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Abstract 

 

As an increasing number of geostationary satellites fill a limited number of orbital 

slots, collocation of satellites leads to a risk of close approach or misidentification.  The 

ability to detect maneuvers made by these satellites using optical observations can help to 

prevent these problems.  Such a model has already been created and tested using data 

from the Air Force Maui Optical and Supercomputing site.  

The goal of this research was to create a more robust model which would reduce 

the amount of data needed to make accurate maneuver estimations.  The Clohessy-

Wiltshire equations were used to model the relative motion of a geostationary satellite 

about its intended location and a nonlinear least squares algorithm was developed to 

estimate the satellite trajectories. 
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MANEUVER ESTIMATION MODEL FOR GEOSTATIONARY ORBIT 

DETERMINATION 

 

I. Introduction 

 

1.1   Background 

 The first geostationary (GEO) satellite, Syncom 3, was launched on August 19, 

1964.  It transmitted the first television signal to cross the Pacific Ocean when it relayed 

the 1964 Summer Olympics from Tokyo, Japan to viewers in the United States [8].  

While limited in space, the geostationary band has tremendous value for global 

communications and surveillance.  Since the 1970’s, the number of geostationary 

satellites has been increasing at a rate of about 30 per year [12: 1171].  In fact, there are 

currently over one thousand geostationary satellites, and it is estimated that the number of 

10 cm or larger debris objects in the geostationary ring is over two thousand [6: 1319-

1326].  

 Some satellite operators respond to this crowding in the geostationary band by 

collocating multiple satellites in the same stationkeeping box.  This requires very precise 

tracking and control due to the risk of close approaches and collisions.  Furthermore, 

operating satellites in such proximity also creates the risk of misidentification. 

 Well above the effects of atmospheric drag, objects in the geostationary band can 

remain in their orbit for thousands of years [7: 1160].  In order to keep the geostationary 

band relatively clean, the Inter-Agency Space Debris Coordination Committee (IADC) 

requests that end-of-life satellites be maneuvered into a higher graveyard orbit where they 
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pose no threat to operational geostationary satellites.  Nearly 40% of all end-of-life 

geostationary satellites, however, are simply abandoned [9: 1215].  Satellite failure is also 

a concern.  Studies have shown as few as six or seven more explosions in the 

geostationary ring can double the current risk of collision [1]. 

 

1.2   Problem Statement 

Crowding in the geostationary band is increasing the risk of close approaches, 

leading to possible collisions or misidentification.  Both the collocation of a growing 

number of satellites and the inability to remove debris is making the GEO environment 

continually more hazardous.  This risk is further escalated by satellite maneuvers 

unknown to neighboring satellite operators.  Unknown maneuvers cause neighboring 

satellites to vary from their predicted orbits, greatly increasing the risk of 

misidentification. 

 

1.3   Research Objectives 

 The goal of this research was to create a MATLAB algorithm which can detect 

satellite maneuvers given observation data from optical telescopes.  The program 

estimates the time of maneuver, as well as its magnitude and direction.  It then models the 

satellite trajectory, both before and after the maneuver.  The Clohessy-Wiltshire 

equations were used to model the relative motion of a geostationary satellite about its 

intended location, and a nonlinear least squares algorithm was developed to estimate the 

satellite trajectories. 
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II. Literature Review 

 

2.1   Observation Geometry 

 

2.1.1   The Celestial Sphere [4: 6-9] 

When classifying the position of objects in space, it has become a standard to affix them 

to a spherical shell known as the celestial sphere.  This arbitrarily large sphere is centered 

on the center of the earth and is mapped out similar to the earth.  The celestial equator 

lies on the same plane as the earth’s equator, and the rotational axis of the earth intersects 

the celestial sphere at the north and south celestial poles.  A great circle is defined as the 

intersection of the celestial sphere with any plane that passes through the center of the 

sphere.  The paths of the sun and the planets in the sky follow one such great circle called 

the ecliptic.  The point where the ecliptic intersects the celestial equator as the sun travels 

south to north is called the vernal equinox, or the first point of Aries. 

 Similar to longitude and latitude on the earth, positions on the celestial sphere can 

be defined by two angles called right ascension (α) and declination (δ).  Declination 

measures the angle north or south from the celestial equator to the position on the 

celestial sphere.  Similar to longitude, right ascension is measured east or west along the 

celestial equator from the vernal equinox to the point where the great circle containing 

the position of interest and the north celestial pole crosses the equator, as shown in Figure 

2.1.  Thus, any point on the celestial sphere can be classified by its right ascension and 

declination.  
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Figure 2.1: The Celestial Sphere 

 

 

2.1.2   Frames of Reference 

Although right ascension and declination explicitly define the location of an object on the 

celestial sphere, they say nothing about the radial distance from the center of the earth to 

the object.  While it is common for observatories to obtain position data of a satellite in 

terms of right ascension and declination, that information must be converted into a vector 

in some reference frame.  One such frame is the earth centered inertial (ECI) frame.  As 

its name implies, the ECI frame’s origin is on the center of the earth.  The x-axis points in 

the direction of the vernal equinox, and the z-axis lies along the earth’s rotation axis, 

pointing northward.  The y-axis completes the orthogonal, right-handed frame.  In this 

frame, right ascension is the angle from the x-axis around the z-axis according to the right 

hand rule.  Declination measures the angle from the x-y place towards the positive z-axis.  
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 A second commonly used frame of reference is the earth centered-earth fixed 

(ECEF) frame.  Though the ECEF frame has the same origin and z-axis as the ECI frame, 

the ECEF frame rotates with the earth.  While the x-axis of the ECI frame always points 

towards the vernal equinox, the x-axis of the ECEF frame rotates with the earth.  The two 

frames therefore align once a day.  Satellite orbits are more easily specified in the ECI 

frame, but since all ground-based observations are taken on a rotating earth, they are 

usually listed in the ECEF frame.  Consequently, it is often necessary to interchange 

between the two frames using a simple rotation matrix.  

 

 

2.2   Orbital Perturbations 

 

2.2.1   Geostationary Orbit 

The period of a circular orbit, or the time it takes to travel one full loop around the earth, 

is solely determined by a satellite’s altitude.  Satellites at lower altitudes must travel 

faster to stay in orbit, thus, they will have shorter periods.  At an altitude of 35,786 km, a 

satellite will have a period of one sidereal day [13: 232-233].   The satellite is said to be 

in a geosynchronous orbit because its period matches the rotational period of the earth.  If 

a geosynchronous orbit has zero inclination, meaning its orbit is confined to the 

equatorial plane, it is classified as a geostationary orbit (GEO).  A satellite in GEO will 

appear to remain stationary above the equator and can therefore be classified solely by its 

longitude, which ideally remains constant.  Such orbits are ideal for telecommunications 
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since ground-based receiver dishes never have to realign themselves; from their 

perspective GEO satellites remain at a fixed point in the sky. 

 

 2.2.2   Perturbations from Ideal GEO Orbits 

Unfortunately, satellites can never maintain a perfectly geostationary orbit.  Even the 

most precise launch system will always have some uncertainty when inserting the 

satellite into its orbit.  For this reason, satellites will have some sort of onboard 

propulsion system to help nudge the satellite into the correct orbit. 

 Even if a perfect geostationary orbit is achieved, the satellite will not remain in 

such an orbit.  Gravitational effects of the moon and sun, for example, will change the 

inclination of the satellite’s orbit, resulting in perturbations in the north-south directions.  

This must be corrected in the form of stationkeeping maneuvers.  The INSAT-2 satellites, 

for instance, perform a north-south stationkeeping maneuver about 6 times a year [10: 

344]. 

Other sources of orbital perturbations include variations in the gravitational field 

of a non-spherical earth and solar radiation pressure.  These effects vary the eccentricity 

of the satellite’s orbit and result in an east-west drift.  The effect due to solar radiation 

pressure varies with the surface area of the satellite, but on average a correction of about 

0.01 m/s (meters per second) is required per day to counter the east-west drift.  Daily 

maneuvers are generally not necessary, however, as this is a fairly small deviation.  

Instead, east-west stationkeeping maneuvers generally occur immediately after north-

south stationkeeping maneuvers [10: 344]. 
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2.3   Relative Motion 

 

 2.3.1   Applications to Geostationary Satellites 

In order to keep geostationary satellites safely separated, the International 

Telecommunication Union (ITU) has divided the geostationary band into 0.2° longitude 

segments.  This corresponds to an East-West band of about 147 kilometers in which the 

satellite must remain [5: 18].  Crowding in the GEO band has led some satellite operators 

to maintain multiple satellites in the same longitudinal segment.  This is known as 

colocation.  Naturally, colocation imposes very strict stationkeeping requirements.  The 

satellites must remain a safe distance apart while remaining in their 0.2° segment.  In 

some cases, the colocated satellites are controlled by the same ground station, thus they 

must additionally stay within some maximum separation distance so they can both 

receive an uplink signal of finite beam radius [5: 19-20]. 

Several methods exist for maintaining separation between colocated satellites.  

One method is longitudinal separation.  As the name implies, this is achieved by keeping 

a longitudinal difference in the target longitudes of the satellites.  While this will 

theoretically eliminate the chance of collision, separating the 0.2° longitude window in 

half requires much more stringent positioning and stationkeeping [10: 346]. 

A second colocation method is perigee separation.  Although an ideal 

geostationary orbit is circular and has no perigee or apogee, real orbits are never perfectly 

circular.  As such, a GEO satellite will speed up or slow down somewhat as it travels 

around its slightly eccentric orbit.  This results in a diurnal east-west oscillation.  The 
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colocated satellites will have an oscillating separation in the longitudinal direction, as 

well as the radial direction due to their differing elliptical orbits.  Twice a day the 

longitudinal separation will go to zero, and twice a day the radial separation will go to 

zero.  These will occur at different times, however, so the satellites should remain safely 

separated [10: 346]. 

A third method is known as plane separation.  In this case, one or both satellites 

will be given a slight non-zero inclination.  The result is diurnal oscillations in the north-

south direction.  If all other orbital characteristics were equal, pure plane separation 

would result in the separation distance periodically dropping to zero, thus a combination 

of plane separation and one of the other methods must be used.  In fact, it is common to 

use a combination of separation strategies.  For example, a study showed that the safest 

and most economical strategy for collocating the INSAT-2 satellites was a combination 

of the perigee and plane separation methods [10: 346-348]. 

 

 2.3.2   Clohessy-Wiltshire Equations  [16: 80-85] 

Equations governing the relative motion between two orbiting bodies were first derived 

by G. W. Hill in 1878.  When one of the satellites is in a circular orbit, these equations 

can be simplified into the Clohessy-Wiltshire (CW) equations.  Created in 1960, these 

equations of motion can be used as a guidance system for the rendezvous of two orbiting 

bodies [3: 656-658].   This research follows the derivation of the CW equations as shown 

in Wiesel’s Spaceflight Dynamics.  Given in cylindrical coordinates, the relative position 

vector is defined as 

( )0
Tr r r zδ δ δθ δ=
G                                                   (2.1) 
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and the relative velocity vector is given as 

( )0
Tv r r zδ δ δθ δ=
G �� �                                                   (2.2) 

Given the relative position and velocity at some initial time (t0), the equations of motion 

are as follows: 

( ) ( ) ( )0rr rvr t r t v tδ δ δ= Φ +Φ
G G G

0                                           (2.3) 

( ) ( ) ( )0vr vvv t r t v tδ δ δ= Φ +Φ
G G G

0                                           (2.4) 

where 

( )
4 3cos 0 0

6 sin 1 0
0 0 cos

rr

ψ
ψ ψ

ψ

−⎡ ⎤
⎢Φ = −⎢
⎢ ⎥⎣ ⎦

⎥
⎥                                                (2.5) 

( )

( )

1 2sin 1 cos 0

2 4 3cos 1 sin 0

10 0 s

rv

n n

n n n

n

ψ ψ

ψ ψ ψ

inψ

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥Φ = − −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                          (2.6) 

( )
3 sin 0 0

6 cos 1 0 0
0 0 sin

vr

n
n

n

ψ
ψ

ψ

⎡ ⎤
⎢Φ = −⎢
⎢ ⎥−⎣ ⎦

⎥
⎥

s

                                          (2.7) 

cos 2sin 0
2sin 3 4cos 0

0 0 co
vv

ψ ψ
ψ ψ

ψ

⎡ ⎤
⎢Φ = − − +⎢
⎢ ⎥⎣ ⎦

⎥
⎥                                       (2.8) 

In these matrices, ψ  = nt, where n is the mean motion of the satellite in the circular orbit, 

and t is the time since epoch.  Eqs (2.3) and (2.4) thus allow us to find the relative motion 

of two satellites at any time, given the initial relative position and velocity. 
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2.4   Least Squares Approximation 

 

 2.4.1   Principle of Maximum Likelihood [15: 19-21] 

An orbit can be completely defined using only six data elements.  The CW equations 

showed that given the three elements of initial relative position and three elements of 

initial relative velocity, the relative motion of the two satellite orbits can be uniquely 

defined.  A satellite orbit could therefore be determined fairly easily given three 

measurements of right ascension and declination using a ground-based telescope.  

Unfortunately, a fourth measurement of right ascension and declination probably would 

not lie exactly on the calculated orbit because all measurements contain some amount of 

uncertainty.  In fact, it is impossible to determine the exact orbit given a series of 

measurements because they will all have some unknown amount of error.  In 1799, Karl 

Gauss showed that one must instead find the most likely orbit, leading to the Principle of 

Maximum Likelihood. 

 Gauss stated that one can never find the true value, x0, of some state, but must 

instead determine an estimate, x , which maximizes the probability of matching the 

actual state.  Suppose we have N independent measurements of the state, xi, each with a 

standard deviation, σi.  Given these measurements, the joint probability of having 

obtained a correct estimate is given by the Gaussian distribution 

( ) ( ) ( )2
12

2
11

2 exp
2

N NN
i

i i
ii i

x x
P x π σ

σ
− −

==

⎛ ⎞−⎡ ⎤
= −⎜⎢ ⎥ ⎜⎣ ⎦ ⎝ ⎠

∑∏ ⎟
⎟

                                (2.9) 
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We can then find the best estimate, x , by maximizing this probability distribution.  This 

is done by minimizing the exponent, or solving the following equation: 

( )2

2
1

0
2

N
i

i i

x xd
dx σ=

−
=∑                                                    (2.10) 

Minimizing the squared term in the exponent gives the procedure its name:  Method of 

Least Squares. 

 

 2.4.2   Linear Least Squares [14: 67-70] 

The method of linear least squares uses a series of observations, zi, to estimate the state, 

x, of a system.  We begin with knowledge of the state dynamics: 

( ) ( ) ( )0 0,x t t t x t= Φ                                                  (2.11) 

Linear least squares gets its name because we assume the observations are linearly related 

to the system state by the following formula: 

( ) ( )i i i i iz t H x t e= +                                                   (2.12) 

where Hi is a matrix relating the observations, z, to the state, x, and ei is the unknown 

error in the observations.  Recalling from Eq. (2.11) that the state at any time can be 

written in terms of the initial state, we can rewrite Eq. (2.12) as 

( ) ( )0i i i iz t T x t e= +                                                  (2.13) 

where  = .  The final necessary input is the covariance, QiT iH Φ i, of each observation.  

This is a property of the observing instrument that gives an indication of the instrument’s 

level of precision.  If the set of observations was taken with multiple instruments, the 

covariances will serve to give more weight to the observations taken with the more 

precise instruments. 
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 It is common to assemble the required information as follows: 

1

2

N

z
z

z

z

⎛ ⎞
⎜ ⎟
⎜ ⎟≡
⎜ ⎟
⎜ ⎟
⎝ ⎠

#
                                                               (2.14) 

( )
( )

( )

1 1 0

2 2 0

0

,
,

,N N

H t t
H t t

T

H t t

Φ⎛ ⎞
⎜ ⎟Φ⎜≡ ⎜
⎜ ⎟⎜ ⎟Φ⎝ ⎠

#
⎟
⎟

⎟
⎟

                                                (2.15) 

1

2

0 0
0 0

0 0 N

Q
Q

Q

Q

⎛ ⎞
⎜ ⎟
⎜≡
⎜
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                                        (2.16) 

We can then calculate the covariance of the estimated state: 

( ) 11T
xP T Q T

−−=                                                    (2.17) 

Finally, the estimated state is given by 

( ) ( )1
0

T
xx t P T Q z−=                                                  (2.18) 

 

 2.4.3   Nonlinear Least Squares [15: 74-81] 

In many cases, including the subject of this thesis, the relationship between the 

observations and the state being estimated is not linear.  These nonlinear cases require a 

different method of solution.  Rather than simply solving for the estimated state, we must 

make a guess at some reference state, refx , determine how well the observations match 
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this reference state, and calculate a correction, xδ , to the reference state.  We then add 

this correction to the reference state and iterate until we believe the reference state has 

converged on the true state. 

 We begin with the assumption that variations in the system dynamics are linear, 

or can at least be approximated by a linear function.  Additionally, any correction to the 

initial state can also be linearly propagated in time:  

( ) ( ) ( )0, 0x t t t x tδ = Φ δ                                            (2.19) 

We can write the nonlinear observation relation as follows: 

( ) ( )( ),i i i iz t G x t t=                                                 (2.20)  

The observation relation can be linearized by solving for the error in the observations.  

Recall that a perfect instrument would make a perfect observation, , of the true state, 0z

0x .  A real instrument, however, will observe imperfect data, , resulting from an 

imperfectly observed state, 

z

x .  The instrument error is then given by 

( ) ( )
( ) ( )

( )

0

0

0

, ,

,

e z z
G x t G x t

G x x t G x t
G x t
x

δ

δ

0 ,

= −

= −

= + −

∂
≈
∂

                                   (2.21) 

Keeping a similar form to linear least squares, we can rewrite this as 

( ) ( )( ,i i ref i i
G )H t x t t
x

∂
≡
∂

                                               (2.22) 

where  is the linearized observation relation.  The estimated reference state can be 

compared to the observations by calculating the residual: 

iH

( )( ),i i ref i ir z G x t t= −                                            (2.23)  
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The residuals therefore give an indication of how close the reference state is to the true 

observed state, and the goal of this process is to minimize the residuals by applying 

corrections to the reference state.  In fact, the residuals are related to the state correction 

as follows: 

( )
( ) (
( )

0

0

,
i i i

i i

i

r H x t

H t t x t

T x t

δ

δ

δ

≈

= Φ

=

)0                                           (2.24) 

Determining the state correction now becomes very similar to the method used in linear 

least squares.  The covariance of the correction is given by 

1
1T

x i i i
i

P T Q Tδ

−
−⎛= ⎜

⎝ ⎠
∑ ⎞

⎟                                               (2.25) 

and the state correction is 

( ) 1
0

T
x i i i

i
x t P T Qδδ −= r∑                                                 (2.26) 

The reference state is then improved by adding the correction factor: 

( ) ( ) ( )1 0 0 0ref refx t x t x tδ+ = +                                            (2.27) 

This process is then iterated until the reference state converges to a solution, where the 

degree of convergence is determined by the size of the residuals. 
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III. Methodology 

 

 This chapter will discuss the methods of solution used to detect geostationary 

satellite maneuvers.  It will begin with an explanation of the reference frame and 

observation geometry used, also describing how the equations of motion were applied.   

Explanations of both the theory and computer algorithm used to model the motion of a 

non-maneuvering satellite will follow.  Finally, the methods used to detect maneuvers 

and estimate the resulting satellite motion will be discussed. 

 

 

3.1   Determining Observation Geometry 

 

 3.1.1   Application of Clohessy-Wiltshire Equations 

The Clohessy-Wiltshire (CW) equations as shown in Eqs. 2.3 - 2.8 give the relative 

motion between two satellites.  For the purposes of this research, however, only one 

satellite is considered.  The CW equations are therefore applied to the relative motion 

between the satellite of interest and an imaginary reference satellite.  This reference 

satellite is considered to be perfectly stationary at 0º latitude and the desired longitude of 

the real satellite.  Thus, the reference satellite represents the ideal location of the real 

satellite, and the relative separation represents the deviation from its ideal location. 
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 Following Eqs. 2.1 and 2.2, the system state will be given as 

0

0

r
r

z
x

r
r

z

δ
δθ
δ
δ
δθ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G
�
�

�

⎟                                                            (3.1) 

The state transition matrix then becomes a 6x6 combination of the CW matrices in Eqs. 

2.5 – 2.8. 

rr rv

vr vv

Φ Φ⎡ ⎤
Φ = ⎢ ⎥Φ Φ⎣ ⎦

                                                   (3.2) 

 The use of an ideal reference satellite allows for further simplifications to be 

made.  Since both the observing station and the reference satellite rotate with the earth at 

the exact same rate, this rotation can be ignored.  The problem can be set up in the earth 

centered-earth fixed (ECEF) frame, rather than the earth centered inertial (ECI) frame.  

This allows the time-varying angle between the vernal equinox and Earth’s 0º longitude 

to be ignored.  Although this simplifies the observation equations, it actually causes the 

right ascension angle to be incorrectly defined.  Right ascension is referenced to the 

vernal equinox, while the angle referred to as right ascension in this research is 

referenced to the local meridian of the observing site.  For simplicity, however, the term 

right ascension will still be used. 

 

 3.1.2   Observations to State Conversion 

The system state is given in terms of the relative separation between the satellite of 

interest and a reference satellite in an ideal orbit.  The observations, however, are given 

16 



 

as right ascension (α) and declination (δ) from the point of view of the observing site.  

The conversion from the observations to the state must take into account the position of 

both the observing site and the satellite in the ECEF reference frame. 

 

 
Figure 3.1:  Observation Geometry 

 

 

Following Figure 3.1, the position of the satellite in the ECEF frame is given as 

( ) ( )
( ) (

cos

sin

ref ref

ref ref

R rx
r y R r

z z
)

δ λ δθ

δ λ δθ

δ

⎛ ⎞+ +⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜= = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠

G ⎟                                    (3.3) 
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where refR is the radius of the reference satellite’s orbit, refλ  gives the longitude of the 

reference satellite, and rδ , δθ , and zδ  are the relative separation components of the 

system state.  The position of the observing site in the ECEF frame is given by the 

following equation. 

cos cos
cos sin

sin

e

e

e

X R
Y R
Z R

φ λ
φ λ
φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                    (3.4) 

eR  is the radius of the earth, φ  denotes the latitude of the observing site, and λ  denotes 

the longitude of the observing site.  The observation vector, made up of right ascension 

and declination, is determined by 

( ) ( )2 2

arctan

arctan

y Y
x X

z
z Z

x X y Y

α
δ

⎛ −⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎜ ⎟⎛ ⎞

= = ⎜ ⎟⎜ ⎟ ⎛ −⎝ ⎠ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟− + −⎝ ⎠⎝ ⎠

G

⎞

⎞                           (3.5) 

Substituting Eqs. 3.3 and 3.4 into Eq. 3.5 will give right ascension and declination in 

terms of the relative separation variables of the system state.  Since Eq. 3.5 relates the 

observation variable to the state variables, it is known as the observation relation, denoted 

as G from Eq. 2.20.  For the purposes of nonlinear least squares (NLS) estimation, this 

observation relation must be linearized.  This is done by taking partial derivatives of both 

elements of the observation relation with respect to each element of the state.  Following 

Eq. 2.22, the resulting linearized observation relation is given by 

0 0

0 0

r r z r r zzH
x

r r z r r z

α α α α α α
δ δθ δ δ δθ δ
δ δ δ δ δ δ
δ δθ δ δ δθ δ

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂ ⎢ ⎥= =
∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥∂

⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

G �� �
G

�� �

                      (3.6) 
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The six partial derivatives with respect to the velocity terms of the state will be zero, 

since no velocity components appear in Eq. 3.5.  The other six derivatives in the left half 

of the H matrix, however, result in large equations that were solved by hand and 

confirmed using Maple V by Waterloo Maple, Inc.  Those equations are derived and 

shown in Appendix A. 

 

   

3.2   Test Data Generator 

 

 3.2.1   Non-maneuver Test Data 

A method of creating test data was made as a means to check the accuracy of the orbit 

determination models.  This allows the initial state, maneuver time, and maneuver vector 

to be pre-determined, giving a standard against which the model’s results can be 

compared.  The first step in generating test data was to choose an initial state.  This initial 

state can be hard coded in order to provide a known true state to compare against, or it 

can be created using a random number generator to simulate data with an unknown initial 

position and trajectory.  A time vector spanning ten days was chosen, and the initial state 

was propagated over the time vector using the state transition matrix from Eq. 3.2.  At 

this point, the option was available to add a small random component to each element of 

the state for each timestep.  This simulates the uncertainty inherent in real observations.  

For each time element, the state vector was then converted into right ascension and 

declination following the observation geometry described in Section 3.1.2. 
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Figure 3.2:  Sample of Non-maneuver Test Data 
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 Figure 3.2 shows an example of data produced from the test data generator.  

Figure (a) plots declination with respect to right ascension, showing how the satellite’s 

motion would appear as seen from the ground.  Figures (b) and (c) plot the right 

ascension and declination, respectively, as a function of time.  It is apparent that both 

right ascension and declination oscillate with a period of one day, and a drift in the East-

West direction causes the right ascension to steadily decrease. 

 Contrary to what is shown in Figure 3.2, real observation data would not be 

continuous over the course of several days.  Optical observations can only be taken at 

night, and tight observing schedules generally result in, at most, an observing time of a 

couple hours for each object of interest.  In order to incorporate this into the test data 

generator, the time vector was truncated in order to only include a few observations each 

night.  In fact, the time vector was restructured as a collection of two hour spans divided 

into five minute intervals.  A 22 hour dead time was included between each two hour 

span.  This resulted in a more accurate simulation of real observation data.  An example 

is shown in Figure 3.3.  Although not obvious from simple observation, the orbit shown 

in Figure 3.3 is exactly the same as the one in Figure 3.2.  Appendix B shows the 

MATLAB code for the non-maneuver test data generator. 

21 



 

 

Figure 3.3: Sample of Truncated Non-maneuver Test Data 
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 3.2.1   Maneuver Test Data 

A similar approach was used for the creation of test data in which a maneuver is 

included.  After propagating the initial state vector over the time span of interest, a 

particular time point was chosen to be the maneuver time.  The selection of the maneuver 

time could either be user defined or chosen by a random number generator.  In either 

case, the time of maneuver was stored as an output variable in order to provide a standard 

to compare the maneuver model against. 

 In order to create the maneuver, the system state at the chosen maneuver time was 

adjusted.  Most stationkeeping maneuvers occur in either the North-South direction or the 

East-West direction [10: 343].  In terms of the system state, as shown in Eq. 3.1, a North-

South maneuver corresponded to an adjustment to the zδ �  term, while an East-West 

maneuver corresponded to a change in the 0r δθ�  term.  Having adjusted the system state 

at the time of the maneuver, it was then considered to be the initial state for all post-

maneuver states propagated for the remainder of the time vector.  The states were finally 

converted into right ascensions and declinations following the same method used for the 

non-maneuver data generator.  Appendix C shows the code that generates the maneuver 

test data.  Figure 3.4 shows an example of a continuous set of maneuver data, while 

Figure 3.5 shows the same data set truncated into nightly observing sessions.  Notice that 

the maneuver is most evident in the right ascension plot, indicating that the maneuver is 

an East-West maneuver in this case. 
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Figure 3.4: Sample of Maneuver Test Data 
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Figure 3.5: Sample of Truncated Maneuver Test Data  

25 



 

3.3   Non-maneuver Model 

 

 Before attempting to estimate maneuvers, a non-maneuver model was created that 

would use the nonlinear least squares process to estimate a satellite’s orbit given 

observed non-maneuver data.  The provided data is in the form of an obscard file which 

gives the right ascension, declination, and date of a series of observations.  Using a 

modified version of a MATLAB program written by Keric Hill while working at AMOS 

in the summer of 2003, the obscard file is converted to right ascension, declination, and 

time vectors.  Recall from Section 2.4.3 that the nonlinear least squares method requires 

an initial guess of the system’s initial state.  Since there is no a priori information as to 

the satellite’s actual initial position, the initial guess is the zero vector.  This means the 

algorithm initially assumes there is no relative separation or relative velocity between the 

actual satellite and the reference satellite.  Another user input is the covariance of the 

observation vector, denoted as Q in Eq. 2.16.  The entries of this matrix signify the 

accuracy of the observing telescope.  For this research, the telescope used had both a 

right ascension and declination covariance of one square arcsecond, as provided by 

operators at AMOS. 

 Having defined all necessary input, the following gives a summary of the 

nonlinear least squares algorithm as applied to the non-maneuver data.  For each 

observation, the initial guess of the system’s initial state is propagated to the observation 

time using the state transition matrix, Φ, as defined by Eq. 3.2.  The observation relation 

and linearized observation relation are both determined for each state vector using      
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Eqs. 3.3 – 3.6.  Following Eq. 2.23, the residual is calculated.  Finally, the following two 

running sums are updated for each observation: 

1T
i i i

i

T Q T−∑                                                           (3.7) 

1T
i i i

i

T Q r−∑                                                           (3.8) 

Q is the covariance defined in Eq. 2.16,  = iT iH Φ , and r is the residual defined by Eq. 

2.23.  Once each observation is considered and the two running sums are updated, the 

state correction and its covariance are determined following Eqs. 2.25 and 2.26.  The 

state correction term is then used to update the guess of the initial state as shown in Eq. 

2.27, and the process is iterated until the guess of the initial state converges to the true 

initial state.  Convergence is generally confirmed by observing the residuals and ensuring 

they are sufficiently small.  The covariance of the observations can be used as a metric to 

define when the residuals are small enough.  There is no reason to continue iterations 

when the residuals become smaller than the uncertainty in the measurements.  Once the 

initial state is found, it can be propagated over any time vector of choice in order to 

determine the satellite’s orbit over that time vector.  This program is shown in its entirety 

in Appendix D. 

 

 

3.4   Maneuver Model 

 The first step in the algorithm to model the orbit of a maneuvering satellite is to 

separate the data into pre-maneuver and post-maneuver segments.  It is assumed that only 

one maneuver takes place during the time span of observations.  As the observation data 
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is processed, it should become apparent from visual inspection if multiple maneuvers 

occurred during a given data set.  The data could then simply be separated such that only 

one maneuver is contained in each set.  An additional assumption is that the data will be 

arranged in nightly observing sessions, similar to what is shown in Figure 3.5, and that 

the maneuver takes place at some time after the first observing session. 

 

 3.4.1   Separating Data with an East-West Maneuver 

With these assumptions in mind, the algorithm pulls out the first observing session and 

fits a nonlinear least squares curve using only this first clump of data.  Propagating this 

estimation over the entire data set should result in a curve that fits the pre-maneuver data 

set fairly well, but diverges from the post-maneuver data, as shown in Figure 3.6.  Notice 

once again that in this example, an East-West maneuver took place, evident by the 

obvious change in the right ascension trend.  By converting the fitted curve into discrete 

points that match up with the data points, as shown in Figure 3.7, a simple subtraction 

can be made. 

 If the uncertainty in the observations is large enough, the first clump of data may 

not be enough to fit a nonlinear least squares curve that closely approximates all the pre-

maneuver observations.  In cases such as these where more data points are needed to 

produce an accurate initial fit, the algorithm allows for both the first and second 

observation data clumps to be used.  While more data points should always increase the 

accuracy of the initial pre-maneuver fit, including the second data clump introduces the 

constraint that the maneuver cannot occur between the first and second observing 

sessions. 
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Figure 3.6: NLS curve fitted to first data set 
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Figure 3.7: Discrete NLS curve fitted to first data set 
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The difference between the nonlinear least squares fit and the observed data 

points are plotted in Figure 3.8.  Recall that the difference is most noticeable in the right 

ascension difference because the simulated maneuver is in the East-West direction.  Had 

the maneuver been in the North-South direction, the change would have been evident in 

the declination difference.  

 
Figure 3.8: Difference between NLS Fit and Observed Data for an E-W maneuver 

 

 By visual inspection, it is clear from Figure 3.8 that a maneuver occurred at some 

time between the data set at Day 5 and the data set at Day 6.  Unfortunately, designing an 

algorithm so a computer can determine the approximate maneuver time is a bit more 

complicated. As the magnitude of the maneuver will directly affect the scale of the angle 

differences, the right ascension difference was first scaled according to the largest data 

point, as shown in Figure 3.9. 
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Figure 3.9: Scaled Difference between NLS Fit and Observed Data 

 

It would seem reasonable to simply define some cutoff difference such that the 

maneuver is determined to occur once the difference exceeds this cutoff difference.  

However, this would not be a feasible method in cases where the maneuver took place 

during one of the observing sessions.  As most stationkeeping maneuvers take place at 

night when the satellite is less likely to be in use, this is a valid concern.  Notice that 

before the maneuver, the slope of the curve is approximately zero, while the slope as 

some positive value after the maneuver.  The absolute value of the slope between each of 

the scaled difference data points from Figure 3.9 was therefore calculated.  Figure 3.10 

shows the result of this slope calculation.  
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Figure 3.10: Slope between the Data Points from Figure 3.9 

 

Once again, it is visually apparent that the maneuver takes place sometime 

between the fifth and sixth day.  As expected from Figure 3.9, the slopes of the pre-

maneuver data are all very close to zero, while the post-maneuver data have relatively 

larger slopes.  Next, the percentage difference between the slope data of Figure 3.10 was 

calculated by dividing the difference between two consecutive data points by the first of 

the two data points.  Figure 3.11 shows these percentage differences. 
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 Figure 3.11: Percentage Difference between the Data Points from Figure 3.10 

 

 The percentage difference between the point just before the maneuver and the 

point just after the maneuver is significantly larger than all other percentage differences 

because it is the only one that has both the relatively large slope difference characteristic 

to the post-maneuver data, while also containing a small pre-maneuver data point in the 

denominator of the percentage difference calculation. Thus, the percentage difference 

gives a clear indication of where to separate the data into pre-maneuver and post-

maneuver observations.  Figure 3.12 shows a correct separation. 
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Figure 3.12: Observation Data Separated into Pre-maneuver and Post-maneuver Sets 
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3.4.2   Separating Data with a North-South Maneuver 

The method used to separate the data when a North-South stationkeeping maneuver took 

place is slightly different that the East-West method just described.  Since there is no drift 

in the declination, any North-South maneuver will simply change the amplitude and 

possibly shift the phase of the sinusoidal declination curve.  The period and average value 

of the declination will remain the same. 

 Following the same method as in the East-West maneuver algorithm, a nonlinear 

least squares curve is fitted to the first observing session.  Notice in Figure 3.13 that in 

the case of a North-South maneuver, the declination strays from the fitted curve after the 

maneuver, while the right ascension remains fairly close to the NLS approximation. Once 

again, the difference between the observed data and the NLS fitted data is plotted.  As 

seen in Figure 3.14, the declination difference curve clearly shows that the maneuver 

took place sometime between the fifth and sixth day. 
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Figure 3.13: NLS curve fitted to first data set 
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Figure 3.14: Difference between NLS Fit and Observed Data for a N-S maneuver 

 

 Notice that the declination difference in Figure 3.14 looks very similar to the 

scaled slope of the right ascension difference in Figure 3.10.  Skipping directly to that 

step in the East-West algorithm, the percentage difference is calculated and plotted in 

Figure 3.15.  Similar to Figure 3.11, a large spike occurs in the first point of the post-

maneuver data, and the observation data can be separated into a pre-maneuver set and a 

post-maneuver set. 
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Figure 3.15: Percentage Difference between the Data Points from Figure 3.14 

 

 Since the algorithm used to separate the data for an East-West maneuver is 

different than for a North-South maneuver, some technique to determine beforehand 

which type of maneuver occurs must be included.  Referring back to Figures 3.8 and 

3.14, these charts plot the right ascension and declination differences for each example 

maneuver.  For East-West maneuvers, the right ascension difference has a much greater 

maximum value than the declination difference.  Likewise, the declination difference has 

a much greater maximum difference for North-South maneuvers. The type of maneuver 

can therefore quickly be determined from the maximum difference. 
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 3.4.3   Corrections to Data Separation Models 

During the course of this research, it was found that the random error added to each 

element of the generated test data was not large enough to provide an accurate 

representation of the uncertainty inherent in real optical observations.  Earth’s non-

homogenous atmosphere causes light from space to be randomly refracted, thus limiting 

the resolution of any ground-based observations.  At sea level, atmospheric effects 

usually limit the resolution of optical observations to about one arcsecond.  The Air Force 

Maui Optical Station (AMOS), located at about 10,000 ft above sea level, can obtain 

resolutions of one half to one quarter of an arcsecond on very clear nights [2: 159-169].  

While the methods described in Sections 3.4.1 and 3.4.2 originally resulted in an 

accurate separation of pre-maneuver and post-maneuver observations, they were found to 

be inaccurate when more random noise was added to the observation data.  The methods 

above tended to amplify the noise to the extent that false maneuvers were occasionally 

detected in data with uncertainties of one arcsecond or more.  In response to this, the 

methods used to separate the pre-maneuver and post-maneuver data for both East-West 

and North-South maneuvers were slightly revised. 

 Errors in the method for East-West maneuvers stemmed from calculating the 

slope of the right ascension difference plot, as shown in Figure 3.10.  Data points in the 

same observing session are often very close together chronologically, therefore noisy data 

can result in relatively large slopes.  Figure 3.16 shows how noise can affect the slope 

calculation, turning the orderly plot in Figure 3.10 into an unintelligible mess. 
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Figure 3.16:  Slope between the Data Points Using Noisy Data 

 

 

 
Figure 3.17:  Modified Slope between the Data Points Using Noisy Data 
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 The effects of the noise in the data were minimized by modifying the slope 

calculation.  Rather than calculating the slope, a second difference of the scaled 

difference was calculated.  Thus, the rise over run calculation of the slope was discarded 

for a simple rise calculation without dividing by the run.  Referring back to Figure 3.9, it 

can be seen that the largest differences occur between the nightly observing sessions after 

the maneuver occurs.  These will therefore show up as peaks in the second difference 

calculation.  Shown in Figure 3.17, the first point of each post-maneuver data clump, 

marked by a blue circle, is greatly accented.  The same points in Figure 3.16, also shown 

as blue circles, were obscured by the noisy data.  From Figure 3.17, the data can be easily 

separated according to the first peak.  A flow chart summarizing the data separation 

method is shown in Figure 3.18. 

 

 
Figure 3.18:  Flow Chart of Data Separation Method for E-W Maneuver 

 

 

Increased uncertainty in the observation data had a similar effect for North-South 

maneuvers.  The original method to separate pre-maneuver and post-maneuver data for a 

North-South maneuver involved calculating a percentage difference.  For pre-maneuver 

data, the difference due to noise is significantly amplified as the percentage calculation 

involves dividing by a very small number.  This effect was neutralized by multiplying the 

percentage by the second of the two data points.  This effectively amplified the post-

maneuver percentages, while suppressing pre-maneuver percentages.  Figure 3.20 shows 
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a percentage difference calculation, similar to Figure 3.15, in which noise is included.  

Notice the actual separation point, shown by the blue circle, is dwarfed by pre-maneuver 

peaks created by noise.  Figure 3.21 shows the same data using the improved method of 

multiplying by the second data point.  Notice that all the post-maneuver peaks are 

amplified, while the pre-maneuver noise is suppressed.  The actual separation point is 

once again the maximum value.  A flow chart summarizing this revised method is shown 

in Figure 3.19. 

 

 
Figure 3.19:  Flow Chart of Data Separation Method for N-S Maneuver 

 

 

 
Figure 3.20:  Percentage Difference between the Data Points Using Noisy Data 
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Figure 3.21:  Modified Percentage Difference between the Data Points Using Noisy Data 

 

 

 3.4.4   Determining Possible Maneuver Times 

Having separated the data into a pre-maneuver partition and a post-maneuver partition, 

the nonlinear least squares algorithm can be applied to both sets separately.  This will 

result in two fitted curves that should intersect at the maneuver time, as shown in Figure 

3.22.  Assuming both NLS curves are fairly accurate representations of the actual path of 

the satellite both before and after the maneuver, the two curves should intersect at the 

actual maneuver time. 
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Figure 3.22:  Sample of Pre-maneuver and Post-maneuver NLS Fits 

45 



 

 Figure 3.23 shows a close up of the region surrounding the intersection point for 

the East-West maneuver from Figure 3.22.  Notice that there are multiple points where 

the two nonlinear least squares curves intersect.  Since both right ascension and 

declination follow sinusoidal curves, there will almost always be multiple intersections 

between the pre-maneuver curve and the post-maneuver curve.  Each intersection 

corresponds to a possible maneuver and time of maneuver that would transfer the satellite 

from its pre-maneuver trajectory to its post-maneuver trajectory. 

 
Figure 3.23:  Close-up of NLS Fits Showing Possible Maneuver Intersections 

 

 

 In order to locate all the intersections, the difference between the post-maneuver 

and pre-maneuver fits is calculated.  Shown in Figure 3.24, the intersections occur where 

the difference equals zero.  Unfortunately, these fits are not continuous lines, but are 

rather made up of discrete points.  It is therefore extremely unlikely that the difference 

will ever equal zero; it will instead contain minima at the intersection times.  Figure 3.25 

gives a closer view of the intersection region of Figure 3.24. 
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Figure 3.24:  Difference between Pre-maneuver and Post-maneuver Fits 

 
 
 

 
Figure 3.25:  Intersection Region of Pre-maneuver and Post-maneuver Difference Plot 
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 Each minimum will most likely have a different value, so the data must be 

separated into groups containing only one minimum.  Otherwise, the algorithm will only 

locate the smallest of the multiple minima.  The first step in separating the minima 

involves disregarding all difference data that is above some threshold value.   

Notice the small humps between the intersection points in Figure 3.25.  The size 

of these humps depends upon the difference in the post-maneuver and pre-maneuver fits 

between intersection points, as well as the angle between the fits at the intersection point.  

It is therefore impossible to predict beforehand if the entire humps will fall under the 

threshold value, or if only the regions surrounding the minima will be kept.  Either way, 

the minima will be characterized by having a set of data points with a negative slope to 

the left of the minimum and a set of data points with a positive slope to the right of the 

minimum.  Separating the data at every point where the slope changes from positive to 

negative will result in a split at the peaks of each hump.  This will result in groups of data 

containing one minimum per group, each designating a possible maneuver time. 

 

 3.4.5   Choosing Correct Maneuver Time 

The method to determine which of these intersections corresponds to the real maneuver 

draws upon the previously stated assumption that all stationkeeping maneuvers will be 

either in the North-South direction or the East-West direction.  At each intersection, the 

velocity components of the system state are extracted from the pre-maneuver NLS fit and 

the post-maneuver NLS fit.  The difference between each of the three velocity 

components defines the three-dimensional maneuver.   
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 Using the notation for the velocity components of the system state defined in Eq. 

3.1, the maneuver is calculated for each intersection point using the following formula. 
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             (3.9) 

From the perspective of a ground station, rδ �  describes the radial velocity, 0r δθ�  defines 

the velocity in the East-West direction, and zδ �  gives the velocity in the North-South 

direction.  How closely each maneuver approximates a purely East-West or North-South 

maneuver is determined by calculating what percentage of the maneuver vector is in the 

0r δθ�  term or the zδ �  term, respectively. 
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Eq. 3.10 identifies what percentage of the maneuver is in the East-West direction, while 

Eq. 3.11 describes what percentage is in the North-South direction.  The correct 

maneuver can therefore be determined by creating a simple algorithm that simultaneously 

searches through both percentages for each possible maneuver to find a maximum.  The 

maneuver in which this maximum occurs is determined to be the correct maneuver. 
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 3.4.6   Non-maneuver Data in the Maneuver Model 

In addition to determining the maneuver vector and time of maneuver, a robust maneuver 

detection model must also be able to recognize when no maneuver took place.  If an 

observation data set that contains no maneuver is fed into the previously described 

maneuver model, the algorithm will first attempt to separate the data into a pre-maneuver 

segment and a post-maneuver segment.  Although there will be no clearly defined 

maneuver peak as in Figures 3.11 or 3.15, the model will find a peak and separate the 

data accordingly.  The pre-maneuver and post-maneuver NLS fits will align very closely, 

but the algorithm will still determine a maneuver and maneuver time.   

Experimental analysis using several sample non-maneuver data sets showed that 

the determined maneuver was generally on the order of 10 nm/s.  A threshold maneuver 

magnitude of 1 mm/s was therefore included.  If the detected maneuver is below 1 mm/s, 

the algorithm will advise the user to apply that data set to the non-maneuver model. 
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IV. Simulation Results 

 

 This chapter will summarize the results of the simulation in response to various 

types of observation data.  The first section will focus on data containing a maneuver in 

the East-West direction.  The minimum detectable maneuver size will be addressed, as 

well as the model’s response to data with varying degrees of uncertainty.  The section 

will also review the model’s ability to detect a maneuver that occurs during an observing 

session and maneuvers that occur near the beginning or end of a particular data set.  The 

second section will discuss these aspects with respect to North-South maneuvers.  The 

differences in the response to these maneuvers will be addressed, as well as their 

implications. 

 

 

4.1   Response to East-West Maneuvers 

 

 4.1.1   Response to Ideal Data 

Initial test data, representing best possible seeing conditions, was generated with a 

simulated uncertainty of ±0.2 arcseconds.  For the first test case, data was generated 

containing a 3 cm/s maneuver at a time of 5.5 days.  Figure 4.1 shows the observation 

data, along with an initial non-maneuver NLS fit.  The algorithm detected the maneuver, 

determining it to occur at 5.49 days, with a magnitude of 3.02 cm/s.  Figure 4.2 shows the 

resulting estimation of the satellite’s pre-maneuver and post-maneuver trajectory. 
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Figure 4.1:  Test Data with 3 cm/s E-W Maneuver at 5.5 days 
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Figure 4.2:  Response to Test Data from Figure 4.1 
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 For this example case, the deviation in both magnitude and time between the real 

and detected maneuvers was less than 1%.  In fact, this degree of accuracy was achieved 

for nearly all test cases using data with an uncertainty of 0.2 arcseconds.  Problems began 

to arise for maneuvers with magnitudes less than 1 cm/s.  An example data set contained 

a 1 cm/s maneuver at a time of 6 days.  The maneuver was still detectable, as shown in 

Figure 4.3, and the program determined a maneuver time of 5.95 days.   

 

 
Figure 4.3:  Test Data with 1 cm/s E-W Maneuver at 6 days 

 

In estimating the magnitude of the maneuver, the model correctly determined an 

East-West component of 0.94 cm/s, however the estimated maneuver also contained a 

North-South component of 0.008 cm/s and a radial component of 0.6 cm/s.  While the 

false North-South component is negligible, the false radial component is nearly half of 

the actual maneuver magnitude.  Such a discrepancy in the maneuver vector would cause 

the modeled post-maneuver trajectory to be inaccurate.  However, an accurate detection 

of the maneuver time could indicate to a ground station further tracking of that satellite is 

advised.   

54 



 

 4.1.2   Response to Increasingly Uncertain Data 

While an observation uncertainty of 0.2 arcseconds is theoretically achievable on very 

clear nights at observing stations at high altitudes, a more reasonable uncertainty of one 

arcsecond was analyzed next.  When given data with this degree of uncertainty, the 

model is no longer able to accurately separate the pre-maneuver and post-maneuver data 

for small maneuvers. As an example, observation data was generated with a 1.5 cm/s 

maneuver occuring at a time of 6 days.  The data was randomly adjusted in order to 

simulate an uncertainty of one arcsecond.  Such a small maneuver with respect to the 

amount of uncertainty in the observations resulted in the model incorrectly separating the 

pre-maneuver and post-maneuver data in the middle of the observation cluster centered 

on about 1.7 days, as shown in Figure 4.4. Figure 4.5 shows the resulting incorrect 

trajectory fit.  Notice that the noise in the data seems more prevalent in the declination 

plot.  This will be discussed further in the next example. 

 

 
Figure 4.4:  Incorrect separation for 1.5 cm/s Maneuver at 6 days 
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Figure 4.5:  Incorrect Estimated Trajectory for 1.5 cm/s Maneuver at 6 days 
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 It was determined that for data with a 1 arcsecond uncertainty, the minimum 

detectible East-West maneuver had a magnitude of about 5.5 cm/s.  Decreasing the 

maneuver magnitude further resulted in the model occasionally misidentifying the correct 

pre-maneuver/post-maneuver separation point.  When the maneuver time was correctly 

estimated, the maneuver vector often contained significant components in the North-

South and radial directions, similar to the case described earlier. 

 The uncertainty in the test data was further increased to 2 arcseconds.  For this 

case it was found that increasing the uncertainty in the data did not significantly change 

the minimum maneuver magnitude at which point the model could estimate the time of 

maneuver.  The model’s ability to estimate the magnitude and direction of the maneuver, 

however, rapidly diminished.   

Figure 4.6 shows the resulting analysis of data generated with an uncertainty of 2 

arcseconds, containing an East-West maneuver of 4.25 cm/s at 6 days.  While the model 

successfully estimated the maneuver occurred at 5.97 days, the maneuver vector was 

determined to be 3.1 cm/s in the East-West direction, 0.06 cm/s in the North-South 

direction, and 2.24 cm/s in the radial direction.   

Notice in Figure 4.6 that the right ascension plot looks fairly neat, while the 

declination plot is a mess.  This is due to the scaling of the graphs.  While East-West drift 

causes the right ascension to vary by about 1.4 milliradians, the declination only varies by 

about 60 microradians.  An uncertainty of 2 arcseconds corresponds to almost 10 

microradians.  While this is still fairly insignificant for the right ascension plot, it is over 

30% of the declination curve’s amplitude.  For this reason, the declination data is 

practically useless when using data at this level of uncertainty. 
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Figure 4.6:  Model’s Response to Data with 2 Arcsecond Uncertainty 
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 4.1.3   Limits on Maneuver Time 

This section investigates how the model responds to maneuvers that occur near the very 

beginning or very end of the observation data set.  In the first case, data was generated in 

which the maneuver occurred just before the last clump of observations.  In particular, the 

data contained a 7 cm/s maneuver at 8.5 days.  Figure 4.7 clearly shows that only the last 

clump of data belongs in the post-maneuver set. 

 

 

Figure 4.7:  Test Data with 7 cm/s E-W Maneuver at 8.5 days 

 

 While the algorithm had no trouble separating the pre-maneuver and post-

maneuver data, fitting an NLS curve to the post-maneuver data proved difficult.  As 

Figure 4.8 shows, one clump of data is not enough to produce an accurate NLS fit.  As 

expected, such an inaccurate post-maneuver fit results in an incorrect estimate of both 

maneuver time and vector. 
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Figure 4.8:  Example of Poor Post-maneuver Fit 

 

 The model estimated the maneuver to be 4.6 cm/s in the East-West direction, 2.3 

cm/s in the North-South direction, and 60.8 cm/s in the radial direction.  Mostly a radial 

maneuver, this estimated maneuver isn’t remotely close to actual maneuver vector.  

Figure 4.9 shows the resulting trajectory.  Notice the trajectory makes a distinct corner, 

indicating a poor fit.  The time of maneuver, however, was estimated to be at 9.15 days.  

This estimate of the maneuver time results in an error of 7.6%, which is quite small 

compared to the error in the maneuver vector.  While incapable of determining the post-

maneuver trajectory, such a result could be useful in that it does indicate that a maneuver 

occurred, and further tracking is advised. 

Keeping both the observation uncertainty and time of maneuver constant, the 

maneuver magnitude was decreased in order to determine a minimum magnitude.  It was 

discovered that as the magnitude decreased, the estimation of the maneuver vector 

became progressively more inaccurate, but the model could still effectively determine the 

maneuver time.  For maneuvers less than about 3 cm/s, however, the model failed. 
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Figure 4.9:  Estimated Trajectory of Poor Post-maneuver Fit 

 

 Similar results occurred for maneuvers which occurred just before the second to 

last clump of observations.  Figure 4.10 shows that in these cases, the model could more 

accurately fit an NLS curve to the post-maneuver data.  While the estimated maneuver 

vector was still very inaccurate, this did result in an even better estimate of maneuver 

time than the cases in which only one clump of data was recorded after the maneuver. 

 
Figure 4.10:  Separation of Data with a Late Maneuver 
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 Responses to maneuvers which occurred near the beginning of the observation 

data proved to be slightly more accurate than responses to maneuvers occurring near the 

end of the data set.  As an example, data with a 3 cm/s maneuver at 1.2 days was 

considered.  This occurs just after the second clump of data.  Just as before, the model 

had no trouble determining the time of maneuver.  It was estimated to occur at 1.15 days.  

The maneuver magnitude was still somewhat inaccurate, with an estimated value of  

4.41 cm/s.  Figure 4.11 shows the resulting trajectory determined for that example. 

 

 
Figure 4.11:  Estimated Trajectory for 3 cm/s Maneuver at 1.2 days 

 

 Recall from Section 3.4.1 that the initial non-maneuver NLS fit used to determine 

the pre-maneuver and post-maneuver separation point originally was formed by fitting a 

curve to only the first clump of data.  It was determined that noise in the observations 

caused this initial fit to be inaccurate, so the first two observation clumps were instead 

used to determine the initial fit.  This requires the assumption that no maneuvers occur 

between the first and second data clumps.  For this reason, the model breaks down when 
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given data in which such a maneuver occurs.  Reverting back to the use of only the first 

data clump in the initial fit resulted in poor approximations when the data had an 

uncertainty of 0.5 arcseconds or more.  It was therefore determined that this model cannot 

effectively detect a maneuver which occurs after only one observing session.   

 

 

4.2   Response to North-South Maneuvers 

 

  Since there is no drift in the North-South direction, these maneuvers are 

inherently more difficult to detect.  Consider the North-South maneuver shown in Figure 

4.12.  This 7 cm/s maneuver occurred at 6 days and had a simulated uncertainty of 0.2 

arcseconds.  The pre-maneuver and post-maneuver data was accurately separated, as 

shown in Figure 4.13, and NLS curves were fitted to both data sets.   

 

 
Figure 4.12:  Test Data with 7 cm/s N-S Maneuver at 6 days 
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Figure 4.13:  Separation of Test Data with 7 cm/s N-S Maneuver at 6 days 

 

 

 Notice that a North-South maneuver appears as an amplitude change in the 

declination curve.  Both the period and phase of the sinusoidal curve remain the same.  

Because of this, each periodic intersection of the pre-maneuver and post-maneuver data 

corresponds to an identical maneuver.   

Recall from Section 3.4.5 that the correct maneuver time is determined by finding 

which of the intersections corresponds to a maneuver that most closely matches an 

entirely North-South maneuver or an entirely East-West maneuver.  If every possible 

maneuver is identical, there is no way to resolve which is the correct one.  By 

constraining the list of possible maneuvers to those that lie near the pre-maneuver/post-

maneuver separation point, the algorithm will usually end up randomly choosing either 

the correct maneuver time or one of the two neighboring possible maneuvers.   

In cases where sessions of observation data are gathered each night, this results in 

an uncertainty in the estimated maneuver time of about 12 hours, as the intersections 
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between pre-maneuver and post-maneuver NLS fits occur every 12 hours.  If there are 

gaps in the data due to bad weather, there may be several more intersections between the 

last pre-maneuver data point and the first post-maneuver data point.  It will be impossible 

to distinguish which of these intersections is the correct maneuver time, thus the potential 

error in the maneuver time estimate will grow larger.   

Figure 4.14 shows the model successfully estimating the maneuver to be 7.01 

cm/s, occurring at a time of 6 days.  Running the simulation multiple times showed that 

the model would often incorrectly estimate that the maneuver occurred at 6.5 days.  

According to Figure 4.13, this is the other intersection that occurs between the pre-

maneuver and post-maneuver data. 

 

 
Figure 4.14:  Estimated Trajectory of Test Data with 7 cm/s N-S Maneuver at 6 days 
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 When a North-South maneuver occurs during an observing session, the model is 

actually more likely to determine the correct maneuver time.  Consider the 7 cm/s 

maneuver at 5.1 days, as shown in Figure 4.15.  While the example in Figure 4.13 

showed two possible intersections that occured between the pre-maneuver and post-

maneuver data, this example has only one as the data is separated inside an observing 

session. 

 

 
Figure 4.15:  Estimated Trajectory of Test Data with 7 cm/s N-S Maneuver at 5.1 days 

 
 

 

 4.2.1   Response to Uncertain Data 

Since the variation of the declination curve occurs on such a small scale, increasing the 

uncertainty in the observation data has a much larger effect on detecting North-South 

maneuvers.  Figure 4.16 shows a 10 cm/s maneuver at 5.1 days with an uncertainty of 1 

arcsecond. 
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Figure 4.16:  Example of Correct Fit to Data with 1 arcsecond Uncertainty 
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 While Figure 4.16 shows a case in which the maneuver time and vector was 

correctly estimated, this was an exception to the trend of difficulties in detecting North-

South maneuvers with uncertain data.  In general, data with an uncertainty of 1 

arcsecond, a good estimate of the uncertainty in ground based observations, made all 

maneuvers less than 10 cm/s undetectable.  In fact, the maneuver magnitude had to be 

increased over 20 cm/s before the model could consistently estimate the maneuver.  As 

the 10 cm/s maneuver in graph (c) of Figure 4.16 shows, such large maneuvers served to 

increase the satellite’s North-South wobble rather than suppressing it.  It is unlikely that 

one would ever encounter a North-South maneuver of 20 cm/s or more, as satellite 

operators would generally damp out the declination oscillation long before such a large 

correction was required. 

 Even when the simulated uncertainty in the test data was decreased to 0.5 

arcseconds, representing near-perfect seeing conditions, the smallest detectable maneuver 

was around 10 cm/s.  In fact, the data needed to have uncertainties closer to 0.2 

arcseconds before maneuvers on the order of 1 to 10 cm/s were detectable.  As an 

uncertainty of 0.2 arcseconds is virtually impossible to achieve by ground-based optical 

observatories, this research concludes that the model cannot accurately detect North-

South maneuvers that have magnitudes typical to stationkeeping maneuvers using optical 

data with uncertainties on the order of 1 arcsecond or more.   
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V. Conclusion 

 

5.1   Summary 

 

 This research shows that geostationary satellite maneuvers can be estimated using 

optical observations.  While there are inherent difficulties in detecting North-South 

maneuvers, both the time of maneuver and maneuver vector can be accurately estimated 

for East-West maneuvers.  The research shows that this model, or a similar one, could be 

used as an effective method of both tracking geostationary satellites and predicting 

possible collision and misidentification among collocated satellites. 

 

 

5.2   Conclusions 

 

5.2.1   Results Summary 

This thesis shows that the model developed by this research can detect East-West 

maneuvers as small as about 5.5 cm/s, using optical data with an uncertainty of 1 

arcsecond. The minimum detectable maneuver decreases as the uncertainty decreases, 

reaching an absolute minimum of about 1 cm/s for data with an uncertainty of 0.2 

arcseconds. The model had no trouble detecting maneuvers which occurred during an 

observing session. In cases where the maneuver occurred near the extreme beginning or 

end of the observation data set, the algorithm could accurately estimate the maneuver 

time, although it had trouble determining the maneuver vector. This was deemed 
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sufficient as an accurate detection of maneuver time could signal that more observation is 

required to obtain a more accurate estimation of the post-maneuver trajectory.  

The model proved to be less robust when given data containing North-South 

maneuvers. While North-South maneuvers as small as 3 cm/s could be detected using 

data with an uncertainty of 0.2 arcseconds, the smallest detectable maneuver jumped to 

over 10 cm/s when the uncertainty of the observation data was increased to the more 

realistic value of 1 arcsecond. The inability to detect small North-South maneuvers in 

data with realistic amounts of noise was attributed to the relative size of the declination 

oscillations. The variation in a GEO satellite’s North-South position is often so small that 

it is on the same order as the measurement uncertainty due to atmospheric effects, 

making it virtually impossible to accurately detect a North-South maneuver.  

Additionally, it was found that due to the purely sinusoidal nature of the North-

South satellite motion, the maneuver necessary to shift the satellite from its pre-maneuver 

trajectory to the post-maneuver trajectory was not unique. In fact, every 12 hours a 

window existed in which a maneuver of the same magnitude could occur, resulting in the 

same post-maneuver trajectory. While the estimated maneuver time could be constrained 

to occur after the last pre-maneuver data point and before the first post-maneuver data 

point, if these points were separated by more than 12 hours, it was impossible to 

determine which of these maneuver windows corresponded to the correct maneuver time. 
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5.2.2   Future Work  

Many problems with the model still exist which could be addressed in future research. 

First, the equations of motion governing GEO satellite motion could be improved. While 

effects such as solar radiation pressure and interactions due to the sun and moon should 

not affect the accuracy of the model due to their deterministic nature, stationkeeping 

perturbations could have a significant effect on the model’s performance. Developing 

more all-encompassing equations of motion to include these perturbations could give a 

better view of the model’s accuracy.  

This research made the assumption that all maneuvers are discrete impulses. 

Many thrusters currently on satellites are designed to use small continuous or sequential 

maneuvers. The model’s response to such maneuvers could be examined in future work. 

While very small continuous maneuvers could prove difficult to detect, improving the 

model to search for multiple maneuvers should be fairly straightforward. Once the model 

separates the pre-maneuver and post-maneuver data, the algorithm could be repeated to 

search for additional maneuvers within each of the separated data segments.  

Unfortunately, it is a fairly common practice to immediately follow a North-South 

stationkeeping maneuver with an East-West maneuver [10: 344].  Theoretically, the 

method should be able to detect the resultant maneuver with components in both the 

North-South and East-West directions.  This maneuver would likely be discarded, 

however in favor of another possible maneuver that more closely resembles a purely 

North-South or purely East-West maneuver. 

 

 

71 



 

This model assumes that all the observation data for a certain satellite has a given 

uncertainty. In reality, the weather is unpredictable and can cause the uncertainty in the 

observations to vary greatly. Inclement weather will prohibit observations, resulting in 

large gaps in the observation data. Less severe conditions may allow data to be taken, but 

this data will be less accurate. If hazy nights occur in which data sets can be taken, but 

prove to have a greater uncertainty than normal, it would be interesting to study the 

usefulness of such data. While it is generally preferred to have as much data as possible, 

throwing out more uncertain data may actually improve the accuracy of the model.   

Finally, the validity of this research could be confirmed by obtaining real 

observations of GEO satellites. Artificially generated test data was used for the purposes 

of this research. While this allowed more control in examining the responses to various 

phenomena, the model’s response to real observation data must be verified. Ideally, 

correspondence with satellite operators would allow for knowledge of the actual 

maneuver time and vector.  
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Appendix A:  Derivation of Linearized Observation Relation 

 

 The nonlinear observation relation, which related the elements of the state to the 

elements of the observation vector, is given below. 
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The terms in this equation are defined by the observation geometry as shown below. 
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In order to linearize the observation relation, the partial derivatives of both elements of 

the nonlinear observation relation must be taken with respect to each element of the state.  
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As the three velocity elements of the state do not show up in the observation relation, the 

right half of this matrix will be composed of zeros.  The partial derivatives in the left half 

of this matrix were derived by hand and confirmed using Maple V by Waterloo Maple, 

Inc. 

73 



 

( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

1 2

2

sin cos sin cossin

cos cos cos cos cos cos

sin cos sin
1

cos cos cos

ref ref e refref

ref ref e ref ref e

ref ref e

ref ref e

R r R

R r R R r R
H

r R r R

R r R

δ λ δθ φ λ λ δθλ δθ

δ λ δθ φ λ δ λ δθ φ λα
δ δ λ δθ φ λ

δ λ δθ φ λ

⎡ ⎤+ + − ++ ⎣ ⎦−
+ + − ⎡ ⎤+ + −∂ ⎣ ⎦= =

∂ ⎡ ⎤+ + −⎣ ⎦+
⎡ ⎤+ + −⎣ ⎦

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

2 2
0

sin cos sin sincos

cos cos cos cos cos cos

sin cos sin
1

cos cos co

ref ref e ref refref ref

ref ref e ref ref e

ref ref e

ref ref e

R r R R rR r

R r R R r R
H

r R r R

R r R

δ λ δθ φ λ δ λ δδ λ δθ

δ λ δθ φ λ δ λ δθ φ λα
δθ δ λ δθ φ λ

δ λ δθ φ

⎡ ⎤+ + − + ++ + ⎣ ⎦−
+ + − ⎡ ⎤+ + −∂ ⎣ ⎦= =

∂ ⎡ ⎤+ + −⎣ ⎦+
+ + −

θ

2
sλ⎡ ⎤⎣ ⎦

 

3 0H
z
α
δ
∂

= =
∂  

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

4

sin cos cos cos cos
...

sin
1

cos cos cos sin cos sin

sin sin cos sin sin

e ref ref e ref

e

ref ref e ref ref e

e ref ref e r

z R R r R

z R

R r R R r R

z R R r R

H
r

δ φ δ λ δθ φ λ λ δθ

δ φ

δ λ δθ φ λ δ λ δθ φ λ

δ φ δ λ δθ φ λ λ

δ
δ

⎡ ⎤− − + + − +⎣ ⎦
⎛ ⎞−⎜ ⎟+⎜ ⎟⎡ ⎤ ⎡⎜ ⎟+ + − + + + −⎣ ⎦ ⎣⎝ ⎠

⎡ ⎤− + + −⎣ ⎦−

∂
= =
∂

( )
( )

( ) ( ) ( ) ( )

⎤⎦

( ) ( ) ( ) ( )( )

2

2 2

3
2 2 2

sin
1

cos cos cos sin cos sin

cos cos cos sin cos sin

ef

e

ref ref e ref ref e

ref ref e ref ref e

z R

R r R R r R

R r R R r R

δθ

δ φ

δ λ δθ φ λ δ λ δθ φ λ

δ λ δθ φ λ δ λ δθ φ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+
⎜ ⎟
⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎡ ⎤ ⎡⎜ ⎟+ + − + + + −⎜ ⎟⎣ ⎦ ⎣⎝ ⎠
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡+ + − + + + −⎣ ⎦ ⎣

⎤⎦

⎤⎦

 

 

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 2

5
0

sin cos cos cos sin

sin
1

cos cos cos sin cos sin

sin sin cos sin

e ref ref e ref ref

e

ref ref e ref ref e

e ref ref e

z R R r R R r

z R

R r R R r R

z R R r R

H
r

δ φ δ λ δθ φ λ δ λ δθ

δ φ

δ λ δθ φ λ δ λ δθ φ λ

δ φ δ λ δθ φ λ

δ
δθ

⎡ ⎤− + + − + +⎣ ⎦
⎛ ⎞−⎜ ⎟+⎜ ⎟⎡ ⎤ ⎡⎜ ⎟+ + − + + + −⎣ ⎦ ⎣⎝ ⎠

⎡ ⎤− + + −⎣ ⎦−

∂
= =
∂

( ) ( )
( )

( ) ( ) ( ) ( )

⎤⎦

( ) ( ) ( ) ( )

2

2 2

2

cos

sin
1

cos cos cos sin cos sin

cos cos cos sin cos sin

ref ref

e

ref ref e ref ref e

ref ref e ref ref e

R r

z R

R r R R r R

R r R R r R

δ λ δθ

δ φ

δ λ δθ φ λ δ λ δθ φ λ

δ λ δθ φ λ δ λ δθ φ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +
⎜ ⎟
⎜ ⎟⎛ ⎞−⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎡ ⎤ ⎡⎜ ⎟+ + − + + + −⎜ ⎟⎣ ⎦ ⎣⎝ ⎠
⎜ ⎟
⎝ ⎠

⎡ ⎤+ + − + + + −⎣ ⎦( )

⎤⎦

3
2 2⎡ ⎤⎣ ⎦

 

74 



 

( ) ( ) ( ) ( )( )
[ ]

( ) ( ) ( ) ( )

1
2 2 2

6
2

2 2

cos cos cos sin cos sin

sin
1

cos cos cos sin cos sin

ref ref e ref ref e

e

ref ref e ref ref e

R r R R r R
H

z z R

R r R R r R

δ λ δθ φ λ δ λ δθ φ λδ
δ δ φ

δ λ δθ φ λ δ λ δθ φ λ

−

⎡ ⎤ ⎡+ + − + + + −⎣ ⎦ ⎣∂
= =
∂ ⎛ ⎞−⎜ ⎟+⎜ ⎟⎡ ⎤ ⎡⎜ ⎟+ + − + + + −⎣ ⎦ ⎣⎝ ⎠

⎤⎦

⎤⎦

 

These equations make up the nonlinear observation relation as shown below. 
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Appendix B:  MATLAB Code - test_data_generator2.m 

function [time,ra,dec] = test_data_generator2 
  
% Create a set of non-maneuver test observation data arranged 
% in nightly observing sessions. 
% 
% OUTPUTS: 
%   time   - a time vector in units of days 
%   ra     - a vector of right ascension data in radians 
%   dec    - a vector of declination data in radians 
% 
% USER CONTROLS: 
%   Initial State: comment out lines 44 and 45 for a randomly 
%                  generated initial state. Hardcode initial state 
%                  in lines 48 - 53 
%   Observation Uncertainty: set in line 109 
% 
% Brian Hirsch 
% Spring 2006 
  
clc;clear 
  
% This program will use the phi matrix from the CW equations 
% to generate test data points of the state. It then converts 
% the state data points into observation data points and adds some 
% random error onto each point. The data will be arranged in tight 
% clumps with large spaces of time in between to simulate real data 
% taken from telescopes. 
  
% The following units are used throughout the program: 
% Distance  -- Earth radii (6378.135 km) 
% Time      -- Days (86400 s) 
% Angles    -- radians 
  
Re = 1;              % Radius of earth 
longref = 3;         % Reference satellite longitude  
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
  
% Create the initial state by assuming the satellite can be off 
% from the reference satellite by anywhere from 0 to 10 m and 
% 0 to 10 cm/s, in the positive or negative direction. 
%x(1:3,1) = -1.6e-6 + 2 * 1.6e-6 * rand(3,1); 
%x(4:6,1) = -0.0014 + 2 * 0.0014 * rand(3,1); 
  
% Create a random initial state 
x(1,1)= 1.567856e-6; 
x(2,1)= 1.567856e-8; 
x(3,1)= 7.839282e-7;  
x(4,1)= 0.00677; 
x(5,1)= 0.000542; 
x(6,1)= 0.001355; 
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% The time vector will be made up of times spaced about 5 min 
% apart for 2 hours with 22 hours between them. 
K = 0; 
a = 1; 
while K < 10 
    t(1,a:a+24) = K:0.0035:K+0.084; 
    K = K + 0.92; 
    a = a + 25; 
end 
  
% mean motion of geo satellite is about 1 rev/day 
n = 2*pi;        % in rad/day 
  
% For each time point: 
for i = 2:length(t) 
  
% Input the phi matrix 
psi = n*t(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
  
% Update state vector 
x(:,i) = phi * x(:,1); 
  
end 
  
% Now convert the state vector onto an observation vector 
 
% Determine x,y,z position of satellite in ECF frame. 
xpos = (Rref + x(1,:)) .* cos(longref + x(2,:)/Rref); 
ypos = (Rref + x(1,:)) .* sin(longref + x(2,:)/Rref); 
zpos = x(3,:); 
  
% Determine X,Y,Z postion of observer in ECF frame.  
X = Re.*cos(latsite).*cos(longsite); 
Y = Re.*cos(latsite).*sin(longsite); 
Z = Re.*sin(latsite); 
  
% Convert to RA and dec (observation matrix, z) 
ra = atan2((ypos-Y),(xpos-X)); 
dec = atan2((zpos-Z),sqrt((xpos-X).^2.+(ypos-Y).^2)); 
  
% To simulate the observation uncertainty inherent in the 
% telescopes, we'll add a random component to the RA and Dec 
% values, based on the given covariance of the equipment used. 
% NOTE: 1 arcsec = 4.85e-6 rad 
  
angle_error = 1e-5;   % Choose RA and Dec uncertainty (in rad)
for i = 1:length(ra) 
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    ra_err = -angle_error + 2*angle_error * rand; 
    ra(1,i) = ra(1,i) + ra_err; 
    dec_err = -angle_error + 2*angle_error * rand; 
    dec(1,i) = dec(1,i) + dec_err; 
end 
  
% Output the time vector 
time = t; 
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Appendix C:  MATLAB Code - man_data_generator2.m  

function [time,ra,dec,t0_man] = man_data_generator2 
  
% Create test observation data containing a manuever. 
% 
% OUTPUTS: 
%   time   - a time vector in units of days 
%   ra     - a vector of right ascension data in radians 
%   dec    - a vector of declination data in radians 
%   t0_man - the time at which the maneuver occurs 
% 
% USER CONTROLS: 
%   Initial State: comment out lines 45 and 46 for a  
%                  randomly generated initial state.  
%                  Hardcode initial state in lines 49 - 54 
%   Maneuver Time: set in line 81 
%   Maneuver Magnitude: set in line 92 
%   Observation Uncertainty: set in line 160 
% 
% Brian Hirsch 
% Spring 2006 
  
clc;clear; 
  
% This program will use the phi matrix from the CW equations 
% to generate test data points of the state. The state elements  
% are then converted into observation data points and some random 
% error is added into each point. 
  
% The following units are used throughout the program: 
% Distance  -- Earth radii (6378.135 km) 
% Time      -- Days (86400 s) 
% Angles    -- radians 
  
Re = 1;              % Radius of earth 
longref = 3;         % Reference satellite longitude  
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
  
% Create the initial state by assuming the satellite can be 
% off from the reference satellite by anywhere from 0 to 10 m  
% and 0 to 10 cm/s, in the positive or negative direction. 
%x(1:3,1) = -1.6e-6 + 2 * 1.6e-6 * rand(3,1); 
%x(4:6,1) = -0.0014 + 2 * 0.0014 * rand(3,1); 
  
% Or just arbitrarily pick an initial offset 
x(1,1)= 1.567856e-6; 
x(2,1)= 1.567856e-8; 
x(3,1)= 7.839282e-7;  
x(4,1)= 0.00677; 
x(5,1)= 0.000542; 
x(6,1)= 0.001355; 
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% For now, the time vector runs in 5 min increments for 10 days 
t = 0:0.0035:10; 
  
% mean motion of geo satellite is about 1 rev/day 
n = 2*pi;        % in rad/day 
  
% For each time point: 
for i = 2:length(t) 
  
% Input the phi matrix 
psi = n*t(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
% Update state vector 
x(:,i) = phi * x(:,1); 
  
end 
  
% Set maneuver time 
choose_man_time = 4.998;  % This is the chosen maneuver time 
  
% Since there may not be a data point at our exact desired  
% maneuver time, we'll find the closest one to it. 
man_index = find(abs(t-choose_man_time)==min(abs(t-choose_man_time))); 
  
t0_man = t(man_index); 
x0_man = x(:,man_index); 
  
% Now insert the maneuver into the state (in Earth radii per day. 
% 1 cm/s = 0.00013 earth radii/day. 
man_mag = -0.001; 
  
x0_man(5,1) = x0_man(5,1) + man_mag; 
  
% Now create a post-maneuver time vector that starts at the 
% manuever time and continues with the rest of the data. It als  o
% needs to be set such that the maneuver time is now time zero. 
t_man = t(man_index:length(t)); 
t_man = t_man - t0_man; 
  
% Now propogate the post-maneuver state with the phi matrix 
for i = 2:length(t_man) 
  
% Input the phi matrix 
psi = n*t(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi         
       0;... 
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       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
% Update state vector 
x(:,i+man_index-1) = phi * x0_man; 
end 
  
% The state has now been propagated in 5 min intervals for 
% about 10 days. Assume that real observations will occur in  
% segments of about 2 hours with around 22 hours between each 
% segment. We must therefore crop the state and time vector to 
% simulate this. 
  
% Pull out "daily" observation sessions and stick them together 
% into new time and state vectors 
K = 1; 
a = 1; 
while K < length(t) 
    new_t(1,a:a+24) = t(1,K:K+24);   
    new_x(:,a:a+24) = x(:,K:K+24); 
    K = K + 239; 
    a = a + 25; 
end 
  
% Now convert the state vector onto an observation vector 
  
% Determine x,y,z position of satellite in ECI frame. 
xpos = (Rref + new_x(1,:)) .* cos(longref + new_x(2,:)/Rref); 
ypos = (Rref + new_x(1,:)) .* sin(longref + new_x(2,:)/Rref); 
zpos = new_x(3,:); 
  
% Determine X,Y,Z postion of observer in ECI frame.  
X = Re.*cos(latsite).*cos(longsite); 
Y = Re.*cos(latsite).*sin(longsite); 
Z = Re.*sin(latsite); 
  
% Convert to RA and dec (observation matrix, z) 
ra = atan2((ypos-Y),(xpos-X)); 
dec = atan2((zpos-Z),sqrt((xpos-X).^2.+(ypos-Y).^2)); 
  
% To simulate the observation uncertainty inherent in the 
% telescopes, we'll add a random component to the RA and Dec 
% values, based on the given covariance of the equipment used. 
% NOTE: 1 arcsec = 4.85e-6 rad 
angle_error = 1e-5;   % Choose RA and Dec uncertainty (in rad)
for i = 1:length(ra) 
    ra_err = -angle_error + 2*angle_error * rand; 
    ra(1,i) = ra(1,i) + ra_err; 
    dec_err = -angle_error + 2*angle_error * rand; 
    dec(1,i) = dec(1,i) + dec_err; 
end 
 
time=new_t;  
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Appendix D:  MATLAB Code - NLS_nonman_algorithm.m 
 
clear;clc;close all; 
% This is the main program of the thesis for non-maneuver 
% data. It reads in the observation data and fit a nonlinear 
% least squares curve to the observations data. 
% 
% USER CONTROLS: 
%   Source Data - if the observation data is in an obscard  
%                 file, uncomment line 36 and comment out  
%                 line 39. If the data comes from the test   
%                 data generator, comment out line 36 and  
%                 use line 39. 
% 
% FUNCTIONS CALLED: 
%   radec_read.m     
%   test_data_generator2.m   (Shown in Appendix B) 
%   NLS_loop.m       (Shown in Appendix F) 
% 
% Brian Hirsc  h
% Spring 2006 
  
% The following units are used throughout the program: 
% Distance  -- Earth radii (6378.135 km) 
% Time      -- Days (86400 s) 
% Angles    -- radians 
  
  
Re = 1;              % Radius of earth 
longref = 3;         % Reference satellite longitude 
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
n = 2*pi;     % mean motion of geo satellite is about 1 rev/day 
  
  
% Read in the test data from an obscard file 
%[time, ra, dec] = radec_read('testfile.obs'); 
  
% Read in data from the test data generator 
[t, ra, dec] = test_data_generator2; 
  
% Set initial guess of the state  
x0 = zeros(6,1); 
  
% Run Nonlinear Least Squares Loop 
[fixed_x0,G,H,r_total,sigma]=NLS_loop(t,ra,dec,x0); 
  
% Now convert the improved state vector into RA and Dec arrays so 
% it can be compared to the observation data 
  
% First propagate the improved initial state vector through all 
% the observation times 
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fixed_x(:,1) = fixed_x0; 
  
% Make a new time vector for the improved data that has more  
% data points in order to make a smoother curve. 
  
ti = 0:0.01:t(length(t)); 
  
% For each time point: 
for i = 2:length(ti) 
     
% Input the phi matrix 
psi = n*ti(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
% Update improved state vector 
fixed_x(:,i) = phi * fixed_x(:,1); 
end 
  
% Determine x,y,z position of satellite in ECF frame. 
xpos = (Rref + fixed_x(1,:)) .* cos(longref + fixed_x(2,:)/Rref); 
ypos = (Rref + fixed_x(1,:)) .* sin(longref + fixed_x(2,:)/Rref); 
zpos = fixed_x(3,:); 
  
% Determine the position of the observing site in ECF frame 
X = Re*cos(latsite)*cos(longsite); 
Y = Re*cos(latsite)*sin(longsite); 
Z = Re*sin(latsite); 
  
% Convert to RA and Dec 
fixed_ra = atan2((ypos-Y),(xpos-X)); 
fixed_dec = atan2((zpos-Z),sqrt((xpos-X).^2.+(ypos-Y).^2)); 
  
% Convert all RAs and Decs to milliradians 
ra_milli = 1000 .* ra; 
dec_milli = 1000 .* dec; 
fixed_ra_milli = 1000 .* fixed_ra; 
fixed_dec_milli = 1000 .* fixed_dec; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% First plot RA vs Dec, both observed data and NLS fitted data 
figure(1) 
subplot(2,2,1) 
plot(ra_milli,dec_milli,'x',fixed_ra_milli,fixed_dec_milli,'-r') 
xlabel('Right Ascension (milliradians)') 
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ylabel('Declination (milliradians)') 
legend('Observed RA and Dec 'NLS fitted RA and Dec',1) ',
title('Satellite Position') 
grid on 
  
% Plot RA vs time, both observed data and NLS fitted data 
%figure(2) 
subplot(2,2,3) 
plot(t,ra_milli,'x',ti,fixed_ra_milli,'-r') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Observed RA','NLS fitted RA',1) 
title('Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time, both observed data and NLS fitted data 
%figure(3) 
subplot(2,2,4) 
plot(t,dec_milli,'x',ti,fixed_dec_milli,'-r') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Observed Dec','NLS fitted Dec',1) 
title('Declination v. Time') 
grid on 
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Appendix E:  MATLAB Code - NLS_man_algorithm.m 

clear;clc;close all; 
% This is the main program of the thesis for maneuver data. 
% It reads in the observation data and separates it into a pre-maneuver 
% partition and a post-maneuver partition. The program then fits a 
% nonlinear least squares curve to each set of data, determines the 
% intersection points between these two fits, and estimates the 
% maneuver time and vector based on these intersections. 
% 
% USER CONTROLS: 
%   Source Data - if the observation data is in an obscard file, 
%                 uncomment line 38 and comment out line 41. 
%                 If the data comes from the test data generator, 
%                 comment out line 38 and use line 41. 
% 
% FUNCTIONS CALLED: 
%   radec_read.m 
%   man_data_generator2.m (Shown in Appendix C) 
%   pre_post_man_separate.m (Shown in Appendix H) 
%   NLS_loop.m   (Shown in Appendix F) 
%   possible_man_times.m (Shown in Appendix K) 
% 
% Brian Hirsch 
% Spring 2006 
  
% The following units are used throughout the program: 
% Distance  -- Earth radii (6378.135 km) 
% Time      -- Days (86400 s) 
% Angles    -- radians 
  
Re = 1;              % Radius of earth 
longref = 3;         % Reference satellite longitude 
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
n = 2*pi;     % mean motion of geo satellite is about 1 rev/day 
  
% Read in the test data from an obscard file 
%[time, ra, dec] = radec_read('testfile.obs'); 
  
% Read in data from the test data generator 
[t,ra,dec] = man_data_generator2; 
  
numdata = length(t); 
  
% The man_time_check program will go through this data, determine 
% between which data points the maneuver took place, and separate 
% the data into pre-maneuver data and post-maneuver data.  
[pre_man_t,pre_man_ra,pre_man_dec,post_man_t,post_man_ra,post_man_dec,m
an_type]=pre_post_man_separate(t,ra,dec); 
  
% Now an NLS loop will be run for both the pre and post maneuever 
% data. 
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% Set initial guess of the state (for both sets of data) 
x0 = zeros(6,1); 
  
% Run Nonlinear Least Squares Loop (for both data sets) 
[fixed_x0_pre,G_pre,H_pre,r_total_pre,sigma_pre]=NLS_loop(pre_man_t,pre
_man_ra,pre_man_dec,x0); 
[fixed_x0_post,G_pre,H_post,r_total_post,sigma_post]=NLS_loop(post_man_
t,post_man_ra,post_man_dec,x0); 
  
% Now convert the improved state vector into RA and Dec arrays so 
% it can be compared to the observation data.  
% First propagate the improved initial state vector through all the 
% observation times 
fixed_x_pre(:,1) = fixed_x0_pre; 
fixed_x_post(:,1) = fixed_x0_post; 
  
% Make a new time vector for the improved data that has more data 
% points in order to make a smoother curve. 
ti = 0:0.01:t(length(t)); 
  
% For each time point: 
for i = 2:length(ti) 
     
% Input the phi matrix 
psi = n*ti(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
% Update improved state vector 
fixed_x_pre(:,i) = phi * fixed_x_pre(:,1); 
fixed_x_post(:,i) = phi * fixed_x_post(:,1); 
end 
  
% Determine x,y,z position of satellite in ECF frame. 
xpos_pre = (Rref + fixed_x_pre(1,:)) .* cos(longref + 
fixed_x_pre(2,:)/Rref); 
ypos_pre = (Rref + fixed_x_pre(1,:)) .* sin(longref + 
fixed_x_pre(2,:)/Rref); 
zpos_pre = fixed_x_pre(3,:); 
  
xpos_post = (Rref + fixed_x_post(1,:)) .* cos(longref + 
fixed_x_post(2,:)/Rref); 
ypos_post = (Rref + fixed_x_post(1,:)) .* sin(longref + 
fixed_x_post(2,:)/Rref); 
zpos_post = fixed_x_post(3,:); 
  
% Determine the position of the observing site in ECF frame 
X = Re*cos(latsite)*cos(longsite); 
Y = Re*cos(latsite)*sin(longsite); 
Z = Re*sin(latsite); 
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% Convert to RA and Dec 
fixed_ra_pre = atan2((ypos_pre-Y),(xpos_pre-X)); 
fixed_dec_pre = atan2((zpos_pre-Z),sqrt((xpos_pre-X).^2.+(ypos_pre-
Y).^2)); 
  
fixed_ra_post = atan2((ypos_post-Y),(xpos_post-X)); 
fixed_dec_post = atan2((zpos_post-Z),sqrt((xpos_post-X).^2.+(ypos_post-
Y).^2)); 
  
% Convert all RAs and Decs to milliradians 
ra_milli = 1000 .* ra; 
dec_milli = 1000 .* dec; 
fixed_ra_milli_pre = 1000 .* fixed_ra_pre; 
fixed_dec_milli_pre = 1000 .* fixed_dec_pre; 
fixed_ra_milli_post = 1000 .* fixed_ra_post; 
fixed_dec_milli_post = 1000 .* fixed_dec_post; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% First plot RA vs Dec, both observed data and NLS fitted data 
figure 
subplot(2,2,1) 
plot(ra_milli,dec_milli,'xk',fixed_ra_milli_pre,fixed_dec_milli_pre,'-
r',fixed_ra_milli_post,fixed_dec_milli_post,'-b') 
xlabel('Right Ascension (milliradians)') 
ylabel('Declination (milliradians)') 
legend('Observed RA and Dec','Pre-maneuver NLS fit','Post-maneuver NLS 
fit',1) 
title('a) Satellite Position') 
grid on 
   
% Plot RA vs time, both observed data and NLS fitted data 
subplot(2,2,3) 
plot(t,ra_milli,'xk',ti,fixed_ra_milli_pre,'-
r',ti,fixed_ra_milli_post,'-b') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Observed RA','Pre-maneuver NLS fit','Post-maneuver NLS fit',1) 
title('b) Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time, both observed data and NLS fitted data 
subplot(2,2,4) 
plot(t,dec_milli,'xk',ti,fixed_dec_milli_pre,'-
r',ti,fixed_dec_milli_post,'-b') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Observed Dec','Pre-maneuver NLS fit','Post-maneuver NLS fit',1) 
title('c) Declination v. Time') 
grid on 
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% The maneuver time can be determined by finding where the 
% pre-maneuver and post-maneuver NLS curves intersect. However, 
% the curves may intersect at multiple points since they are 
% sinusoidal. We must therefore pull out each intersection, look at 
% the velocity change for each, and determine which velocity change 
% looks the most like a reasonable maneuver, where a reasonable 
% maneuver is one that is almost totally in the North-South 
% direction, or almost totally in the East-West direction. 
  
[pos_min_times,pos_min_indeces]=possible_man_times(fixed_ra_pre,fixed_r
a_post,fixed_dec_pre,fixed_dec_post,ti,man_type); 
  
% We can set a constraint that the maneuver must occur near the 
% pre-post maneuver separation point, since all the possible N-S 
% maneuver are identical. We'll set the range to a day before and 
% after the separation point 
  
min_man_time = post_man_t(1,1) - 1; 
max_man_time = post_man_t(1,1) + 1; 
  
% Only keep the possible min times that fall within this range. 
c = 1;  % counter 
for i = 1:length(pos_min_times) 
    if pos_min_times(1,i) > min_man_time && pos_min_times(1,i) < 
max_man_time 
        min_times(1,c) = pos_min_times(1,i); 
        c = c + 1; 
    end 
end 
  
% If no maneuver took place during the time span of the 
% observations, the program will generally start to break down 
% here, because this constraint will knock out all possible min 
% times. Rather than allowing the program to crash, we'll just 
% keep all the possible min times and note that the error occurred, 
% meaning there may be no maneuver at all. Since the above  
% constraint isn't necessary for E-W maneuvers, we'll also keep all  
% intersections if the maneuver was an E-W one. 
if c ==1 || man_type == 1 
    min_times = pos_min_times; 
end 
   
% For each intersection time, determine the state from the 
% pre-maneuver fit and from the post-maneuver fit, by propagating 
% to each intersection time with the phi matrix 
  
% For each intersection: 
for i = 1:length(min_times) 
     
% Input the phi matrix 
psi = n*min_times(1,i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
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       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
pre_man_state(:,i) = phi*fixed_x0_pre; 
post_man_state(:,i) = phi*fixed_x0_post; 
end 
  
% We're only concerned with the velocity difference, so pull  
% those out 
pre_man_vel = pre_man_state(4:6,:); 
post_man_vel = post_man_state(4:6,:); 
  
% Determine the difference between the pre and post maneuver 
% velocities 
man_vel_diff = abs(post_man_vel-pre_man_vel); 
  
% Determine the magnitude of the total velocity difference 
for i = 1:length(min_times) 
    tot_vel_diff(1,i) = 
sqrt((man_vel_diff(1,i))^2+(man_vel_diff(2,i))^2+(man_vel_diff(3,i))^2)
; 
end 
avg_vel_diff = mean(tot_vel_diff); 
  
% Now we want to determine which of the velocity differences 
% for each intersection most closely resembles an all E-W 
% difference, or an all N-S difference. This will be done by 
% dividing the velocity change in the direction of interest 
% (N-S or E-W) by the magnitude of the total velocity change. 
  
for i = 1:length(min_times) 
    % 1st row checks E-W changes 
    E_W_man_match(1,i) = man_vel_diff(2,i)/tot_vel_diff(1,i); 
    % 2nd row checks N-S changes 
    N_S_man_match(1,i) = man_vel_diff(3,i)/tot_vel_diff(1,i);  
end 
  
% Find the max value 
[max_value,max_index]=max(max(E_W_man_match,N_S_man_match)); 
  
  
% Output the maneuver and time of maneuver (only if the program 
% thinks a maneuver actually occured) 
if c ~= 1 && avg_vel_diff > 1e-5  % If a maneuver was detected, 
                                  % output it 
    Time_of_Maneuver = min_times(1,max_index) 
    Maneuver = post_man_vel(:,max_index) - pre_man_vel(:,max_index) 
else % If no maneuver was detected, say so, but continue  
     % running the program 
    display('No valid maneuver time was detected. Try running this data 
through the non-maneuver NLS model.') 
    Time_of_Maneuver = min_times(1,max_index); 
    Maneuver = post_man_vel(:,max_index) - pre_man_vel(:,max_index); 
end 
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% Make a final plot showing the actual path of the satellite, 
% according to the NLS fit. 
time_sep_index = pos_min_indeces(1,find(pos_min_times == 
Time_of_Maneuver)); 
t_pre = ti(1,1:time_sep_index); 
t_post = ti(1,time_sep_index:length(ti)); 
  
% Now we'll truncate the pre-maneuver and post-maneuver at the 
% maneuver time. 
final_fit_ra_milli(1,1:time_sep_index) = 
fixed_ra_milli_pre(1,1:time_sep_index); 
final_fit_dec_milli(1,1:time_sep_index) = 
fixed_dec_milli_pre(1,1:time_sep_index); 
  
final_fit_ra_milli(1,time_sep_index:length(ti)) = 
fixed_ra_milli_post(1,time_sep_index:length(ti)); 
final_fit_dec_milli(1,time_sep_index:length(ti)) = 
fixed_dec_milli_post(1,time_sep_index:length(ti)); 
  
% Now plot this: 
% First plot RA vs Dec, both observed data and NLS fitted data 
figure 
subplot(2,2,1) 
plot(ra_milli,dec_milli,'xk',final_fit_ra_milli,final_fit_dec_milli,'-
r') 
xlabel('Right Ascension (milliradians)') 
ylabel('Declination (milliradians)') 
legend('Observed Position','NLS fitted Position',1) 
title('a) Satellite Position') 
grid on 
  
% Plot RA vs time, both observed data and NLS fitted data 
subplot(2,2,3) 
plot(t,ra_milli,'xk',ti,final_fit_ra_milli,'-r') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Observed RA','NLS fitted RA',1) 
title('b) Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time, both observed data and NLS fitted data 
subplot(2,2,4) 
plot(t,dec_milli,'xk',ti,final_fit_dec_milli,'-r') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Observed Dec','NLS fitted Dec',1) 
title('c) Declination v. Time') 
grid on 
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Appendix F:  MATLAB Code - NLS_loop.m 
 

function [fixed_x0,G,H,r_total,sigma]=NLS_loop(t,ra,dec,x0) 
  
% NLS_loop 
% This function runs through the nonlinear least squares loop 
% 
% INPUTS: 
%    t   - time vector (1 x n) 
%    ra  - right ascension vector (1 x n) 
%    dec - declination vector (1 x n) 
%    x0  - guess of initial state (6 x 1) 
% 
% OUTPUTS: 
%    fixed_x0 - converged estimate of initial state 
%    G        - observation relation matrix 
%    H        - linearized observation relation matrix 
%    r_total  - gives the ra and dec residuals for each data 
%               point. Each pair of rows corresponds to a data 
%               point and each column corresponds to an interation 
%               of the NLS loop (2n x # of iterations) 
%    sigma    - gives the covariance of each element of the  
%               fitted state 
% 
% FUNCTIONS CALLED: 
%    obs_matrix.m   (Shown in Appendix G) 
% 
% Brian Hirsch 
% Spring 2006 
  
numdata = length(t); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%               Nonlinear Least Squares Loop                % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Set a maximum number of iterations 
maxiter = 40; 
  
for iter = 1:maxiter 
     
% Initialize vectors and matrices 
zob = zeros(2,1);       % The vector of RA and Dec 
Q = eye(2,2);           % The covariance matrix 
  
Q(1,1) = 4.848e-6^2;    % Assume covariance of both RA and Dec is 
Q(2,2) = 4.848e-6^2;    % 1 arcsec^2 or 4.848e-6^2 rad^2 
  
Pinv = zeros(6,6);      % Running sums used in the observation 
CorVect = zeros(6,1);   % iteration 
  
% Run a loop to process each observation 
for obiter = 1:numdata 
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% Pull out individual observations 
tob = t(obiter); 
zob = [ra(obiter);dec(obiter)]; 
  
% Propagate the state forward to the correct time 
  
% Define the state transition matrix using the standard CW eqns. 
n = 2*pi;     % mean motion of geo satellite is about 1 rev/day 
psi = n*tob; 
  
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
    
x = phi*x0; 
  
% Now get the G and H matrices 
[G,H] = obs_matrix(x); 
  
% Calculate residual vector (r_total contains residuals for all 
% iterations) 
r = zob - G; 
r_total(obiter*2-1:obiter*2,iter) = r; 
  
% Calculate the observation matrix, T. 
T = H * phi; 
  
% Form running sums of: 
% Pinv = transpose(T)*inverse(Q)*T 
% CorVect = transpose(t)*inverse(Q)*r 
  
Pinv = Pinv + T'*inv(Q)*T; 
CorVect = CorVect + T'*inv(Q)*r; 
  
end 
% Finished looping through observations 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Now improve the state estimate 
  
% Determine covariance matrix, P 
P = inv(Pinv); 
  
% Determine correction to the state 
dx = P * CorVect; 
 
% Update initial state 
x0 = x0 + dx; 
  
end  
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% End of least squares loop 
  
fixed_x0 = x0; 
  
% Check covariance of estimated state 
sigma(:,1) = 
[sqrt(P(1,1));sqrt(P(2,2));sqrt(P(3,3));sqrt(P(4,4));sqrt(P(5,5));sqrt(
P(6,6))]; 
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Appendix G:  MATLAB Code - obs_matrix.m 
 
function [G,H] = obs_matrix(x) 
  
% This function calculates the observation relation, G, and  
% the linearized observation relation, H. 
% 
% OUTPUTS:   
%    G - observation relation 
%    H - linearized observation relation 
% 
% INPUTS:  
%    x - 6x1 state vector 
% 
% Brian Hirsc  h
% Spring 2006 
  
% The equations for H were derived using the math software, 
% Maple V, and confirmed by a hand derivation. 
  
% The following units are used throughout the program: 
% Distance  -- Earth radii (6378.135 km) 
% Time      -- Days (86400 s) 
% Angles    -- radians 
  
% The given values needed for this approximation include: 
  
Re = 1;        % Radius of earth 
longref = 3;         % Reference satellite longitude 
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
n = 2*pi;            % mean motion of geo satellite is about 1 rev/day 
  
% Pull out the state vector 
delr = x(1); 
deltheta = x(2) / Rref; 
delz = x(3); 
delrdot = x(4); 
delthetadot = x(5) / Rref; 
delzdot = x(6); 
  
% Determine the position of the observing site in ECI frame 
X = Re*cos(latsite)*cos(longsite); 
Y = Re*cos(latsite)*sin(longsite); 
Z = Re*sin(latsite); 
  
% Determine the position of the reference satellite in ECI frame 
xpos = (Rref + delr)*cos(longref + deltheta); 
ypos = (Rref + delr)*sin(longref + deltheta); 
zpos = delz; 
  
% RA and Dec will be the observation variables. They are defined 
% below in terms of the positions of the observer (X,Y,Z) and the 
% reference satellite (xpos,ypos,zpos). 
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G = [atan2((ypos-Y),(xpos-X)) ; atan2((zpos-Z),sqrt((xpos-X)^2+(ypos-
Y)^2))]; 
  
% The H matrix is the derivate of the observation vector, z, 
% with respect to the state vector. Note that half the matrix 
% will be zeros since the derivatives with respect to the velocities 
% in the state vector are zero. 
  
% H1 = diff(RA,delr) 
H1 = (sin(longref+deltheta)/((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))-((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))*cos(longref+deltheta)/(((Rref+delr)*cos(
longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2))/(1+((Rref+delr)*sin(longref+deltheta
)-Re*cos(latsite)*sin(longsite))^2/(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2)); 
 
% H2 = diff(RA,deltheta) 
H2 = 
((Rref+delr)*cos(longref+deltheta)/((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))*(Rref+delr)*sin(longref+deltheta)/(((Rre
f+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2))/(1+((Rref+delr)*sin(longref+deltheta
)-Re*cos(latsite)*sin(longsite))^2/(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2)); 
 
% H3 = diff(RA,delz) 
H3 = 0; 
 
% H4 = diff(Dec,delr) 
H4 = -1/2*(delz-Re*sin(latsite))*(2*((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))*cos(longref+deltheta)+2*((Rref+delr)*sin
(longref+deltheta)-
Re*cos(latsite)*sin(longsite))*sin(longref+deltheta))/((((Rref+delr)*co
s(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2)^(3/2)*(1+(delz-
Re*sin(latsite))^2/(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2))); 
 
% H5 = diff(Dec,deltheta) 
H5 = -1/2*(delz-Re*sin(latsite))*(-
2*((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))*(Rref+delr)*sin(longref+deltheta)+2*((Rr
ef+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))*(Rref+delr)*cos(longref+deltheta))/((((R
ref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2)^(3/2)*(1+(delz-
Re*sin(latsite))^2/(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2))); 
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% H6 = diff(Dec,delz) 
H6 = 1/(sqrt(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2)*(1+(delz-
Re*sin(latsite))^2/(((Rref+delr)*cos(longref+deltheta)-
Re*cos(latsite)*cos(longsite))^2+((Rref+delr)*sin(longref+deltheta)-
Re*cos(latsite)*sin(longsite))^2))); 
  
% Build H matrix 
H = [H1 H2 H3 0 0 0; H4 H5 H6 0 0 0]; 
  
  
 
 
 
 
  

96 



 

Appendix H:  MATLAB Code - pre_post_man_separate.m 
 
function 
[pre_man_t,pre_man_ra,pre_man_dec,post_man_t,post_man_ra,post_man_dec,m
an_type]=pre_post_man_separate(t,ra,dec) 
  
% This function will determine between which clumps of observations 
% the manuever takes place. We'll get an initial NLS fit from just 
% the first clump of data, or the first two clumps of data. This 
% should produce a trajectory that somewhat lines up with the 
% pre-maneuever data. We should then be able to determine the  
% maneuever by checking for a jump in the residuals when we include 
% the entire data set. 
% 
% INPUTS: 
%    t     - entire time vector (in days) of observations 
%    ra    - entire right ascension vector 
%    dec   - entire declination vector 
% 
% OUTPUTS: 
%    pre_man_t     - Pre-maneuver half of the time vector 
%    pre_man_ra    - Pre-maneuver half of the ra vector 
%    pre_man_dec   - Pre-maneuver half of the dec vector 
%    post_man_t    - Post-maneuver half of the time vector 
%    post_man_ra   - Post-maneuver half of the ra vector 
%    post_man_dec  - Post-maneuver half of the dec vector 
%    man_type      - Maneuver type: 1 for East-West maneuver, 
%                                   2 for North-South maneuver 
% USER CONTROLS:  
%    Line 95 or 98 must be commented out depending on whether  
%    the 1st clump or both the 1st and 2nd clumps will be used 
%    to create an initial NLS fit 
% 
% FUNCTIONS CALLED 
%   NLS_loop.m  (Shown in Appendix F) 
%   ra_man_check  (Shown in Appendix J) 
%   dec_man_check  (Shown in Appendix I) 
% 
% Brian Hirsch 
% Spring 2006 
  
% Pull out first clump of data. 
  
% First determine the step size of the first clump of observations 
clump_step = t(1,2) - t(1,1); 
  
% Form a new time vector that only contains the first clump of data 
t_1st(1,1) = t(1,1); 
  
% Now determine how long the clump goes. 
i=2; 
while t(1,i) - t(1,i-1) <= 2 * clump_step %Doubled to give wiggle room 
    t_1st(1,i) = t(1,i); 
    i = i + 1; 
end 
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% Now crop the ra and dec vectors so only the 1st clump of data is 
% used 
for c = 1:length(t_1st) 
    ra_1st(1,c) = ra(1,c); 
    dec_1st(1,c) = dec(1,c); 
end 
  
% Now pull out the second clump of data 
% First form a vector containing only the 2nd clump of time data 
t_2nd(1,1) = t(1,length(t_1st)+1); 
i=2; 
b = length(t_1st) + 2; 
while t(1,b) - t(1,b-1) <= 2 * clump_step %Doubled to give wiggle room 
    t_2nd(1,i) = t(1,b); 
    i = i + 1; 
    b = b + 1; 
end 
  
% Crop the ra and dec vectors so only the 2nd clump of data is used 
i=1; 
for c = (length(t_1st)+1):(length(t_1st)+length(t_2nd)) 
    ra_2nd(1,i) = ra(1,c); 
    dec_2nd(1,i) = dec(1,c); 
    i = i + 1; 
end 
  
% Now combine 1st and 2nd clumps of data into one 
t_1st_and_2nd = [t_1st t_2nd]; 
ra_1st_and_2nd = [ra_1st ra_2nd]; 
dec_1st_and_2nd = [dec_1st dec_2nd]; 
  
  
% Now we'll run a NLS fit to the first (or 1st and 2nd) clump 
% of data. 
  
% Create an initial guess 
x0 = zeros(6,1); 
  
% Run NLS loop for either the 1st clump of data or the 1st and  
% 2nd clumps (comment one or the other out) 
  
% Using just the first clump 
%[fixed_x0,G,H,r_total,sigma]=NLS_loop(t_1st,ra_1st,dec_1st,x0); 
  
% Using the first and second clump 
[fixed_x0,G,H,r_total,sigma]=NLS_loop(t_1st_and_2nd,ra_1st_and_2nd,dec_
1st_and_2nd,x0); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot the fit to the first data clump against all the data to see 
% if a maneuver is visible. 
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% First propagate the fitted initial state over the length of the 
% time vector 
% Make a new time vector for the improved data that has more data 
% points in order to make a smoother curve. 
  
ti = 0:0.01:t(length(t)); 
  
fixed_x(:,1) = fixed_x0; 
% For each time point: 
for i = 2:length(ti) 
     
% Input the phi matrix 
n = 2*pi;     % mean motion of geo satellite is about 1 rev/day 
psi = n*ti(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
  
% Update improved state vector 
fixed_x(:,i) = phi * fixed_x(:,1); 
end 
  
% Given physical values 
Re = 1;              % Radius of earth 
longref = 3;         % Reference satellite longitude 
Rref = 6.6 * Re;     % Reference satellite orbit radius 
latsite = 0.3456;    % Latitude of observer 
longsite = 2.7122;   % Longitude of observer 
  
% Determine x,y,z position of satellite in ECF frame. 
xpos = (Rref + fixed_x(1,:)) .* cos(longref + fixed_x(2,:)/Rref); 
ypos = (Rref + fixed_x(1,:)) .* sin(longref + fixed_x(2,:)/Rref); 
zpos = fixed_x(3,:); 
  
% Determine the position of the observing site in ECF frame 
X = Re*cos(latsite)*cos(longsite); 
Y = Re*cos(latsite)*sin(longsite); 
Z = Re*sin(latsite); 
  
% Convert to RA and Dec 
fixed_ra = atan2((ypos-Y),(xpos-X)); 
fixed_dec = atan2((zpos-Z),sqrt((xpos-X).^2.+(ypos-Y).^2)); 
  
% Convert all RAs and Decs to milliradians 
ra_milli = 1000 .* ra; 
dec_milli = 1000 .* dec; 
fixed_ra_milli = 1000 .* fixed_ra; 
fixed_dec_milli = 1000 .* fixed_dec; 
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%%%%%%%%%%%%%%%% 
% Plot results 
%%%%%%%%%%%%%%%% 
  
% First plot RA vs Dec, both observed data and NLS fitted data 
figure 
subplot(2,2,1) 
plot(ra_milli,dec_milli,'x',fixed_ra_milli,fixed_dec_milli,'-r') 
xlabel('Right Ascension (milliradians)') 
ylabel('Declination (milliradians)') 
legend('Observed RA and Dec','NLS fitted RA and Dec',1) 
title('a) Declination v. Right Ascension') 
grid on 
  
% Plot RA vs time, both observed data and NLS fitted data 
subplot(2,2,3) 
plot(t,ra_milli,'x',ti,fixed_ra_milli,'-r') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Observed RA','NLS fitted RA',1) 
title('b) Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time, both observed data and NLS fitted data 
subplot(2,2,4) 
plot(t,dec_milli,'x',ti,fixed_dec_milli,'-r') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Observed Dec','NLS fitted Dec',1) 
title('c) Declination v. Time') 
grid on 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Now determine the difference between the observed RA and Dec for 
% the entire data vector and the RA and Dec propagated from the 
% fitted initial state derived from the first clump of data. 
  
% First propagate the 1st clump fitted initial state over the 
% same time vector as the observed data. 
first_fit_x(:,1) = fixed_x0; 
% For each time point: 
for i = 2:length(t) 
     
% Input the phi matrix 
n = 2*pi;     % mean motion of geo satellite is about 1 rev/day 
psi = n*t(i); 
phi = [4-3*cos(psi) 0 0 1/n*sin(psi) 2/n*(1-cos(psi)) 0;... 
       6*(sin(psi) - psi) 1 0 2/n*(cos(psi)-1) 4/n*sin(psi)-3/n*psi  
       0;... 
       0 0 cos(psi) 0 0 1/n*sin(psi);... 
       3*n*sin(psi) 0 0 cos(psi) 2*sin(psi) 0;... 
       6*n*(cos(psi) -1) 0 0 -2*sin(psi) -3+4*cos(psi) 0;... 
       0 0 -n*sin(psi) 0 0 cos(psi)]; 
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% Update improved state vector 
first_fit_x(:,i) = phi * first_fit_x(:,1); 
end 
  
% Now convert these state vectors into RA and Dec 
  
% Determine x,y,z position of satellite in ECF frame. 
first_fit_xpos = (Rref + first_fit_x(1,:)) .* cos(longref + 
first_fit_x(2,:)/Rref); 
first_fit_ypos = (Rref + first_fit_x(1,:)) .* sin(longref + 
first_fit_x(2,:)/Rref); 
first_fit_zpos = first_fit_x(3,:); 
  
% Convert to RA and Dec 
first_fit_ra = atan2((first_fit_ypos-Y),(first_fit_xpos-X)); 
first_fit_dec = atan2((first_fit_zpos-Z),sqrt((first_fit_xpos-
X).^2.+(first_fit_ypos-Y).^2)); 
  
% Convert to milliradians 
first_fit_ra_milli = 1000 .* first_fit_ra; 
first_fit_dec_milli = 1000 .* first_fit_dec; 
  
%%%%%%%%%%%%%%%% 
% Plot results 
%%%%%%%%%%%%%%%% 
% First plot RA vs Dec, both observed data and NLS fitted data 
figure 
subplot(2,2,1) 
plot(ra_milli,dec_milli,'x',first_fit_ra_milli,first_fit_dec_milli,'.r'
) 
xlabel('Right Ascension (milliradians)') 
ylabel('Declination (milliradians)') 
legend('Observed RA and Dec','NLS fitted RA and Dec',1) 
title('a) Declination v. Right Ascension') 
grid on 
  
% Plot RA vs time, both observed data and NLS fitted data 
subplot(2,2,3) 
plot(t,ra_milli,'x',t,first_fit_ra_milli,'.r') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Observed RA','NLS fitted RA',1) 
title('b) Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time, both observed data and NLS fitted data 
subplot(2,2,4) 
plot(t,dec_milli,'x',t,first_fit_dec_milli,'.r') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Observed Dec','NLS fitted Dec',1) 
title('c) Declination v. Time') 
grid on 
  
  

101 



 

% Now find the difference between the observed data and the 
% fitted data. 
ra_diff = abs(ra-first_fit_ra); 
dec_diff = abs(dec-first_fit_dec); 
  
figure 
plot(t,ra_diff,'-xr',t,dec_diff,'-xb') 
legend('Right Ascension Difference','Declination Difference',2) 
xlabel('Time (days)') 
ylabel('Angle Difference (rad)') 
title('Difference Between NLS Fitted Data and Observed Data') 
grid on 
  
% We'll first determine if the maneuver was in the North-South 
% direction or the East-West direction. An N-S maneuver will result 
% in a big difference in declination, while an E-W maneuver will 
% result in a big difference in right ascension, so we can simply 
% find which has the largest difference. 
  
if max(ra_diff) > max(dec_diff) 
    man_type = 1;   % Type 1 manuever will denote an E-W maneuver 
else 
    man_type = 2;   % Type 2 manuever will denote an N-S maneuver 
end 
  
% Depending on which maneuver took place, different programs will 
% determine the separation point between the pre maneuver data and 
% the post maneuver data. 
  
if man_type == 1 
    [sep_point]=ra_man_check(ra_diff,t); 
else if man_type == 2 
    [sep_point]=dec_man_check(dec_diff,t); 
    end 
end 
         
% Now separate the data according to the determined separation point 
pre_man_t = t(1,1:sep_point-1); 
pre_man_ra = ra(1,1:sep_point-1); 
pre_man_dec = dec(1,1:sep_point-1); 
post_man_t = t(1,sep_point:length(t)); 
post_man_ra = ra(1,sep_point:length(ra)); 
post_man_dec = dec(1,sep_point:length(dec)); 
  
% Do a simple plot to see if the data was separated correctly 
% Convert to milliradians 
pre_man_ra_milli = 1000 * pre_man_ra; 
pre_man_dec_milli = 1000 * pre_man_dec; 
post_man_ra_milli = 1000 * post_man_ra; 
post_man_dec_milli = 1000 * post_man_dec; 
  
% First plot RA vs Dec 
figure 
subplot(2,2,1) 
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plot(pre_man_ra_milli,pre_man_dec_milli,'xb',post_man_ra_milli,post_man
_dec_milli,'+r') 
xlabel('Right Ascension (milliradians)') 
ylabel('Declination (milliradians)') 
legend('Pre-maneuver RA and Dec','Post-maneuver RA and Dec',1) 
title('a) Declination v. Right Ascension') 
grid on 
  
% Plot RA vs time 
subplot(2,2,3) 
plot(pre_man_t,pre_man_ra_milli,'xb',post_man_t,post_man_ra_milli,'+r') 
xlabel('Time (days)') 
ylabel('Right Ascension (milliradians)') 
legend('Pre-maneuver RA','Post-maneuver RA',1) 
title('b) Right Ascension v. Time') 
grid on 
  
% Plot Dec vs time 
subplot(2,2,4) 
plot(pre_man_t,pre_man_dec_milli,'xb',post_man_t,post_man_dec_milli,'+r
') 
xlabel('Time (days)') 
ylabel('Declination (milliradians)') 
legend('Pre-maneuver Dec','Post-maneuver Dec',1) 
title('c) Declination v. Time') 
grid on 
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Appendix I:  MATLAB Code - dec_man_check.m 
 
function [sep_point]=dec_man_check(dec_diff,t) 
  
% This function will try to separate pre and post maneuver 
% data for a North-South maneuver by determining the percent 
% difference between each data point in the difference between 
% real observations and the initial NLS fit to the first clump 
% of data. 
% 
% INPUTS: 
%    t         - entire time vector (in days) of observations 
%    dec_diff  - difference vector between observed declination 
%                and NLS fit of the declination 
% 
% OUTPUTS: 
%    sep_point - the index of the time vector marking the  
%                separation point between the pre-maneuver 
%                data and post-maneuver data 
% 
% Brian Hirsc  h
% Spring 2006 
  
% Calculate the percentage difference 
for i = 2:length(dec_diff) 
    percent_diff(1,i) = (dec_diff(1,i)-dec_diff(1,i-1))/dec_diff(1,i-
1); 
end 
  
% Plot this 
figure 
plot(t,percent_diff,'-xr') 
ylabel('Percentage Difference in Declination (rad)') 
xlabel('Time (days)') 
grid on 
title('Percentage Difference (dividing by previous data point)') 
  
% This percentage difference calculation results in a division 
% by a small number in the pre-maneuver data, so noisy data can 
% explode in this calculation. To suppress this, the percentage 
% difference is multiplied by the value of the second point.  
for i = 2:length(dec_diff) 
    scaled_percent_diff(1,i) = percent_diff(1,i) * dec_diff(1,i); 
end 
  
% This graph should spike where the maneuver takes place. 
sep_point = find(scaled_percent_diff == max(scaled_percent_diff)); 
  
% Plot this 
figure 
plot(t,scaled_percent_diff,'-xr') 
ylabel('Scaled Percentage Difference in Declination (rad)') 
xlabel('Time (days)') 
grid on 
title('Scaled Percentage Difference (dividing by previous data point)') 

104 



 

Appendix J:  MATLAB Code - ra_man_check.m 
 
function [sep_point]=ra_man_check(ra_diff,t) 
  
% This function will try to separate pre and post maneuver data 
% for an East-West maneuver by scaling the difference between the 
% right ascension observations and the inital NLS fit of the right 
% ascension. A second difference of these scaled difference values 
% is calculated in order to determine the separation point. 
% 
% INPUTS: 
%    t         - entire time vector (in days) of observations 
%    ra_diff   - difference vector between observed right ascension 
%                and NLS fit of the right ascension 
% 
% OUTPUTS: 
%    sep_point - the index of the time vector marking the separation 
%                point between the pre-maneuver data and post-maneuver 
%                data 
% 
% Brian Hirsc  h
% Spring 2006 
  
% First scale the data to the last data point 
for i = 1:length(ra_diff) 
    scale_to_last_diff(1,i) = ra_diff(1,i)/ra_diff(1,length(ra_diff)); 
end 
  
figure 
plot(t,scale_to_last_diff,'-xr') 
ylabel('Scaled Difference') 
xlabel('Time (days)') 
grid on 
title('Right Ascension Scaled Difference') 
  
% Next, calculate the difference between the data points once again 
for i = 2:length(scale_to_last_diff) 
    slope_diff(1,i) = (scale_to_last_diff(1,i)-scale_to_last_diff(1,i-
1)); 
end 
slope_diff(1,1) = slope_diff(1,2);  % Arbitrarily set the first 
                                    % point to be insignificant 
slope_diff = abs(slope_diff);       % Absolute value of difference 
  
% Now there should be a peak at the beginning of each new clump  
% of the post maneuver data. We must find the first of these peaks. 
% First find the maximum peak 
max_point = find(slope_diff == max(slope_diff)); 
  
% All other peaks will be within at least a tenth of the max peak 
c = 1;  % counter 
for i = 1:length(slope_diff) 
    if slope_diff(1,i) > slope_diff(1,max_point) / 10 
        peaks(1,c) = slope_diff(1,i); 
        peaks_index(1,c) = i; 
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        peaks_times(1,c) = t(1,i); 
        c = c + 1; 
    end 
end 
  
% Plot this 
figure 
plot(t,slope_diff,'-xr') 
hold on 
plot(peaks_times,peaks,'bo') 
ylabel('Difference in slope') 
xlabel('Time (days)') 
grid on 
title('Right Ascension Slope Difference Between Data Points') 
  
% The first peak determines where to separate the data 
sep_point = peaks_index(1,1); 
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Appendix K:  MATLAB Code - possible_man_times.m 
 
function 
[min_time,min_index]=possible_man_times(fixed_ra_pre,fixed_ra_post,fixe
d_dec_pre,fixed_dec_post,ti,man_type) 
  
% This function determines where the pre-maneuver NLS fit and 
% the post-maneuver NLS fit intersect. This usually occurs at 
% multiple places, so the function will determine which intersection 
% corresponds to the true maneuver by looking at the velocity 
% changes at each intersection. The true maneuver will probably 
% have a velocity change either totally in the North-South direction, 
% or totally in the East-West direction. The intersection whose 
% velocity change most closely resembles this will be determined to 
% be the correct maneuver time. 
% 
% INPUTS: 
%    fixed_ra_pre    - NLS estimated fit of the pre-maneuver ra  
%    fixed_ra_post   - NLS estimated fit of the post-maneuver ra 
%    fixed_dec_pre   - NLS estimated fit of the pre-maneuver dec  
%    fixed_dec_post  - NLS estimated fit of the post-maneuver dec 
%    ti              - entire time vector (in days) of observations 
%    man_type        - Maneuver type: 1 for East-West maneuver, 
%                                     2 for North-South maneuver 
% 
% OUTPUTS: 
%    min_time   - a vector of the times at which each intersection 
%                 between the pre-manever and post-maneuver NLS 
%                 fits intersect 
%    min_index  - a vector of the indeces in the total time vector 
%                 at which each entry in the min_time vector occurs 
% 
% Brian Hirsc  h
% Spring 2006 
  
% Determine if the maneuver occurred in the North-South or East-West 
% direction. 
if man_type == 1 
    pre_fit = fixed_ra_pre; 
    post_fit = fixed_ra_post; 
else if man_type == 2 
    pre_fit = fixed_dec_pre; 
    post_fit = fixed_dec_post; 
    end 
end 
  
% Find difference between fits 
fit_diff_first = abs(pre_fit-post_fit); 
  
% Find the max difference and scale the vector to this max 
fit_diff = 
fit_diff_first./fit_diff_first(1,find(max(fit_diff_first)==fit_diff_fir
st)); 
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% Plot this difference 
figure 
plot(ti,fit_diff,'x') 
grid on 
title('Difference Between Pre-maneuver and Post-maneuver NLS fits') 
xlabel('Time (days)') 
if man_type == 1 
    ylabel('Right Ascension Difference (scaled to largest value)') 
else 
    ylabel('Declination Difference (scaled to largest value)') 
end 
  
% Since the intersection probably occurs between data points, 
% there shouldn't be any points where the difference is actually 
% zero. Instead we'll find where the difference is less than some 
% set value. Due to the nature of the difference curves for the 
% different maneuver types, this set value will differ depending 
% on the maneuver type. 
if man_type == 1 
    set_point = 0.01; 
else if man_type == 2 
    set_point = 0.2; 
    end 
end 
  
c=1; 
for i = 1:length(ti) 
    if fit_diff(1,i) < set_point 
        % Pull out all the "almost intersecting" points 
        small_diff_span(1,c) = fit_diff(1,i); 
        % Keep track of what time index those points came from 
        small_diff_span_index(1,c) = i; 
        c = c + 1; 
   nd  e
end 
  
% This span should contain all the intersections, as well as 
% nearby points on either side of the intersection points. It 
% should be composed as follows: a curve of negative slope leading 
% to an intersection point, then a curve of positive slope leading 
% away from the intersection point. Next, another curve of negative 
% slope leading towards a second intersection point, then a curve 
% of positive slope leading away from the intersection point, and 
% so on, depending on the number of intersection points. In order 
% to separate the intersection points, we'll simply look for where 
% the curve's slope switches from positive to negative. The span 
% will then be arranged into a matrix in which each row contains 
% a minimum as well as possibly multiple surrounding data points. 
  
% Find slope between each point in the span. Actually we just 
% find the difference, not the slope. The difference will have 
% the same sign trends and is easier to calculate. 
span_slope(1,1) = -1;  % Arbitrarily set initial value 
for i = 2:length(small_diff_span) 
    span_slope(1,i) = small_diff_span(1,i)-small_diff_span(1,i-1); 
end 
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% We want a matrix in which each row contains a minimum as 
% well as possibly multiple surrounding data points, so we'll 
% separate the span everywhere the difference switches from 
% positive to negative.  
clump_index=1; 
min_matrix(1,1)=small_diff_span(1,1); % Start with 1st data point 
index_matrix(1,1) = small_diff_span_index(1,1); 
w = 2;  % Set a counter for the width of each row 
for i = 2:length(small_diff_span) 
    if ((span_slope(1,i-1) > 0) && (span_slope(1,i) < 0)) 
        clump_index = clump_index + 1; % Move down a row 
        w = 2; % Reset width counter 
        min_matrix(clump_index,1) = small_diff_span(1,i); 
        index_matrix(clump_index,1) = small_diff_span_index(1,i); 
    else 
        min_matrix(clump_index,w) = small_diff_span(1,i); 
        index_matrix(clump_index,w) = small_diff_span_index(1,i); 
        w = w + 1; 
    end 
end 
  
% Since not all rows of the matrix will be the same size, MATLAB 
% will put zeros in the matrix where there is not data. We don't 
% want these to be chosen as the minimum, so any entries in the 
% matrix that are zero will be reset as a large number. 
  
[r,c]=size(min_matrix); 
for i1 = 1:r 
    for i2 = 1:c 
        if min_matrix(i1,i2) == 0 
            min_matrix(i1,i2) = 1; 
       nd  e
    end 
end 
  
% Now we determine the intersection times by taking the min of 
% each row 
for i = 1:r 
    min_location=find(min_matrix(i,:)==min(min_matrix(i,:))); 
    min_index(1,i)=index_matrix(i,min_location); 
end 
  
% Now convert the min indexes to min times. 
for i=1:length(min_index) 
    min_time(1,i)=ti(1,min_index(1,i)); 
end 
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