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Statistical Analysis of the Nonhomogeneity Detector
for Non-Gaussian Interference Backgrounds

Muralidhar Rangaswamy, Senior Member, IEEE

Abstract-We derive the nonhomogeneity detector (NHD) for involving Gaussian interference scenarios. This work was
non-Gaussian interference scenarios and present a statistical extended significantly in [10] and [11] to include the effects
analysis of the method. The non-Gaussian interference scenario of finite sample support used for covariance matrix estimation.
is assumed to be modeled by a spherically invariant random
process (SIRP). We present a method for selecting representative However, the corresponding problem for non-Gaussian inter-
(homogeneous) training data based on our statistical analysis of ference scenarios has received limited attention. This is due to
the NHD for finite sample support used in covariance estimation, the fact that tractable models for correlated non-Gaussian inter-
In particular, an exact theoretical expression for the NHID test ference have become available only in recent work [12]-[14].
statistic probability density function (PDF) is derived. Perfor- In
mance analysis of the NHD is presented using both simulated
data and measured data from the multichannel airborne radar environmental factors, such as the presence of strong discrete
measurement (MCARM) program. A performance comparison scatterers, dense target environments, nonstationary reflectivity
with existing NHD approaches is also included, properties of the scanned area, and radar system configurations

Index Terms-EM algorithm, GIP, goodness-of-fit test, maxi- such as conformal arrays, and bistatic geometries. A variety of
mally invariant statistic, ML estimate, NAMF, NHD, non-Gaussian robust adaptive signal processing methods to combat specific
interference, SIRP, type-I error. types of nonhomogeneities have been developed in [15]-[19].

In this paper, we concern ourselves with the problem of

I. INTRODUCTION training data nonhomogeneity caused by dense target envi-A N tt issue in t adaptive ronments and present the NHD for non-Gaussian interference
m(STAP) for radar target detection is the formation and scenarios. More specifically, two p-tuple random vectors xt

Cl. (SAP)forradr trge deecton s te frmaionand and x,, having covariance matrices Rt and R8 , respectively,
inversion of the covariance matrix underlying the disturbance.

isare defined to be nonhomogeneous if R;'Rt $ vI, where I
In practice, the unknow n interference covariance m atrix is de n es th e p x p identity ix and v is a r i ry I

estimated from a set of independent identically distributed (iid) denotes the p x p identity matrix, and v is an arbitrary positive
scale factor. In other words, the random vectors are defined totarget-free training data, which is assumed to be representative be nonhomogeneous if they do not share the same covariance

of the interference statistics in a cell under test. Frequently, the

training data is subject to contamination by discrete scatterers structure. This issue can be readily treated by examining the

or interfering targets. In either event, the training data becomes eigenvalues of R -Rt when Rt and R, are known. How-

nonhomogeneous. As a result, it is not representative of the ever, Rt and R, are seldom known in practice, rendering the

interference in the test cell. Hence, standard estimates of the eigenvalue analysis infeasible. Therefore, we concern ourselves
with the problem of obtaining the NHD test for non-Gaussiancovariance matrix from nonhomogeneous training data result itreec cnroweetecvrac arxi siae

in severely under-nulled clutter. Consequently, constant false fromffinie tring data s ort.

alarm rate (CFAR) and detection performance suffer. Signifi- from finite training data support.

cant performance improvement can be achieved by employing Specifically, we derive the NHD for non-Gaussian interfer-

pre-processing to select representative training data. ence scenarios, which can be modeled by spherically invariant

The problem of target detection using improved training random processes (SIRP) and present a statistical analysis of the

strategies has been considered in [1]-[5]. The impact of resultant NHD test. Section II presents the relevant mathemat-

training data nonhomogeneity on STAP performance is consid- ical preliminaries. In Section III, we discuss the issues of co-

ered in [5]-[8]. The works of [1]-[4], [8], [9] have addressed variance matrix estimation using finite data as well as the use of

the use of the nonhomogeneity detector (NHD) based on the a maximally invariant test statistic for the NHD. Furthermore,

generalized inner product (GIP) measure for STAP problems we present a statistical analysis of the NHD and show that a
formal goodness-of-fit test can be constructed for selecting ho-
mogeneous training data. The basis of our NHD strategy lies

Manuscript received June 10, 2003; revised February 15, 2004. This work ihneohraining data. pertasis o o g yneous

was supported by the Air Force Office of Scientific Research (AFOSR) under in characterizing e statistics pertaining to homogeneous SIRP
projects 2304E8 and 23041N and by in-house research programs at Air Force clutter scenarios and rejecting realizations departing from these
Research Laboratory. Portions of this paper were presented at the 2002 IEEE statistics. Performance analysis is discussed in Section IV. A
Radar conference, Long Beach, CA, April 2002. The associate editor coor- performance comparison with existing NHD tests is also in-
dinating the review of this manuscript and approving it for publication was
Prof. Yuri I. Abramovich. cluded therein. Conclusions and future research directions are

The author is with the Air Force Research Laboratory/SNHE, Hanscom outlined in Section V.
Air Force Base, MA 01731-2909 USA (e-mail: Muralidhar.Rangaswamy@
hanscom.af.mil). In general, the problem of nonhomogeneity detection for

Digital Object Identifier 10.1109ITSP.2005.847843 SIRPs is complicated by the fact that the underlying SIRP co-
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variance matrix and characteristic probability density function application is limited by system considerations such as the
(PDF) are unknown. Knowledge of the SIRP characteristic bandwidth and fast scanning arrays and more fundamentally
PDF is assumed in this paper as a first step toward addressing the underlying spatio-temporal nonstationarity of the scenario.
the problem. This information can be gained from estimates of Thus, one is almost always forced to work with finite sample
the first order PDF obtained from experimental data using his- support. Consequently, the covariance matrix estimate for this
togram or moment techniques [20]. A significant performance problem can only be obtained to within a constant of the sample
penalty is incurred if this information is unavailable. This fact covariance matrix, which is the maximum likelihood estimate
is illustrated through an example in Section IV. of the covariance matrix underlying the Gaussian component

The main contributions of this paper are summarized below, of the SIRV. Typically, this constant is unknown in practice.

1) Reduce the NHD problem for SIRP interference sce- Hence, the goodness-of-fit tests proposed in [3], [4], [9], and

narios to one of testing whether two data sets share a [10] cannot be properly implemented for this problem. On

common covariance structure but have different levels the other hand, implementation of the NHD tests proposed in
by proper use of the maximum likelihood estimate of [3], [4], [9]-[l 1], and [24] using the sample covariance matrix
the covariance matrix, estimate for R in SIRV scenarios leads to incorrect declaration

2) Provide a formal goodness-of-fit test using a scale in- of data nonhomogeneity. This fact is illustrated in the examples
variant test statistic, presented in Section IV. Therefore, we seek a scale-invariant

3) Introduce analytical expressions for the NHD PDF, test statistic for this problem.

which enable calculation of the threshold setting for
the NHD test.

4) Analyze the performance of the NHD test using simu- III. NONHOMOGENEITY DETECTOR FOR NON-GAUSSIAN
lated and measured radar data. INTERFERENCE SCENARIOS

5) Compare the performance with existing NHD tests,
which demonstrates superior performance of the NHD Let x - SIRV[O, R,fv(v)] denote the complex SIRV

test of this paper in both SIRP as well as Gaussian sce- test data vector, where R is unknown. Further, let xi,

narios. i = 1,2. ... K, denote iid complex SIRV[0, R, fv(v)] training
data. The first step in deriving the NHD for SIRV's involves

11. PRELIMINARIES obtaining the maximum likelihood estimate of the underlying
covariance matrix. This estimate is then used in a test statistic

Let x = [xl x2 ... XAJ]T denote a complex spherically in- that exhibits maximal invariance with respect to the unknown
variant random vector (SIRV) having zero mean, positive def- scaling of the estimated covariance matrix. The resulting test
inite Hermitian covariance matrix R and characteristic PDF statistic takes the form of a normalized adaptive matched filter
fv(v). The PDF of x is given by [21] (NAMF), which has been extensively analyzed in [25]-[27] and

references therein. As noted previously, the basis of our strategy

f(x) = 7r-M1Rl-1h 2M(q) (1) to detect nonhomogeneity in the data is to first characterize
the NHD PDF in homogeneous SIRP clutter scenarios and use

where 1.1 denotes determinant, and this information to construct a formal goodness-of-fit test for
rejecting data realizations that depart from the said PDF

q = xHR1lx

M (w ) A. Covariance Matrix Estimationh2M(W) ='-M x -'•fv(v)dv. (2)
) The unknown covariance matrix is estimated from represen-

Every SIRV admits a representation of the form [22] x =zV, tative SIRV training data sharing the covariance structure of
where z has a complex-Gaussian PDF CN(O, R), and V is a sta- that of the test cell. Maximum likelihood (ML) estimation ofwherzhaacomlexGausianDFCNORandisata- the covariance matrix for SIRVs was first considered in [28].
tistically independent random variable with PDF fv (v). Conse-

quently, the covariance matrix of x is given by R, = RE(V2 ). The work of [28] showed that covariance matrix estimation for

In practice, R and fv(v) are unknown. For the purpose of this SIRVs can be treated in the framework of a complete-incom-

paper, we assume knowledge of fv (v) and treat the problem of plete data problem and pointed out that the maximum likeli-

nonhomogeneity detection with respect to unknown R. Validity hood estimate of the covariance matrix is a weighted sample
matrix. Since the covariance matrix estimate cannot be obtained

of the SIRP model for clutter encountered in STAP applications in close fom [28,r29nue anritertimethdnnow as the

has been extensively discussed in [23]. in closed form, [28]. [29] use an iterative method known as the

Previous work [1]-[4], [8]-[11], [24] employed the expectation-maximization (EM) algorithm. More precisely, let

GIP-based NHD for Gaussian interference scenarios. The xi, i = 1, 2,... , K denote iid training data sharing the covari-

GIP-based method relies on the statistics of a quadratic form ance matrix of the test data vector x. The work of [28] and [29]

given by Q = xHfl-1x. This method can be used as an shows that the ML estimate of the covariance matrix is given by

NHD test statistic in SIRV intereference if a perfect estimate
of the covariance matrix can be obtained, which calls for an K

extremely large sample support size (infinite sample support). R= -- E cixix7 (3)
However, in practice, the training data available in a given K (3)
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where one training data vector to another, maximal invariance of the
ht2M (qj) test statistic of (5) afforded by the sample covariance matrix es-

ci hM(q) timate no longer applies. This is due to the fact that the sample
h2M (qi) covariance matrix is no longer the maximum likelihood estimate

h/M (w) =- h2M( -) _ h2M+2(w) (4) of the covariance matrix for SIRV scenarios [33].
9w However, using an estimated covariance matrix of the form of

and qj = xfftlxi, i = 1, 2,... K. Since both sides of (3) (3) restores the maximal invariance property of the test statistic

involve R (the right-hand side implicitly through ci), it is not of (5). This is due to the fact that the resultant covariance matrix

possible to obtain the estimate in closed form. Consequently, estimate at convergence of the EM algorithm is to within a mul-

[28] used the EM algorithm to obtain an iterative solution to the tiplicative constant of the sample covariance matrix. This fact

problem. We adopt the approach of [28] for obtaining the covari- is formally demonstrated in Section IV through simulation by

ance matrix estimate in this work. A derivation of the covariance comparing the empirical data cumulative distribution function

matrix estimate is contained in the Appendix. We note therein (CDF) of a simple transformation on ANAMF with its theoret-

that the EM algorithm yields an estimate that is to within a mul- ical CDF for several cases and supplementing the results with

tiplicative constant of the sample covariance matrix, which is the a Kolmogorov-Smirnov test [34]. This behavior has also been

ML estimate of the covariance matrix underlying the Gaussian verified for all the simulated data examples presented in Sec-

component of the SIRV. This fact was verified for all the simu- tion IV by examining the eigenvalues of the estimated covari-

lated data examples presented in Section IV by examining the ance matrix and the eigenvalues of the sample covariance matrix

eigenvalues of the estimated covariance matrix obtained at the formed from the averaged outer products of the Gaussian com-

convergence of the EM algorithm. Details pertaining to the ini- ponent underlying the SIRV data. Consequently, we now have

tial start and convergence properties of the EM algorithm can a case where the covariance matrix of the test and training data

be found in [28]. The next step is to use this estimate in a maxi- share the same structure but have different unknown scaling. It

mally invariant decision statistic for nonhomogeneity detection, has been established in [25] that ANAMF is the invariant test

Recognizing the need to know the characteristic SIRV PDF, statistic for this problem. Hence, the canonical representation

which may be hard to obtain in some practical applications, for ANAMF in terms of five random variables derived in [25]

the works of [30] and [31] propose recursive covariance ma- applies to this problem in a straightforward manner. However,

trix estimators for the class of non-Gaussian processes where we emphasize that it is important to properly estimate the SIRV

the random variable V of the SIRP model is treated as a de- covariance matrix in order to reduce the NHD problem to the

terministic but unknown parameter. Strictly speaking, the non- case where test and training data covariance matrices differ by

Gaussian model used in [30] and [31] departs from the SIRP an unknown scale factor. This calls for knowledge of the first

model due to the treatment of V as a deterministic but unknown order SIRV characteristic PDF.

scale factor. However, it serves as a useful alternative model in
some instances. C. PDF and Moments of the Non-Gaussian NHD Test Statistic

Our comments in the concluding paragraph of Section III-B
B. Maximally Invariant NHD Test Statistic allow us to use the canonical representation for ANAMF

The maximal invariant statistic for different scaling of test contained in [25] for Gaussian interference scenarios. Conse-

and training data is given by [25] quently, the PDF of the NHD test statistic is readily determined
in terms of a random variable Ae, obtained from a transforma-

ANAMF - [sIs1''][xHIfIx] (5) tion on ANAMF defined by ANAMF

where s = (1/x/iM)[1 1 ... 1]Ti. For convenience, we use a Aeq = 1 - ANAMF (6)

simple choice for s by designating it to be the first column of a
normalized discrete Fourier transform (DFT) matrix. However, Since Aeq is a monotonic function of ANAMF, one can work
in most STAP applications, the spatio-temporal steering vector with er statistic. For convenIence of analysis, we work with
is a function of azimuthal angle and Doppler. Bearing in mind the PDF of Auq in the sequel. It has been shown in [25], [27], and
that we are concerned about training data containing contami- [35] for Gaussian interference statistics that Avq admits a rep-nating targets, which share the same angle-Doppler information resentation in terms of an F-distributed random variable P and
as that of a desired target, the spatio-temporal steering vector is a beta-distributed loss factor r. However, use of the covariance

hat ogal dsired targ, t matrix estimate of the form of (3) transforms the NHD problem
a logical choice for s.,nSR nefrnet hto etn hte w aastThe test statistic of (5) has also been proposed as a subop- in SIRV interference to that of testing whether two data sets

timal method for adaptive radar target detection in compound- share the same covariance structure with differing scale. Con-
Gaussian clutter [32]. Invariance properties of the test statistic sequently, the results of [25], [27], and [35] readily extend to
of (5) and its geometrical representation have been studied in the SIRs problem. More precisely, for the case where no target

[25] and references therein for the case of Gaussian interference is present in x (homogeneous data), Atq admits a representation
statistics using a sample covariance matrix estimate. In SIRP of the form
interference, however, each training data vector is scaled by a p
different realization of V. Since V varies independently from Aeq (7)
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The PDFs of P and P are given by 102 eA PDF

L K=3M
fP W + p)L+' P > 0  

100 K=4M

Y1 _ L )I- 2 10-2fr•)3=f(L + 1, M - 1) •( / 8

where L =K- M +1, and
1 1 0-80-

/3(rm, n) = _ X)n-ldx. (9)

After a little bit of algebra, it follows that that the PDF of Aeq
with no target present in x (homogeneous data) is given by M=64

IfI L(1- -'y)fr(y)dy 
(10) -2

fAo.(r) = [1+ (1 - "y)r]L+l W10)
while the pdf of ANAMF with no target present in x (homoge- 0 0.2 0.4 0.6 0.8 1

neous data) is given by
Fig. 1. Aeq PDF of(10) with varying K: M 64.

fANMF~)= L(1 -'y)fr('y)d' 1 (1
o [1 + ( - ]L (1 For this purpose, we need to determine the type-I error [34]

The mean of ANAMF is difficult to calculate analytically. Con- given by

sequently, we work with the mean of Acq given by P! = P(ANAMF > ql/o) = P[Acq > 7 - Ho]. (13)

K (1 -ri)
E(Aeq) =(K - M)(M - 2) M> 2 (12) The type-I error is the probability of observing under H0 a

to study the convergence properties in the limit of large K. The sample outcome at least as extreme as the one observed [34] and

statistical equivalence of Aeq to the ratio of an F-distributed hence provides the smallest level at which the observed sample

random variable and a beta-distributed loss factor permits rapid statistic is significant. Using (6) and (8), it follows that the prob-

calculation of the moments of A~q. It is also extremely useful in ability of error conditioned on F is given by

Monte Carlo studies involving simulation of ANAMF. For ho- Pel = 1
mogeneous training data, the use of (7) circumvents the need [1 + (1 -=)??]L

to explicitly generate the test data vector x and the training where 77* = 77/(1 - r7). The unconditional type-I error proba-
data vectors used for covariance estimation. For large M and, bility is obtained by taking the expectation of (14) over r and is
hence, large K, significant computational savings can be real- gis by
ized from the method of (7). It is instructive to note that the PDF given by
of Acq depends only on M and K, which are under the con- 01 fr(_•2)_.](15
trol of a system designer and not on nuisance parameters such Pe = I -(1 (15)
as the true covariance matrix underlying the interference sce- J [1 ( -

nario. Furthermore, for K -• oo, the mean of (12) converges to In this paper the type-I error is chosen to be 0.01. The threshold
E(Acq) = 1/(M - 2) M > 2, corresponding to the mean of q* is determined by a numerical inversion of (15). The value
an F-distributed random variable. This is due to the fact that as of r7 follows from the relationship s7 = q/*/(1 + 77*). We then
K -ý o•, the estimated covariance matrix approaches the true form empirical realizations of ANAMF from each training data
covariance matrix with probability one, and thus, the loss factor vector using a sliding window approach. In this approach, each
takes on the value zero with probability one. training data vector is treated as a test cell data vector, whose

covariance matrix is estimated from neighboring cell data ac-
D. Goodness-of-Fit Test cording to (3). We then test for statistical consistency of the re-

Since the PDF of Acq and ANAMF are known, a formal alizations of ANAMF with the theoretical PDF of (11). Realiza-
goodness-of-fit test can be used for nonhomogeneity detec- tions of ANAMF, which exceed 77, correspond to nonhomoge-
tion in non-Gaussian interference scenarios. Specifically, the neous training data. A desirable feature of P, is that it depends
goodness-of-fit test can be cast in the form of the following only on K and M and not on nuisance parameters such as the
statistical hypothesis test: true covariance matrix underlying the interference. Performance

analysis of the NHD method is presented in the next section.
Ho :ANAMF is statistically consistent with

the pdf of. (11) IV. PERFORMANCE ANALYSIS

H1 :ANAMF is not statistically consistent with Performance of the goodness-of-fit test with simulated and

the pdf of (11). measured data is presented here. Fig. 1 shows the plot of the
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Type-I Error Versusil" Empirical and Theoretical CDF100 , 11 • . .

K=2M
-- K=3M 0.9-

S"•"-0- K=128

KI

10- 0.82

0.7

ý6-40.6- M=64

1" 05 0K=128
W 0.5

02. 0.40

I-

0.3-

M=64

10o8 0.2 - Eýmpirical CDF: Gaussian Interference

0.1 he:rtca:D

0 0.1 0.2 0.3 0.4 0.5 0 0.05 0.1 0.15 0.2 0.25

Fig. 2. Type-I Error versus r/* calculated using (15): MvI = 64. Fig. 3. Theoretical and empirical CDFs of Aq: Gaussian interference.

PDF of Acq obtained from (10) with K as a parameter. Observe Theoretical and Empirical CDF

that the variance of Aeq decreases with increasing K. This is due
to the fact that better covariance matrix estimates result with in-
creasing K and when K -• oo, the estimated covariance matrix 0.o
approaches R with probability 1.

Fig. 2 shows a plot of the Type-I error versus 77*, with K as a
parameter. For a given type-I error, the threshold decreases with 0.6 M=64
increasing K, in conformance with the results of Fig. 1.K=128

For convenience of analysis, simulated data examples con- "
tained herein use the K-distributed amplitude PDF given by 0.4
[12], [13], [21]

bQ+lrc' 0.2

fR(r) K- 2-1(br) r_> 0, b, a > 0 (16) -- Simulated Data CDF: K-distribution a=0.5
2'-'P(a) Thoeia-D

where b and a are the distribution scale and shape parameters, 0 0.05 0.1 0.15 0.2 0.25

respectively, K&(.) is the modified Bessel function of the second

kind of order v, and r(.) is the Eulero-Gamma function. The Fig. 4. Theoretical and empirical CDF's of Aq: K-Distributed interference

K-distribution, which is a member of the class of SIRPs [12], 0.5.

has been proposed as a model for impulsive clutter resulting
from terrain and sea scatter [36], [37]. Small values of a result Then, A eq is formed using 1000 independent realizations of ho-
in heavy tails for the PDF of (16). The corresponding fv(v) and mogeneous data and its empirical CDF is compared to its theo-
h2M(.) are given by retical CDF given by

fv(v) = 2b (bv)2 ,- 1 exp(-b 2v 2 ) 0 < V Fi0q(r) = 1 f[ + (18)

h 2 M(W) =2b)2MK.-M(2bx/w). 

(17)

() / - ,-In all cases, the empirical CDF shows good agreement with the

theoretical CDF. This was further supplemented by performing

First, Figs. 3-5 demonstrate the invariance of the PDF of (10) a Kolmogorov-Smirnov test [34] to determine the statistical

for the K-distribution (a = 0.1, 0.5) and the Gaussian case consistency of realizations of Acq from the simulated data with
(a -- oo). More precisely, these figures show plots of the the- the theoretical PDF of (10). In all cases, we could not reject the

oretical CDF obtained from (10) and the empirical CDF of Acq hypothesis that the realizations of Acq formed from the simu-
formed from homogeneous simulated data using (6). Relevant lated data using conform to the PDF of (10) at a 1% significance
test parameters are reported in the plots. First, the covariance level. These findings confirm the scale invariance of Acq (and,
matrix is estimated from K = 2M homogeneous training data hence, ANAMF) and verify the correctness of the PDF given by
realizations using the EM algorithm discussed in Section III-A. (10).
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Empirical and Theoretical CDF 25

1 M=64
- K=128

0.9 Threshold=1.274
20

0.8
-Normalized GIP

0.7 -Q- Threshold

0.6 M=64 15

KMK=128 N
0.5-a

o 10
0.4- Z

0.3-

0.2 ", - Empirical GDF: K-distribution o.=0.1 5

0.1 Theoretical CDF

0.500.1 0.2 025 40 460 480 500 520 540 560 580
0.5 01 x 0.6 .2 .5 Range

Fig. 5. Theoretical and empirical CDF's of A,q: K-Distributed interference Fig. 7. Normalized GIP (x"S-1x/K) versus range bin number for
C,= 0.1. homogeneous K-distributed SIRV with a = 0.5, b = v/-', M = 64, and

K = 128.

0.16

0.14- . . . . figure shows a plot of ANAMF as a function of range. No re-

alization of ANAMF exceeds qj, reflecting homogeneity of the
". 0.12 data. The experiment was repeated 1000 times, and in all cases,

ANAMF did not exceed q, confirming the homogeneity of the
0.1- M=64daa._oK=128 data.

0 P -OO Fig. 7 shows the performance of the NHD test proposed in
S0.08 e

=0.1454 [10], [1 1], and [24] based on comparing the normalized GIP

0.06 xHS-lx/K, with the threshold-setting determined according
to [24, eq. (4.2)]. Here, S = (1/K) E=lJXiXH is simply the

0.04 sample covariance matrix. The data set used here is the same

0 as the data set used for the example in Fig. 6. The normalized

GIP is formed using sliding window processing, as described
__.... _ in [10], [11], and [24]. Fig. 7 shows a plot of the normalized

40 460 480 500 520 540 560 580 GIP as a function of range. The threshold setting is also plotted.
Range From the plot, it is evident that for almost all range bins the

Fig. 6. ANAMr, versus range bin number for homogeneous K-distributed normalized GIP exceeds the threshold, leading to the declaration
SIRV with 'y = 0.5, b = V/a, M = 64, and K = 128. of nonhomogeneity, when in fact, the data is homogeneous.

Fig. 8 shows the performance of a second goodness-of-fit test

We then generate 1024 realizations of a 64 tuple vector from proposed in [10], [11], and [24], which compares the normal-
the K-distributed SIRP with as = 0.5 having a prescribed co- ized GIP xHS-lx/K to a theoretically calculated mean value
variance matrix according to the physical model described in obtained from [24, eq. (3.6)]. The data used for this example is
[38] using the approach of [13]. No targets are added to this data the same as that used in the example of Fig. 6. Fig. 8 shows a
set. Starting from the midpoint (range bin 512), the data set is plot of the normalized GIP as a function of range. The theoret-
processed symmetrically on either side using a sliding window. ically calculated mean value is also shown. Again, we see that

Each cell is treated as a test cell (which may or may not contain for almost all range bins, the normalized GIP exceeds the mean

contaminating targets). Two Guard cells are provided (one on value, causing an incorrect declaration of data nonhomogeneity.
each side of the test cell). One hundred and twenty eight training Fig. 9 shows the performance of the NHD test proposed in

data realizations are collected by moving symmetrically on ei- [3], [4], and [9], which compares the GIP xHS-lx to a theo-
ther side of the guard cells for use in covariance matrix esti- retically specified mean value of M. The data used for this ex-
mation. The covariance matrix estimate is obtained using (3). ample is the same as that used in the example of Fig. 6. Fig. 9
ANAMF given by (5) is then calculated for each test cell using shows a plot of the GIP as a function of range. The theoreti-
the estimated covariance matrix and compared to a threshold de- cally specified mean value is also shown. Again, we see that for
termined from (15) for P, = 0.01. Relevant test parameters are almost all range bins, the GIP exceeds the mean value causing
reported in the plots, an incorrect declaration of data nonhomogeneity. The incorrect

Fig. 6 shows the performance of the goodness-of-fit test for declaration of nonhomogeneity is due to the fact that S is no
simulated homogeneous data from the K-distribution [21] with longer the ML estimate of the covariance matrix for SIRV inter-

shape parameter 0.5 using the covariance estimate of (3). The ference scenarios. Similar results showing an even more severe
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Fig. 8. Normalized GIP (x"S-'x/K) versus range bin number for SIRV with y = 0.5, b = T M = 64, and K = 128.
homogeneous K-distributed SIRV with a 0.5, b - ,gd, M 64, and
K = 128.
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Fig. 9. GIP (xtS-'x) versus range bin number for homogeneous Fig. 11. ANAMF versusrange bin number for nonhomogeneous K-distributed
K-distributed SIRV with cy. = 0.5, b = vl/ci,, M = 64, and K = 128. SIRV with cy = 0.1, b = i-•, M = 64, and K = 128.

performance degradation in K-distributed clutter with a = 0.1

were obtained. However, these results are not reported here in 0.16

the interest of avoiding tediousness of exposition. The experi- Alternate Covariance Matrix Estimator

ments pertaining to Figs. 7-9 were repeated 1000 times, and all 0.14-

the trials exhibited performance consistent with that are reported M=64 - NAMF

in Figs. 7-9. 0.12 K=128

Fig. 10 shows the performance of the goodness-of-fit test de- 00.1o.1
veloped in this paper in K-distributed clutter with shape param- <

eter 0.5. Synthetic targets were injected at range bins 479 and 0.08

510 to cause the nonhomogeneity. Nonhomogeneity of the data
is evident in those range bins where ANAMF exceeds 71. 0.06-

Fig. 11 shows the performance of the goodness-of-fit test in
K-distributed clutter with a = 0.1. Synthetic targets were in- 0.04-

jected at range bins 510 and 552 to cause the nonhomogeneity.
Clearly, ANAMF exceeds r/for both of these range bins, and thus, 0.02

they are declared to be nonhomogeneous data sets. 1.0 460 480 500 520 540 560 580

Fig. 12 shows the results of the goodness-of-fit test using the Range Bin Number

covariance matrix estimator proposed in [30] and [31]. This es-
Fig. 12. ANAMr' versus range bin number for nonhomogeneous K-distributed

timator does not require knowledge of the first-order charac- SIRV with a = 0.5, b = N/a-, M = 64, K = 128, and the covariance matrix

teristic PDF of the SIRV and, therefore, converges faster than estimate of [30], [31].
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TABLE 1I.
NHD PERFORMANCE SUMMARY

T B E I1.2 .....- - - - - - - - - - -- - -

Fig. Nuinber Range Bin Realizations Exceedences
10 510 1000 997
10 479 1000 997
11 510 1000 984
11 552 1000 984 .
12 573 1000 971 0.8

Test Statistic vs Range 0.6 M=128
0.12 ZK=256

0.12 Test Statistic 04Threshold=1.18
Thresho,7d(q) I] 0.4

- Normalized GIP
< 0.Threshold2J

`5- 0.08 K=256
". 200 250 300 350 400

eRange
C)0.06-

Fig. 14. Normalized GIP (x"S-'x/K) versus range bin number using
MCARM data: M = 128, K = 256.

0.04

4000
0.02 50 =6M=128

- -3500 5

14, wo, 300Mean=128

200 250 300 350 400
Range

250

Fig. 13. ANAMF versus range bin number using MCARM data: M = 128,
K = 256. Q 200

the estimator of (3), especially for small values of a. The data 150

set used for this example is the same as that used for the ex-
100 - GIP

ample in Fig. 10. Although a peak in the test statistic is seen -- Mean
at range bin 479, it does not exceed the threshold, whereas the 50
peak is not seen for range bin 510. Therefore, contaminating
targets in range bins 479 and 510 are not detected. Further- 5 2200 34

more, the method erroneously reports the presence of a contam- Range

inating target at range bin 573. This illustrates the importance of
knowing the underlying characteristic PDF to properly estimate Fig. 15. GIP (x S- 1 x) versus range bin number using MCARM data: M

the covariance matrix and use it in the NHD statistic. 128, K = 256.

The results contained in Figs. 10-12 were further validated by TABLE 11
using 1000 realizations of the experiment and averaging the re- MCARM DATA PARAMETERS
suits over 50 independent trials. In 997 out of the 1000 trials, the
NHD realizations corresponding to bins 479 and 510 of Fig. 10 Parameter Value

Transmit Freqencny 1240 MHz
exceeded the threshold. For Fig. 11, in 984 times out of 1000 Transmit Beamnwidth 6.7' Az., 10.4' El
trials, the realizations corresponding to range bins 5 10 and 552 Waveform 50.4 ps LFM
exceeded the threshold. The corresponding number for Fig. 12 Peak Tl'ansmit Power 20 kw
was 971. These findings are summarized in Table I. Pulse Compression Ratio 63

The examples reported in Figs. 13-15 make use of the Platform Altitude 10.000 ft
Platform Velocity 100 meters/sec

MCARM data [3]. The MCARM data consists of measured Array Configuration llxIl Planar Array

L-band radar data using a Westinghouse radar mounted on Numnber of Pulses 128

the port-side of a BACI-11 aircraft. The relevant system pa- Pulse Repetition FrCequency 2 kHz
rameters are summarized in Table II. The MCARM data is a Number of Unambiguous Range Bins 630

common test bed for performance analysis and bench-marking
of STAP algorithms and is therefore considered in this paper. using the MCARM tend to confirm that the MCARM data is
Further details pertaining to the MCARM data can be found in homogeneous for the most part. Statistical analysis of the data
[39]. Fig. 13 shows the results of the goodness-of-fit test for indicates that the data is well-approximated by the Gaussian dis-
the MCARM data using acquisition 220 on Flight 5, cycle e for tribution [3]. As a consequence, ci = -h-2M(q.j)/h2M(q.j) = 1
eight channels and 16 pulses. The results of [3], [40], and [41] for this case. Hence, the maximum likelihood estimate of the
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covariance matrix is simply the sample covariance matrix. The trix, whose columns xi i = 1, 2,...., K are iid training data
test statistic ANAMF and the threshold 17 are plotted as a func- vectors, which are distributed as SIRV[0, Rx, fv(v)]. The like-
tion of range. Nonhomogeneity of the data is evident in those lihood function for estimating R is given by
bins for which ANAMF exceeds 77. For the sake of comparison, K

Figs. 14 and 15 show the performance of the NHD methods of (19)
[10], [ II], and [24] and [3], [4], and [9], respectively, using the J r-MIR -h2M(ql)"
same MCARM data set used in the example of Fig. 13. Fig. 14
shows the results of the NHD test proposed in [10], [11], and Direct maximization of the likelihood function of (19) over R
[24] based on comparing the normalized GIP xHS-lx/K with is rendered difficult due to the fact that there is missing in-
the threshold setting determined according to [24, eq. (4.2)]. formation. Consequently, it is helpful to treat the problem in
The MCARM data set is processed in the same manner as de- the context of a complete-incomplete data problem [28]. Re-
scribed in the example of Fig. 7. Fig. 15 shows the performance call from the representation theorem for SIRVs [22] that xi =
of the NHD test proposed in [3], [4], and [9], which compares ziVi, where zi, i = 1, 2, ... , K are statistically independent
the GIP xHS-lx to a theoretically specified mean value of M CN(0, R) random vectors, and Vi i = 1, 2, ... , K are statis-
using the MCARM data. The MCARM data set is processed tically independent random variables with PDF fv(v). For this
in the same manner as described in the example of Fig. 9. problem, the complete data is either zi, Vi, i = 1, 2,. . ., K,
It is seen from Figs. 14 and 15 that a lot more declarations or xi, Vi, i = 1,2,... , K. However, the observed data xi,
of nonhomogeneity result from the NHD methods of [10], i = 1, 2,... , K contains no explicit information about Vi, i =
[11], and [24] and [3], [4], and [9], when in fact the MCARM 1,2,.. . , K and, thus, constitutes the incomplete data. The com-
data is homogeneous. Thus, the NHD method of this paper plete data likelihood function is given by the joint PDF of xi,
outperforms competing techniques for Gaussian interference Vi, i = 1, 2,..., K, which is expressed as
scenarios as well, in terms of the type-I error performance. K K

gc[ [X,V r = R] f(x IVi) l- f(vi). (20)

V. CONCLUSION i=1 i=1

Taking the natural logarithm of (20) yields the complete-data
This paper provides a statistical characterization of the log-likelihood function of the form

NHD for non-Gaussian interference scenarios, which can be
modeled as a spherically invariant random process. A formal K

goodness-of-fit test based is derived. Performance analysis of L[X, VIR] = -KMlog(7r) - Klog(IRI) -
the method is considered in some detail using simulated as well K:=1K

as measured data from the MCARM program. The performance + rlog[v-2Mf(vu)]" (21)
comparison of the method with other NHD techniques is also
undertaken. The illustrative examples validate the approach 1

taken and confirm the improved performance of the technique Note that given an initial estimate of R denoted by R, the quan-
of this paper in both Gaussian and non-Gaussian interference tity
scenarios with respect to a type-I error criterion. Future work
would include extensive performance analysis using simulated E{log[vy 2Mf(vi)]lfR} (22)
and measured data showing the resulting impact on STAP
performance. The performance of several STAP algorithms in depends only on R and not on R. Consequently, the relevant
Gaussian and non-Gaussian interference scenarios has been terms for the maximization over R are given by
considered in [26]. Future work will address performance of the K

methods treated in [26] in conjunction with NHD processing L,[X, V1iR] = -Klog(IRI) - q> q~v- 2. (23)
described herein to combat heterogeneous interference sce- 1

narios. Preliminary work (not reported here) in this direction
reveals that the estimator of (3) is rather slow to converge, even The missing data vi, i 1, 2 ... K are assumed to be missing

for moderate system dimension. A related research direction at random (MAR) [28]. Consequently, given an initial estimate

is the performance comparison of model-based parametric of R denoted by R, the complete data sufficient statistic [28] is

STAP methods (which do not require NHD preprocessing) given by

with sample covariance-based STAP methods employing NHD
preprocessing in dense target environments. Analysis in this Ce = E[V1i.-2R, xi]. (24)

direction is undertaken in [42]. Thus, ci is simply the minimum mean squared error (MMSE)

estimate of Vi 2 given xi. Note that f(vi) = f(v 2) ...

APPENDIX f(VK) = fv(v) (since vi, i = 1,2,.... K are iid random vari-

EM ALGORITHM FOR COVARIANCE MATRIX ESTIMATION ables). Therefore

We discuss the maximum likelihood estimation of the SIRV fvlxi, -(vilxi, f(xilvi, R)fv(v(i) (25)
covariance matrix in this appendix. Let X denote a data ma- Rfxi(xilR)
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However the Quter product of each training data realization with itself is

f(XiIV,, f)fv(Vi) V-2 11 cXp(qjV-
2 )fV(V.) scaled by the MMSE estimate of Vi- 2 . This fact has been veri-

fxI I, R)f _ exq(26) fled for all the simulated data examples presented in the paper.

fxi fit(xill) - h2M(qi) In particular, we examined the diagonal matrix of eigenvalues
of the estimated covariance matrix. We found that they were to

Consequently within a multiplicative constant of the eigenvalues of the sample
00-2M 2 2 covariance matrix formed by averaging the outer products of the

_ fov exp(qiv2)fv(vi)dvi realizations zi, i = 1, 2,..., K of the Gaussian component of

h2M(qj) the SIRV xi. Convergence of the algorithm is dictated by the

2h' M (q_ ) choice of the initial estimate of R. Any positive definite Hermi-

h2M(qi) tian matrix is suitable for the initial estimate of R. Two choices

h2M+2(qi) that readily arise are the M x M identity matrix IM and the
-h2M(q) (27) sample covariance matrix given by S = (1/K) EK lix'. We

employ the latter choice in this paper due to the fact that it yields

Having specified the complete data sufficient statistic, we seek faster convergence.
the maximization of (23). For this purpose, we reproduce the The simulated data examples in this paper employing the co-
following matrix differentiation identities from [43]: variance matrix estimate of (3) involve a calculation of the mod-

ified Bessel function of the second kind for specifying h2M(.)

6[R- 1] = - R-1b[R]R-1 and its derivative. Numerical errors in their calculation for a =

6[log JR-11] = - tr{R-16[R]}• (28) 0.1 tend to be rather large. Consequently, convergence of the al-
gorithm is extremely slow for a = 0.1.

Further, we recognize that qj = E =itr[R-xlxI]. Conse-
quently

6Li[ X,¾V1R] = Ktr{R- 16[R]}
K

-tr[R- 16[R]R-1 cixix ]. (29) REFERENCES
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