Final Technical Report
for DARPA Contract HR0011-04-1-0005

KI-LEARN: Knowledge-Intensive Learning Methods for
Knowledge-Rich/Data-Poor Domains

Authors: Thomas G. Dietterich, Professor; Angelo Restificar, Research Associate;
Prasad Tadepalli, Associate Professor; Bruce D’ Ambrosio, Associate Professor; Jon
Herlocker, Assistant Professor; Alan Fern, Assistant Professor; Eric Altendorf, Grad-
uate Student; Sriraam Natarajan, Graduate Student; Jianqiang Shen, Graduate Stu-
dent; Xinlong Bao, Graduate Student; Anton Dragunov, Graduate Student
Performing Organization: Oregon State University, Corvallis, OR 97331

Date: 31 August 2006

Type of Report: Final

Period Covered: 10/29/2003 - 09/30/2005

Distribution Statement: Approved for public release; distribution unlimited

20060911002

ABSTRACT

Knowledge Representation and Reasoning (KRR) has developed a wide range of methods for repre-
senting knowledge and reasoning from it to produce expert-level performance. Despite these accom-
plishments, there is one major problem preventing the wide-spread application of KRR technology:
the inability to support learning. This makes KRR systems brittle and difficult to maintain. On the
other hand, Machine Learning (ML) has developed a wide range of methods for learning from ex-
amples. However, there are two major problems preventing the wide-spread application of machine
learning technology: the need for large amounts of training data and the high cost of manually de-
signing the hypothesis space of the learning system. Our goal in this research effort was to develop
a new methodology, called KI-LEARN (Knowledge Intensive LEARNing), that combines domain
knowledge and sparse training data to construct high-performance systems. This report provides an
overview of the major results we obtained on specific tasks as outlined in our proposal. More specif-
ically, to address issues in knowledge representation and efficient learning we designed a language
called First-Order Conditional Influence (FOCI) Language for expressing attributes relevant to learn-
ing. Our language extends probabilistic relational models (PRMs) which are themselves probabilistic
representations most similar to first-order representation languages employed in KRR systems. A
distinct feature of our language is its support for explicit expression of qualitative constraints such
as monotonicity, saturation, and synergies. More importantly, we have demonstrated via mathemati-
cal proofs and experimental results how these qualitative constraints can be used and exploited when
learning with sparse training data. We specifically show how qualitative constraints can be incorpo-
rated into learning algorithms. In addition, this report describes the models we constructed for our
testbed domains. We also describe the infrastructure we built for the task-based user interface do-
main as well as further improvements we made to the software prototype. Finally, we provide a list
of research publications that were produced either in part or solely through the KI-LEARN research
grant.

Contents
1 Introduction
2 Methods and Procedures
2.1 Description of Test-Bed Domains
2.1.1 Task-Based UserInterfaces
2.1.2 West Nile Virus Propagation
213 UC-rvineDataSets ittt e
2.2 Building Domain KnowledgeBases
2.3 Defining Features forLearning
2.4 Extracting Constraints forLearning
2.5 Combining Hand-Crafted and Learned Knowledge
2.6 Software Development for Testing and Evaluation
3 Results and Discussions
3.1 Knowledge Representation for Efficient Learning
3.1.1 First-Order Conditional Influence (FOCI) Language
3.1.2 Leamning FOCI Model Parameters
3.1.3 Experimental Evaluation,
3.2 Task-Based User Interface: Infrastructure and Domain Knowledge
3.3 Domain Knowledge for West Nile Virus and Grasshopper Domains
3.4 Incorporating Constraints in Machine Learning Algorithms
3.4.1 Monotonicity Constraints
3.42 Experimentsand Evaluation
34.3 Constrained LogisticRegression
3.5 Publications e e e e e
3.5.1 Conferences and Workshops
3.5.2 TechnicalReports. e
3.6 OnlineMaterials

4 Summary and Conclusion

1 Introduction

Knowledge Representation and Reasoning (KRR) has developed a wide range of methods for repre-
senting knowledge and reasoning from it to produce expert-level performance [15]. These representa-
tions generally cover substantial subsets of first-order predicate logic. In addition, they often provide
special vocabularies and reasoning methods for reasoning about time, space, action, qualitative rela-
tionships, communication, and so on. Despite these accomplishments, there is one major problem
preventing the wide-spread application of KRR technology: the inability to support learning. This
makes KRR systems brittle and difficult to maintain.

Machine Learning (ML) has developed a wide range of methods for learning from examples. These
include methods for classification (predicting a discrete-valued variable) and regression (predicting a
real-valued variable), as well as methods for handling sequential and spatial data. Recent work has
begun to develop methods for learning in relational models [31, 21]. Despite these accomplishments,
there are two major problems preventing the wide-spread application of machine learning technol-
ogy: the need for large amounts of training data and the high cost of manually designing the
hypothesis space of the learning system.

Existing machine learning systems require large amounts of training data, because they generally
start without any knowledge of the application problem. There is a fundamental relationship in all
learning systems between the amount of available training data and the amount of the knowledge that
can be learned [7, 8]. Large amounts of training data are needed in order to learn large amounts of
knowledge. If only a small amount of data is available, then only small amounts of learning can be
supported.

As a result, the machine learning community generally prefers to study problems where there
are massive amounts of data collected. This has yielded major progress in mining massive data sets
for scientific and business applications. But many important military and civilian problems have the
property that there is relatively little data available. For example, an important potential application
area is the development of cognitive assistants for human-computer systems. A tabula rasa approach to
machine learning for such assistive systems would require the human user to provide many many hours
of labeled training data to the learning system. This is completely impractical. Another important
application area is early-phase epidemiology: understanding the spread of new diseases (including
diseases introduced as weapons of terror). During the early phases of a new disease, rapid learning is
essential in order to understand and halt the epidemic, but very little data is available.

Because the training data is so sparse, these kinds of problems are largely ignored by the machine
learning community. This is because the only available methodology for handling knowledge-rich/
data-poor problems is for the data analyst to study the domain knowledge and design a special-purpose
learning system that incorporates this knowledge. To make these systems effective, the data analyst
must carefully design the set of features (i.e., the attributes that describe the data) and the space of
hypotheses (i.e., the representations that use those attributes) so that it is small enough. This is a time-
consuming process, and there are relatively few data analysts who can do it. There are also very few
software tools available to support this activity. Existing off-the-shelf machine learning systems do
not provide any way to incorporate background knowledge except through defining the input features.

Our new methodology enables a wide range of new cognitive system applications in problems

that require combining domain knowledge with training data. These include cognitive assistants (e.g.,
for computer users, war fighters, and counter-terrorism analysts) and situation awareness/situation as-
sessment systems (e.g., for infectious disease spread, bio-terrorism, and command-and-control). This
report provides a detailed discussion on the methodology we have formulated for building applica-
tions in knowledge-rich/data-poor domains. It also provides a discussion of the problems we have
encountered and a summary of the major results we have obtained thus far.

2 Methods and Procedures

To construct cognitive systems in knowledge-rich/data-poor domains we followed a set of steps that
allowed us (1) to design practical systems that could exploit existing domain knowledge using repre-
sentations that are sufficiently expressive for learning with sparse data and (2) to test and evaluate the
effectiveness of such design. We applied these steps on various domains: (i) task-based user interfaces
(11) modeling the spread of West Nile Virus, and (iii) data sets obtained from the UC-Irvine repository.
We first give a description of the domains and data sets we have used, then we describe the set of steps
we have used to construct systems in knowledge-rich/data-poor domains.

2.1 Description of Test-Bed Domains

The following provides an overview of the domains we have used for problem analysis, algorithm
design, and evaluation of the techniques we have formulated in this research effort.

- User provided on
Episode +* training examples l

+startTime é;:’ ,
+endTime e

" . AN
Jusers/tgd/cl /cs534: R

Project

+name
+words

midterm.doc
radebook.xls
hw3.doc
hw2.doc
hwi.doc b | ContainerOrDoc
mailto: rogers@cs.orst.edu Window

mailto: cs534students@cs.orst.edu +isTop
+title

mail folder: cs534
http://my.oregonstate.edu/...46669_1 IJ C

Blackboards login
htip:/www.cs.orstedul~tgd/.Jindex.hitmi Document [Container |

: . +title
C$534 Machine Learning +contents: text

alm:
weekly ta meeting: M9:00am D401]]]
class sessions: MWF 11:00am B201 File CalEvent | |WebPage | EmailMsg s
Fred Rogers: 737-9007 Hov 1A +startTime +dateReceived h

+endTime +dateSent

Communications Media Center; 737-1212 necipiem:

+name
+dateCreated

parent

ontents

Figure 1: Example menu of Figure 2: UML Object-Relational Schema for human-
documents relevant to the computer interface
CS534 task

2.1.1 Task-Based User Interfaces

Imagine a human-computer interface that learns to recognize the tasks that you are performing and
finds ways to help you. For example, if you are a professor and you open the file
lusersftgd/classes/cs534/midterm.doc, the interface could recognize that you are working on your
CS534 class. It could pop up a menu of documents and contacts relevant to that task (see Figure 1)
that includes such items as the course gradebook, the email address and phone number of the teaching
assistant, course web sites, and scheduled meetings. It could even start up other relevant applications
e.g., pre-fetch the class web page into your web browser; pre-load the gradebook spreadsheet into
excel. To make this kind of user interface work, we need a learning system that can learn to recognize
your current task based on a small amount of training data. For example, the first few times that you
work on CS534, you need to tell the computer that CS534 is the current task. But later, it should
quickly recognize the current task without being told. This is exactly the kind of knowledge-rich/data-
poor machine learning problem for which existing methods do not work well.

2.1.2 West Nile Virus Propagation

A significant threat to public health is the spread of infectious diseases. These may arise naturally
or be introduced as bioweapons. The spread of West Nile Virus provides a useful case study. In
previous research, one of us (D’ Aambrosio, with several collaborators) has developed a community-
level model of the disease transmission process of West Nile Virus (WNV) in Maryland [47]. In this
domain, most of the background knowledge takes the form of a qualitative model of the life cycles
of various organisms including the virus, mosquitos, corvid birds (crows and their relatives), horses,
and people. The available data (covering 1999-2002) consists of the following: (a) date and location
of human, horse, and bird cases, (b) test results of mosquitos in pools, (c) test results of mosquitos
captured in traps, and (d) locations of tire collection and recycling facilities. The tire information
is relevant because pools of water form frequently in tires and mosquito larvae live in pools. The
development of a complete epidemiological model for a disease takes many years of study. For bio-
defense purposes, however, there is a need to learn an initial model very quickly from small amounts

of training data.

2.1.3 UC-Irvine Data Sets

We have chosen ten data sets from the UC-Irvine Machine Learning Repository. These data sets were
chosen based on their potential to be used as test-beds for learning algorithms that exploit domain
knowledge specifically in the form of monotonic relationships between attributes e.g., an increase in
body-mass index leads to higher risk of having elevated blood pressure. A substantial amount of time
was devoted to examining these data sets so that graphical models, in this case Bayesian Networks,
that reflect as closely as possible what a domain expert might construct were elicited. The elicitations
were based on common general knowledge and existing documents that either came with the data
sets or were cited by their respective accompanying documentations. In addition, these documents
were carefully studied to identify all indications of possible monotonic relationships. This information
is then used to annotate the previously-elicited network structure. As often happens in real-world

modeling, we consider both the network structure and the knowledge about monotonic relationships
between the variables in these networks to be only approximately correct.

2.2 Building Domain Knowledge Bases

We have constructed domain knowledge bases using varying levels of representations: both proposi-
tional and relational. Representations at the propositional level are derived from simple statements,
i.e., non-relational statements, about the domain and its relevant attributes or events. These state-
ments could express causality between events and additionally, could indicate qualitative relationship
between attributes (via annotations), such as monotonicity or saturation. Representations at the re-
lational level are in terms of an object-relational schema describing the ontology of the domain (the
classes of objects and their attributes and relations). These also include representations of relationships
among object attributes including qualitative causality and probability statements, for instance as in
the propositional representation, a monotonic relationship between random variables. The domain
knowledge at this level also describes which objects, attributes, and relations are observable and which
are hidden. In addition, the knowledge base specifies the attributes and relations for which it is desired
to learn a predictive model. These are called the “targets” of the learning process.

2.3 Defining Features for Learning

The constructed domain knowledge is extended to include new features more suitable for learning.
Some existing attributes may make excellent features, but it is typical in machine learning applications
to construct new features by (a) aggregating existing attributes e.g., over temporal and spatial scales to
reduce noise and improve statistical power, and (b) transforming attributes e.g., by Fourier or wavelet
transforms and principal component analysis to enhance pattern detection.

It is also possible to exploit domain knowledge so that feature design reflects the choice of the set
of features that are only considered relevant for learning. For example in the domain of task-based user
interfaces, consider the attributes of a document. A document has content (the words in the document),
but it also has a length (in bytes), a creation date, the program used to create it, and so on. The domain
knowledge indicates that the content is likely to be more useful for predicting the current project than
these additional attributes. A purely syntactic approach to feature generation would generate these
kinds of irrelevant features and then require large amounts of training data to eliminate them. In the
case of task-based user interfaces, domain rules can be exploited to help choose relevant features.

To give a more concrete example consider Figure 2 which shows a schema for user interaction
with a computer system. Each box represents a class of object with the indicated attributes. Each link
represents a relationship between two classes. For example, every Window on the computer screen
belongs to some Program and corresponds to some Document. In this schema, files, web pages,
email messages, and calendar events are all considered Documents. The schema describes the user’s
interaction with the computer as a sequence of Episodes. Each Episode corresponds to some Project,
and the goal of the learning system is to learn to identify the Project of each Episode early in that
episode, so that the interface can pop up the relevant documents menu. Each Document may belong
to one or more Projects. Documents may also be in Containers, which is a generalization of file

directories, web sites, mail folders, etc. EmailMsgs have senders and receivers, which are EmailBoxes,
and these in turn are owned by Persons. A Person may belong to one or more Projects. In the
task-based user interface domain the following domain knowledge rules could help choose relevant
features.

e DRulel: Most Documents touched during an Episode belong to the episode’s Project.
e DRule2: Documents in the same Container tend to share a common Project.

e DRule3: Documents on the same Project tend to share common words in their contents, title,
name, email subject, etc.

DRule 1 tells us that we can predict the project of an episode if we know the project of a document
that was in the top-most window during the episode. DRule 2 tells us that we can predict the project
of a document by looking at the other documents in the same container. DRule 3 tells us that we can
predict the project of a document by looking at other documents with similar contents, title, name, etc.
We can combine these rules to obtain “paths” through the schema that would be useful for predicting
the project of the current episode. Each path can be written as an expression in a path language, and it
denotes a bag of objects that are reachable along the path. For example, if we combine rules 1 and 2,
we obtain the path

Windowl[isTop].Document.Container.ContainedDocuments.Project

which describes the bag of all projects such that they belong to a document that is in the same container
as the document of the top window. The expression [isTop] is a selector that selects only those windows

for which isTop is true.
To convert a bag of projects into a feature for machine learning purposes, we need to summarize it

by a fixed vector of features. General machine learning knowledge can be applied here:

e ML Rule 1: A bag over an open domain can be represented by its most common element (An
open domain has no bound on the number of possible domain elements.)

e ML Rule 2: A bag over an open domain can be represented by its £ most common elements

e ML Rule 3: A bag over a closed domain can be represented by a vector with one entry per
element such that entry i specifies the number of times that element i appears in the bag.

In this case, ML Rule 1 would define the feature:
Window[isTop].Document.Container.ContainedDocuments.ProjectmostFreq].

In addition to generating candidate features, machine learning knowledge can be applied to select a
good subset of them by estimating the informativeness and uniqueness of each feature. A feature is
informative if it provides strongly predictive information e.g., about the current Project. A feature is
unique if it provides information not provided by other features. Feature informativeness and unique-
ness can be crudely estimated by applying such rules (in the case of relational representation) as “A
feature defined by a long path will typically be less informative than a feature defined by a short path”.

8

2.4 Extracting Constraints for Learning

We analyzed domain knowledge to identify facts and relationships that can constrain the learning pro-
cess. The domain knowledge usually provides much more information than can be captured simply
by selecting features. For example, DRule 1 tells us not only that the project of the current document
is a good feature for predicting the project of the current episode, but also that they are positively
correlated. If the project of the current document is Project12, this should increase the probability that
the project of the current episode is also Project12. As another example, consider the West Nile Virus
problem. The probability of being bitten by an infectious mosquito increases monotonically with
the number of infected mosquitos and decreases monotonically with the number of potential hosts
(people, horses, birds) for the mosquito byte. We formalized machine learning knowledge for extract-
ing constraints (mutual exclusion, monotonicity, saturation, synergy, anti-synergy) from the domain
knowledge. Futhermore, we have extended existing learning algorithms for Bayesian Networks and
PRMs to incorporate these constraints.

2.5 Combining Hand-Crafted and Learned Knowledge

Learning establishes quantitative relationships between the chosen features and the targets subject
to the constraints. The learned relationships are combined with the domain knowledge to predict
the targets for new cases. We validated the knowledge resulting from learning by checking it for
consistency with the hand-crafted domain knowledge. Contradictions are detected and resolved either
by deleting the hand-crafted rule (if the learned rule has high empirical support) or by deleting the
learned rule. Conflicts are typically resolved by first using the hand-crafted rule to suggest additional
features for learning and subsequently, repeating the learning step. To combine hand-crafted and
learned knowledge, we have extended recent work by ourselves and others on PRMs and Bayesian
networks to reduce the gap between representations.

2.6 Software Development for Testing and Evaluation

We have developed software to support our investigative efforts. Computer programs, written princi-
pally in Java, C#, and Python, have been used to test and validate our hypotheses. Software develop-
ment cycles are consistent with the dates indicated for our deliverables.

3 Results and Discussions

In this section, we provide a detailed overview of the results we have obtained as well as the issues
and problems we have addressed and encountered during the course of the research effort.

3.1 Knowledge Representation for Efficient Learning

Current knowledge representation and reasoning (KRR) systems cannot adequately support learning
in data-sparse domains. Figure 3 shows the standard architecture for a KRR system. The domain

knowledge is represented in declarative form (typically as a combination of an ontology, a set of facts,
and a collection of rules). This knowledge is processed by an inference engine to solve problems.
Notice that there is no way to incorporate training data into such a system.

Figure 4 shows the standard architecture for machine learning (ML) systems. Raw data is prepro-
cessed by a feature extraction subsystem to produce training examples expressed as vectors of feature
values. The feature extraction system is typically an ad hoc, hand-crafted program, although some
data mining systems provide a higher-level programming language for defining feature extraction pro-
cedures. The training examples are then processed by a general purpose machine learning algorithm
which outputs the learned knowledge in some form (typically a neural network, decision tree, set of
decision rules, or Bayesian network). This output structure is then interpreted by an inference engine
to solve problems. Note, however, that this inference engine tends to be much simpler than the in-
ference engines of KRR systems, since it typically does not need to perform any search or complex
inference. Also note that there is no way to incorporate knowledge into the architecture.

A natural question that arises is the following: Why not change the representations of ML systems
so that they have the same form as the representations employed in KRR systems? This has been the
line of research pursued in the Inductive Logic Programming (ILP) community {31]. However, there
are two problems with this approach. First, the KRR representations are too expressive to support
efficicnt learning. There is a direct relationship between the expressive power of a representation and
the amount of training data needed to learn in that representation. Simple boolean conjunctions over
r variables can be accurately learned from approximately 10n examples. But arbitrary boolean for-

Raw Data

Feature
Extraction

Training Data

Learning
Algorithm

Domain Knowledge
g Learned Knowledge

Inference
Problems ———>| L~ Solutions Problems Inference

Engine Engine

» Solutions

Figure 3: Standard architecture for KRR systems Figure 4: Standard architecture for ML systems

10

mulas over n variables appear to require exponentially-many examples. KRR representations typically
include rich subsets of first-order logic, and these would require astronomical numbers of examples
for learning. ILP researchers have had to find various ways of constraining their representation lan-
guages and search algorithms to make learning feasible, but these constraints are often artificial and
unconnected to underlying domain knowledge [29]. Second, KRR inference engines presume that the
knowledge given to them is correct. ML inference engines, in contrast, must treat the (learned) knowl-
edge given to them as only approximately correct. This has led ML researchers to adopt probabilistic
inference engines and ensemble methods [16], both of which can recover from errors in the learned
knowledge.

We have addressed the issue of finding a suitable representation to support efficient learning in
two ways. First, we extracted and exploited features and constraints from the hand-crafted knowledge
and incorporated them into ML algorithms. The advantage of this approach is that it works with
existing ML algorithms and inference engines, whose representations are well-suited to learning. In
the propositional case, we have extended fitting algorithms for Bayesian networks so that they can
accept a wide range of constraints [1, 40]. We will postpone the discussion of how these constraints
are incorporated into machine learning algorithms to Section 3.4.

Second, we designed a new first-order language (and an associated learning algorithm) that we
believe will enable the modeler to directly express the domain knowledge in such a way that it can
be employed directly in learning, rather than needing to be translated into propositional form and fed
to existing ML algorithms. The language is called the First-Order Conditional Influence language
(FOCI). FOCI is built around standard entity-relationship (ER) models, which allows the user to ex-
press the objects, attributes, and relations of the domain. In addition FOCI also supports the expression
of probabilistic influences (a form of constraint) between attributes in the ER-model [34, 35]. Our
language extends probabilistic relational models (PRMs [22]) which are themselves probabilistic rep-
resentations most similar to the first-order representation languages employed in KRR systems. FOCI
supports qualitative constraints such as monotonicity, saturation and synergies. The primary goal in
the language design was not to come up with the most expressive language but to design the most
useful and tractable knowledge representation tool suitable for efficient learning.

3.1.1 First-Order Conditional Influence (FOCI) Language

Domain knowledge can be expressed in terms of FOCI statements. Each FOCI statement has an
IF-condition which is a conjunction of literals, which when true, defines a set of random variables
called “influents” (these are the parents of a random variable in the Bayesian network jargon) that
infuence a target variable. The IF-condition generalizes the idea of path expressions in PRMs and
makes explicit the difference between logical and random variables that is implicit in Bayesian Logic
Programs (BLPs) [28]. The domain expert is assumed to know the structure of the ER diagram while
(s)he writes down the FOCI statements. Each FOCI statement has the form:

If (condition) then (qualitative influence)
where condition is a conjunction of literals, each literal being a predicate symbol applied to the ap-

propriate number of variables. Usually, the conditions are used to identify the objects that participate

11

Course oo o @
Course |

Takes(S,C)

' Student
Student | R :

Figure 6: ER Diagram annotated with hyper-arcs
for the student satisfaction example

Figure 5: An Example of ER diagram

in the qualitative influence. A (qualitative influence) is of the form X,..., X Q;nf Y, where the X;
and Y are of the form V.a, where V is a variable in condition and a is an object attribute. This state-
ment simply expresses a directional dependence of the resultant Y on the influents X;. Associated with
each FOCI statement is a conditional probability function that specifies a probability distribution of
the resultant conditioned on the influents, e.g. P(Y|X7,...,X;) for the above statement. Consider for

example the FOCI statement,
1f {Person(p)} then p.diettype Qinf p.fitness

which indicates that a person’s type of diet influences their fitness level. There is an entity Person and
diettype and fitness are two attributes of Person. As can be seen, the influent and the resultants
are of the form Object .attribute. Also, the condition is used to determine the type of the variable
p, which in this case is a Person. The conditional probability distribution P(p.fitness | p.diettype) as-
sociated with this statement (partially) captures the quantitative relationships between these attributes.

In general, there are several attribute instances that satisfy the IF-condition, and each such tuple has
some influence on the target variable. Since there can be a variable number of such instance tuples, we
need a way to combine their influences in an efficient manner. Our language allows both aggregators
used in the probabilistic relation model literature and combining rules (such as noisy-OR) to compactly
specify such joint influences. In addition, we can combine the effects of different FOCI statements on
a single target variable using combining rules. This makes it possible to succinctly parameterize a
potentially large Bayesian network where the nodes might have a large number of parents.

Consider the ER diagram in Figure 5. Entity types such as Student and Course are shown in
rectangular boxes. Entities are objects that exist in the world [18]. Each entity has an attribute that
describes the entity. The attributes are shown in ovals. Course has an attribute Diff (which represents
course difficulty) and Student has an attribute Sar (which represents his/her satisfaction level). Note
that we have omitted other attributes like /d, Name etc for brevity. Takes is the relationship between
the entities Course and Student and is represented as a diamond in the Figure 5. Here Takes is a many-

12

Name Student Course Course
John John CS515 CS515
Mary Mary C8516 CS516
Tom Tom CS534 C8534
Student Table Takes Table Course Table

a. A Database for the Student-Course ER Mode!

CEDEER D

b. Ground Bayesian network for the instantiated database

Figure 7: (a) A Database corresponding to the student ER model. (b) “Unrolled” ground Bayesian
Network that is obtained by instantiating the variables of the FOCI statements with the database.

to-many relationship, as a student can take many courses and a course can be taken by many students.
The relationship has an attribute Grade which indicates the grade of a student in a particular course.
In Figure 5, we can write

1f {Student(s), Course(c), Takes(t,s,c)} then
c.diff, t.grade Qinf s.satisfaction.

which means that the satisfaction of a student depends on the difficulty of the course that he took
and the grade he obtained in that course. This corresponds to annotating the ER diagram with hyper-
arcs as shown in Figure 6.

This FOCI-annotated ER diagram can be “unrolled” to obtain an equivalent set of bayesian net-
works. To illustrate the point, consider Figure 7(a) which shows a part of the database (the entire
database is not presented). There are three Courses and three Students. The relationship Takes con-
tains a tuple for each Student-Course pair.! Figure 7(b) shows the ground bayesian network corre-
sponding to the FOCI statement instantiated with values from the database. The instantiation of the
Takes relationship is represented as Ty dentcourse- FOr instance Ts515 represents the zakes relationship
between John and CS515. As can be seen, the instantiated values of the influents and the resultants are
the random variables in the ground bayesian network.

This example provides an insight into the semantics of the language. We could imagine each
attribute of each object in the entire database to be a node of a giant bayesian network and the FOCI
statements specify the arcs in the bayesian network i.e., the parents of a particular node is determined
by the conditions of the FOCI statement. In this case, the condition is used to select the correct
student — course pair from the database. In our language, we restrict the conditions to conjunctions
of predicates as our primary goal is not to design the most expressive language but to design the most

INote that each student takes only one course in this example. We can also handle cases in which a student can take
more than one course.

13

useful and tractable one. Each satisfaction node in the Bayesian network will have a conditional
probability distribution, P(sat | c.diff, t.grade).

FOCI makes it easier to convert hand-crafted domain knowledge into a representation suitable
for learning. Given a fixed domain of objects and a database of facts about those objects, FOCI
statements define Bayesian network fragments over the object attributes. FOCI statements capture the
same kind of influence knowledge as in PRMs [22], BLPs [28], and DAPER models [25], with some
differences. Unlike PRMs, which only allow path expressions, the conditions in FOCI statements can
express arbitrary conjunctions of literals. In BLPs, the conditions are not syntactically separated from
the influents. DAPER models attach arbitrary first-order conditions to the Bayes net arcs. FOCI not
only restricts the conditions to conjunctions of literals, but also attaches them to hyper-arcs. We have
used FOCI statements to express several pieces of useful domain knowledge in the Task-Based User
Interface domain, the West Nile Virus domain, and an additional domain, the Grasshopper domain.
The language has been found to be sufficiently powerful to capture the relevant domain knowledge
in these domains. FOCI can also succinctly express most of the examples in a variety of domains
considered in the statistical relational learning literature.

With relational probabilistic models, it is possible to describe a generalized conditional probability
distribution in which a particular random variable (the “target”) is conditioned on a set of parent
variables in such a way that when the model is converted to ground form (“unrolled”), the number
of parent nodes varies from one instance of the target variable to another. For example, the size of a
population of mosquitos depends on the temperature and the rainfall each day since the last freeze. In
one location, there might have been 19 days since the last freeze whereas in another location, there
might have been only 3 days (see Figure 8(a)).

There are two main approaches to deal with this “multiple-parent” problem: aggregators and com-
bining rules. An aggregator is a function that takes the values of the parent variables and combines
them to produce a single aggregate value which then becomes the parent of the target variable. In
the mosquito problem, we might define the total temperature and the total rainfall as aggregate vari-
ables. These are well defined for any number of parents, and they can be computed deterministically
(shown as dashed lines in Figure 8(b)). The population node then has only two parents: TotalTemp
and TotalRain.

The second approach to the multiple-parent problem is to have each parent or a small set of related
parents produce a different child variable, and then combine the different child variable values using
a deterministic or stochastic aggregating function. In the above example, the mosquito population
of each day may be made a random function of a single temperature-rain pair and the populations
from each day may be combined into a single value through a deterministic (e.g., max, min) or a
stochastic (e.g., random choice) aggregating function (Figure 8(c)). The advantage of this method is
that it can capture interactions between the Temp and Rain variables that are lost when temperature
and rain are aggregated separately. In effect, the different days are “voting” about the probability of the
mosquito population. This approach is formalized using “decomposable combining rules,” e.g., noisy-
Max, noisy-Min, or mean, which express a conditional probability distribution such as P(Pop|Temp1,
Rainl, Temp2, Rain2, ..., Tempk, Raink) as a function of simpler distributions, P(Pop|Temp1, Rain1),
P(Pop|Temp2,Rain2), etc. [36, 27].

14

223722 ==g

(@)

(©)
Figure 8: Three Bayesian networks describing the influence of daily temperature and rainfall on the
population of mosquitos. (a) a network with no aggregation or combination rules leads to a very
complex conditional probability distribution, (b) a network with separate aggregation for temperature

and rainfall, (c) a network with separate prediction of the mosquito population each day followed by a
combining rule to predict the overall population.

As a specific example of using combining rules in the task-based user interface domain, consider an
intelligent desktop assistant that must predict the folder of a document. Assume that there are several
tasks that a user can work on, such as proposals, courses, budgets, etc. The following FOCI statement
says that a task and the role the document plays in that task influence its folder.

1f {task(t), document (d), role(d,r,t) thentidrid Qinf d.folder.}

Typically a document plays several roles in several tasks. For example, it may be the main docu-
ment of one task but only a reference in some other task. Thus there are multiple task-role pairs
(t1,71)s...,(tm,rm), each yielding a distinct folder distribution P(d.folder | t;.id,r;.id). We need to
combine these distributions into a single distribution for the folder variable. We could apply some
kind of aggregator (e.g., the most frequently-occurring task-role pair) as in PRMs [22]. However, it
is easy to imagine cases in which a document is accessed with low frequency across many different
tasks, but these individual accesses, when summed together, predict that the document is stored in a
convenient top-level folder rather than in the folder of the most frequent single task-role pair. This
kind of summing of evidence can be implemented by a combining rule.

In the above example, a combining rule is applied to combine the distributions due to different in-
fluent instances of a single FOCI statement. In addition, combining rules can be employed to combine
distributions arising from multiple FOCI statements with the same resultant. The statement in Fig-
ure 9 captures such a case (see Figure 10 for the unrolled network). The expression includes two FOCI
statements. One statement is the task-role influence statement discussed above. The other statement

15

WeightedMean{
If {task(t), doc(d), role(d,r,t)} then t.id, r.id Qinf (Mean) d.folder.
If {doc(s), doc(d), source(s,d)} then s.folder Qinf (Mean) d.folder.

}

Figure 9: Example of specifying combining rules in FOCI

(2) ()

‘d1folder: id1.folder {d1folder! {d1.folder’
i’é1.fo|de?} {1&1.fo|derj} ! Ayg(T.gradg_)_i:

""" ' Weighted Mean
1.folde ‘!HI%’

Figure 10: Use of Combining Rules to combine Figure 11: An “unrolled” Bayesian Network with
the influences of task and role on the one hand aggregators. The grades in different courses are
and the source folder on the other on the folder aggregated using the Average aggregator.

of the current document.

says that the folder of the source document of d influences d’s folder. By the “source document”, we
mean the document that was edited to create the current document. There can be multiple sources for a
document. The distributions corresponding to different instances of the influents in the same statement
are combined via the mean combining rule (indicated by the keyword “Mean”). The two resulting
distributions are then combined with a weighted mean combining rule.

The other main approach to handling variable numbers of parents—aggregators—has its origin in
database theory [22]. Aggregators are functions that take the values of parent variables and combine
them to produce a single aggregate value. This value then becomes the parent of the resultant variable.
In the student satisfaction example, we could say that the average grade that the student obtains in all
the courses would influence his satisfaction. This would correspond to a FOCI statement,

If {Student(s), Course(c), Takes(t,s,c)} then

Avg([t.score|s]) Qinf s.satisfaction.

Consider the database from Figure 7. Suppose John takes 4 courses {CS515, CS516, CS511,
CS519}. The ground bayesian network when the above FOCI statement with aggregation is instanti-
ated with John is shown in Figure 11. It can be observed that the grades that John has received in these
courses are averaged and this is shown as a dotted node in the network. This would correspond to a
hidden node in the network. This aggregated node serves as a parent for the satisfaction node and each
satisfaction node will have a conditional probability distribution P(Sat|AverageGrade) associated with

16

it.

In the above statement, we are fixing the student and then averaging over the grades of all the
courses that the student took. Instead we may need to average over the courses. For example, we may
define the meangrade of a course as the average of the grades of all the student. The FOCI statement
to define this is,

If {Student(s), Course(c), Takes(t,s,c)} then

c.meangrade := Avg([t.score|c])

which says that we aggregate over all the grades of a course c. We use the | notation as a shorthand
for set formers for the ease of specifying the statements. This notation is used to specify that while
aggregating the instances of ¢, we would initially fix the course. Also, this allows us to move all the
declarations inside the condition.

After designing FOCI, we formulated learning algorithms based on gradient descent to learn pa-
rameters of the FOCI statements from supervised training data. One of the main issues here is that
there are many hidden variables that correspond to the inputs of the combining rules. The algorithms
learn the hidden parameters by minimizing the mean squared error over the training set or by maximiz-
ing the log likelihood of the training data through gradient descent. We obtained encouraging results
in our experiments on synthetic data generated to test the algorithms. In addition, we have developed
and implemented an EM algorithm for learning parameters with the *weighted average’ combining
rule. The EM algorithm starts with some initial values for the FOCI-statement parameters. It then
iteratively estimates the probability that the final label of the target attribute of the example came from
each FOCI statement. These probabilities are treated as fractional counts of the target attribute for
each FOCI-statement, and are in turn used to compute the maximum likelihood estimates of the FOCI-
statement parameters. The EM algorithm is tested on some synthetic and real data sets and is found to
perform as well as the gradient-descent algorithms.

3.1.2 Learning FOCI Model Parameters

We now present algorithms for learning the parameters of the combining rules and the conditional
probability tables (CPTs). For additional details please see [35]. Consider a generic influence state-
ment S;:

If (condition) then X/, ..., X1 9"y,

We assume without loss of generality that each influence statement S; (‘rule * for short) has k influents,
X{ through X,ﬁ (which we jointly denote as X'), that influence the target variable. When this rule is
instantiated or “unrolled” on a specific database, it generates multiple, say »1;, sets of influent instances,
which we denote as X/ .. .Xﬁ,,i. This is shown in Figure 12. In the figure, the instantiations of a
particular statement are combined with the mean combining rule, while the distributions of the different
statements are combined via the weighted mean combining rule. The role of the combining rule is to
express the probability P;(Y|X]...X],) as a function of the probabilities P(Y|X?), one for each j,
where P; is the CPT associated with S;. Since these instance tuples are unordered and can be arbitrary

17

Weighted Mean

Figure 12: Unrolling of FOCI statements

in number, our combining rule should be symmetric. For example, with the mean combining rule, we
obtain:

m;

PyIX) ... X)) = ZP(y|X (1)

If there are » such rules, we need to estimate the conditional probability P(Y|X 11 1--X, +). Since each
rule is distinctly labeled and its instances can be identified, the combining rule need not be symmetric,
e.g., weighted mean. If w; represents the weight of the combining rule, the “weighted mean” is defined

as: . .
YigwiP(Y X ... X))

Zf_l Wi

We write x}'. 1 j = x to denote the values of X’ and y to denote the value of Y. We write 6 xi tO

denote P;(y|x’) Note that in this case we omit the subscnpt J because the parameters 6 do not depend

on it.

We now derive the gradient-descent algorithm for the mean-squared error function for the predic-
tion of the target variable, when multiple FOCI-statements are present. Let the /// training example ¢;
be denoted by (<x,1,1’1 - ,x;’mm x)>Yi), where X} ; p is the 2" input value of the j** instance of the ¥

2)

(Y|X11 k) =

rule on the /' example. The predicted probability of class y on ¢; is given by

my;

ZP()}|XIJ (3)

71 j

Pyler) = ——Z

In the above equation, 7, is the number of rules the example satisfies, i is an index of the applicable
rule, and m; ; is the number of instances of rule i on the I'" example. The squared error is given by

ZZ (I1,y) — P(vlen))*. @)

Ily

Here y is a class label, and y, is the true label of /' example. I (y1,y) is an indicator variable that is 1 if
=y and O otherwise. Taking the derivative of negative squared error with respect to P(y|x') = 8, 1xi>

18

we get

—3E
98,10

I=1

s '|e1>H

Here #(x'|e;) represents the number of occurrences of the tuple x’ in the x-instances of the i rule of
example e;. Gradient descent increments each parameter 6,),; by - ocag in each iteration. After each

iz[U01,y) — PBler))
y
1

iteration, the parameters are normalized so that the distributions are well defined?.

When we adjust the weights of the rules using examples, we preserve the sum of the weights
of the matching rules in each example, so that the overall sum of all weights is preserved, and the
dependencies between the weights are properly taken into account when we take the derivatives. In
particular, the gradients with respect to rule weights are computed as follows:

n
3 fateni - %ZS(ez,r) : ©)
¥

w5

where 8(e;,r) is given by

2(1()’1,)’) Plylen)s }:Pr<y|x,,) ()

mj >
Wy mj j

In the context of probabilistic modeling, it is more common to maximize the log likelihood of the
data given the hypothesis [6]. From the definition of P(y;le;), we can see that this is

L= logP(y/er). ®)
I
Taking the derivative of L with respect to P(y|x’) = 8, x> gives
oL 1 1 & wi
—#(X'|ef ©)
89 Ixz ZP()/I[eI) zll Wy 1,i (|)

As before, the partial derivative of L with respect to the weights is given by

W=Z 8(er,1) ——25(61,") (10)

But now,

5(6[,)

1 1
Pr(yiler) Xiwi mzr; Byilxi,p)- (11)

2Though we did not find it necessary in this problem, another approach would be to reparameterize the objective
function with exponentials, thus incorporating the normalization constraint.

19

We have found that it is important to have separate learning rates for the CPT parameters and for
the combining-rule weights. In particular, the weights should be updated much more slowly than the
conditional probabilities. This is because the each iteration of each example only changes a few of the
CPT parameters, whereas it changes most of the weights.

Expectation-Maximization (EM) is a popular method to compute maximum likelihood estimates
given incomplete data [14]. EM iteratively performs two steps: the Expectation step, where the al-
gorithm computes the expected values of the missing data based on the current parameters, and the
Maximization step, where the maximum likelihood of the parameters is computed based on the current
expected values of the data. We adapted the EM algorithm for two-component mixture models from

Table 1: EM Algorithm for parameter learning in FOCI

I. Take initial guesses for parameters 0 and
weights w;

2. E Step: Vi and for each instantiation of each
rule, compute the responsibilities
g-lg
(1) my e}'\X}A .

Yl’j - Zl,i’.j(”',’)

~Lg ,
MLY%
3. M Step: Compute the new parameters:

. i . Zl.j'ﬂ_;b’vxi
v”x ey|XI - z,v.l.j'ﬂ.jb/vxi

and, if instantiations of at least two rules are
present in /, compute

Vi wi= (2/,171,,-) /n
where n; is the number of examples with two
or more rules instantiated.

4. Continue E and M steps until convergence.

[24]. Consider n rules with the same resultant. Accordingly, there will be # distributions that need to
be combined via a weighted mean. Let w; be the weight for rule 7, such that 3, w; = 1.

The EM algorithm for parameter learning in FOCI is presented in Tablel. In the expectation
step, we compute the responsibility of each instantiation of each rule. The responsibilities reflect the
relative density of the training points under each rule [24]. Note that we consider the weight of the
current rule and the number of instantiations of the current rule while computing the responsibility of
an instantiation of the current rule. In the maximization step, we use these responsibilities to update
the CPTs. We use the responsibilities of the instantiations of an example to compute the weights if at

20

least two rules are instantiated in the example. If an example matches less than two rules, the weights
do not affect the distribution.

For instance, consider the update of P(y; | x'). This is the fraction of the sum of all the responsi-
bilities when ¥ = y; over all Y given x’. Likewise, the weight of the current rule is the fraction of the
sum of the responsibilities of all instantiations of the rule over the number of examples with two or
more rules instantiated.

3.1.3 Experimental Evaluation

In this section, we describe results on the two data sets that we employed to test the learning algo-
rithms. The first is based on the folder prediction task, where we applied two rules to predict the folder
of a document. The second data set is a synthetic one that permits us to test how well the learned
distribution matches the true distribution. We present the results for both the experiments and compare
them with the propositional classifiers.

Folder Prediction in a Task-Based User Interface Domain

We employed the two rules that were presented earlier in Figure 9, combined using the weighted
mean. As part of the Task Tracer project [17], i.e., task-based user interface domain, we collected data
for 500 documents and 6 tasks. The documents were stored in 11 different folders. Each document was
manually assigned to a role with respect to each task with which it was associated. A document was
assigned the main role if it was modified as part of the task. Otherwise, the document was assigned the
reference role, since it was opened but not edited. A document is a source document if it was opened,
edited, and then saved to create a new document or if large parts of it were copied and pasted into the
new document. Since the documents could play several roles in several tasks, the number of (¢,r) pairs
vary>.

We applied Gradient Descent and EM algorithms to learn both the parameters of the CPTs and the
weights of the weighted mean combining rule. We employed 10-fold cross-validation to evaluate the
results. Within each fold, the learned network was applied to rank the folders of the current document
and the position of the correct folder in this ranking was computed (counting from 1). The results are
shown in Table 2, where the counts report the total number of times (out of 500) that the correct folder
was ranked 1%, 2", etc. The final row of the table reports the mean reciprocal rank of the correct
folder (the average of the reciprocals of the ranks). It is clear from the table that all the three relational
algorithms performed very well: almost 90% of the documents had their correct folders ranked as 1 or
2 by all three algorithms*.

To compare these results with propositional learners, we flattened the data using as features the
numbers of times each task-role pair and each source folder appears in each example. We then used
Weka to run J48 and Naive Bayes algorithms on this new dataset. J48 on the flattened data also
performs as well as the relational classifiers while Naive Bayes does a little worse on the same data

30n average, each document participated in 2 {¢,r) pairs, although a few documents participated in 5 to 6 (¢, r) pairs.
4If the algorithm were to rank the folders at random, the score would be around 0.2745.

21

set. All the relational algorithms attributed high weights to the second rule compared to the first (see
Table 3).

Rank | EM | GD-MS | GD-LL | J48 NB
1 349 354 346 351 326
2 107 98 113 100 110
3 22 26 18 28 34
4 15 12 I5 6 19
5 6 4 4 6 4
6 0 0 3 0 0
7 1 4 1 2 0
8 0 2 0 0 1
9 0 0 0 6 1
10 0 0 0 0 0
11 0 0 0 0 5
Score | 0.8299 | 0.8325 | 0.8274 | 0.8279 | 0.797

Table 2: Results of the learning algorithms on the folder prediction task. GD-MS: Gradient descent
for Mean Square error; GD-LL: Gradient descent for log-likelihood; J48: Decision Tree; NB: Naive
Bayes for loglikelihood.

To test the importance of learning the weights, we altered the data set so that the folder names of all
the sources were randomly chosen. As can be seen in Table 3, with this change, the source document
rule is assigned low weight by the learning algorithms with a small loss in the score.

EM GD-MS | GD-LL

Original | Weights | (.15,.85) | (.22,.78) | (.05,.95)
dataset | Score .8299 .8325 .8274
Modified | Weights | (.9,.1) | (.84,.16) (1,0)
data set | Score 7934 .8021 7939

Table 3: Results of learning the weights in the original data set and the modified data set.

Synthetic Data Set

To realistically model a complex real-world domain, it is not enough to have a good classification
accuracy on a single task. To use these predictions in complex inferences, it is important to accurately
model the probability distributions. To estimate the accuracy of the learned model, we constructed a
synthetic data set. The data are generated using a synthetic target as defined by two FOCI statements,
each of which has two influents and the same target attribute. The two influents in each rule have a
range of 10 and 3 values respectively. The target attribute can take 3 values. The probability values
in the distribution of the synthetic target are randomly generated to be either between 0.9 and 1.0

22

o
w
&

o
w

o
[N
o

o
N

o
o

Average error

o

o
o
&

(=)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Training Examples

Figure 13: Learning curves for the synthetic data.
EM: Expectation Maximization; GDMS: Gradi-
ent descent for Mean Square error; GDLL: Gra-
dient descent for log likelihood; J48: Decision
tree; NB: Naive Bayes.

—e—GDMS
—-».~GDMS-True
-4+« GDMS-Fixed

Average Error
o

0 4 T T ~r T T T T —
0 200 400 600 800 1000 1200 1400 1500 1800 2000

Number of Training Examples

Figure 14: Learning curves for mean squared
gradient descent on the synthetic data. GDMS:
learning the weights; GDMS-True: gradient de-
scent with true weights; GDMS-Fixed: gradient
descent with weights fixed as (0.5,0.5).

or between 0.0 and 0.1. This is to make sure that the probabilistic predictions on examples are not
too uncertain. The rule weights are fixed to be 0.1 and 0.9 to make them far from the default, 0.5.
Each example matches a rule with probability 0.5, and when it does match, it generates a number of
instances randomly chosen between 3 and 10. This makes it imperative that the learning algorithm
does a good job of inferring the hidden distributions both at the instance level and the rule level.

We trained the learning algorithms on 30 sets of 2000 training examples and tested them on a set
of 1000 test examples. The average absolute difference between corresponding entries in the true dis-
tribution and the predicted distribution was averaged over all the test examples. Like the folder data
set, we flattened the data set by using the counts of the instances of the parents as features and used
Weka to run J48 and Naive Bayes on this modified data set. The results are presented in Figure 13. All
three relational algorithms have a very low average absolute error between the true and the predicted
distribution. The overlapping of the error bars suggests that there is no statistically significant differ-
ence between the algorithms’ performances. On the other hand, the propositional classifiers perform
poorly on this measure compared to the relational algorithms.

As with the folder data set, we wanted to understand the importance of learning the weights. Hence,
for each learning algorithm, we compared three settings. The first setting is the normal situation in
which the algorithm learns the weights. In the second setting, the weights were fixed at (0.5,0.5). In
the third setting, the weights were fixed to be their true values. The results are presented in Figures
14, 15, and 16. There are three curves in each figure corresponding to the three settings. In all three
algorithms, the first setting (weights are learned) gave significantly better error rates than the second
setting (weights fixed at (0.5,0.5)) (Figures 14,15,16). This clearly demonstrates the importance of
learning the weights. There was no significant difference between learning the weights and knowing

23

0.14 —a—EM

——GDLL 0.12 --w--EMTrue

e

--#--GDLL-True

a0 GDLL-Fheed

Average Error
)

Average Error

0 v T T T —

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Tralning Examples Number of Training Examples

Figure 15: Learning curves for log-likelihood Figure 16: Learning curves for EM on the syn-
gradient descent on the synthetic data. GDLL: thetic data. EM: learning the weights; EM-
learning the weights; GDLL-True: gradient de- True: EM with true weights; EM-Fixed: EM with
scent with true weights; GDLL-Fixed: gradient weights fixed as (0.5,0.5).

descent with weights fixed as (0.5,0.5).

the true weights. This shows that our algorithms effectively learn the weights of the combining rules.

3.2 Task-Based User Interface: Infrastructure and Domain Knowledge

In the domain of task-based user interface, we have developed TaskTracer - a software system de-
signed to help highly multitasking knowledge workers to rapidly locate, discover, and reuse past pro-
cesses they used to successfully complete tasks [17, 41, 3]. The system monitors users’ interaction
with a computer, collects detailed records of users’ activities and resources accessed, associates (au-
tomatically or with users’ assistance) each interaction event with a particular task, enables users to
access records of past activities and quickly restore task contexts. Below we provide diagrams and
examples to illustrate the domain knowledge base we have constructed for the task-based user inter-
face domain. In addition, we give an overview of TaskTracer’s infrastructure illustrating the novel
Publisher-Subscriber architecture for collecting and processing users’ activity data.

Figure 17 shows an ER Diagram describing the relationship between the user and the project
the user is working on, as well as their relationships to tasks, documents, and files. Based on the
dependencies in the ER Model, we constructed the corresponding PERMs. A couple of examples are
shown in Figures 18 and 19. Note that corresponding FOCI statements (discussed in Section 3.1) used
to represent the domain knowledge are also given. Figure 18 expresses the knowledge that the folder
of a source document influences the folder of the document that used the former as a source. Figure 19
simply says that a pair of specific task and role together would tell us something about the sender of
an email message.

Through an extensive data-collection framework, TaskTracer collects detailed observations of user

24

Project

Person

Figure 17: ER Model for TaskTracer

interactions in the common productivity applications used in knowledge work: email, word processing,
spreadsheets, and Internet browsers. At the initial stage of data collection, users manually specify what
tasks they are doing, so that each action of the user (UI event) is tagged with a particular task identifier.
TaskTracer monitors Microsoft Office, Visual Studio, and Internet Explorer applications by installing
NET COM addin objects with the Extensibility and IObjectWithSite interfaces. These addins monitor

If {email(e),task(t) role(e,r,t)} then tid,rid Qinf
e.sender.

If {doc(d),doc(s)source(s,d)} then s.folder Qinfd.folder.

Task Id

Document id

<ro> source(s,d)
Document Folder
Note: Here sender is a foreign key of the Email table that references the person id

Figure 18: TaskTracer PERM Example 1 Figure 19: TaskTracer PERM Example 2

25

MS Word Task.Connect

1
MS Qutlook | Task.Connect i CBT Hook
»| Listener {Win32)
» Port
Task.Connect i (TSP)]
File System
Watcher (NET
PUBLISHER (NED
Windows

Subscriber
Port
(TCP)

Subscriber ... E

Figure 20: TaskTracer Publisher-Subscriber Architecture

Clipboard Hook

i

Microsoft applications as soon as they are launched and are intimately bound to the applications. No
user intervention or shell application is required once TaskTracer is installed. The addins also access
the richer event sets of the Microsoft Office internal Visual Basic for Applications (VBA) compiler.
Using VBA, TaskTracer can monitor a richer event set by working around Microsoft Office COM
limitations. TaskTracer also monitors Windows at the operating system level with such events as
window focus, clipboard and file creation events. To monitor applications and the operating system,
TaskTracer compnents are written in C#, C++, and VB.NET.

TaskTracer separates the user interface and data analysis components from the event collection
components by using a Publisher-Subscriber Architecture (Figure 20). The Publisher collects data
about the user’s activities and disseminates this event data to one or more Subscribers. Each Sub-
scriber can process the event data from the Publisher in a different way. Some Subscribers not only
receive EventMessages from the Subscriber Port but also send EventMessages to the Listener Port.
For example, TaskExplorer (a Ul for task switching described in [17]), sends TaskBegin messages
to the Listener Port every time the user selects a new task. The Publisher-Subscriber architecture of
TaskTracer has several powerful advantages over a monolithic approach. These advantages include the

following:

e Data collection is separated from data analysis and the user interface.
¢ No prejudgments are made about the data schema of the data collected.

e Multiple researchers can work on multiple projects with multiple data schemas that subscribe to
the Publisher without interfering with each other.

26

e Raw event data stored by the Publisher is like a tape-recorder and can be analyzed and even
replayed at a later time.

The separation of the data collection components from the analysis and presentation components al-
lows rapid application development of new software projects by researchers. For example, to create
a new Ul, a researcher only needs to understand the structure of the EventMessage and the use of the
TCP protocol. The ability to send EventMessages simultaneously to many Subscribers allows sep-
arate independent research projects to assemble a suite of applications that can function as a single
application.

We have also run several experiments using the data we collected from TaskTracer. We developed
algorithms that could predict the folder the user is going to need (FolderPredictor [3]) and recognize
user task and email messages (TaskPredictor [41]). In the folder prediction problem, a simple domain
knowledge such as “a user would most likely need to work on recently-accessed folders” is incorpo-
rated into the algorithm in terms of recency weighting (see [3] for more details). The main idea behind
FolderPredictor is that if we have observations of a user’s previous file access behavior, we can rec-
ommend one or more folders directly to the user at the moment he/she needs to locate a file. These
recommended folders are predictions - the result of running simple machine learning algorithms on
the user’s previously observed interactions with files.

From the raw event stream, the main TaskPredictor extracts a sequence of Window-Document
Segments (WDSs). A WDS consists of a maximal contiguous segment of time in which a particular
window has focus and the name of the document in that window does not change. In our approach, a
new WDS is defined to begin when one of the following events happens:

Navigate (Internet Explorer): the browser displays a new webpage;

OsWindowFocus (all applications): a different window gains the focus;

Open (MS Office): the user opens a new file

Saveds (MS Office): the user saves a file under a new name;

New (MS Office): the user creates a new blank document.

TaskPredictor. WDS attempts to make a prediction for each WDS. To do this, it extracts the follow-
ing information from each WDS: the window title, the file pathname, and (for web pages) the website
URL. It heuristically segments these into a set of “words” and then creates a binary variable x; in the
feature set for each unique word. If this word appears in the event, x; is 1, otherwise x; is 0.

TaskPredictor.email does not use the WDS event stream. Instead, it attempts to make a predic-
tion for each incoming email message. It creates a boolean feature for each observed email sender
(the “FROM” field), one boolean feature for each observed set of email recipients (the union of the
“FROM”, “TO”, “CC”, and “BCC” fields), and one boolean feature for each distinct word observed in
the “SUBJECT” field. Note that each set of recipients is treated as a separate feature, so an email mes-
sage sent to {4, B} might have no (true) features in common with an email message sent to {4, B,C}
unless they were from the same person or had the same words in the subject. We did not find that the
words in the email body had any additional predictive value.

We have employed three methods to build TaskPredictor.

27

1. Classification Thresholds. Using a threshold 0, predictions are only made when the posterior
probability exceeds 0. If the cost of prediction error is @, the cost of making no prediction is B,

and the cost of a correct prediction is 0, then the threshold can be setto 6 = 1 — g.

2. Feature Selection using Information Gain. Mutual information is used to select and reduce the
number of features which in turn reduces the complexity of the learned hypothesis. Our exper-
iments show that when the number of selected features is about 200, learning and prediction is

most efficient.

3. Hybrid Naive Bayes+SVM classifier. The Naive Bayes classifier is used to estimate the posterior
probability of the feature vector x. A decision to predict is only made whenever P(x) > 6. After
this decision has been made, the SVM is used to predict the task. Experimental results show
that the hybrid method gives performance equal to or better than the best single method (Naive
Bayes or SVMs).

3.3 Domain Knowledge for West Nile Virus and Grasshopper Domains

In order to gain a deeper understanding of the problems we are faced with and as part of our technical
analysis, we have constructed domain models for both Grasshopper infestation and the spread of the
West Nile Virus. Data for the former was obtained from the Oregon Department of Agriculture and
Oregon Climate Service. We obtained data for the West Nile Virus through an NSF-sponsored project.
Figure 21 shows the UML diagram for the West Nile Virus domain. The diagram shows the entities
as well as the relationships between these entities that are necessary to model the spread of the virus.
Mosquitos from a pool could bite birds, horses, and people. Birds, horses, and people are in turn
associated with the specific location of their habitat.

Figure 22 shows the UML diagram for the Grasshopper domain. Grasshoppers go through three
phases of development: egg, nymph (immature), and adult. Since the development of a grasshopper
from egg to adult is largely affected by the temperature and precipitation, which in turn vary over
the entire year, the UML diagram includes daily temperature ranges (Tmin, Tmax) and precipitation
levels. Figure 23 shows a probabilistic entity relationship model (PERM) for the the Grasshopper do-
main. The model shows in detail the relationships and dependencies between variables. For instance,
the severity of a DrySpell is affected by the maximum temperature Tmax of all of the days that
occur duringl the time interval of the DrysSpell. The severity of the dry spell affects, in turn, the
number of eggs Megg laid by adult female grasshoppers. The number of eggs Megg deposited in the
previous year affects the number of eggs Negg that will hatch into Nymphs in the year that follows.
Variability in the temperature Tmax also affects the severity of a ColdSpell. The grasshopper
eggs are laid in the ground, and their rate of development (and therefore, their hatching date) is deter-
mined by the daily temperature during the EggPhase. Once the eggs hatch into nymphs, the survival
of the nymphs is determined by the severity of the ColdSpells.

Our analyses in these domains have given us opportunities in understanding better the kinds of
domain knowledge that might be exploited for learning with very small training sets. For example,
the prevalence of monotonicity relationships (among several others) in these domains such as that of
grasshopper population and dry spells, and between egg hatching and cold spells have increased our

28

[%

Bite(M,B) Bird Nest
+time +loc(t} +loc
+loc +age (t) L
Rk +inf (t)
[I n I
Mosquito Bite(M,H) Horse Stable
+loc(t) +time +loc({t) +loc

+age (t) +loc +state(t)
+inf (t) n B l

EL 1
Pool Bite(M,P) Person House
+loc +time +loc(t) +loc
+loc +state (t)
| "5 e~ f

Figure 21: UML diagram for West Nile Virus

motivation in finding effective techniques of exploiting them. The language FOCI (Section 3.1) and
the use of monotonicity constraints in Bayesian network parameter learning (Section 3.4) reflect such
efforts.

3.4 Incorporating Constraints in Machine Learning Algorithms

Computer systems constructed with machine learning give the best known performance in many do-
mains including speech recognition, optical character recognition, bio-informatics, biometrics, anomaly
detection, and information extraction. However, it is not correct to view these systems as having been
constructed purely from data. Rather, every practical machine learning system combines knowledge
engineering with data. A critical and time-consuming part of building any successful machine learning
application is the feature engineering, feature selection, and algorithm selection required to effectively
incorporate domain knowledge. One of the reasons this process is so time consuming is that machine
learning tools do not provide very many ways of expressing domain knowledge. In particular, there
are many forms of prior knowledge that an expert might have that cannot be accepted or exploited by
existing machine learning systems. This section discusses one particular form of prior knowledge—
knowledge about qualitative monotonicities—and describes how this knowledge can be formalized
and incorporated into learning algorithms for Bayesian networks.

Researchers in qualitative physics have developed several formal languages for representing qual-
itative influences [9, 30]. Others have shown that these qualitative influences could be usefully in-
corporated into learning algorithms, including the CN2 learning system, decision tree algorithms,
and the back-propagation neural network algorithm [11, 2, 4, 13, 19, 12, 37, 26]. We have chosen
Bayesian network learning algorithms because Bayesian networks already make it easy to express the
causal structure and conditional independencies of a domain. We formalize qualitative monotonici-

29

Day all
+date é"" observed

+Tmin
+Tmax
+Precip

N N N during3
duringl duyring2 L

AdultPhase NymphPhase EggPhase
+start +start +start
+end +engd +end
+Nadult +Nnymph +Negg
+Megg +fadult +fhatch
n 1 1 +Tthreshold
. currgent2 /J\l
Nadult previous current3
observed L
previous Year
year
currentl Jl

Figure 22: UML diagram for the Grasshopper domain

ties in terms of first-order stochastic dominance, building on the work of Wellman [45]. This in turn
places inequality constraints on the Bayesian network parameters and leads naturally to an algorithm
for finding the maximum likelihood values of the parameters subject to these constraints. We show
experimentally that the additional constraint provided by qualitative monotonicities can improve the
performance of Bayesian network classifiers, particularly on extremely small training sets.

3.4.1 Monotonicity Constraints

A monotonic influence, denoted X Qj Y (or X Q; Y), informally means that higher values of X
stochastically result in higher (lower) values of Y. For example, we might expect a greater risk for
diabetes in persons with a higher body mass index.

Our basic question, then, is: how does the statement X Qj Y constrain a probability distribution
P(Y | X)? Although there are various definitions of stochastic ordering [32, 43, 44], we employ first
order stochastic dominance (FSD) monotonicity, which is based on the intuition that increasing values
of X shift the probability mass of ¥ upwards. This leads to the following three definitions.

Defi nition 1 (First Order Stochastic Dominance) Given two probability distributions R and P;, and
their respective cumulative distribution functions | and F,

Pl =y P iff WR) <RY). (12)

Defi nition 2 (FSD Monotonicity) We say Y is FSD isotonic (antitonic) in X in a context C if for all
x1,xp such that x1 > xy (respectively, x|y < x3), we have

PY | X =x1,C) >y P(Y | X =x,C). (13)

Defi nition 3 (Q: , Q; Statements) Suppose Y has multiple parents X1,X,...X,. The statement X;

Q: (Q;) Y means for all contexts (configurations of other parents) C € X X, that Y is FSD

isotonic (antitonic) in X; in context C.

30

during3(Day,EqgPhase)

durifg2(Day,
p duging2(Day,

Egohhase.start <=

during1(Day.DnfSpet l
ay.date <=

severity Jese---enn Eghphase.end

.
’

in H duri KSpeh,

duringd(DrySpel AduhPhase) ' uringS(foldSpell,

uring4(Dry’ luhPha: oq ohPhase) o

T Ex

H Nymﬁwme)

. - N

H LA Start
BN

Tamaman fluring3(Day,
EggPhase)

duringsoldspel,

currentitgar, EggPhadt
cutrent2(Yeat MymGhPhase)

/
.

o currenti(YearAduhPhase) §
S curreni2(Year Nymbhatste)

Nadult

Figure 23: PERM for the Grasshopper domain

The last definition expresses a ceteris paribus assumption, namely that the effect of X on Y holds
for each configuration of other parents of Y.> A simple example of the induced monotonic CPT
constraints is shown in Figure 24.

Inference and Learning

Our approach to learning with prior knowledge of monotonicities is to apply the monotonicity con-
straints to the parameter estimation problem to find the set of parameter values that gives the best
fit to the training data and prior while also satisfying the constraints. This is a form of constrained
Maximum A Posteriori (MAP) estimation.

SKuipers [30] discusses M+ monotonicity, which has an unconditional positive effect across all configurations of the
other parents (i.e., the monotonicity effect is global and cannot be overridden by other influences). Other notations for
%+ include S+ (Wellman [45]) and «<g. (Forbus [20]).

31

P(Y | X) Constraints :
X |y 0 1 2 90 Z 91
0 B0 63 O3 01 >0
1 B 64 0Oy4 Bg+03 > 01 +04
2 B2 05 Oy 01+064 > 0,405

Figure 24: Example of a CPT for a three-valued variable ¥ given a three-valued parent X, with con-
straint X QQL Y. The values for 8, are given by 1 —0, — 6;.

Let G be the graph of a Bayesian network with nodes X7,...,X,. Let 6; denote the parameters
of the CPT for X;. Let 0;; denote the row corresponding to parent configuration j, where j < g;, the
total number of parent configurations for X;. Let 0;; denote the kth scalar in that vector, for k < r;,
the number of states of X;. Finally, let 0 denote the entire collection of parameters. The learning task
involves finding the most probable values for 8 given our fully observed data D and our prior & over
the parameters. In this case, £ is comprised of: (1) EC, the conditional independence assumptions
corresponding to the structure of G; (2) €2, the monotonicity constraints implied by our qualitative
model Q; and (3) ﬁP , the prior over parameter values (e.g., a Dirichlet distribution for each conditional
distribution). Under these priors, the likelihood for 0; factors as

qgi T

Nij
1(9,- satisf. EQ) H H e,‘j}?) (14)

j=lk=1

where](B) is an indicator function that is 1 if B is true and O otherwise (in this case, if 0; satisfies
constraints £€), and N; jk 1s the observed number of examples in which X; = k given parent config-
uration j, plus the appropriate parameter from a Dirichlet prior. This is a constrained optimization
problem which we solve with an exterior penalty method, replacing the indicator function in Equa-
tion 14 with penalty functions that take on large negative values when the constraints are violated.
This approach is prone to problems with convergence, but it is flexible and scales linearly with the
number of constraints, which can be very large in our problems.

Inequality Constraint Margins

When observed data violates a monotonicity constraint, the maximum likelihood parameters are
invariant to the parent configuration. It is debatable whether or not this is the intended or desired be-
havior. The proper solution would be a soft Bayesian prior on monotonicity which is updated with data,
but for computational reasons we choose a simpler strategy. We enforce the strength of monotonicity
by adding a margin to each inequality, replacing Equation (12) by

Py i(l) P, iff VyFl(y)—I-ESFz(y). (15)

We must be careful not to make € too large, or it will strengthen the constraints to a point at
which they have no solution (this is because inequalities are transitive, e.g.: Fi(y)+¢& < Fa(y),Fa(y) +
€ < F3(y),...). The maximum length of such a “chain” of inequalities is the Manhattan distance

32

between the minimum-influence and maximum-influence corers of the CPT: d} = |pa§”"x — palin 1=
II peni(rp — 1), where 7; is the set of parents of X;. For example, if g; = 2, and each parent has 3 states,
we get d{ = 4 inequalities, and our maximum allowable value for € is 0.25. Thus we define a global
margin parameter € and let each node X; have its own €; margin, where €; = €/d]. Theoretically, €
could range up to 1.0, but we find that our current gradient search algorithms have difficulty finding
the feasible region for € greater than 0.2.

3.4.2 Experiments and Evaluation

To test the effectiveness of qualitative monotonicities, we conducted a series of experiments comparing
Bayesian network classifiers learned with and without qualitative monotonicities. We have chosen
five data sets from the UCI ML repository: auto-mpg[39], haberman[23], pima-indian-diabetes[42],
breast-cancer-wisconsin[5], and car[10, 48]. For each of these data sets we constructed the network
(KB structure) using domain knowledge and inserted monotonicity annotations (Q: or Q;) on each
of the network links according to our domain knowledge. This domain knowledge was based only
on common knowledge (e.g., car purchasing) and information from previous publications concerning
these data sets. In particular, we did not examine the data itself. We invested significant research in
this task, and consider our constructed models the beginning of a benchmark corpus for monotonic
learning algorithms.

We had originally chosen ten datasets, but of these, only five had a tractable Bayes net structure.
The others had nodes with 8-11 incoming arcs, making the optimization task very difficult, and yield-
ing low performance on all Bayes net classifiers (since we are relying on our domain knowledge, we
chose to drop these datasets from this particular set of experiments rather than modify the networks in
a way that disagreed with our causal understanding of the domain). We have, however, addressed this
issue of learning from very sparse data using Bayesian networks with incoming arcs ranging from 8-
11 in number. Constrained logistic regression seems a promising technique that addresses the problem
(see Section 3.4.3). Also, we hypothesized that monotonicity constraints would prove more helpful
at finer discretizations. To test this, for each data set, attributes with numeric values were discretized
using Weka’s (the Waikato Environment for Knowledge Analysis [46]) equal-frequency discretization
tool to generate data sets with numbers of bins 2, 3, and 5, yielding a total of 15 data sets for our
experiments. All class variables have two classes. Moreover, all incomplete rows in the data sets have
been removed. To illustrate the point in this report, we will only show annotated knowledge bases and
experimental results for two data sets. Additional details are given in [1].

Figure 25 shows the KB structure and monotonicity constraints for data set auto-mpg. In this
data set, the classification problem is to predict whether a car has low (< 28) or high (> 28) mileage
per gallon (mpg). auto-mpg has 392 instances of which 106 are labeled positive examples. Domain
knowledge suggests that an increase in the number of cylinders (cylinders) usually leads to an increase
in horsepower (horsepwr), displacement (disp), and vehicle weight (weight). An increase in weight
leads to a decrease in mpg. The heavier the vehicle, the slower it accelerates (accel). The larger the
displacement, the greater the horsepower, but the lower the mileage per gallon. Finally, newer models
(modelyear) tend to be more fuel-efficient, as do vehicles imported from (origin) Japan (encoded as
1) as opposed to Europe or those produced in the United States (encoded as 0). These monotonicity

33

Figure 25: auto-mpg Figure 26: pima-indian-diabetes

Initialize the y;j; parameters at the unconstrained MLE point (found simply by counting the observations)
If this point satisfies the constraints, return it

Otherwise, initialize a weight w for the penalty functions

Take steps in the steepest direction of the penalized likelihood until convergence

If we converged outside the feasible region, increase the penalty weight and repeat the previous step.

AN i

Figure 27: Constrained optimization algorithm

relations are encoded as constraints in the network as shown in Figure 25.

Figure 26 shows the KB structure and monotonicity constraints for pima-indian-diabetes. The
task for this data set is to predict the risk of diabetes. This data set has 768 instances of which 268
are labeled positive. Domain knowledge suggests that an increase in each of the triceps’ skin fold
thickness (skin) is expected with an increase in the number of experienced pregnancies (preg), an
increase in age (age), and perceived risk due to pedigree (pedi). The same monotonic relations are
also suggested in body mass index (mass). An increase in preg, pedi, age, skin, or mass increases the
risk of diabetes (class). Most diabetics have high levels of plasma glucose concentration (plas) and
most suffer from high blood pressure (pres) while having low levels of insulin (insu).

We selected an implementation of the L-BFGS® algorithm from the conditional random fields
package Mallet [33] to optimize our penalized objective function. To ensure convergence in the fea-
sible region, the L-BFGS maximization was wrapped in the outer-level algorithm given in Figure 27,
For running experiments, we integrated the learning algorithm with Weka, which allowed us to eas-
ily script learning runs and to run comparisons against other learning algorithms. The algorithms we
analyzed were:

Zero-Regression (ZR) Always picks the mode of the observed distribution of the class variable, with-
out regard to the features.

Naive Bayes (NB) Also known as the simple Bayesian classifier (SBC). Treats the class variable as
the parent in a Bayesian network, with all features as children.

6Limited-memory BFGS, a variation of the the Broyden-Fletcher-Goldfarb-Shanno algorithm (see, e.g., [38, pg.324]).

34

Knowledge-based Bayes (KB) Fit the parameters of a Bayesian network whose structure incorpo-
rates domain knowledge. Parameters are fit by maximum likelihood with a Laplace correction.

Constrained Knowledge-based Bayes (CKB) Same as KB, except that the parameters are fit to max-
imize the posterior probability subject to the inequality constraints induced by the qualitative
monotonicity statements. CKB was run with three different margins, € € {0.0,0.1,0.2}. These
runs are designated CKB0O, CKBO0.1, and CKBO0.2.

To compare the algorithms on each data set, we first randomly split the data set into a test set (1/3 of the
data) and a training set pool (2/3 of the data), stratified by class. Then we performed 50 replications
for each training set size m, for various m from 1 to 50. In each replication, we randomly drew m
elements without replacement from the training set pool, and trained our algorithms on the set. The
resulting fitted networks were then evaluated on the test set. Plots for two of the data sets auto and
pima are shown in Figure 28. In general, the experimental results indicate significant improvement in
performance for networks that exploited monotonicity knowledge over those that did not.

Our hypothesis was that ZR would perform the worst, that Naive Bayes would be the second worst,
that the Knowledge-based networks would come next, and that the networks that combined knowledge-
based structure with monotonicity constraints (CKB) would give the best results. The results indicate
that actually, ZR performs surprisingly well: comparable to or better than NB at small sample sizes
on all data sets. Otherwise, we do see the expected ranking, though at small sample sizes, ZR and NB
frequently tie, as do KB and CKB.

Since our largest training set was of size 50, which we still consider relatively small for models of
the complexity used here, we actually expected to see this ranking extend through more of the tested
sample sizes. One somewhat surprising result was how well NB performed on one data set car (not
shown here but see [1]) at higher sample sizes with discretizations finer than 2 bins. We were also par-
ticularly surprised by the results on the haberman data set, where NB and ZR did very well all the way
through m = 50 (see [1] for additional details). A simple data analysis on the haberman data (2-bin)
using correlation and mutual information revealed that the data set exhibits independence between the
class variable and any one of the three parent attributes. Moreover, the conditional probability tables
reveal that the parameters do not exhibit monotonicity; for example, the chance of surviving given that
the patient is young is high but surprisingly the data also says that the chances of surviving given that
the patient is old is also high. In this case, our assumptions about the structure and monotonicities
were clearly incorrect.

A second hypothesis was that the monotonicity constraints might be incorrect and lead to poor
performance at large sample sizes, particularly with € = 0.2. The plots do show flatter learning curves
for CKB with € > 0, compared to CKB with no margin. However, without margins, CKB is comparable
to or better than KB at nearly all tested sample sizes.

A third hypothesis, as mentioned, was that monotonicity constraints would help more at finer
discretizations. The plots show some support for this; on auto (Figure 28), there is little difference
between CKBO and KB at the 2-bin discretization, and at higher discretizations and with more training
data, CKBO dominates KB. CKBO0.1 on auto shows very good performance at the 5-bin discretization
level. In addition, looking only at lower sample sizes, we observe this effect on the pima (Figure 28)
data set. The results from the remaining data sets do little to support or disprove this hypothesis.

35

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

Zero-regression —+—
Naive Bayes ----*----
Bayes Net ---*---
Constrained BN (margin 0 } g
Constrained BN (margin 0.1) - -
Constrained BN (margin 0.2) ---o--

auto-2bin

Zero-regression ——
Naive Bayes ----x---
Bayes Net -
Constrained BN (margin 0) @
Constrained BN (margin 0.1) -
Constrained BNI (margin 0.2) ---o--

auto-3bin

A

Zero-regression ——
Naive Bayes ----x----
Bayes Net -
Constrained BN (margin 0)
Constrained BN (margin 0.1) -~
Constrained BN (margin 0.2) ---o--

auto-5bin

0.7

0.68

0.66

0.64

0.62 f

0.6 ¥

0.58

0.56

0.75

0.7

0.65 1

0.6

0.55

0.5

0.45

0.4

0.7
0.68

0.66 |

0.64
0.62

0.6
0.58
0.56
0.54

052 +
05 %

i Constrained BN (margin 0)

Zero-regression ——
Naive Bayes ----%---
Bayes Net -

"y Constrained BN (margin 0.1) ---=--

Constrained BN (margin 0.2) --o--

pima-2bin

ra Zero-regression —+—
2 . Naive Bayes ----%---]
Bayes Net -
L Constrained BN (margin 0) g

Constrained BN (margin 0.1)} -~-#--
Constrained BN (margin 0.2) ---o---

pima-3bin

Zero-regression —— |

Naive Bayes ----x---

Bayes Net - 4

. g Constralned BN (margin 0) --g-

Constrained BN (margin 0.1) e o
Constrained BN (margin 0.2) --o--

pima-5bin

Figure 28: Learning curves for auto and pima domains at 3 discretizations, plotting average accuracy
(across 50 runs) against training set size (log scale, 1 through 50).

36

In summary, we have shown a method for using qualitative domain knowledge in the estimation of
parameters for a probabilistic model. The qualitative statements (monotonicity) are natural and easily
specified by domain experts, and they have a probabilistic semantics consistent with a domain expert’s
intuition. We have shown that these semantics are tractable and can effectively constrain probability
distributions, and that the constrained models in many cases generalize from the training set to the
test set better than do unconstrained models. As mentioned previously in Section 3.1, we also want
to additionally address the issue of parameter estimation as part of the multiple-parent problem in the
case where the number of parents in Bayesian networks are bigger than the networks discussed in this
section. Section 3.4.3 describes our work on constrained logistic regression that addresses this prob-
lem.

Data-Free Model Evaluation: Preliminary Results from a Prototype Evaluation

An important principle of machine learning is that the complexity of the learned model must be
adapted to the amount of data that is available. This is normally achieved by defining a nested family
of models of progressively greater complexity and using cross-validation methods to identify which
member of the family gives the most accurate predictions. However, when data is scarce, cross-
validation is not reliable. Hence, we sought to find a data-free method for evaluating whether the
complexity of a model was well-matched to the amount of available data.

We designed a data-free model evaluator that would exploit the expert’s rich domain knowledge
captured by the Bayes net’s full structure. The general idea is to determine, without using the training
data the best Bayes net structure (perhaps a smaller variant of the initial structure) for a given small
number of training samples. The hope is that by starting off from a structure that is the best for a given
small training set size, learning with very few examples would yield better performance than using any
other initial structure.

We designed prototype to test this idea. The prototype was given two network structures. One
contains all of the dependencies that the domain expert provides (the “full structure”). The second
structure is the structure that we wish to evaluate (the “eval structure”). The prototype produces a
learning curve for the eval structure without consulting the training data. It does this by repeatedly 1)
sampling network parameters for the full structure, 2) generating synthetic data based on the sampled
parameters, and 3) creating a learning curve for the eval structure when learning from the synthetic
data. Steps 1-3 are repeated many times and averaged to produce a final averaged learning curve.

We implemented a .NET prototype for a data-free model evaluator that uses a uniform distribution
over CPT parameters. We ran initial experiments on one of the datasets (car) from our UAI 2005
paper [1] on monotonicity constraints. In the experiments, the full structure was the one used in the
UAI 2005 paper and the eval structure was a simple naive Bayes network. The hope was that the
learning curves would be qualitatively similar to the curves in the UAI 2005 paper. The results on this
dataset were somewhat inconclusive. Here is a brief summary of the results. The procedure samples
many network parameter settings and creates a learning curve for each of them and finally averages
these learning curves.

1. The final averaged learning curves exhibit a “crossing point” at 3 training examples. That is, the

37

naive Bayes curve is superior until some number of training examples and then becomes inferior
to the full model structure. In contrast, the experiments reported in UAI 2005 paper show that
the crossing point is at about 10 training examples for the naive Bayes and full model.

2. Looking at the learning curves for individual parameter samplings, we see that while many of
them do show crossing points within 80 training examples (the maximum in our experiments),
many others do not have a crossing point. That is, often either the naive Bayes or full model
dominate the other for all training set sizes up to 80 training examples.

3. Looking at the learning curves for the individual parameter samplings, we see that there is a
wide range of crossing points. This shows that the particular number of examples where one
model is better than the other depends strongly on the particular network parameters, and not
just the structure.

4. Aninformal assessment indicates that even for parameter samplings with about the same Bayes
rate, the crossing points can vary substantially. Thus, information about the Bayes rate and
structure do not seem to be enough to zero in on accurate crossing points.

A drawback of our experiment is that it did not incorporate the monotonicity constraints that we
included in the UAI paper. Those constraints should have caused the crossing point to occur even
earlier than it would have occurred without the constraints. So the observation that the average crossing
point was already very early suggests that our data-free evaluation strategy is not working correctly in
its current form.

On a side note, we invented some computational mechanisms for speeding up the sampling process
by using Bayes net inference. In particular, Bayes net inference can be used to reduce the sampling
effort for computing the error rate of a learned model and the Bayes rate of the target model. These
ideas were not incorporated into the evaluated prototype, but they could help speed up any future
implementation of this approach.

3.4.3 Constrained Logistic Regression

We investigated possible ways to address the problem of fitting a model in which at least one node
in the network has a large number of parents. This is a specific concern in our domain since our
training sets are very small and the number of parameters could explode exponentially. For example,
for discretized bin=5, a node with five parents could easily have a CPT with 5% = 15,625 parameters
to fit. The problem boils down to finding a way to keep the number of parameters from exploding. We
have specifically looked at two techniques: noisy-max and logistic regression. Noisy-max (Henrion
1989) is simply the generalization of noisy-or. Noisy-or allows for the uncertainty that a parent affects
the child, with the assumption that the inhibition of each parent is independent of that of any other
parents. CPTs can then be constructed using only parameters linear in the number of parents £, i.e., it
only requires O(k) instead of O(2*). Logistic regression, on the other hand, describes the log ratio of
class-conditional densities as a linear function of the parents. For example,

p(Cy| X1 =x1,X = x3)

+ B1.X1 + B X 16
1 —p(Ci1X1 =x1,X =x3) Bo +B1X1 + PaXa (16)

log

38

Here, the monotonicity constraints can be implemented as constraints on the signs of the parameters
B;. The qualitative influence Q+ translates to the constraint § > 0 and Q— translates to the constraint
B < 0. The advantage of using logistic regression is that it keeps the number of parameters from
exploding and it allows incorporation of synergistic and anti-synergistic influences. We can take into
consideration the effects of a subset of variables, assuming the domain expert can specify them. For
example,

p(CilX1 =x1,X2 = x2)
1 —p(Ci|X) = x1,X =x2)

log = Bo+PB1X1+B2Xo+B3X1X; (17)

Synergy can simply be translated as a constraint on B3, i.e.,, B3 > 0. If X; and X are anti-synergistic,
then the constraint could be set as B3 < 0, where |B3| > min(B;,B2). When B3 = 0, then we obtain
pure additive effect as in (16). We have chosen this latter approach to address large numbers of parents
and have called it constrained logistic regression.

As discussed in Section 3.4.1 (also see [1]), it has been shown that significant improvements in
classification accuracy with very small amounts of training data (less than 10 examples) can be made
by exploiting qualitative monotonicities. However, when the number of parents N increases (e.g.,
N > 7) the approach reported in [1] suffers from two distinct disadvantages. The number of parame-
ters that need to be estimated and the number of constraints on the parameters required to implement
monotonicity both increase exponentially with N. The former could lead to underfitting hence produc-
ing models that give oversimplified hypotheses, while the latter could indirectly impose practical limits
on the size of the problem that can be solved by a computer due to huge memory requirements. In this
section, we address these limitations by formulating the problem of exploiting qualitative monotonic-
ities in Bayesian network parameter learning as a constrained logistic regression problem. This novel
formulation affords us two major advantages. Parameter estimation can now be viewed as a regression
problem over a set of parameters whose size only grows linearly with the number of parents. More-
over, the number of constraints required to exploit qualitative monotonicity can be shown to only grow
linearly with the number of parents as well.

Clearly, not all constrained logistic regression models address the problems outlined above. To
illustrate our point, we show one model that has practical significance. Restificar and Dietterich [40]
has a detailed treatment and analysis of constrained logistic regression models. In this report, however,
we show only a variant of the logistic regression model in which the number of parameters needed to
learn the conditional probability distributions in a Bayesian network as well as the number of con-
straints required to exploit qualitative monotonicities only grow linearly with the number of parents.
Preliminary experimental results using constrained logistic regression indicate improved accuracy and
performance over the technique discussed in Section 3.4.1, i.e., on Bayesian nets with nodes having
8 — 11 parents. Let us now define the constrained logistic regression model.

Defi nition 1 (M1 r) Let Y be a child variable with ky levels, ky > 2, in a Bayesian network BN with
parents Xy,...,X, where each X; has kx, levels, kx, > 2 for i=1,...,n. Given some configuration

39

¢ ={x1,...,x,), define
1og§%§%cizﬁoj BTG = 14 B 0 =]+t
BT X = 14+ By 11X = kx,] for j=0,....ky—2 (18)

Also, let the following set of constraints hold
1. ForeachparentX;, i=1,...,nand j=0,... ky—1

Xi X; X; Xi
Bk.\;j z B(kx,.—l)j > 2P 2 Blj 20 (19)

2. For each pair (j—1),j, where j = 1,...,ky =2

BO(j—l) BOJ

X X,
-y = B

v

Bk\lj 1 Z BMIJ
X, X,
Pij-ny = By

A’" X"
Ber, - 2 Biy, (20)

The conditional distribution in the model is estimated by using the parent levels of the random
variable. Here, we also estimate the conditional distribution by estimating ky — 1 logistic functions
and then subtract the values of the estimated adjacent logistic functions to compute the conditional
distribution of Y given a parent configuration. Definition 1 expresses the log odds ratio between
the cumulative conditional probabilities P(Y > j|c) and P(Y < j|c) as a linear function of the levels
of the parent variables Xj,...,X,. Such formulation allows one to model the contribution of each
level of X; to the log odds ratio via the B parameters. Mcyr also allows the expression of synergistic
and anti-synergistic influences where terms that interact are simply added to the linear function. In
addition, the number of constraints Nc for model Mcyr is linear in the number of parent levels since
Ne=n+30(kx,— 1)+ (ky = 1) X7 (kx;—1) = n+ky 3J_, (kx,—1). The number of P parameters,
N, is also lmear in the number of parent levels, Ng = (ky —1)[1+ X[_;(kx;—1)]. The following
theorem states that the constraints we impose on the 3 parameters of Mg are sufﬁCIent for first-order
stochastic dominance. The proof of the theorem is given in [40].

Theorem 1 Let Y be a child variable with ky levels, ky > 2, in a Bayesian network BN with parents
Xi,...,X, where each X; has ky, levels, i=1,...,n. If Mcrr is the constrained logistic regression
model, Q+ the qualitative influence of each Xjon Y, then Y is FSD monotonic in X;.

40

To evaluate our model, we have performed several experiments. We describe the experimental setup
and preliminary results below.

Preliminary Experimental Results

We conducted a series of experiments using the same setup and included the same datasets de-
scribed in Section 3.4.2. We used a total of ten datasets. The additional five datasets were the previ-
ously discarded “large” datasets from the experiments in Section 3.4.2. The networks for these datasets
have nodes with incoming arcs that number between 8 — 11, i.e., networks which were not well ad-
dressed by the previous method. In addition to the algorithms used in the previous experiments, the
following constrained logistic regression algorithms were added:

e ZLR(B1,B2): constrained logistic regression without Laplace correction using B; and B, margins
e ZLN: ZLR with no margins
o CLR(B1,B2): constrained logistic regression with Laplace correction using B; and B2 margins

e CLN: CLR with no margins

By and B, enforce inequality margins for constrained logistic regression in the same way that the € in
Equation (15) does for the previous technique. Assuming a parent variable X; with levels 0, 1,2, the 3;
margin is a constraint placed upon the § parameter associated with the indicator function I[X; = 1] in
Equation (18). When X; changes value from 0 to 1, we want the sum of the Bs on the right-hand side of
Equation (18) to increase by at least ;. In addition, when X; changes value from 1 to 2, we want the
the sum of the s on the right-hand side of Equation (18) to increase by B,. The plots for the datasets
auto and pima are shown in Figure 29. Plots for three of the datasets (postop, housing, and nursery)
with networks that have nodes with number of parents ranging from 8 — 11 are shown in Figure 30.

Preliminary results indicate that constrained logistic regression can significantly improve average
classification accuracy over the previously reported technique by Altendorf et al. [1]. These are sup-
ported by plots shown in Figure 29 and Figure 30. Except for the nursery dataset in which Naive
Bayes is dominant and at lower discretizations (bin = 2) in Figure 29 in which Constrained BN (CBN)
is better than all the other algorithms, constrained logistic regression appears to be the dominant algo-
rithm. However, there seems to be no clear specific variant (i.e., with different margins) of constrained
logistic regression that consistently performs well across the ten datasets. There is, however, a marked
difference between using variants of CLR and ZLR. ZLR (including ZLN) appears to perform better on
“large” datasets than on datasets whose networks have parents that number less than 8. The opposite
can be observed about CLR and CLN. We are currently running additional experiments to test other
techniques that would allow us to automatically determine the best choice for the specific variant of
the contrained logistic regression algorithm under conditions of sparse training data.

3.5 Publications

The following papers and technical reports have been produced either in part or with full support of
the KILEARN research grant.

41

0.9

A s

ool s

oal

s a o o
auto-2bin

045 .-

04

0.35

03

Zero-regression —-~+— |

=R

Zero-regression

Naive Bayes -
Bayes Net -+
Ci

Nalve Bayes

2ero-regression ——+—

0.9

0.4

Zero-regrizsgion —+—

Naive Bayes ---x--—-
Bayes Net™~-x -

auto-5bin

045

. 2ero-regression —o—

Naivo Bayeso-

pima-5bin

Figure 29: Learning curves using constrained logistic regression for auto and pima domains at 3
discretizations, plotting average accuracy (across 50 runs) against training set size (log scale, 1 through

50).

42

08

0.5

0.4

0.3

0.2

0.1

0.2

0.75

LR (0,025) —v—
ZLR (10,025) --vv---

Bayes Net -
CLN -

ZLR (20,025) o

0.25

Zero-regression =——+—
Naive Bayes
Bayes Net

CLN

ZLN
CBN(0)
CBN(0.1) ~
CBN
CLR
CLR
ZLR
ZLR

20,0:25
10,0.25
20,0.25) -

oV

0.2
10,0.25 i e

housing-2bin

e e W

06

0.55

rx“'.

et il

ZLR{20,0.25) -0

Zero-regression —+——

e
"*,.-X'

Zero-regrassion ——+—

Naive Bayes ---x-- Naive Bayes ---x
Bayes Net 05 F Bayes Net - 4

CLN CLN -

ZLN 2N -

L CBN (0 4 CBN (D) -
CBN (0.1 CBN (0.1
CBN (0.2 04} CBN (0.2
CLR{10,0.25 CLR (10,625
CLR {20,0.25) —-w— oo LR (20,0.25
ZLR(10,0.25) ---v--- - TEIpAet otees AL o5

N ZLR (20,025) -0 03 ZLR (20,026} -

nursery-2bin

nursery-3bin

Figure 30: Learning curves using constrained logistic regression for postop, housing and nursery
domains at 2 discretizations, plotting average accuracy (across 50 runs) against training set size (log

scale, 1 through 50).

43

3.5.1
1.

3.5.2

3.6

Conferences and Workshops

A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, M. Li, and J. L. Herlocker.
Tasktracer: A desktop environment to support multi-tasking knowledge workers. In Proceedings
of the 2005 International Conference on Intelligent User Interfaces (IUI 2005), San Diego,
California, January 2005.

Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from sparse data
by exploiting monotonicity constraints. In Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence (UAI 2005), Edinburgh, Scotland, July 2005.

Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan Fern, and An-
gelo Restificar. Learning first-order probabilistic models with combining rules. In Proceedings
of the 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, Au-
gust 2005.

J. Shen, L. Li, T. Dietterich, and J. Herlocker. A hybrid learning system for recognizing user
tasks from desktop activities and email messages. In Proceedings of the 2006 International
Conference on Intelligent User Interfaces (IUI 2006), Sydney, Australia, January 2006.

X. Bao, J. Herlocker, and T. Dietterich. Fewer Clicks and Less Frustration: Reducing the Cost of
Reaching the Right Folder. In Proceedings of the 2006 International Conference on Intelligent
User Interfaces (1UI 2006), Sydney, Australia, January 2006.

Technical Reports

Sriraam Natarajan and Eric Altendorf. First-Order Conditional Influence Language. Technical
Report CS05-30-01, Oregon State University, School of Electrical Engineering and Computer
Science, 2005.

Angelo C. Restificar and Thomas G. Dietterich. Exploiting Monotonicity via Logistic Regres-
sion in Bayesian Network Learning. Technical Report CS06-30-01, Oregon State University,
School of Electrical Engineering and Computer Science, 2006.

Online Materials

More details about the conference papers, technical reports, and software (executable binaries) that
were produced as a result of this project (either in part or with full support from this grant) can be
found at the following website:

http://web.engr.oregonstate.edu/ " tgd/ki-learn

44

4 Summary and Conclusion

Our goal in this research effort was to develop a new methodology, called KI-LEARN (Knowledge
Intensive LEARNIing), that combines domain knowledge and sparse training data to construct high-
performance systems. This technical report gave an overview of the major results we have obtained
through the KI-LEARN research grant:

e We designed and implemented a language called FOCI (First-Order Conditional Influence) for
expressing objects, relations, and attributes relevant to learning. Our language extends prob-
abilistic relational models (PRMs), which are the probabilistic representations most similar to
the first-order representation languages employed in KRR systems. A distinct feature of our
language is its support for explicit expression of qualitative constraints such as monotonicity,
saturation, and synergies. The primary goal of the langnage design was not to come up with the
most expressive language but to design the most useful and tractable knowledge representation
tool suitable for efficient learning.

o We developed learning algorithms for learning the parameters of combining rules in FOCI. These
combining rules are significantly more expressive than aggregators in PRMs. They can be com-
bined with aggregators to capture probabilistic relationships involving variable numbers of par-
ent nodes in a bayesian network.

e We analyzed several domains and represented them using FOCI and PRMs. This analysis
showed that FOCI has sufficient expressive power to capture all of these domains. In addition,
it showed that qualitative monotonicity constraints arise in many domains.

o We developed algorithms for learning with qualitative monotonicity constraints. One algorithm
learned Bayesian network conditional probability tables with the standard parameterization. The
other algorithm expressed the conditional probability distributions as logistic regression func-
tions. We experimented with two methods for enforcing the constraints: (a) penalty functions
and (b) using modern constrained optimization packages. Our results show that incorporating
monotonicity constraints often improves the speed and accuracy of learning.

In this report, we also described the models we constructed for our testbed domains and gave a
description of the infrastructure we built for the task-based user interface domain as well as further
improvements we made to the software prototype. Finally, we provided a list of research publications
that were produced either in part or solely through the KI-LEARN research grant.

References

[1] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from sparse data
by exploiting monotonicity constraints. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence (UAI 2005), Edinburgh, Scotland, July 2005.

45

[2] Norman P. Archer and Shouhong Wang. Application of the back propagation neural network al-
gorithm with monotonicity constraints for two-group classification problems. Decision Sciences,
24(1):60-75, 1993.

[3] X. Bao, J. Herlocker, and T. Dietterich. Fewer clicks and less frustration: Reducing the cost
of reaching the right folder. In Proceedings of the 2006 International Conference on Intelligent
User Interfaces, Sydney, Australia, January 2006.

[4] Arie Ben-David. Monotonicity maintenance in information-theoretic machine learning algo-
rithms. Machine Learning, 19(1):29-43, 1995.

[5] Kristin P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software, 1:23-34, 1992.

{6] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive Probabilistic net-
works with hidden variables. Mach. Learn., 29(2-3):213-244, 1997.

[7]1 A.Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occams razor. Inform. Proc. Lett.,
24:377-380, April 1987.

[8] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the vapnik-
chervonenkis dimension. J. ACM, 36(4):929-965, 1989.

[9] D. G. Bobrow, editor. Qualitative Reasoning about Physical Systems. MIT Press, Cambridge,
MA, 1985.

[10] M. Bohanec and V. Rajkovic. Knowledge acquisition and explanation for multi-attribute decision
making. In Proc. Intl. Workshop on Expert Systems and their Applications, pages 59-78, 1988.

[11] Peter Clark and Stan Matwin. Using qualitative models to guide inductive learning. In Proc.
International Conference on Machine Learning, pages 49-56, 1993.

[12] H. Daniels, A. Feelders, and M. Velikova. Integrating economic knowledge in data mining algo-
rithms. In Intl. Conf. Soc. Comp. Economics, 2002.

[13] H.Daniels and B. Kamp. Application of MLP networks to bond rating and house pricing. Neural
Computing & Applications, 8:226-234, 1999.

[14] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm (with discussion). Journal of the Royal Statistical Society, B.39, 1977.

[15] E. Densel, F. Guinchiglia, and D. McGuiness, editors. Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and Reasoning, Toulouse, France, 2002.
Morgan Kaufmann.

[16] Thomas G. Dietterich. Machine learning research: Four current directions. Al Magazine,
18(4):97-136, 1997.

46

[17] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, M. Li, and J. L. Herlocker.
Tasktracer: A desktop environment to support multi-tasking knowledge workers. In Proceed-
ings of the 2005 International Conference on Intelligent User Interfaces, San Diego, California,
January 2005.

[18] Ramez A. Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[19] A.J. Feelders. Prior knowledge in economic applications of data mining. In Djamel A. Zighed,
Henryk Jan Komorowski, and Jan M. Zytkow, editors, PKDD, volume 1910 of Lecture Notes in
Computer Science, pages 395-400. Springer, 2000.

[20] K. D. Forbus. Qualitative process theory. In D. G. Bobrow, editor, Qualitative Reasoning about
Physical Systems, pages 85-168. MIT Press, Cambridge, MA, 1985.

[21] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Relational Data Mining. Springer-Verlag, 2001.

[22] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Leaming probabilistic relational models.
Invited contribution to the book Relational Data Mining, S. Dzeroski and N. Lavrac, Eds., 2001.

[23] S.J. Haberman. Generalized residuals for log-linear models. In Proc. 9th International Biomet-
rics Conference, pages 104-122, 1976.

[24] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.

[25] David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic Models for Relational
Data. Technical Report MSR-TR-94-08, Microsoft Research, 2004.

[26] Herbert Kay and Lyle Ungar. Deriving monotonic function envelopes from observations. In Proc.
Qualitative Reasoning about Physical Systems, 1993.

[27] K. Kersting and L. De Raedt. Basic principles of learning bayesian logic programs, 2002.

[28] Kristian Kersting and Luc De Raedt. Bayesian logic programs. In Proceedings of the Work-in-
Progress Track at the 10th International Conference on Inductive Logic Programming, 2000.

[29] Jorg-Uwe Kietz and Stefan Wrobel. Controlling the complexity of learning in logic through
syntactic and task-oriented models. In Stephen Muggleton, editor, Proc. of Int. Workshop on
Inductive Logic Programming, Viana de Castelo, Portugal, 1991.

[30] Benjamin Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowl-
edge. MIT Press, 1994.

[31] N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applications. Ellis
Horwood, Chichester, 1994.

47

[32] E. L. Lehmann. Ordered families of distributions. Annals of Mathematical Statistics, 26:399—
419, 1955.

[33] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[34] Sriraam Natarajan and Eric Altendorf. First-Order Conditional Influence Language. Technical
Report CS05-30-01, Oregon State University, School of Electrical Engineering and Computer
Science, 2005.

[35] Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich, Alan Fern, and An-
gelo Restificar. Learning first-order probabilistic models with combining rules. In Proceedings of
the 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, August
2005.

[36] Liem Ngo and Peter Haddawy. Answering queries from context-sensitive probabilistic knowl-
edge bases. Theoretical Computer Science (Selected Papers from the International Workshop on
Uncertainty in Databases and Deductive Systems), 171:147-177, 1997.

[37] Rob Potharst and A. J. Feelders. Classification trees for problems with monotonicity constraints.
SIGKDD Explorations, 4(1):1-10, 2002.

[38] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
recipes in C: the art of scientific computing. Cambridge University Press, 1988.

[39] R. Quinlan. Combining instance-based and model-based learning. In Proc. International Con-
ference on Machine Learning, pages 236-243, 1993,

[40] Angelo C. Restificar and Thomas G. Dietterich. Exploiting Monotonicity via Logistic Regression
in Bayesian Network Learning. Technical Report CS06-30-01, Oregon State University, School
of Electrical Engineering and Computer Science, 2006.

[41] J. Shen, L. Li, T. Dietterich, and J. Herlocker. A hybrid learning system for recognizing user tasks
from desktop activities and email messages. In Proceedings of the 2006 International Conference
on Intelligent User Interfaces, Sydney, Australia, January 2006.

[42] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes. Using the ADAP
learning algorithm to forecast the onset of diabetes mellitus. In Proc. Computer Applications and
Medical Care, pages 261-265, 1988.

[43] Ryszard Szekli. Stochastic Ordering and Dependence in Applied Probability. Springer-Verlag,
1995.

[44] Linda C. van der Gaag, Hans L. Bodlaender, and Ad Feelders. Monotonicity in Bayesian net-
works. In Proc. UAI-04, pages 569576, Arlington, Virginia, 2004. AUAI Press.

48

[45] M. P. Wellman. Fundamental concepts of qualitative probabilistic networks. Artif. Intell.,
44(3):257-303, 1990.

[46] Ian H. Witten and Eibe Frank. Data mining: practical machine learning tools and techniques
with Java implementations. Morgan Kaufmann, 2000.

[47] Jennifer Orme Zavaleta, Jane Jorgensen, Bruce DAmbrosio, Hans K. Luh, Fredrick W, Kutz, and
Philippe A. Rossignol. Data-driven discovery and interactive development of community level
model of disease transmission: West Nile Virus in Maryland. Technical report, Oregon State
University, Department of Computer Science, 2003.

[48] B. Zupan, M. Bohanec, I. Bratko, and J. Demsar. Machine learning by function decomposition.
In Proc. International Conference on Machine Learning, 1997.

49

