results, the 

morphology and fracture surface data show that bainitic and martensitic products are 

evident.  The cooling rate in the HAZ is likely similar to that experienced in the 

annealing studies due to amount of surrounding cold metal that is contained in the NAB 

sample block.   

Figure 4B.3 summarized in a three dimensional representation, the mechanical 

data acquired over the entire fusion weld area.  As stated earlier, seven blocks of data 

were acquired and they are all represented here in these mesh plots.  Of particular interest 

here is that both ultimate and yield strengths are higher than the base material.  It is 

evident that yield strength is somewhat less uniform throughout the breath of the 

material, and slightly lower for this process when compared to FSP.  The ductility in the 

fusion zone is highest along the center-line and tapers off at the outer edges of fusion 

zone.   

Figure 4B.4 illustrates fusion weld SEM fractography and mechanical testing data 

for the center of the fusion weld.  The SEM fractography displays the facture surfaces for 

the lowest ductility sample in the region (sample 7) and the neighboring samples (6 and 
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8).   Also displayed in the corner of the SEM fractorgraphy are profiles of the fractured 

tensile specimen via optical microscopy.  The fracture surface profiles for samples 6 and 

8, are indicative of ductile fractures, while the profile for sample 7 is irregular and 

represents brittle fracture.  The ductility plot supports the optical microscopy profile 

views and SEM fractography.  Sample 6 and 8 fracture surfaces display a higher fraction 

of microvoid formation and coalescence, while sample 7 which is located just outside the 

fusion line, has a surface that contains a notably higher fraction of cleavage cracking in 

some locations, and a mud-flat appearance.   

Figure 4B.5 illustrates fusion weld microstructures at higher magnification, from 

locations near the fracture specimen’s side profiles.  The grain structure reveals for 

sample 6 is a morphology that is primarily Widmanstätten α, explaining the higher 

strength and ductility properties.  Sample 7, the lowest ductility sample, contains a grain 

structure that has elongated or distorted α grains, with the presence of κiv , κii , and κ iii 

particles and a relatively large fraction of dark etched β transformation products.  Sample 

8 displays elongated or distorted α grains, similar to those present in sample 7.  However, 

a larger fraction of κiv , κii , and κ iii particles have come out of solution.  In essence, 

sample 7 and 8 are representative of that region that contains and borders the solid/liquid 

interface.  It is apparent that the material at the interface had to reach Tmelt and 

consequently, upon re-solidification can be compared to the effects of the static annealing 

study at 1000oC.  This can be done given that the cooling rates for the static annealing 

and the solid/liquid interface are roughly similar.  Given this, it may be deduced that the 

thermal cycle in this region, namely peak temperature and cooling rate, contribute to the 

resulting mechanical properties through formation of low ductility transformation 

products of β.  
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Fusion Weld  Montage (Longitudinal View) 

 
Figure 4B.1. Illustrates the Fusion Weld longitudinal view montage for NAB material. 

 

4. 
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Figure 4B.2. Illustrates Engineering Stress vs Engineering Plastic Strain data for the 

center block of fusion welded NAB sample block. 
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Figure 4B.3. Illustrates 3-dimensional mesh plots for ultimate tensile strength, yield 

strength and ductility for fusion welded NAB material. 
 



29 

Fusion Weld SEM Fractography/ Mechanical Data 
 

 
Figure 4B.4. Illustrates Fusion Weld Fractography and Mechanical Testing Data. 
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Fusion Weld  Optical Microscopy 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4B.5. Illustrates Fusion Weld Center Block Optical Microscopy  for fracture 
specimens in Figure 4B.4. 

. 
 

 

C. FRICTION STIR PROCESSING 
As indicated in Figure 3.1, tensile specimen blocks were also sectioned out of the 

single pass FSP region of this NAB material.  These blocks were sectioned in the 

longitudinal direction of the FSP traverse, and the longitudinal mechanical properties for 

this region were determined and recorded.  These data are summarized in the Appendix.   
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Figure 4C.1 provides optical microscopy and a montage for the transverse section 

of a single pass FSP through as-cast NAB.   In the analysis of the OM, the four 

fundamental microstructures typical in the FSP of NAB and illustrated Figure 1.5 are 

apparent.  The montage of the cross-section illustrates the shape of the stir zone.  The 

advancing side is on the left and the retreating side is on the right.  In region one, high in 

the stir zone, highly distorted and elongated primary α grains that are elongated in the 

horizontal sense.  This distortion reflects the stirring action of the tool shoulder.  

Surrounding these primary α grains are dark-etching areas that are not resolved here, but 

are β transformation products.  Regions two and three exhibit more equiaxed, fine grain 

structures with region three possessing the finer microstructure.  Region four is similar to 

region one, but a decrease in the amount of deformation is apparent, where the distortion 

of primary α grains is less apparent.  This region appears to be one of highly deformed 

base material and is likely representative of the TMAZ.  The dark-etching in this region is 

a small fraction of β formed, probably due to the reversion of α + κiii.  The TMAZ 

extends down through the varying degrees of mechanical distortion and shares the lower 

portions of region five with the HAZ.   The deformation in this region is small enough so 

that there is no break-up, refinement and homogenization of the grain structure as seen in 

the higher regions.  Region six illustrates unprocessed base material.   

Following the procedures outlined in the experimental procedures section, and as 

illustrated in Figure 1.5, tensile specimens were sectioned throughout the entire FSP 

region to determine the resulting distribution of mechanical properties.  Figure 4C.2 

illustrates the engineering stress vs engineering plastic strain for the center line alone.   

Additional data is provided in the Appendix.  Ductility is highest in the high and middle 

regions of the stir zone.  However, as the TMAZ and HAZ are approached at the bottom 

of the SZ (~8-9mm) the values for ductility decrease.   

Figure 4C.3 illustrates a three dimensional representation of the tensile property 

results.  Again, high ultimate tensile and yield strength values are observed as compared 

to base material.  Yield strength values in FSP are higher than those attained in the fusion 

welding process, although strengthening is not as pronounced as in previous studies.  

This may reflect alloying and process history.   The ultimate tensile strength of FSP and 

fusion welding are almost identical.  The fluctuations in ductility for the FSP region are 
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not understood at this point.  However, when Figure 4C.3 is compared to Figure 4B.3, it 

is evident that although ductility does fluctuate in the FSP region, it does not fall to low 

ductility values exhibited in the fusion weld.   

Mechanical test data plotted along the center line of the single pass FSP stir zone  

is shown in Figure 4C.4.  Ultimate tensile, yield strengths, and ductility are plotted as a 

function of depth in these figures.  Also, SEM fractography is displayed for sample 5, and 

its neighboring samples (4 and 6).  This was done to investigate the low ductility in this 

region.  The SEM fractography illustrations also contain optical microscopy in sets of 

profiles of the failed tensile specimen, to allow examination of the associated fracture 

pattern.  The profile pattern for the low ductility sample is very irregular, indicating a 

brittle fracture mode.  This is consistent with the results found in section 4.B for the 

fusion weld.  The low ductility region represented by sample 5, which corresponds to a 

location approximately 7.1mm(0.28in) below the surface in contact with the tool 

shoulder, and thus to the HAZ.  Samples 4 and 6 SEM micrographs illustrate an increased 

amount of microvoid formation and coalescence, which is indicative of a more ductile 

failure mode.  The microvoids are more apparent in sample 4 than in sample 6.  However, 

both sample 4 and 6 SEM fractographs exhibit more ductile failure than sample 5, which 

exhibits cleavage cracking and a faceted appearance associated with a brittle failure 

mode.   

Figure 4C.5 shows optical microscopy results.  The prevalent feature of the 

microstructure for sample 4 (top), is elongated, highly distorted α grains with dark 

etching representing β transformation products in between the α grains.  The morphology 

at this depth 4.6mm(0.18in), is representative of the bottom of the stir zone.  Ductility in 

this region is`18%.  The sample 6 represents ductility, approaches the nominal value for 

the base material.  The prevalent grain structure here is representative of NAB base 

material.  Sample 5 is the low ductility sample.  The ductility is ~7.5%.  The ductility and 

morphology illustrated by the OM, is indicative of the HAZ.   
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FSP 1Pass Optical Microscopy 

 
 

Figure 4C.1. Illustrates FSP 1Pass optical microscopy, delineating the process zones 
with a side row of montages taken at 370X. 
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Figure 4C.2. Illustrates the Engineering Stress vs Engineering Plastic Strain for the 
center block of the single pass FSP portion of the NAB sample block. 
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Figure 4C.3. Illustrates 3-dimensional mesh plots for ultimate tensile strength, yield 
strength and ductility for  single pass FSP NAB material. 
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FSP 1 Pass SEM Fractography/Mechanical Properties 
 

 
 

Figure 4C.4. Illustrates FSP 1 Pass Fractography and Mechanical Testing Data. 
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FSP 1Pass Optical Microscopy 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4C.5. Illustrates FSP 1Pass Center Block Optical Microscopy for fracture 
specimens in Figure 4C.4. 

 

 
 
D. FSP 1PASS OVER FUSION WELD 

The final section of the NAB plate examined here is the single-pass FSP over the 

fusion weld.  The miniature tensile samples were sectioned from this region of the plate 

so that they were parallel to the axis of travel of the fusion weld and therefore 

perpendicular to the axis of travel for the single pass FSP.   

Figure 4D.1 illustrates transverse view with respect to the FSP traversing 

direction.  Thus, the FSP direction is out of the page and the welding direction is across 

the page.  The illustration represents sectioning from a moderate ductility area in this  
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process region.  Yield and ultimate strengths as well as ductility are plotted for this region 

in Figure 4D.2.  There is a low ductility region located to the left of center (negative 

direction).   

The SZ for this single pass FSP over fusion weld contains significant amounts of 

κii and κ iii particles.  This implies that the peak temperatures reached here are not as high 

as those reached when NAB is subject to FSP alone.  The montage illustrates a SZ, a 

TMAZ, and a HAZ that lies just below the SZ and TMAZ.  Also apparent is that the 

fusion zone, which lies just below the first HAZ is followed by an additional HAZ prior 

to proceeding down into base material.  In essence, because the tool pin depth of 

6.2mm(.25 in) is not great enough to include the fusion zone and the second HAZ in the 

SZ for the FSP.  As a result, as noted in Figure 4D.5, there are three low ductility regions 

that are crossed when proceeding from the processed surface of the plate to base material.  

The first low ductility region will be considered later.  However, the second low ductility 

region is consistent with the FSP TMAZ/HAZ, and the third low ductility region appears 

to be due to the HAZ  alone associated with the fusion weld.  

Figure 4D.2 shows mesh plots illustrating the three dimensional mechanical 

property distribution for this process region.  Comparable maximum strengths that are 

reached in processing over the fusion weld as opposed to FSP alone or fusion weld.  

Also, with the exception of the low ductility region that results to the left of center, the 

uniformity of property distribution seems to fall between that of FSP alone and FW.  

With the exception of the low ductility region, the uniformity of property distribution is 

greater than FW but less than FSP.  The low ductility region was examined in greater 

detail and a cross-section was taken from this region. Optical microscopy was performed 

to determine the prevalent microstructures. 

Figure 4D.3 illustrates the low ductility region traverse montage.  Immediately 

apparent is the absence of process zones that are typical in fusion welds.  At first, the 

absence of the fusion zone and additional HAZ would appear to have a positive effect on 

ductility distribution.  However, with close observation of the microstructures in the 

montage, the presence of columnar dendritic structures is apparent in the upper right-

hand corner (region 1).  As this sample was repeatedly polished and observed with OM, 
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the dendritic structure would appear in variable volume fractions, but were consistently 

located in this region.  Columnar dendrites are a result of solidification during rapid 

cooling at rates where, in alloys, the material deviates from planar solidification.  This is 

important to note because the dendrites are not expected to be present in as-cast NAB 

material that has undergone equilibrium cooling.  However, dendrites can form in NAB 

material that is adjacent to a multi-pass fusion weld (bordered on one side by cold metal).  

When FSP is then placed on top of this material, these dendrites may be drawn into the 

stir zone by the tool, without their complete homogenization on the retreating side.   

Figure 4D.4 presents stress-strain curves illustrating the variation of ductility 

along the center line of this region.  The low ductility that is present to the left of center 

also, seems to be reflected near the center.  It is not until the region right-of-center that 

higher ductility values are witnessed.  Figures 4D.6-4D.10 all illustrate the ductility 

values attained while transiting on the center block from the surface to base material.  

The SEM data are consistent with the mechanical test data in that a brittle fracture mode, 

indicated by cleavage cracking, is seen in increased amounts as ductility falls.  The 

ductility in this area requires further testing and analysis. 
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FSP 1Pass over Fusion Weld Optical Microscopy 
 

 
 

Figure 4D.1. Illustrates a montage of the cross-section view, with respect to FSP 
direction of the FSP 1 Pass over the Fusion Weld.  This montage is taken from the 

moderate ductility region. 
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Figure 4D.2. Illustrates 3-dimensional mesh plots for ultimate tensile strength, yield 
strength and ductility for  FSP 1Pass over Fusion Weld in NAB material. 
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Figure 4D.3. Illustrates a montage of the cross-section view, with respect to FSP 
direction of the FSP 1 Pass over the Fusion Weld.  This montage is taken from the 

low ductility region. 
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Figure 4D.4. Illustrates the Engineering Stress vs Engineering Plastic Strain for the 
center block of the single pass FSP over a Fusion Weld portion of the NAB 

sample block. 
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Figure 4D.5. Illustrates FSP 1Pass over Fusion Weld mechanical properties vs depth 
from the NAB material surface. This data represents the center block only.  

Additional data is available in Appendix A. 
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FSP 1Pass over FW SEM Fractography and Ductility Data - Sample #1 

 
Figure 4D.6. Illustrates FSP 1 Pass over SEM Fractography and ductility data for the 

surface specimen (sample #1) sectioned from the center block. 
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FSP 1Pass over FW SEM Fractography and Ductility Data - Sample #3 

 

 
Figure 4D.7. Illustrates FSP 1 Pass over SEM Fractography and ductility data for the 

lowest ductility specimen (sample #3) sectioned from the center block. 
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FSP 1Pass over FW SEM Fractography and Ductility Data - Sample #5 

 
 
 
 
 

 
 
Figure 4D.8. Illustrates FSP 1 Pass over SEM Fractography and ductility data for a high 

ductility specimen (sample #5) sectioned from the center block. 
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FSP 1Pass over FW SEM Fractography and Ductility Data - Sample #6 

 

 
 
Figure 4D.9. Illustrates FSP 1 Pass over SEM Fractography and ductility data for a low 

ductility specimen (sample #6) sectioned from the center block. Note that this 
samples location corresponds to the HAZ effect seen in other process. 
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FSP 1Pass over FW SEM Fractography and Ductility Data - Sample #7 
 
 

 
 

Figure 4D.10. Illustrates FSP 1 Pass over SEM Fractography and ductility data for a 
moderate ductility specimen (sample #7) sectioned from the center block. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
�Annealing studies identify the effects of elevated temperature at the S/L  

interface as a direct contributor to the reduction in ductility- HAZ affect.   Beta 

transformation products play a significant role.  

�Although ductility results in FSP 1Pass are erratic and low in the TMAZ/HAZ, 

they are not consistently low, nor do they achieve the lower values experienced in the 

HAZ of the Fusion Weld. 

�When utilizing FSP 1Pass over FW, where both the SZ and fusion zone are 

present, at least two regions of low ductility will result as you progress from the surface 

of the material through the process zones. 

�The presence of dendritic structures  were recorded in the ‘FSP 1Pass over FW’ 

montages. (These brittle microstructures may be contributory to regions of low ductility 

at the FSP/FW/Base Metal interface.) 

 

B. RECOMMENDATIONS 
 �Research the affects of cooling rates on ductility of NAB material, and relate to 

those experienced in the HAZ.  If a significant portion of the low ductility lies with 

excessive cool-down rates, pre-heating may solve this problem. (May also create coarser 

grain structures and reduce mechanical properties) 

�Isolate the origin of brittle structures observed in FSP 1Pass over FW montages.    

      �If from FW metal: recommend using multi-pass patterns to fully encompass the 

fusion weld in the friction stir processed zone. 

  �Continue research on the multi-pas FSP over FW section of the NAB plate.  Multi-

pass FSP is more practical in fleet application. 
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APPENDIX 

 

 

Base metal                       
File W Th YS UTS El        
1_1 1.82 0.97 184.60 421.70 11.90        
1_12 1.85 0.95 186.66 402.20 9.53        
1_24 1.79 0.95 221.91 420.32 9.49        
2_2 1.99 0.93 242.60 426.32 9.37        
2_13 1.93 0.81 203.95 401.71 8.96        
2_23 1.89 0.81 208.99 396.85 7.62        
  MPa 208.12 411.51 9.48        
  ± 21.96 12.64 1.39        
  ksi 30.18 59.68          
    ± 3.18 1.83                 
             
              
Heat Treatment Air Cooling      Water quenching  
T, °C  W Th YS UTS El File W Th YS UTS El 
 2_1 1.93 0.98 174.58 427.50 12.19 1_2 1.84 0.97 206.85 423.78 8.30
 800   2_14 1.89 0.92 184.83 468.59 13.79 1_11 1.84 0.91 183.34 452.59 12.44
    2_24 1.90 0.97 184.17 412.59 9.12 1_23 1.81 0.97 187.18 430.61 10.90
   MPa 181.19 436.23 11.70    MPa 192.46 435.66 10.54
   ± 5.73 29.01 2.37    ± 12.61 15.05 2.09
   ksi 26.28 63.27     ksi 27.91 63.18  
   ± 0.83 4.21     ± 1.83 2.18  
T, °C File W Th YS UTS El File W Th YS UTS El 
  1_3 1.84 0.97 191.63 452.46 12.07 1_5 1.84 0.99 168.91 414.63 10.39
850 1_14 1.86 0.97 196.17 429.33 10.19 1_10 1.85 0.97 173.42 440.43 12.57
  1_21 1.84 0.95 191.88 430.10 11.13 1_20 1.84 0.97 167.10 419.01 11.07
   MPa 193.23 437.29 11.13    MPa 169.81 424.69 11.34
   ± 2.55 13.14 0.94    ± 3.25 13.80 1.12
   ksi 28.02 63.42     ksi 24.63 61.59  
   ± 0.37 1.91     ± 0.47 2.00  
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T, °C File W Th YS UTS El File W Th YS UTS El 
  1_6 1.87 0.96 235.12 423.55 6.04 1_7 1.85 0.90 172.62 424.49 7.73
900 1_15 1.85 0.91 232.81 435.09 7.13 1_16 1.85 0.93 155.28 418.73 8.08
  1_19 1.85 0.95 248.77 457.16 6.70 1_18 1.85 0.91 162.28 407.61 8.86
   MPa 238.90 438.60 6.63    MPa 163.39 416.95 8.22
   ± 8.63 17.08 0.55    ± 8.72 8.58 0.58
   ksi 34.65 63.61     ksi 23.70 60.47  
      ± 1.25 2.48       ± 1.27 1.24   
T, °C File W Th YS UTS El File W Th YS UTS El 
  2_3 2.00 0.93 260.08 432.14 5.04             
950 2_10 1.95 0.98 251.87 474.50 6.78 2_11 2.00 0.95 179.76 416.35 6.48
  2_22 1.94 0.67 254.62 424.72 3.51 2_21     170.22 415.42 6.44
   MPa 255.53 443.78 5.11    MPa 174.99 415.89 6.46
   ± 4.18 26.86 1.63    ± 6.75 0.66 0.03
   ksi 37.06 64.36     ksi 25.38 60.32  
      ± 0.61 3.89       ± 0.98 0.10   
T, °C File W Th YS UTS El File W Th YS UTS El 
  2_5 2.00         2_6 1.95 0.95 204.39 451.31 6.35
1000 2_12 1.90 0.87 266.04 469.14 4.96 2_14 1.95 0.93 234.59 490.74 5.62
  2_20 1.99 0.91 271.54 494.38 4.53 2_19 1.90 0.92 202.65 500.34 8.67
   MPa 268.79 481.76 4.74    MPa 213.88 480.80 6.88
   ± 3.89 17.85 0.30    ± 17.96 25.98 1.59
   ksi 38.98 69.87     ksi 31.02 69.73  
      ± 0.56 2.59       ± 2.60 3.77   
Inches File W Th YS UTS El    mm         

0 F0-1 1.76 0.93 410.99 706.97 11.78   0         
0.061 F0-2 1.79 0.95 454.33 658.22 6.51  1.54     
0.122 F0-3 1.77 0.97 472.99 718.61 9.44   3.08         
0.183 F0-4 1.77 0.96 447.87 752.74 17.87  4.62     
0.244 F0-5 1.79 0.97 302.98 547.45 8.00  6.16     
0.305 F0-6 1.80 0.97 239.66 477.41 10.33  7.7     
0.366 F0-7 1.80 0.92 230.66 442.17 11.05  9.24     
0.427 F0-8 1.80 0.95 236.62 445.43 10.00  10.8     
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0.488 F0-9 1.78 0.93 199.01 434.33 6.63  12.3     
0.549 F010 1.80 0.88 232.19 469.29 12.47  13.9     
0.61 F011 1.81 0.86 258.46 458.22 11.22  15.4     
0.671 F012 1.79 0.92 244.41 447.84 9.61  16.9     
0.732 F013 1.80 0.91 224.22 441.87 10.82  18.5     
0.793 F014 1.79 0.93 222.18 463.96 13.26  20     
0.854 F015 1.77 0.95 225.87 483.16 14.44  21.6     
0.915 F016 1.78 0.93 236.70 437.42 8.30  23.1     
0.976 F017 1.77 0.95 239.75 479.82 13.04  24.6     
1.037 F018 1.80 0.93 223.33 439.26 9.17  26.2     
   MPa 283.46 516.90 10.77            
   ± 92.64 110.13 2.82            
   ksi 41.11 74.97            
     ± 13.44 15.97               
           
T, °C File W Th YS UTS El   mm         

0 F1-1 1.68 0.96 400.54 729.69 16.55   0         
0.061 F1-2 1.71 0.97 441.87 717.75 13.84  1.54     
0.122 F1-3 1.71 0.97 462.51 731.15 13.70  3.08         
0.183 F1-4 1.73 0.97 305.71 532.26 6.34  4.62     
0.244 F1-5 1.75 0.97 228.97 389.41 5.23  6.16     
0.305 F1-6 1.74 0.97 231.91 427.84 8.98  7.7     
0.366 F1-7 1.73 0.97 232.12 441.10 9.96  9.24     
0.427 F1-8 1.73 0.96 236.69 450.34 9.73  10.8     
0.488 F1-9 1.76 0.97 222.65 488.86 15.32  12.3     
0.549 F110 1.73 0.84 235.82 415.57 7.12  13.9     
0.61 F111 1.73 0.84 219.71 453.53 10.42  15.4     
0.671 F112 1.70 0.89 233.16 513.12 13.11  16.9     
0.732 F113 1.70 1.24 197.63 497.76 14.63  18.5     
0.793 F114 1.70 0.92 221.52 510.31 13.90  20     
0.854 F115 1.73 0.96 211.15 469.33 13.91  21.6     
0.915 F116 1.73 0.95 205.94 460.98 11.47  23.1     
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0.976 F117 1.73 0.96 203.70 466.90 14.55  24.6     
1.037 F118 1.75 0.93 191.32 426.62 8.58  26.2     
   MPa 260.16 506.81 11.52            
   ± 84.68 107.33 3.35            
   ksi 37.73 73.50            
     ± 12.28 15.57               
T, °C File W Th YS UTS El             

0 F2-1 1.42 0.93 219.26 406.24 6.51            
0.061 F2-2 1.40 0.99 209.77 413.82 9.71  1.54     
0.122 F2-3 1.43 0.95 211.09 398.87 8.80   3.08         
0.183 F2-4 1.39 0.93 217.97 392.99 8.12  4.62     
0.244 F2-5 1.39 0.93 225.27 410.93 8.43  6.16     
0.305 F2-6   218 435.00 10.50  7.7     
0.366 F2-7 1.40 0.99 211.85 458.30 13.42  9.24     
0.427 F2-8 1.39 0.96 209.59 438.61 12.40  10.8     
0.488 F2-9 1.39 0.63 208.47 391.06 7.49  12.3     
0.549 F210 1.42 0.92 280.23 569.02 12.48  13.9     
0.61 F211 1.39 0.96 186.69 392.21 10.06  15.4     
0.671 F212 1.39 0.76 194.17 368.40 6.92  16.9     
0.732 F213 1.39 0.82 187.11 410.58 10.92  18.5     
0.793 F214 1.37 0.95 185.34 361.82 6.80  20     
0.854 F215 1.38 0.92 190.02 382.83 8.36  21.6     
0.915 F216 1.34 0.95 189.85 400.59 9.57  23.1     
0.976 F217 1.34 0.93 186.82 435.69 14.05  24.6     
1.037 F218 1.34 0.90 192.77 412.89 9.96  26.2     
   MPa 206.90 415.55 9.69            
   ± 22.72 45.49 2.28            
   ksi 30.01 60.27            
     ± 3.30 6.60               

0 F-1-1 1.39 0.91 399.26 681.83 8.32            
0.061 F-1-2 1.40 0.93 443.47 666.86 7.57  1.54     
0.122 F-1-3 1.43 0.97 457.12 653.92 6.34   3.08         
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0.183 F-1-4 1.06 0.73 516.30 755.18 13.39  4.62     
0.244 F-1-5 1.21 0.9 280.97 491.96 6.86  6.16     
0.305 F-1-6 1.2 0.91 222.24 417.11 7.96  7.7     
0.366 F-1-7 1.16 0.91 235.18 423.97 7.2  9.24     
0.427 F-1-8 1.16 0.9 223.03 449.94 9.94  10.8     
0.488 F-1-9 1.28 0.95 241.58 391.5 5.84  12.3     
0.549 F-1-10 1.21 0.91 246.27 460.83 10.17  13.9     

0.61 F-1-11 1.21 0.7 261.52 455.2 7.54  15.4     
0.671 F-1-12   262 455 8       
0.732 F-1-13   262 455 8       
0.793 F-1-14   262 455 8       
0.854 F-1-15   262 455 8       
0.915 F-1-16   262 455 8       
0.976 F-1-17   262 455 8       
1.037 F-1-18   262 455 8       
   MPa 297.83 501.85 8.17            
   ± 89.52 106.93 1.66            
   ksi 43.20 72.78            
     ± 12.98 15.51               

0 F-2-1 1.72 0.88 269.14 464.30 6.45   0         
0.061 F-2-2 1.72 0.93 241.30 442.95 8.10  1.54     
0.122 F-2-3 1.72 0.96 240.16 456.09 10.70   3.08         
0.183 F-2-4 1.73 0.96 235.35 454.86 11.45  4.62     
0.244 F-2-5 1.72 0.96 238.79 468.94 12.36  6.16     
0.305 F-2-6 1.72 0.96 244.54 412.19 6.51  7.7     
0.366 F-2-7 1.73 0.96 230.54 425.81 8.52  9.24     
0.427 F-2-8 1.72 0.95 227.48 423.62 8.05  10.8     
0.488 F-2-9 1.72 0.95 234.83 455.74 11.19  12.3     
0.549 F-2-10 1.72 0.95 213.46 467.40 12.00  13.9     
0.61 F-2-11 1.72 0.96 204.75 456.93 11.10  15.4     
0.671 F-2-12 1.72 0.97 206.51 463.81 12.49  16.9     
0.732 F-2-13 1.75 0.97 191.62 448.81 12.76  18.5     
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0.793 F-2-14 1.72 0.99 209.15 429.94 9.23  20     
0.854 F-2-15 1.75 0.99 201.85 432.82 11.12  21.6     
0.915 F-2-16 1.75 0.97 193.13 452.33 12.44  23.1     
0.976 F-2-17 1.73 0.96 201.95 452.41 12.31  24.6     
1.037 F-2-18 1.75 0.95 207.90 462.26 13.23  26.2     
   MPa 221.80 448.40 10.56            
   ± 21.28 16.76 2.18            
   ksi 32.17 65.03            
     ± 3.09 2.43               

0 W0-1 1.70 0.90 339.16 732.44 16.43            
0.061 W0-2 1.70 0.90 336.33 714.17 16.74  1.54     
0.122 W0-3 1.71 0.85 378.58 711.12 18.63   3.08         
0.183 W0-4 1.71 0.90 390.17 700.40 15.07  4.62     
0.244 W0-5 1.73 0.88 423.01 722.27 18.00  6.16     
0.305 W0-6 1.72 0.86 416.36 712.34 9.26  7.7     
0.366 W0-7 1.73 0.87 360.97 520.02 3.90  9.24     
0.427 W0-8 1.73 1.04 286.90 416.52 4.45  10.8     
0.488 W0-9 1.75 0.95 275.56 439.12 5.97  12.3     
0.549 W010 1.73 0.93 289.56 463.50 7.91  13.9     
0.61 W011 1.76 0.96 245.55 438.45 8.53  15.4     
0.671 W012 1.79 0.92 218.32 429.46 8.33  16.9     
0.732 W013 1.74 0.94 199.79 411.16 7.00  18.5     
0.793 W014 1.73 0.97 224.74 392.93 6.01  20     
0.854 W015 1.76 0.97 220.02 436.85 9.58  21.6     
              
              
              
   MPa 307.00 549.38 10.39            
   ± 76.27 143.19 5.13            
   ksi 44.53 79.68            
     ± 11.06 20.77               
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0 W-1-1 1.70 0.96 323.39 720.28 17.53   0         
0.061 W-1-2 1.70 0.90 372.16 710.26 14.29  1.54     
0.122 W-1-3 1.70 0.91 385.79 554.09 2.70   3.08         
0.183 W-1-4 1.70 0.91 238.25 463.20 5.63  4.62     
0.244 W-1-5 1.72 0.91 285.19 375.51 2.45  6.16     
0.305 W-1-6 1.72 0.92 282.13 441.86 5.75  7.7     
0.366 W-1-7 1.72 0.93 266.26 445.14 6.51  9.24     
0.427 W-1-8 1.76 0.95 267.00 451.86 7.60  10.8     
0.488 W-1-9 1.75 0.95 249.44 426.68 7.31  12.3     
0.549 W-10 1.77 0.58 248.61 450.07 6.45  13.9     
0.61 W-11    226.00 445.00 8.00  15.4     
0.671 W-12 1.76 0.93 206.32 438.80 9.57  16.9     
0.732 W-13 1.77 0.96 193.18 406.76 8.82  18.5     
0.793 W-14 1.75 0.92 198.23 407.58 7.80  20     
0.854 W-15 1.77 0.90 213.44 385.60 6.13  21.6     
              
              
              
   MPa 263.69 474.85 7.77            
   ± 58.94 105.79 3.88            
   ksi 38.24 68.87            
     ± 8.55 15.34               

0 W-2-1      360  500  3.00   0        
0.061 W-2-2 1.75 0.88 355.14 502.47 2.48  1.54     
0.122 W-2-3 1.79 0.87 334.12 496.95 2.65   3.08         
0.183 W-2-4 1.77 0.92 261.73 428.41 5.33  4.62     
0.244 W-2-5 1.80 0.86 250.34 458.66 8.23  6.16     
0.305 W-2-6 1.79 0.91 235.23 405.21 5.46  7.7     
0.366 W-2-7 1.77 0.95 232.32 423.24 7.71  9.24     
0.427 W-2-8 1.81 0.92 218.70 398.23 6.96  10.8     
0.488 W-2-9 1.80 0.91 205.75 428.17 9.04  12.3     
0.549 W-10 1.81 0.52 196.53 400.75 7.61  13.9     
0.61 W-11         199.00 400.00 7.00  15.4    
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0.671 W-12 1.80 0.87 201.61 398.43 6.12  16.9     
0.732 W-13 1.81 0.91 211.11 414.22 8.10  18.5     
0.793 W-14 1.79 0.87 228.21 460.51 10.31  20     
0.854 W-15 1.81 0.87 192.53 381.96 6.38  21.6     
              
              
              
   MPa 237.31 428.37 6.67            
   ± 50.06 37.66 2.20            
   ksi 34.42 62.13            
     ± 7.26 5.46               

0 W-3-1 1.70 0.92 247.15 441.93 8.24   0         
0.061 W-3-2 1.72 0.91 235.66 445.62 7.91  1.54     
0.122 W-3-3 1.72 0.96 227.35 415.84 7.15   3.08         
0.183 W-3-4 1.73 0.91 223.04 437.53 9.26  4.62     
0.244 W-3-5 1.75 0.90 210.83 413.96 8.49  6.16     
0.305 W-3-6 1.75 0.90 205.38 402.74 6.88  7.7     
0.366 W-3-7 1.77 0.91 214.09 352.29 4.12  9.24     
0.427 W-3-8 1.75 0.87 207.37 435.94 8.92  10.8     
0.488 W-3-9 1.77 0.86 202.49 417.87 8.42  12.3     
0.549 W-10 1.75 0.48 217.70 369.23 4.85  13.9     
0.61 W-11   207 369.00 5.85  15.4 Bad Specimen   
0.671 W-12 1.77 0.93 197.78 368.68 6.85  16.9     
0.732 W-13 1.77 0.91 189.57 365.76 6.71  18.5     
0.793 W-14 1.77 0.86 202.97 430.10 10.55  20     
0.854 W-15 1.76 0.85 192.85 392.15 6.67  21.6     
              
              
              
   MPa 212.08 403.91 7.39            
   ± 15.87 32.06 1.69            
   ksi 30.76 58.58            
     ± 2.30 4.65               
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0 W1-1 1.75 0.86 367.16 702.42 13.34   0         
0.061 W1-2 1.71 0.86 352.88 723.68 14.96  1.54     
0.122 W1-3 1.73 0.85 372.20 629.00 5.49   3.08        
0.183 W1-4 1.71 0.92 382.98 719.13 14.70  4.62     
0.244 W1-5 1.71 0.92 419.95 716.67 12.18  6.16     
0.305 W1-6 1.72 0.92 475.45 760.59 14.43  7.7     
0.366 W1-7 1.72 0.93 343.55 521.40 4.20  9.24     
0.427 W1-8 1.80 0.95 279.23 411.15 4.98  10.8     
0.488 W1-9 1.72 1.00 296.63 456.69 6.64  12.3     
0.549 W-10 1.73 0.95 285.38 429.67 4.80  13.9     
0.61 W-11 1.71 1.00 222.07 427.80 6.04  15.4     
0.671 W-12 1.72 0.99 242.43 406.70 5.24  16.9     
0.732 W-13 1.72 0.99 245.53 450.69 9.61  18.5     
0.793 W-14 1.73 0.98 225.78 388.96 5.28  20     
0.854 W-15 1.75 0.99 220.92 438.04 9.43  21.6     
              
              
              
   MPa 315.48 545.51 8.75            
   ± 79.13 143.22 4.12            
   ksi 45.75 79.12            
     ± 11.48 20.77               

0 W2-1      360.0  700.0  10.0   0         
0.061 W2-2 1.76 0.82 358.28 706.07 9.69  1.54     
0.122 W2-3 1.77 0.76 320.81 442.49 1.30   3.08         
0.183 W2-4 1.77 0.87 241.8 408.73 4.45  4.62     
0.244 W2-5 1.79 0.87 250.09 428.36 6.90  6.16     
0.305 W2-6 1.77 0.92 284.05 398.94 4.00  7.7     
0.366 W2-7 1.79 0.91 270.45 434.67 7.19  9.24     
0.427 W2-8 1.79 1.00 244.50 401.70 5.23  10.8     
0.488 W2-9 1.76 0.97 227.14 418.39 6.00  12.3     
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0.549 W-10 1.76 0.95 196.35 390.61 5.68  13.9     
0.61 W-11 1.77 0.97 226.08 437.79 9.36  15.4     
0.671 W-12 1.79 0.95 210.06 381.14 5.88  16.9     
0.732 W-13 1.79 1.00 233.57 428.73 9.69  18.5     
0.793 W-14 1.79 1.00 196.99 433.00 10.11  20     
0.854 W-15 1.79 1.00 211.75 440.95 11.75  21.6     
              
              
              
   MPa 247.99 439.40 6.95            
   ± 46.80 79.25 2.87            
   ksi 35.97 63.73            
     ± 6.79 11.49               

0 W3-1 1.72 0.92 255.68 412.60 5.23   0         
0.061 W3-2 1.75 0.91 245.53 414.16 7.64  1.54     
0.122 W3-3 1.73 0.90 271.54 494.38 4.53   3.08         
0.183 W3-4   255.00 450.00 6.00  4.62    
0.244 W3-5 1.75 0.87 243.00 418.11 7.30  6.16     
0.305 W3-6 1.76 0.87 216.18 428.32 9.60  7.7     
0.366 W3-7 1.77 0.85 206.87 423.91 9.30  9.24     
0.427 W3-8 1.76 0.82 201.21 444.70 11.54  10.8     
0.488 W3-9 1.76 0.87 212.65 408.85 7.85  12.3     
0.549 W-10 1.77 0.82 180.03 405.16 8.70  13.9     
0.61 W-11 1.77 0.80 193.20 396.40 9.04  15.4     
0.671 W-12 1.75 0.93 202.99 419.98 8.72  16.9     
0.732 W-13 1.77 0.85 190.63 418.02 9.98  18.5     
0.793 W-14 1.77 0.92 183.96 402.22 9.43  20     
0.854 W-15 1.77 0.88 193.60 394.24 7.22  21.6     
              
              
              
   MPa 216.80 422.07 8.14            
   ± 29.57 25.41 1.88            
   ksi 31.44 61.21            
     ± 4.29 3.69               
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0 1PW-1 1.67 1.11 426.37 683.02 7.95  0     
0.061 1PW-2 1.67 0.96 452.39 603.06 2.98  1.54     
0.122 1PW-3 1.71 0.93 473.46 532.46 0.99  3.08     
0.183 1PW-4 1.72 0.93 468.17 759.76 14.89  4.62     
0.244 1PW-5 1.71 0.93 466.40 730.23 13.90  6.16     
0.305 1PW-6 1.72 0.92 403.29 640.31 6.77  7.7
0.366 1PW-7 1.71 0.97 254.64 476.48 8.66  9.24     
0.427 1PW-8 1.72 0.96 256.84 440.24 7.68  10.8     
0.488 1PW-9 1.76 0.92 265.36 421.08 5.23  12.3     
0.549 1PW-10 1.75 0.96 273.89 422.69 4.59  13.9     
0.61 1PW-11 1.74 0.96 247.47 458.06 8.54  15.4     
0.671 1PW-12 1.76 1.00 242.58 471.81 8.05  16.9     
               
               
               
              
              
              
   MPa 352.57 553.27 7.52       
   ± 102.08 124.38 3.99       
   ksi 51.13 80.24        
     ± 14.80 18.04         
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0 1PW-1 1.72 1.00 477.28 688.10 8.26  0     
0.061 1PW-2 1.72 0.96 446.46 745.17 18.53  1.54     
0.122 1PW-3 1.72 0.95 483.35 743.77 14.38  3.08     
0.183 1PW-4 1.75 0.96 502.82 741.51 11.74  4.62     
0.244 1PW-5 1.72 0.96 512.31 741.51 11.61  6.16     
0.305 1PW-6 1.75 0.96 356.60 399.89 0.73  7.7
0.366 1PW-7 1.76 1.02 250.13 478.95 9.11  9.24     
0.427 1PW-8 1.75 0.99 240.03 453.36 8.38  10.8     
0.488 1PW-9 1.76 0.99 285.84 449.76 7.00  12.3     
0.549 1PW-10 1.75 0.93 277.65 429.49 4.07  13.9     
0.61 1PW-11 1.76 0.96 248.38 454.64 9.02  15.4     
          0     
               
               
               
              
              
              
   MPa 370.99 575.10 9.35       
   ± 113.99 152.22 4.80       
   ksi 53.81 83.41        
     ± 16.53 22.08         
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0 1PW-1 1.67 0.77 438.31 567.60 3.15 0      
0.061 1PW-2 1.67 0.99 412.45 679.12 15.10 1.54      
0.122 1PW-3 1.67 0.91 417.00 626.51 4.33 3.08      
0.183 1PW-4 1.68 0.95 322.14 524.91 2.56 4.62      
0.244 1PW-5 1.67 0.91 308.64 529.82 4.41 6.16      
0.305 1PW-6 1.72 0.96 245.06 418.10 5.57 7.7 1PASS FSP OVER FW BLOCK +2
0.366 1PW-7 1.70 0.99 244.12 462.04 9.66 9.24      
0.427 1PW-8 1.70 0.96 253.43 454.69 9.14 10.8      
0.488 1PW-9 1.70 0.97 244.84 451.75 9.34 12.3      
0.549 1PW-10 1.70 0.96 245.86 451.33 8.09 13.9      
0.61 1PW-11 1.73 0.96 232.52 433.70 8.45 15.4      
               
               
               
               
              
              
              
   MPa 305.85 509.05 7.25       
   ± 80.30 85.18 3.68       
   ksi 44.36 73.83        
     ± 11.65 12.35         
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0 1PW-1 1.67 0.99 443.74 529.09 1.43 0      
0.061 1PW-2 1.70 0.97 410.00 495.00 1.20 1.54    
0.122 1PW-3 1.72 1.00 382.13 459.97 0.92 3.08      
0.183 1PW-4 1.68 0.99 276.24 439.71 2.07 4.62      
0.244 1PW-5 1.68 0.99 268.04 477.99 5.57 6.16 1PASS FSP OVER FW BLOCK -1
0.305 1PW-6 1.73 1.01 233.96 448.26 9.56 7.7      
0.366 1PW-7 1.71 1.01 242.73 430.03 7.86 9.24      
0.427 1PW-8 1.72 1.01 235.50 447.90 9.08 10.8      
0.488 1PW-9 1.73 1.02 233.62 455.89 12.23 12.3      
0.549 1PW-10 1.73 1.01 224.34 435.38 10.10 13.9      
0.61 1PW-11 1.72 1.01 218.52 445.64 9.53 15.4      
               
               
               
               
              
              
              
   MPa 288.07 460.44 6.32       
   ± 82.52 29.57 4.22       
   ksi 41.78 66.78        
     ± 11.97 4.29         
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*  All bold values are data estimates that were made due to erroneous testing. 
**F0- implies FSP block 0;  W0- implies FW block 0;  PW- implies single pass FSP 
over FW 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 1PW-1 1.57 0.96 366.35 536.38 2.21   0      
0.061 1PW-2 1.60 1.00 383.97 400.69 0.32  1.54      
0.122 1PW-3 1.57 1.00 363.72 521.15 2.77 3.08      
0.183 1PW-4 1.57 1.00 298.56 484.45 2.95 4.62      
0.244 1PW-5 1.60 1.00 272.31 483.86 6.24 6.16      
0.305 1PW-6 1.58 1.01 224.66 413.90 7.29 7.7      
0.366 1PW-7 1.62 0.96 241.44 433.79 7.57 9.24 1PASS FSP OVER FW BLOCK -2
0.427 1PW-8 1.62 1.02 231.65 431.16 9.61 10.8      
0.488 1PW-9 1.62 0.96 208.52 458.44 13.11 12.3      
0.549 1PW-10 1.62 0.99 222.05 442.81 9.67 13.9      
0.61 1PW-11 1.63 1.00 222.05 442.81 9.67 15.4      
               
               
               
               
              
              
              
   MPa 275.93 459.04 6.49       
   ± 66.49 42.99 3.98       
   ksi 40.02 66.58        
     ± 9.64 6.24         
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