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Abstract 
 

 The use of decoys in combat has become more advanced in recent years.  Some of 

the newest military aircraft, such as the US Navy’s F/A-18E/F Superhornet, have the 

capability to deploy a towline with an attached decoy when entering hostile territory as a 

defense mechanism against enemy threats.  In steady state, the towline extends behind 

and below the aircraft.  A major concern is the position of the towline, as aircraft 

maneuvers can cause the line to enter the engine plume.  The high exhaust heat can cause 

problems, such as damaging electrical equipment and severing the line.  In order to better 

understand the behavior of the towline, as well as setting up a method to analyze the heat 

transfer to the towline, computer modeling has been utilized using numerical integration 

with the method of characteristics. 

 The method of characteristics has been applied to 4 hyperbolic equations of 

motion, leaving 2 parabolic equations of motion to be calculated at each timestep.  The 

energy equation for heat transfer to the towline was also derived, which provides a means 

to find local air density and towline temperature.  From these a model was created to 

observe towline behavior and temperature, which is shown to be consistent with past 

research.  This model is applicable to any towed body in any medium with zero slack 

conditions. 

 The effects of transient aircraft maneuvers on towline behavior in a predetermined 

temperature field were analyzed under different conditions using a code developed in 

MATLAB®.  This code is included such that aircraft maneuvers in unique temperature 

fields can be analyzed for future research. 
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THEORETICAL MODELING OF THE TRANSIENT EFFECTS OF A TOWLINE 
USING THE METHOD OF CHARACTERISTICS 

 

 

I: Introduction 

1 Introduction 

1.1. Background and Problem Setup 

 As military aircraft design has advanced over the years, so has the ability to detect 

and destroy them.  The beginning of military aviation saw aircraft used primarily for 

scouting.  At the outbreak of World War I, pilots were flying around each other shooting 

with handguns or the occasional mounted gun.  There were antiaircraft defenses, but they 

often missed their targets.  The aircraft themselves were only mildly effective warfighting 

tools, and were thus not the focus of much of military strategy. 

 Over the years, however, military aviation has become a vital part of combat 

strategy.  The turning point of the Pacific Theater of World War II was the Battle of 

Midway.  A naval conflict, this battle was fought purely with aircraft, proving the 

effectiveness and necessity for air superiority.  Indeed, at the end of the same war, Japan 

found itself minus two cities due to attacks from the air.  One might wonder what would 

have happened had Japan’s air defense been stronger such that it could have shot down 

the bombers. 

The intense threat of air attacks has propelled an equally intense development of 

antiaircraft defenses.  From the introduction of surface to air missiles in Vietnam to the 
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development of long range air to air missiles such as the Phoenix, military aircraft must 

increasingly be wary of threats from both the ground and air.  Modern design of aircraft 

must keep these issues central to their design. 

This advancement of aircraft design has meant that as technology progresses, 

much more care and work needs to be put into protecting aircraft due to the immense cost 

of each vehicle.  Ball quotes an anonymous source in his book as saying, “the cost of 

modern aircraft weapon systems, coupled with the requirement that the system be 

effective, makes imperative the consideration of the aircraft’s survivability throughout the 

life cycle of the system” (Ball, 2003: xxvii). 

The development of aircraft for modern conflict must take careful consideration 

to the threats that are posed.  This is the back and forth process that the history of 

technology in warfare has followed.  Antiaircraft artillery was able to be more effective at 

the altitude the aircraft were flying, so aircraft were designed to fly higher.  Heat seeking 

missiles were put into battle, so chaff and flare became standard defenses.  Radar could 

detect threats and track aircraft, so stealth aircraft and radar jammers were designed. 

A lot of the more modern advances have been in electro-magnetic warfare.  

Anything that uses the EM spectrum falls under the scope of EM warfare.  This includes 

detection devices such as radar, as well as any type of communication device.  Control of 

the electro-magnetic spectrum in modern conflicts has become one the most vital 

guarantors of effectiveness. 

One way to protect against aircraft in the realm of EM warfare is the use of towed 

decoys.  A towed decoy is nothing more than a relatively small body towed behind an 

aircraft going into combat that can emit EM signals.  It is connected to the aircraft by a 
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towline that can send signals back and forth, thus eliminating any need for 

communication through the air.  The towline also eliminates the need for a propulsion 

and guidance system on the towed body.  The body contains equipment that can be used 

to confuse enemy radar into seeing multiple or different types of aircraft.  This could 

deter an attacker from attempting an attack, or force a threat to reveal their location (by 

firing a SAM, for instance).  If a weapon is fired, the weapon will track the towed body 

rather than the aircraft.  Either way, the aircraft and her crew are protected and are 

allowed to complete their mission. 

One of the more common towed decoy systems, Raytheon’s AN/ALE-50 Towed 

Decoy System is currently used on many US military aircraft, including the F/A-18E/F 

Superhornet, the F-16 Falcon, and the B-1B Lancer.  This system has been used for the 

last decade or so.  More developments on towed decoys are underway.  A drawing of this 

system is shown in Figure 1.1-1. 
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        (used without permission)                (The Raytheon Company, 2006) 

Figure 1.1-1  Raytheon’s AN/ALE-50 Towed Decoy System 

The towed body has the potential to undergo movement in combat.  It is often 

unwise and tactically foolish to fly straight and level when under fire.  Thus, the towline 

and towed body may need to undergo significant maneuvers.  This can put a lot of 

tension on the towline, and often causes it to drift into the engine plume.  At such a close 

distance, the towline has the potential to be damaged or severed, thus making the towed 

body worthless. 

This paper seeks to provide a way to model the behavior of the towed body and 

towline under transient conditions so that future work can use these results to better 

design the system.  This paper also analyzes the convective transfer of heat to the 

towline, and develops a manner in which to transfer data through time and down the line 
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by using the method of characteristics.  Computer coding done in MATLAB® is included 

that can be easily modified to account for temperature effects and transient maneuvers. 

1.2. Assumptions 

The assumptions in this report were such that the analysis of the system of towline 

and towed body can be applied to almost any towed body in any medium.  Much of the 

work in this paper was based on the development of equations to model towed bodies 

underwater.  The first set of assumptions involved the towline behavior.  The second set 

involved the attachment of the towline to the body and the aircraft.  The third set of 

assumptions involved the aerodynamic effects.  The fourth set of assumptions involved 

heat transfer effects. 

Regarding the towline behavior, the first assumption was that compression in the 

line is impossible (see discussion on Crist’s work, Section 2.3).  Thus, the minimum 

tension in the line is zero.  The second assumption was that the towline was inextensible.  

This is reasonable, since the towed body is also assumed to be relatively small and the 

towline is assumed to be made of inelastic material.  The third assumption is that the 

towline is assumed to be straight along each increment (ds), which allows for numerical 

integration at each point along the line. 

Regarding the attachment of the towline to the body and the aircraft, the first 

assumption is that the towline at its attachment to the body and the aircraft has the same 

behavior as the body and the aircraft respectively.  This allows for the computation of the 

upper and lower boundaries of the towline.  The second assumption is that the towed 

body has no rotational forces on it.  In other words, any moments acting upon it become 

negligible.  If the towed body is loosely attached (i.e., allowed to move freely) at its 
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lower end, it should generally be parallel to the freestream velocity.  Since many of these 

bodies are also designed to have a streamline shape with fins (to keep them in the 

freestream), this assumption is reasonable.  The body is thus modeled as always being 

parallel to the freestream. 

Regarding the aerodynamic effects, the first assumption is that the aircraft is 

flying at subsonic speeds.  This prevents the need for any type of shock wave analysis.  

The second assumption is that turbulent effects are negligible, or rather that the length 

scale of turbulence is larger than the control volume.  Thus, the wake of the aircraft and 

any disturbance from engine plume do not come into play, and all calculations are based 

on the assumption of local laminar flow.  The third assumption is that skin friction 

parallel to the towline is negligible.  Due to the problem of an increasing boundary layer 

along the towline, the solution for analyzing the boundary layer becomes tricky.  

However, this assumption is the same used in Richardson (Richardson, 2005:20), and 

should not significantly affect the results. 

Regarding the heat transfer effects, the first assumption was that the temperature 

of the medium is known at every point in space and time.  This can be provided by 

analyzing the behavior of the engine plume, the primary source of heat disturbances.  The 

second assumption is that the towed body is sufficiently far behind the aircraft such that 

its temperature remains constant over time.  This prevents the need for extra processes 

that would slow down the calculations.  Since the primary concern regarding temperature 

analysis is the possibility of damaging or severing the towline, there is no need to find the 

heat transfer to the body.  The entire towline is analyzed, however, all the way to the 

point of attachment to the towed body.  The third assumption is that the temperature 
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change along the towline is gradual.  Thus, all heat transfer comes from the convection 

due to airflow over the towline, and any conduction within the towline is negligible.  The 

main concern is the maximum temperature in the line, so this is also a reasonable 

assumption.  The fourth assumption is that air pressure is constant.  Thus, values of air 

density, viscosity, and thermal conductivity are purely functions of air temperature. 

1.3. Preview of Paper 

There are 5 chapters in this thesis, the first one (here) giving an introduction to the 

project’s topic.  The rest of the paper is as follows: 

Chapter 2 contains a summary of background reading that was utilized in 

researching this topic.  Since this paper is not experimental, the previous work became 

vital in understanding the development of techniques to model towline behavior.  The 

chapter concludes with a description of the method of characteristics, a vital aspect of the 

methodology. 

The methodology is contained in chapter 3.  The development of the governing 

equations, as well as converting the equations of motion using the method of 

characteristics is explained in great detail.  A set of equations is determined that can 

model the behavior of the towline under different perturbations with given initial data.  In 

addition, a methodology to analyze heat transfer is explored, and equations are developed 

to model heat transfer in a predetermined temperature field.  These equations can be used 

with the aid of computer software, such as MATLAB® (used for this paper), to solve for 

the behavior of a towline under transient effects. 

Results of the computer simulation are contained in chapter 4.  Some example 

scenarios are offered and analyzed, including steady state behavior, single axis 
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perturbations, a multiaxial perturbation, and heat transfer to a moving towline under 

constant ambient temperature.  These results were compared to previous work. 

Chapter 5 offers general conclusions to the research.  It also lays out some 

suggestions for future work, including the motivation for such work. 
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II: Literature Review 

2 Literature Review 
A lot of past research has been done on towed lines and is included here as a 

source for background information.  Of particular note are the works of Richardson, as 

well as Schram and Reyle.  Most of the research in this paper is based on their 

methodologies.  The last section of the literature review will include a description of the 

method of characteristics. 

2.1. Richardson 

“Parametric Study of the Towline Shape of an Aircraft Decoy,” completed 2005, 

develops a method to compute the steady state form of a towline behind and aircraft in 

flight.  This thesis, completed by ENS Tyler Richardson (USNR), is the foundational 

work that this paper is continuing. 

Richardson derived equations of motion by taking into account airflow across a 

towline with a towed body (causing drag), and the weight of both the towline and the 

body.  These equations were manipulated such that seven governing differential 

equations could be used to describe the behavior of the towline from the body up to the 

aircraft.  All equations were with respect to the arc length of the towline, were 

nondimensionalized, and could thus be integrated along the towline (see discussion on 

the method of characteristics, Section 2.8).  These equations involved four second order 

ODE’s, three of which described position (three axes) and one of which described 

tension, and three first order ODE’s that described position (three axes).  Essentially, only 

four equations were uniquely derived by Richardson, noting that the first order position 
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terms become the integrals of the second order terms (i.e., 
2

2

dx d x dl
dl dl

= ∫ , where dl is the 

change in length along the towline).  These seven governing equations were placed into 

the ode45 solver in MATLAB® and integrated along the towline from the body up to the 

aircraft.  This procedure was repeated for different parameters (velocity, weight, etc.) in 

order to determine the steady state behavior of the line under various conditions. 

The most important results from this work include MATLAB® code that takes 

initial data and outputs the position, velocity, and tension of a towline in steady state 

flight.  Richardson’s work was compared to real data and determined to be accurate.  

Thus his code will serve as a comparison here.  Richardson’s code was also used in this 

paper to set up the initial conditions for transient behavior.  In addition, his work serves 

as a reference for developing the method by which to solve the problem at hand. 

Although similar techniques were used for this paper, one primary difference that 

Richardson’s thesis utilized was the ode45 solver in MATLAB®.  The method for the 

research of this paper does not allow for continuous integration, however, since a fixed 

grid system is to be set up in advance for numerical integration.  Richardson analyzes a 

steady state position of the towline before he analyzes its behavior.  This paper is, 

however, concerned with the transient behavior, and as a result deals with changing 

variables over time.  Thus, Richardson converts all of his equations to functions of one 

independent variable, whereas this work requires the use of two (see discussion on the 

method of characteristics in Section 2.8).  This addition of the time element precludes the 

use of the ode45 solver.  Richardson notes himself in his conclusions and remarks that “a 

numerical integration routine for the system of differential equations needs to be written 

for the transient case” (Richardson, 2005:51). 
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2.2. Schram and Reyle 

“A Three-Dimensional Dynamic Analysis of a Towed System,” published in 

1968, explores the behavior of an underwater towed body behind a ship.  Using a purely 

theoretical model, the paper starts off by deriving the equations of motion from Newton’s 

second law in three dimensions.  These take into account not only tension from the ship, 

but include hydrodynamic towline forces.  A coordinate transformation was applied so 

that all values were respective of the towline itself.  For boundary conditions, they 

assumed that “the towline at its point of attachment to the towing ship must have the 

same motion as the ship … [and] the towline must have the same motion as the body at 

its point of attachment” (Schram and Reyle, 1968:216).  They also set the tow point to 

“coincide with the center of mass of the body” in order to eliminate pitch, roll, and yaw 

effects (Schram and Reyle, 1968:216).  In order to understand the dynamic effects of 

towline motion, the method of characteristics was applied such that all values vary solely 

with length and time.  They finished by developing a numerical procedure to solve the 

dynamic solution. 

Schram and Reyle made a few conclusions that are important for this paper.  First, 

they found that “the speed at which transverse disturbances are propagated in the x-y and 

the z-y planes are the same” (Schram and Reyle, 1968:217).  Second, they found that “if a 

towline is not straight, each type of disturbance, transverse or longitudinal, influences the 

other” (Schram and Reyle, 1968:219).  In other words, a solely longitudinal disturbance 

could cause transverse motion farther down the towline as well and vice versa.  Lastly, 

they found that the transfer function, which is “the ratio of the resultant amplitude of the 
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body motion to the amplitude of the motion of the ship” (Schram and Reyle, 1968:220) 

decreases if either the towline length or towing speed increases.  With a longer length, 

disturbances have a longer distance to travel, thus being subject to a greater amount of 

damping.  With a faster speed, the towline’s pitch angle is reduced, causing a greater 

percentage of disturbances to be transversal.  Transverse disturbances were found to be 

damped significantly more than longitudinal disturbances. 

The research was summarized in a paper published in the Journal of Hydronautics 

in 1968, which was used as a primary point of reference here.  This paper was essentially 

a summarization of a PhD. thesis completed earlier the same year (Reyle was the PhD. 

advisor) at Rutgers University.  Both the journal’s paper and the PhD. thesis were used in 

conjunction to understand their methodology. 

Schram and Reyle’s research provides the basis of much of the methodology in 

this paper.  Their method will not be explained in more detail here due to the complexity 

of it.  However, the methodology section of this paper explains much of what they did.  

Their application of the method of characteristics in modeling the behavior of the towed 

body has been relied upon heavily.  In addition, their conclusions for towline behavior 

will serve as a comparison.  The results of this research will differ in the sense that 

Schram and Reyle studied underwater behavior behind a towing body at constant altitude 

and ignored heat transfer and temperature effects.  This paper will explore the behavior of 

the towed body in air at differing altitudes and set up a method to analyze heat transfer 

and temperature effects. 
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2.3. Crist 

“Analysis of the Motion of a Long Wire Towed from an Orbiting Aircraft,” 

published in 1970, studies the behavior of a long cable towed behind an aircraft 

undergoing oscillations, to include wind shear effects on cable motion.  The paper relies 

upon previous steady state research on the TACAMO (TAke Charge And Move Out) 

cable.  It assumes a lumped mass model of the cable and derives Lagrange’s equations of 

motion.  The equations were solved numerically for vertical oscillations of a towing 

aircraft in constant radius and altitude, as well as transition from orbit to straight and 

level flight.  Crist gives the method for wind shear analysis, but does not provide results. 

Crist’s concludes that “the effects of slack cable must be included in most 

analyses,” that “the tension at the drogue can be considerably higher than the equilibrium 

tension when the aircraft oscillates vertically,” and that the “tension in the cable during 

transition from orbit can be considerable, even for a smooth transition from orbit” (Crist, 

1970:73).  Perhaps more importantly, he notes that “compressive force in the cable 

segment… is, of course, impossible since everyone knows ‘you can’t push on a rope’” 

(Crist, 1970:65).  He also developed an analysis to calculate the motion of a towed cable 

behind an orbiting aircraft following a prescribed flight path.  Due to the high speed of 

aircraft, however, slack conditions will not be analyzed in this paper, since they create 

negative tension errors.  More on this will be discussed in the conclusions. 

Crist’s analysis of a towing cable undergoing aircraft motion will be used as a 

source for comparison for this paper.  Due to computing power at the time his paper was 

written, a discrete mass approach was used in the analysis.  Crist notes, however, that a 

good approximation can be made to a continuous mass approach with only a few mass 
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points (Crist, 1970:61).  Since this paper is using numerical integration along a towline, it 

will also use the discrete mass approach, although more accurate results will be available 

due to much faster computing time.  In addition, this paper will develop methods to 

analyze a whole range of motion, not just vertical oscillations or transition to straight and 

level flight.  As in the Schram and Reyle paper, Crist does not consider heat transfer or 

temperature effects either. 

 

2.4. Chapman 

“Towed Cable Behaviour During Ship Turning Manoeuvres,” published in 1984 

explores the behavior of an underwater towed body in large and small radius turns.  In 

large radius turns, the system behaves similarly to a steady state straight-tow behavior.  

However, in small radius turns, the system collapses, causing the towed body to drop in 

depth (no cable tension), followed by a quick tug (high cable tension).  This paper’s 

purpose was to determine a non-dimensionalized minimum radius at which collapse can 

be avoided. 

Chapman concluded that “in a gradual turn (with a relatively slow rate of turn) the 

cable moves towards, and usually attains, an equilibrium configuration that is a slightly 

perturbed form of the profile adopted during straight towing.  The [towed body] moves 

towards a circular course which is concentric with the ship’s course but of slightly 

smaller radius.  As a consequence the speed of the [towed body] is reduced resulting in a 

slight increase of depth” (Chapman, 1984: 353).  Also, he concludes that in a sharp turn, 

the straight-tow profile collapses, causing the towed body to drop sharply.  This results in 

increased tension at the top of the cable, and could cause slackness near the towed body.  
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Thus, the system will most likely never reach equilibrium in the turn.  He found that the 

transition from equilibrium turns to a collapsed system happens over a very small range 

of radii, thus giving a fairly defined minimum turning radius. 

Chapman’s analysis and methods will be used in this paper to help understand 

small radius turns.  His analyses involved an underwater body, which will exhibit 

significantly more drag than a body in air.  Also, ship speeds will be significantly slower 

than those of aircraft.  Thus, while the concern of a collapsed system in sharp turns will 

be considered, it will most likely not be an issue except in extreme cases.  Due to the 

restriction in this paper of no slack, Chapman’s research is referenced here since it can be 

used to prevent slack conditions for future work. 

 

2.5. Dowling 

“The Dynamics of Towed Flexible Cylinders Part I: Neutrally Buoyant 

Elements,” published in 1987, investigates the transverse vibrations of a thin, flexible 

neutrally buoyant cylinder under nominally constant towing conditions.  The cylinder is 

assumed to have a very small bending stiffness, and stretches out due to viscous forces 

along its length. 

Dowling focuses primarily on a flexible towed body, whereas this paper’s 

research is concerned with inflexible towed bodies.  Also, he investigates underwater 

behavior with a towing body of constant altitude.  This paper will be used primarily to 

develop methods for forces on the towed body. 
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2.6. Ames 

 Nonlinear Partial Differential Equations in Engineering, published in 1965, gives 

a detailed understanding of the method of characteristics, and provides a foundation for 

the mathematical understanding behind the derivations used in this paper.  Specifically, 

this book helps set up the mesh scheme and the equations to carry data from one timestep 

to the next for the method of characteristics, which Ames notes is based on a previous 

scheme set up by Courant, Isaacson, and Rees.  Ames notes that this mesh is based on a 

first-order scheme (Ames, 1965:446), which becomes significant in the error analysis of 

this work.  This method is used in order to avoid the “messy two-dimensional 

interpolation in the characteristic grid” (Ames, 1965:444) by setting up the mesh points in 

advance and interpolating as the computation proceeds, making the interpolation one-

dimensional. 

Ames also proposes a “hybrid” method by Hartree, which provides a second-order 

truncation error.  This method could be useful for future analysis, but is not used here due 

to the iteration requirement to solve the system of equations at each timestep.  The 

method based on Courant, Isaacson, and Rees requires no iteration, and is the same 

method used in Schram and Reyle.  Thus, this method will be used for the analysis of this 

paper. 

 Schram and Reyle relied heavily on the work of Ames, and this paper will follow 

in their footsteps.  It will be used as a point of reference for much of the math, and will 

help with the derivation of any new equations. 
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2.7. Tannehill, Anderson, and Pletcher 

Computational Fluid Mechanics and Heat Transfer, published in 1997, serves as a 

foundational basis for a lot of CFD work today.  Since this paper’s work depends on the 

stepping method of solving a system of equations, the CFD book is a vital resource in 

determining numerical differencing schemes, as well as understanding the method of 

characteristics.  This book, like Ames, will be used primarily as a reference tool to 

develop the governing equations. 

 

2.8. Method of Characteristics 

As alluded to earlier, both Ames as well as Tannehill, Anderson, and Pletcher 

give detailed descriptions of the method of characteristics.  These, in conjunction with 

Schram and Reyle, were used to understand the method of characteristics.  This method 

will be explained in its general principles here. 

The method of characteristics is a technique that is used to solve nonlinear 

hyperbolic partial differential equations.  What this method does, in essence, is convert 

the equations of a system into new equations that are constant along characteristic lines.  

In the application here, the system of equations is rewritten to be a function of two 

independent variables, which can be held constant along the characteristic lines. 

An analogy that can be used to describe this is a wave on the ocean traveling in 

space and time.  From shore, looking straight along a line in the water, an observer sees 

the water move up and down in a different manner at every point along that line (Figure 

2.8-1).  Thus, the behavior is a function of time and location (i.e., position on the line the 

observer is concerned about).  If the reference frame is changed, however, such that the 
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observer is on the top of one wave, with his line of sight along the top of that wave, the 

behavior will look the same at all time and position along his line of sight (Figure 2.8-2).  

The method of characteristics uses this type of technique in order to “march” data from 

one timestep to the next by finding characteristic lines on which the solution is constant.  

Applying the wave analogy to the towline problem, the towline at a certain time becomes 

a waveline in its direction of motion (left to right in figure), and the change in time is 

represented by each successive waveline (top to bottom in figure, and not to be confused 

with the time described in the analogy). 

 

 

Figure 2.8-1  Initial Reference Frame 
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Figure 2.8-2  New Reference Frame - fixed to wave 

 

This method is vital for finding a solution to the problems of this paper.  What 

will be shown later is the development of six PDE equations of motion with respect to 

time and length along the towline.  In order to get a total solution to the system, these 

equations will be converted into characteristic equations, solved for all positions along 

the towline for one timestep, then “marched” to the next timestep using the characteristic 

lines.  To follow the wave analogy represented in Figure 2.8-2, the information at one 

point on the towline is carried to the next timestep at a different position on the towline.  

This new position is determined by the characteristic line and the change in time.  

Another way to show this is in Figure 2.8-3, which shows a solution in time and space 

that will be used for this paper, where s is the length along a towline and t is time.  This 

figure is based on one devised by Tannehill, Anderson, and Pletcher (Tannehill, 

Anderson, and Pletcher, 1997:361), but could be found in most detailed descriptions of 

the method of characteristics. 
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Figure 2.8-3  Characteristic Net 

 

Note that the solution can be found at every intersection of the characteristic lines.  

Thus, new data is available at every interval.  Since the characteristic lines carry constant 

data along their entire path, middle steps can be skipped if desired.  If new lines were 

started from every s and t position, the density of the mesh would double.  In fact, the 

mesh size can be reduced to be as small as desired by noting that any new used data point 

can transfer information along newly created characteristic lines from that point. 

The characteristic net is defined by the characteristic lines. The positive sloped 

characteristic lines all have the same slope, but start at equally spaced positions along the 

s-axis.  Similarly, the negative sloped lines all have the same slope, starting at the same 

positions as their counterparts.  Due to the hyperbolic nature of the equations used in the 

method of characteristics, these two slopes are different only in sign, and are found by 
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finding the roots of the system of equations.  These roots are called the “characteristic 

lines,” and make up the “characteristic net” shown in Figure 2.8-3. 

Thus, the application of the method of characteristics necessitates first that 

characteristic equations are derived such that they remain constant along the 

characteristic lines.  This is done by converting a set of hyperbolic PDE’s into a set of 

ordinary differential equations where each ODE comes from two separate PDE’s.  Each 

new ODE is then integrated along the characteristic lines.  Ames (Ames, 1965: 422) notes 

that these calculations must, in most cases, be carried out numerically.  Exact integration 

by this method is very rare.  This paper will use the method of characteristics with 

numerical integration. 
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III: Methodology 

3 Methodology 
 
 The subsequent derivations for towline motion come from an adaptation of those 

in Schram and Reyle.  While their work is heavily relied upon here, they were not always 

followed directly.  Effort has been made to note when their work was followed.  The heat 

transfer derivations were completely independent of any past work. 

3.1. Derivation of Governing Equations 

The governing equations and their derivations rely very heavily upon work done 

by Schram and Reyle (1968).  Similar notation and procedure will be used, and a great 

deal of effort has been used to reduce any ambiguity in their work, and to make the 

procedure used in this paper as clear as possible. 

 Axis Transformation. 

In order to derive a system of equations for use with the method of characteristics, 

all variables will need a manner to convert between coordinate axes aligned with space 

(aircraft at steady state), and those aligned with the towline.  Thus, a matrix [A] must be 

found, which will allow for the transformation of components (position, velocity, etc.) 

between space and towline axes.  This transformation is shown in Figure 3.1-1, Figure 

3.1-2, and Figure 3.1-3 
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Figure 3.1-1  Spatial orientation of x-y plane 

 
 

 
Figure 3.1-2  Spatial orientation of z-y plane 
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Figure 3.1-3  Spatial orientation of z-x plane 

 
where φ  is the azimuth angle and θ is the polar angle.  A note should be made about θ in 

regards to its appearance in the diagrams.  This angle refers to a second transform about 

the towline X-axis, and the two-dimensional silhouette of Figure 3.1-2 and Figure 3.1-3 

do not show the fact that θ can go in or out of the page as well.  A better visual 

representation is in Figure 3.1-6, while making sure to note the transitional y’-axis. 

The spatial axes are oriented with the y-axis aligned directly vertical, the x-axis 

aligned with the direction of the aircraft, and the z-axis aligned perpendicular to the 

aircraft’s line of flight.  The towline axes are oriented with the Y-axis aligned directly 

along the towline, the X-axis aligned downward from the towline and in the x-y plane, 

and the Z-axis aligned perpendicular to the towline and the X-axis.  Figure 3.1-4 sets up a 

three dimensional plot for transformation. 
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Figure 3.1-4  Towline in spatial axes 

 
 
 The first transformation changes the spatial coordinates into the towline X-axis 

and a mid-step y’-axis by rotating about the z-axis.  This is shown in Figure 3.1-5.  The 

angle φ  is used here and exists only in the spatial x-y plane.  Thus, φ  is not hard to 

represent in the other diagrams of this paper. 

 
Figure 3.1-5  First Transformation 
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Note that φ  is defined as positive up from the x-axis such that a zero value lines up the y’ 

and x axes. 

 From here, the following are derived: 

 ( ) ( )sin ( )cosf X f x f yφ φ= −  1.1 

 ( ') ( ) cos ( )sinf y f x f yφ φ= +  1.2 

where f( ) refers to any variable in each respective axis.  Note that the y’-axis has no real 

value except for its use in the process of coordinate transformation.  As will be seen in 

the next transformation, however, a θ angle of zero makes the y’ and y axes line up, and 

Figure 3.1-5 is sufficient to model the axis transformation. 

 At this point, the transformation from space to the X towline component is 

complete.  The second transformation will provide a solution for the Y and Z components 

in the towline by rotating about the new X-axis.  This transformation is shown in Figure 

3.1-6.  As an aside, the angle θ, used for the second transformation, exists in the z-y’ 

plane, where y’ is the transitory axis.  Thus, it is hard to represent accurately in many of 

the diagrams. 
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Figure 3.1-6  Second Transformation 

Thus, the following are derived: 

 
( ) ( ') cos ( )sin

( )cos cos ( )sin cos ( )sin
f Y f y f z

f x f y f z
θ θ
φ θ φ θ θ

= +
= + +

 1.3 

 
( ) ( ')sin ( ) cos

( )cos sin ( )sin sin ( )cos
f Z f y f z

f x f y f z
θ θ
φ θ φ θ θ

= − +
= − − +

 1.4 

From these equations, a matrix [A] is generated such that all axis transformations 

can be computed in a simple manner.  By taking the components of x, y, and z, one 

generates the matrix as follows: 

 
sin cos 0

[ ] cos cos sin cos sin
cos sin sin sin cos

A
φ θ

φ θ φ θ θ
φ θ φ θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 1.5 

This matrix can be used to transform from space to towline, and vice versa.  This is 

accomplished quite easily, and is printed here for reference (to prevent confusion, TL and 

S will denote towline and space respectively): 
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( ) ( )
( ) [ ] ( )
( ) ( )

TL S

f X f x
f Y A f y
f Z f z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 1.6 

 [ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )
S TL

f x f y f z f X f Y f Z A=  1.7 

Now that a manner in which to transform between the spatial and towline axes has been 

determined, the governing equations may be developed. 

 Equations of Motion. 

Since this system contains six unknowns (U,V,W,φ , θ, T) in the towline reference 

frame at any point in time and space, six equations of motion will be needed to describe 

the entire behavior of the towline. 

Using Newton’s Second Law of Motion (flipped from standard notional for 

convenience)  

 ma F=  1.8 

and applying it to the free body diagram of the towline in its spatial coordinates (Figure 

3.1-4), Schram cites Cristescu (Schram, 1968:6) with determining that the equations of 

motion for an elastic line become: 

 
2

2 F
(1 ) x

x T x
t s e s

μ
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ + ∂⎝ ⎠
 1.9 

 
2

2 F
(1 ) y t

y T y W
t s e s

μ
⎛ ⎞∂ ∂ ∂

= + −⎜ ⎟∂ ∂ + ∂⎝ ⎠
 1.10 

 
2

2 F
(1 ) z

z T z
t s e s

μ
⎛ ⎞∂ ∂ ∂

= +⎜ ⎟∂ ∂ + ∂⎝ ⎠
 1.11 

It should be noted that these terms are all per meter of towline length. 
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In these equations, tension is divided by a percent change in extension of the 

towline.  Assuming an inextensible towline, which this paper will assume just as Schram 

and Reyle did, the extension terms drop out.  The ∂ x/∂ s, ∂ y/∂ s, and ∂ z/∂ s terms are 

used to project tension into the respective axes, since tension is purely directed along the 

towline (the s-direction is used here, which is interchangeable with the Y-axis).  Through 

a simple application of the matrix transformation represented in Equation 1.7, these terms 

become: 

 cos cosx
s

θ φ∂
= −

∂
 1.12 

 cos siny
s

θ φ∂
= −

∂
 1.13 

 sinz
s

θ∂
= −

∂
 1.14 

where the negative term is due to the orientation of s being positive down the towline 

towards the body. 

Substituting Equations 1.12 through 1.14 into Equations 1.9 through 1.11, 

replacing the second derivative (acceleration) terms with equivalent velocity terms, and 

rearranging slightly, these equations reduce to: 

 ( )1 cos cos Fx
u T
t s

θ φ
μ

∂ ∂⎡ ⎤= − +⎢ ⎥∂ ∂⎣ ⎦
 1.15 

 ( )1 cos sin Fy t
v T W
t s

θ φ
μ

∂ ∂⎡ ⎤= − + −⎢ ⎥∂ ∂⎣ ⎦
 1.16 

 ( )1 sin Fz
w T
t s

θ
μ

∂ ∂⎡ ⎤= − +⎢ ⎥∂ ∂⎣ ⎦
 1.17 
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Taking the three towline acceleration terms and applying them to the axis 

transformation in Equation 1.6 yields the equations of motion in towline form, noting 

first the velocity transformations: 

 sin cosU u vφ φ= −  1.18 

 cos cos sin cos sinV u v wφ θ φ θ θ= + +  1.19 

 sin cos sin sin cosW u v wθ φ θ φ θ= − − +  1.20 

Thus, the equations of motion become: 

 ( )sin cos cos sinU u v u v
t t t t

φφ φ φ φ∂ ∂ ∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 1.21 

 

( ) ( )

cos sin cos sin

cos sin cos ( cos sin )sin cos

V u v w
t t t t

v u u v w
t t

φ φ θ θ

φ θφ φ θ φ φ θ θ

∂ ⎡ ∂ ∂ ∂ ⎤⎛ ⎞= + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂

+ − − + +
∂ ∂

 1.22 

 

( ) ( )( )

cos sin sin cos

sin cos sin cos sin cos sin

W u v w
t t t t

u v u v w
t t

φ φ θ θ

φ θφ φ θ φ φ θ θ

∂ ⎡ ∂ ∂ ∂ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂

− − + − + +
∂ ∂

 1.23 

The bracketed terms come from the direct transformation of the U, V, and W 

towline variables (Equations 1.18, 1.19, and 1.20), while the extra terms come from the 

derivative due to the product rule.  By utilizing Equation 1.7, the spatial velocity terms 

can also be transformed into their towline forms: 

 sin cos cos cos sinu U V Wφ φ θ φ θ= + −  1.24 

 cos cos sin sin sinv U V Wφ θ φ θ φ= − + −  1.25 

 sin cosw V Wθ θ= +  1.26 
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The spatial forces, Fx, Fy, and Fz, are also transformed in the same manner to the 

towline forces FX, FY, and FZ.  Combining the above equations by replacing all of the 

spatial terms with towline terms, everything can now be transformed into towline 

parameters.  Thus, the equations of motion in towline axes become: 

First Three Equations of Motion: 

 ( )cos sin cos cosX t
U V W T F W
t t s

φ φμ θ θ θ φ∂ ∂ ∂⎡ ⎤− + − = − − −⎢ ⎥∂ ∂ ∂⎣ ⎦
 1.27 

 cos sin cosY t
V TW U F W
t t t s

θ φμ θ φ θ∂ ∂ ∂ ∂⎡ ⎤− + = − + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
 1.28 

 sin sin sinZ t
WU V T F W

t t t s
φ θ θμ θ φ θ∂ ∂ ∂ ∂⎡ ⎤− − = − −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 1.29 

These equations will be useful later in the method of characteristics, and provide 

the first 3 equations of motion.  All partial derivatives are with respect to either time or 

arc length (s), which is valuable since the two independent variables used in the method 

of characteristics will be time and arc length. 

The next three equations can be found by simply taking the partial derivative of 

the towline accelerations with respect to the arc length of the towline.  These equations 

become exactly the same as Equations 1.21, 1.22, and 1.23, except that the partial 

derivatives are now in terms of s instead of t: 

 sin cos cos sinU u v u v
s s s s s

φ φφ φ φ φ∂ ∂ ∂ ∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
 1.30 

 

( ) ( )

cos sin cos sin

cos sin cos ( cos sin )sin cos

V u v w
s s s s

v u u v w
s s

φ φ θ θ

φ θφ φ θ φ φ θ θ

∂ ⎡ ∂ ∂ ∂ ⎤⎛ ⎞= + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂

+ − − + +
∂ ∂

 1.31 
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( ) ( )( )

cos sin sin cos

sin cos sin cos sin cos sin

W u v w
s s s s

u v u v w
s s

φ φ θ θ

φ θφ φ θ φ φ θ θ

∂ ⎡ ∂ ∂ ∂ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∂ ∂

− − + − + +
∂ ∂

 1.32 

The partial derivatives of the spatial velocities with respect to arc length can be easily 

related in the following manner with the use of Equations 1.12, 1.13, and 1.14: 

 ( cos cos )u x x
s s t t s t

θ φ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 1.33 

 ( cos sin )v y y
s s t t s t

θ φ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 1.34 

 ( sin )w z z
s s t t s t

θ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 1.35 

By combining these with the velocity relationships from Equations 1.24, 1.25, and 1.26, 

one derives the final three equations of motion in towline form: 

Last Three Equations of Motion: 

 cos ( cos sin )U V W
s t s

φ φθ θ θ∂ ∂ ∂
= + −

∂ ∂ ∂
 1.36 

 cosV W U
s s s

θ φθ∂ ∂ ∂
= −

∂ ∂ ∂
 1.37 

 sinW V U
s t s s

θ θ φθ∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂
 1.38 

Just as in the first three equations of motion, these equations will be useful later in the 

method of characteristics.  All partial derivatives here are also with respect to either time 

or arc length (s), where s is positive down the towline towards the body. 
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3.2. Applying the Method of Characteristics 

 Mathematical Character of Equations. 

A few comments should be made here regarding the behavior of parabolic versus 

hyperbolic equations using a stepping method such as the method of characteristics.  Of 

most importance, perhaps, is the fact that only hyperbolic PDE’s can be used with the 

method of characteristics.  Tannehill, Anderson, and Pletcher (Tannehill, Anderson, and 

Pletcher, 1997:26-32) discuss the behaviors of hyperbolic versus parabolic PDE’s, noting 

the dependence that each equation has with respect to a length-time mesh.  They note that 

hyperbolic equations are dependent only upon the solution contained within the bounds 

set by the characteristics at the previous timestep.  This solution is represented in Figure 

3.2-1 (similar figure in Tannehill, Anderson, and Pletcher, 1997:27), where it can be seen 

that a single solution exists at the intersection of the characteristic lines. 

 
Figure 3.2-1  Hyperbolic Characteristic Lines & Domain of Interest 

Tannehill, Anderson, and Pletcher note, however, that parabolic equations, unlike 

hyperbolic equations, are dependent upon the entire physical domain, and thus have no 

characteristic lines; or rather, the slopes of the characteristic lines are zero.  This is why 
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the method of characteristics cannot be applied to parabolic PDE’s.  The dependence of a 

parabolic solution is shown in Figure 3.2-2 (similar figure in Tannehill, Anderson, and 

Pletcher, 1997:31), where it can be seen that an infinite number of solutions exist at t1; or 

rather, the solution is dependent on everything at its current timestep. 

 
Figure 3.2-2  Parabolic Domain of Interest 

In order to determine whether an equation is hyperbolic or parabolic, an attempt 

must be made to find the characteristic roots (these are the slopes of the characteristic 

lines).  If the roots exist and are distinct and real, the equation is hyperbolic.  If there is 

only one distinct real root, the equation is parabolic.  Another case exists where the roots 

are complex or no real root exists, causing the equation to by elliptical.  This last case 

turns out to not be relevant here, however. 

Equations 1.28 and 1.37 are both parabolic (Schram and Reyle, 1968: 216), 

whereas the rest of the equations of motion are hyperbolic.  The zero characteristic roots 

that appear in the parabolic equations are due to the towline’s inextensible assumption.  

Equations 1.28 and 1.37 can be shown to be parabolic, with the rest being hyperbolic, by 

a little work and inspection. 
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Tannehill, Anderson, and Pletcher note the forms of hyperbolic, parabolic, and 

elliptical PDE’s (Tannehill, Anderson, and Pletcher, 1997:25) in the following manner.  

Hyperbolic PDE’s exist in the two forms of Equations 2.1 and 2.2: 

 
2 2

12 2 , , , ,f f f fg f t s
t s t s

∂ ∂ ∂ ∂⎛ ⎞− = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 2.1 

 
2

2 , , , ,f f fg f t s
t s t s
∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 2.2 

where both equations are necessary.  Parabolic PDE’s exist in the form of either Equation 

2.3 or 2.4: 

 
2

2 , , , ,f f fg f t s
t t s

∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
 2.3 

 
2

2 , , , ,f f fg f t s
s t s

∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠
 2.4 

Elliptical PDE’s exist in the form of Equation 2.5: 

 
2 2

2 2 , , , ,f f f fg f t s
t s t s

∂ ∂ ∂ ∂⎛ ⎞+ = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 2.5 

where g( ) denotes some function of the included variables. 

To determine if Equations 1.27 through 1.29, and Equations 1.36 through 1.38 are 

hyperbolic, parabolic, or elliptical, they need to be converted into a second order form.  

This is done by noting that the velocity terms of the equations in question can be replaced 

with their respective position derivative (i.e., U = ∂ X/∂ t, thus ∂ U/∂ t = ∂ 2X/∂ t2).  The 

angles can also be converted into position terms by manipulating Equations 1.12 through 

1.14 into the following: 

 1tan y
x

φ − ∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 2.6 
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 1sin z
s

θ − ∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠
 2.7 

From here, one can convert all six equations of motion to forms that have 

derivatives of solely position variables.  Another transformation between space and 

towline forms would be required for consistency, although to simply determine the 

character of the equations by inspection this would not be necessary since it would not 

add more derivative terms.  In other words, x and X are interchangeable for the inspection 

technique. 

The details of this procedure are not vital to understanding the methodology of 

this paper, and will thus not be included here.  Suffice it to say that Equations 1.28 and 

1.37 are both parabolic, whereas the rest of the equations of motion are hyperbolic.  Since 

only hyperbolic equations can be applied to the method of characteristics, the parabolic 

equations cannot be transformed in the subsequent sections. 

 Finding Roots of Equations. 

The roots of the hyperbolic equations can be found by setting up a generalized 

Eigenvalue problem.  Generalized Eigenvalues are defined as 

 [ ][ ] [ ][ ]M Nυ λ υ=  2.8 

where 

 det( ) 0M Nλ− =  2.9 

[M] and [N] are coefficient matrices of a system and [υ ] is chosen such that equation 2.8 

holds true (in reality, [υ ] is said to be non-zero for the system to have Eigenvalues, thus 

its values do not matter for finding roots, since it follows that the determinant must be 

zero for the system to hold).  Solving for λ finds the roots of the system.  Schram and 
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Reyle model the system of hyperbolic equations based on a technique they developed 

from Ames (Schram and Reyle, 1968:216-217).  In this they converted the four 

hyperbolic equations (1.27, 1.29, 1.36, 1.38) into one single system of matrices. 

 [ ][ ] [ ][ ] [ ] [ ]0
s t

M N Pγ γ+ + =  2.10 

where 

 [ ]

cos0 0 0

0 0 0

1 0 ( cos sin ) 0
0 1 sin

T

T
M

V W
U V

θ
μ

μ
θ θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−= ⎢ ⎥
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 2.11 

 [ ]

1 0 ( cos sin ) 0
0 1 sin
0 0 cos 0
0 0 0 1

V W
U V

N

θ θ
θ
θ

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

 2.12 

 [ ]

U
W

γ
φ
θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 2.13 

 [ ]

cos
sin sin1

0
0

X t

t Z

F W
W F

P

φ
φ θ

μ

+⎡ ⎤
⎢ ⎥+⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 2.14 

and the s and t subscripts refer to the partial derivatives of the matrix variables. 

From this, one can find the general Eigenvalues of the system, which represent 

the characteristic roots.  This is done by solving for λ in equation 2.9.  The roots of the 

system are thus represented by 
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 TFα μ
=  2.15 

 TFβ μ
= −  2.16 

which are each repeated twice (four equations gives four roots).  The subscripts α and β 

refer to the characteristic directions.  These values turn out to be the speed at which 

disturbances are propagated along the towline.  In other words, 

 ds T
dt μ

= ±  2.17 

This is consistent with the value that can be found in any textbook for propagation of 

disturbances along an inextensible line in tension. 

 Finding Characteristic Equations. 

Schram and Reyle (Schram and Reyle, 1968:217) note that the characteristic 

equations can be determined by some manipulation of the hyperbolic equations.  This can 

be done by multiplying Equations 1.27 and 1.29 by dt and adding them to their 

counterpart Equations 1.36 and 1.38 multiplied by ds.  This provides two equations that 

have partial derivative terms with respect to both s and t.  By noting that the total 

derivative is defined as  

 ( , ) f fdf s t ds dt
s t
∂ ∂

= +
∂ ∂

 2.18 

the partial derivative terms of these two equations can be combined (this process involves 

some simple but lengthy equations and will thus not be included here).  Replacing the 

ds/dt term with the characteristic root of Equation 2.17, this provides two equations with 

no partial derivatives: 
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 cos cos sin ( cos ) 0X t
T dtdU d V W F Wφ θ θ θ φ
μ μ

⎡ ⎤
+ ± − − − + =⎢ ⎥

⎣ ⎦
 2.19 

 sin ( sin sin ) 0t Z
T dtdW d V U d W Fθ θ φ φ θ
μ μ

⎡ ⎤
+ − − + =⎢ ⎥

⎣ ⎦
∓  2.20 

These equations are the total derivatives in the characteristic directions.  It should be 

noted that the parabolic equations, had they been attempted to be converted in this 

manner, would have remaining partial derivative terms and would thus have no benefit in 

converting their form. 

By taking the derivative of these equations with respect to the characteristic 

directions, one finds the characteristic equations that can be used for integration: 

 [ ] 1cos cos sin ( cos ) 0X t
dU d dtF V W F W
d d dα

φ θ θ θ φ
α α α μ
+ − − − + =  2.21 

 1cos cos sin ( cos ) 0X t
dU d dtF V W F W
d d dβ

φ θ θ θ φ
β β β μ

⎡ ⎤+ − − − + =⎣ ⎦  2.22 

 [ ] 1sin ( sin sin ) 0t Z
dW d d dtV F U W F
d d d dα

θ φθ φ θ
α α α α μ
+ − − − + =  2.23 

 1sin ( sin sin ) 0t Z
dW d d dtV F U W F
d d d dβ

θ φθ φ θ
β β β β μ

⎡ ⎤+ − − − + =⎣ ⎦  2.24 

It should be noted that α and β are the characteristic directions in the z-y plane, but since 

the characteristic roots are repeated, these changes are the same in both the z-y and the x-

y planes (Schram and Reyle, 1968:218). 
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3.3. Numerical Methods 

 Setting up the Mesh and the Characteristic Equations. 

As mentioned in Section 2.6, the numerical method used in this paper is one 

developed by Courant, Isaacson, and Rees, presented in Ames (Ames, 1965: 446), and 

applied to this type of problem by Schram and Reyle (Schram and Reyle, 1968:218).  

This technique uses a preset space-time mesh in order to reduce the amount of 

calculations required.  As a result, the mesh size must be sufficiently small enough to 

ensure straight characteristic lines between timesteps. 

Using this understanding as background, one may rewrite Equations 2.21 through 

2.24 into a set of simplified characteristic ODE’s 

 0dU G d H dtα αφ+ + =  3.1 

 0dU G d H dtβ βφ+ + =  3.2 

 0dW J d K d L dtα α αθ φ+ + + =  3.3 

 0dW J d K d L dtβ β βθ φ+ + + =  3.4 

where the coefficients are defined as 

 sin cos cosG W V Fα αθ θ θ= − +  3.5 

 sin cos cosG W V Fβ βθ θ θ= − +  3.6 

 J V Fα α= −  3.7 

 J V Fβ β= −  3.8 

 sinK Uα θ= −  3.9 

 sinK Uβ θ= −  3.10 
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 1 ( cos )X tH F Wα φ
μ

= − −  3.11 

 ( )1 sin sinZ tL F Wα φ θ
μ

= − −  3.12 

 For the towline, the following coefficients are defined as 

 1 ( cos )X tH F Wβ φ
μ

= − −  3.13 

 ( )1 sin sinZ tL F Wβ φ θ
μ

= − −  3.14 

At the body, however, these are defined as 

 1 ( cos )XH F Wb
Mbβ φ= − −  3.15 

 ( )1 sin sinZL F Wb
Mbβ φ θ= − −  3.16 

where the forces are calculated on the body, noting that only the β characteristic lines 

affect the lower boundary, and of these β characteristic parameters, only the force terms 

become different (thus only two terms need to be changed).  It should also be noted that 

the characteristic root changes at the lower boundary, thus, 

 TF
Mbβ = −  3.17 

at the towed body. 

These equations are applied to every point down the towline, in order to “march” 

the data to the next timestep.  This is represented in Figure 3.3-1.  Points a, b, and c are 

points along the towline where data is known.  Points p and q are set by the Fα and Fβ 

characteristic lines by noting that these lines are defined as ds/dt.  Thus, ds, which is the 
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distance along the s-axis between both q and b as well as b and p, can be defined as either 

|Fα|dt or |Fβ|dt. 

 
Figure 3.3-1  Character Mesh with Characteristic Lines 

The data associated with the points p and q can be found by interpolating between 

the known data points (a, b, and c) in the following manner: 

 [ ]1( ) ( ) ( )( )f q f a ds f b s ds
s

= + Δ −
Δ

 3.18 

 [ ]1( ) ( ) ( )( )f p f c ds f b s ds
s

= + Δ −
Δ

 3.19 

where f( ) refers to any type of data stored at the respective points (i.e., velocity). 

As can be seen in Figure 3.3-1, the stability of the preset mesh is restricted by the 

points p and q being between a and c.  The maximum values of the characteristic lines are 

thus limited in this mesh to Δt/Δs.  These values force q to line up with a, and p to line up 

with c.  In other words, the stability of this system is restricted by 

 1tF
sα

Δ
≤

Δ
 3.20 

 1tF
sβ

Δ
≤

Δ
 3.21 
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which forces ds to not go beyond Δs.  Thus the mesh remains stable. 

This setup produces two sets of equations (one from each characteristic line) for 

every point in time and space for all data (i.e., velocity) except at the boundary 

conditions, which only have one characteristic line at each end (the upper boundary 

condition only uses Fα and the lower boundary condition only uses Fβ).  By going back 

and writing the characteristic equations (Equations 3.1 through 3.4) in difference notation 

form, the equations for numerical integration along the line are completed.  It should be 

noted that all the coefficient variables (Equations 3.5 through 3.16) are evaluated at point 

b on the mesh, which Ames notes as well (Ames, 1965:447). 

Characteristic Equations: 

 ( ) 0r p r pU U G H dtα αφ φ− + − + =  3.22 

 ( ) 0r q r qU U G H dtβ βφ φ− + − + =  3.23 

 ( ) ( ) 0r p r p r pW W J K L dtα α αθ θ φ φ− + − + − + =  3.24 

 ( ) ( ) 0r q r q r qW W J K L dtβ β βθ θ φ φ− + − + − + =  3.25 

These equations can be combined in order to solve for the four unknowns:  Ur, Wr, φ r, 

and θr. 

Since the two parabolic equations (Equations 1.28 and 1.37) were not transformed 

by the method of characteristics, these must be directly translated here into difference 

notation so that they can be used.  Schram and Reyle use a central differencing technique 

in order to ensure a more accurate result (Schram and Reyle, 1968:219), nothing that 

Equation 3.26 is a central differencing about an averaged value (halfway between e and 

r). 
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Parabolic Equations: 

 ( ) ( )cos
2 2 2

e r e r e r
e r e r e r

W W U UV V θ θθ θ φ φ+ + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 3.26 

           ( ) ,( ) cos ( ) sin cosd e r b r r b r r r b Y r t r rT T s V V W U F W
t
μδ θ θ θ φ φ φ θ
δ
⎡ ⎤− = − − − + − − +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

 3.27 

where sδ  is the distance between the two points, which becomes 2Δs here, and tδ  is the 

distance between time steps, which becomes Δt. 

These equations must be applied after the characteristic equations have been used 

to find the values down the entire line.  The boundary conditions (discussed later) must 

be defined at the upper boundary in advance for Equation 3.26.  This equation can then 

be used for all values including the lower boundary (a different equation will be used 

later, however).  The boundary conditions must also be defined at the lower end in 

advance for T since it is to be found starting at the towed body and calculated back up the 

towline to the aircraft (see Figure 3.5-1 at the end of this chapter).  Since the central 

differencing technique of Equation 3.28 cannot be applied at the first point up the towline 

from the lower boundary, a forward differencing scheme is used instead (Schram and 

Reyle, 1968:219). 

     ( ) ,( ) cos ( ) sin cosd L d a d d a d d d a Y d t d dT T s V V W U F W
t
μδ θ θ θ φ φ φ θ
δ
⎡ ⎤− = − − − + − − +⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

 3.28 

where sδ  is Δs and tδ  is Δt. 

This produces a set of six equations (plus a seventh, but only due to the issue of 

central differencing) that can describe the behavior down the entire line except for at the 

boundaries.  The boundary conditions for the mesh used here exist at s = sa/c and s = sbody.  
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In addition, the initial conditions at t = 0 must be known before any kind of stepping 

technique is used. 

 Initial Conditions. 

The initial conditions are determined by prior research using MATLAB® code to 

develop a steady state solution (Richardson, 2005:Appendix A).  The method by which 

this code was developed is discussed in Section 2.1.  Another way to set the initial 

conditions is by setting the angles of the towline and its velocities in all three axes 

manually.  The tension can be found up the entire line by calculating the body and 

towline forces (shown later) from the known angles and velocities. 

 Boundary Conditions. 

In order to find the values at the upper and lower boundaries, new equations must 

be developed to work with the characteristic lines.  This is due to the fact that there must 

be two equations for every point in order to determine the values at that point.  The 

characteristic lines carry data to the boundary conditions as can be seen for the upper 

boundary conditions in Figure 3.3-2. 
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Figure 3.3-2  Characteristic Line to find upper BC data 

Since it is assumed that the towline at the point where it connects to the aircraft 

has the same motion as the aircraft, the new equations for the upper boundary conditions 

in towline form become the transformation of coordinates from Equation 1.6.  Thus, the 

upper boundary conditions can be described by: 

 [ ][ ]uu
V A v⎡ ⎤ =⎣ ⎦
JG G

 3.29 

where 
u

V⎡ ⎤⎣ ⎦
JG

 refers to the velocity matrix in towline coordinates at the upper limit (i.e., 

the aircraft), and [ ]uv
G

 refers to the velocity matrix in spatial coordinates at the upper 

limit.  By multiplying through, the upper boundary equations are found: 

Upper Boundary Conditions: 

 sin cosu u u u uU u vφ φ= −  3.30 

 cos cos cos sin sinu u u u u u u u uV u v wθ φ θ φ θ= + +  3.31 

 sin cos sin sin cosu u u u u u u u uW u v wθ φ θ φ θ= − − +  3.32 

Equation 3.22 
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Equation 3.24 

The equations are all combined to find the values at the upper boundary: Uu, Vu, 

W u, φ u, and θu (Tu will be found later by 3.27).  Schram and Reyle (Schram and Reyle, 

1968:219) note that an iterative procedure must be used to find φ u and θu such that these 

equations are satisfied. 

The lower boundary conditions become a little trickier.  However, a few 

assumptions can be made that simplify the process.  The characteristic line used at the 

lower boundary can be seen in Figure 3.3-3. 

 
Figure 3.3-3  Characteristic Line to find lower BC data 

With the assumption that the towline at the towed body has the same motion as 

the body, one can develop the lower boundary conditions.  This requires a little 

understanding of the geometry.  For the sake of simplicity, the body will be assumed to 

be rigid, small, and always parallel to the freestream direction, thus producing negligible 

moment effects.  In other words, the body will be assumed to be reducible to a point mass 

in how its behavior transfers to the towline. 
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 By taking Equations 1.36, 1.37, and 1.38 and writing them in finite difference 

form using a central differencing technique about point d in Figure 3.3-3, one finds three 

equations of motion at the lower boundary: 

 ( ) cos ( cos sin )( )L g L b d d d d d L g
sU U V W
t

δ φ φ θ θ θ φ φ
δ

= + − + − −  3.33 

 cos ( ) ( )L g d d L g d L gV V U Wθ φ φ θ θ= − − + −  3.34 

 ( ) ( ) sin ( )L g L b d L g d d L g
sW W V U
t

δ θ θ θ θ θ φ φ
δ

= − − − − + −  3.35 

Central differencing is used due to the fact that forward differencing creates a set of five 

nonlinear equations that have no exact symbolic solution.  Central differencing prevents 

the need for using iteration to solve the system for a best value.  It should be noted that 

due to this setup, sδ  is set to twice the Δs value.  Thus, 2s s
t t

δ
δ

Δ
=

Δ
. 

 Combining these three equations with Equations 3.23 and 3.25, five equations 

have now been determined for the lower boundary, which contain five unknown 

variables.  Lφ  can be determined explicitly and θL becomes a function of only Lφ  from 

these equations by first creating two new equations.  This is found by rewriting Equations 

3.23 and 3.25 in difference notation at the lower boundary: 

 ( )L q L pU U G H dtα αφ φ= − − −  3.36 

 ( ) ( )L q L p L qW W J K L dtβ β βθ θ φ φ= − − − − −  3.37 

These two equations are then combined with Equations 3.33 and 3.35 respectively to 

form two new equations, the first dependent solely on Lφ  and the second on both θL and 

Lφ : 
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( ) cos ( cos sin )( )

( ) 0

g L b d d d d d L g

q L q

sU V W
t

U G H dtβ β

δ φ φ θ θ θ φ φ
δ

φ φ

+ − + − −

− + − + =
 3.38 

 
( ) ( ) sin ( )

( ) ( ) 0

g L b d L g d d L g

q L q L q

sW V U
t

W J K L dtβ β β

δ θ θ θ θ θ φ φ
δ

θ θ φ φ

− − − − + −

− + − + − + =
 3.39 

 As can be seen, the only unknown in Equation 3.38 is Lφ .  Thus, the equation can 

be rearranged to reveal 

 
cos ( cos sin )

cos sin cos

b d d d d d g g q q

L

d d d d d

s V W U H dt U G
t

sG V W
t

β β

β

δ φ θ θ θ φ φ
δφ δθ θ θ

δ

+ − − − + +
=

+ − +
 3.40 

Similarly, Equation 3.39 can be rearranged to reveal 

 
sin ( ) ( )g b d g d d L g q q L q

L

d

sW V U W J K L dt
t

s V J
t

β β β

β

δ θ θ θ φ φ θ φ φ
δθ δ

δ

+ + + − − − + − +
=

+ −
 3.41 

By solving for these two values, the values for UL, VL, and WL can now be solved. 

 Thus, the lower boundary conditions are defined by the following equations, 

noting that values for UL and WL can be solved by two different equations and that 

Equations 3.40 and 3.41 must be solved first:  

Lower Boundary Conditions: 

Equation 3.40 

Equation 3.41 

Equation 3.36 or 3.33 

Equation 3.37 or 3.35 
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Equation 3.34 

The values for UL, VL, W L, φ L, and θL have been determined.  These new values are, 

then, used to solve for tension. 

 Body Forces. 

The forces on the body must be found in order to model the towline’s movement 

and tension.  This is best done by finding a coordinate system aligned with the body.  

Since the body is assumed to be attached to the towline such that it has no rotation, the 

body axes become the towline axes at attachment.  Schram developed a manner in which 

to analyze rotation in the body (Schram, 1968:119-120) using Euler angles, which will 

not be used or discussed here.  His method becomes quite rigorous, and the assumptions 

here involve negligible moment effects (thus no angular acceleration is included).  A 

manner in which to account for angular acceleration is included in Appendix A.  The 

body orientation is represented in Figure 3.3-4 and Figure 3.3-5.  Again, it should be 

noted that θ is in a unique plane set byφ , and could be coming in or out of the page. 
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Figure 3.3-4  Towed Body Force Components (x-y axis) 

  

 

Figure 3.3-5  Towed Body Force Components (z-y axis) 
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To calculate the forces in each axis, the drag components must first be found.  

Since it is assumed that the body is always aligned with the freestream flow, drag is 

always acting along the body, which allows for the use of a single drag coefficient.  The 

values will be calculated in the spatial coordinate system, since weight will have to be 

added later.  The spatial velocities can be found from the towline velocities at the lower 

boundary by the transformation of Equation 1.7.  Noting that the total drag force as a 

function of components is defined as DTOT
2 = DX

2 + DY
2 + DZ

2, and velocity must be 

decomposed based on these forces, 

 
2

,
1
2 4

B
x L L D B x

dD V u C Fπρ= = −
G

 3.42 

 
2

,
1
2 4

B
y L L D B y

dD V v C Fπρ= = −
G

 3.43 

 
2

,
1
2 4

B
z L L D B z

dD V w C Fπρ= = −
G

 3.44 

where 

 2 2 2
L L L LV u v w= + +
G

 3.45 

Note that the negative sign on the force terms is due to their orientation being in the 

positive direction in each axis.  Since drag acts the same direction as airflow, these force 

terms must have a negative sign.   

It is assumed that there is no lift on the body.  A lift force can be easily added into 

the equations, although it will not be done here.  The aerodynamic force terms are 

therefore the drag terms and were put into the above equations for consistency with prior 

equations (3.15, 3.16). 
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Additional forces based on the body’s acceleration must by found by Newton’s 

Second Law (Equation 1.8).  The acceleration can be found through the use of a 

backward differencing method outlined in Tannehill, Anderson, and Pletcher (Tannehill, 

Anderson, and Pletcher, 1997:50) 

 23 ( ) 4 ( 1) ( 2) ( )
2

u t u t u tu O dt
dt

− − + −
= +�  3.46 

as well as a simple backward differencing method 

 ( ) ( 1) ( )u t u tu O dt
dt
− −

= +�  3.47 

for the first timestep.  The more complex method is used in order to reduce truncation 

errors, which are one order higher than the simpler method. 

Thus, the force terms due to inertia for all three axes become: 

 ,accel x LF u Mb= �  3.48 

 ,accel y LF v Mb= �  3.49 

 ,accel z LF w Mb= �  3.50 

It should be noted that, due to Newton’s Third Law, these forces act away from the 

aircraft.  In other words, a positive acceleration creates a negative force.  Also of 

important mention is the fact there can be no compressive forces in the line.  Thus, any 

acceleration that would theoretically compress the line cannot be factored into the forces 

for tension.  Since compression is impossible, the acceleration has no effect on tension.  

This produces abnormal results in the code, thus the mass and drag coefficient must be 

monitored. 

 These forces can all be summed up to determine the total forces on the body (not 

including tension), noting that the drag acts in the same direction as airflow, the 
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acceleration is oriented away from the aircraft, and the force due to weight must be added 

to the y-axis term: 

 
2

,
1
2 4

B
x L L L D B

dTF u Mb V u C πρ= − −
G

�  3.51 

 
2

,
1
2 4

B
y L L L D B

dTF v Mb V v C Wbπρ= − − −
G

�  3.52 

 
2

,
1
2 4

B
z L L L D B

dTF w Mb V w C πρ= − −
G

�  3.53 

 The tension acts purely in the towline Y-axis, and since the angles were found for 

the lower boundary, the transformation of Equation 1.6 can be applied.  This yields: 

 ( )cos cos sin cos sinL x y zT TF TF TFφ θ φ θ θ= − + +  3.54 

where the negative sign is due to the tension being opposite the direction of total force 

such that the sum of all forces in the Y-axis is zero.  Thus, TL is found at the lower end, 

and can be calculated back up the towline by the use of Equations 3.27 and 3.28, noting 

the towline forces derived in the next section. 

 Towline Forces. 

The towline forces (circular towline with no rotation) can be calculated in a 

similar manner.  The drag forces on the towline are modeled in Figure 3.3-7 and Figure 

3.5-1. 
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Figure 3.3-6  Towline Force Components (x-y plane) 

 

Figure 3.3-7  Towline Force Components (z-y plane) 

One major difference, however, is that the towline is not considered to be facing 

the freestream velocity.  Although drag is to be considered a total force (i.e., it must first 

be determined based on total velocity before decomposition into axial components), 
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Richardson notes that the drag on a cylinder (i.e., the towline) can be effectively 

decomposed into perpendicular and parallel components.  By noting the assumption of 

zero drag parallel to the towline, the total drag can be represented as 

 ( )2
, , ,

1
2Towline B perp D TL D TL sfD d V C Cρ= +

G
 3.55 

where , ,D TL sfC  is the skin friction drag coefficient set at 0.04 (Richardson, 2005:20), 

,D TLC  is the perpendicular drag coefficient (set at 1.1 for this paper) acting in both the X 

and Z axes, and drag force is per unit length (i.e., per meter).  Also: 

 2 2
perpV U W= +
G

 3.56 

These forces can be decomposed into their respective axial forces by noting that 

the parallel force acts purely in the Y-axis, and the perpendicular force acts in the X-Z 

plane.  Drag forces are decomposed for the X-Z plane by the relationship, DTOT
2 = DX

2 + 

DZ
2.  Thus, 

 ( ), , ,
1
2X B perp D TL D TL sf XD d V U C C Fρ= + = −

G
 3.57 

 0Y YD F= = −  3.58 

 ( ), , ,
1
2Z B perp D TL D TL sf ZD d V W C C Fρ= + = −

G
 3.59 

Note again, the force terms are to be in the positive direction, hence their negative sign.  

Since there are no lift forces, the aerodynamic forces become the drag forces, and can be 

applied to the previous equations (3.11 through 3.14, 3.27, and 3.28). 
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3.4. Heat Transfer 

 The entire system is assumed to be in a predetermined temperature field.  Thus, 

the temperature of the air is known at every point in space and time.  In order to 

determine the heat transfer in the system, an energy equation must be found that relates 

the rate of internal energy transfer between the air and the towline.  The orientation of the 

control volume at each incremental length of towline is represented in Figure 3.4-1. 

 

Figure 3.4-1  Airflow Over Towline 
 

Due to conservation of energy, the energy balance equation may be written as 

 0in out generated storedE E E E− + − =� � � �  4.1 

where all values are in terms of the rate of internal energy.  Since the towline is not 

generating any energy, this equation becomes 

 in storedE E=� �  4.2 

assuming there is one dimensional heat transfer from the air to the towline.  If it were the 

other way around, the sign on inE�  would be switched (essentially becoming out-E� ), so 

Equation 4.2 holds true for both heat being transferred to the line and away from it. 

To solve for the energy rate into the towline, Newton’s law of cooling can be 

used: 
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 ( )in s sE hA ∞= −T Τ�  4.3 

where As is the total surface area over which the air flows, and h is the convection 

coefficient. ∞Τ  is used here since the heat transfer is between the far field flow and the 

towline surface ( sΤ ). 

Since a thin boundary layer forms about the towline, film temperature will be 

used to find the properties of the air at the towline’s surface.  Film temperature is 

assumed to be the average temperature between the far field and the towline and is 

defined as 

 
2

s
f

∞ −=
Τ ΤΤ  4.4 

 The convection coefficient can be defined as 

 
TL

Nuh k
D

=  4.5 

where Nu is the Nusselt number, k is the thermal conductivity of the air, and DTL is the 

total distance across the towline (see Figure 3.4-1).  The distance across the towline can 

be defined in the following manner, noting the perpendicular and parallel components of 

the velocity across the line, which create an angle at which the airflow acts: 

 2 2
perpendicularV U W= +
G

 4.6 

 parallelV V=
G

 4.7 

 1tan perpendicular

parallel

V
FlowAngle

V
−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

G
G  4.8 

Thus, 
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sin( )

TL
TL

dD
FlowAngle

=  4.9 

for airflow that completely crosses the towline in the perpendicular direction (i.e., it does 

not completely cross the parallel direction).  Otherwise, 

 
cos( )TL

dsD
FlowAngle

=  4.10 

for airflow that completely crosses the towline in the parallel direction.  The towline’s 

true diameter ( TLd ) will be used for now, however, as will be shown later in the 

discussion of the Nusselt number. 

The value for k can be calculated directly from the film temperature.  This is 

shown by a power fit to experimental data (personal communication, Ralph Anthenien) 

as 

 0.8302(0.0002235) fk = T  4.11 

where fT  is in Kelvin. 

The Nusselt number is calculated experimentally.  Currently, an approximation 

for the Nusselt number could not be found for a cylinder with different angles to the 

freestream.  Also, the boundary layer cannot be assumed to be very small down the 

towline (boundary layer thickness increases along the towline), which will affect heat 

transfer.  Thus, only the perpendicular component of heat transfer will be calculated as if 

the only flow across the towline is perpendicular (i.e., thin boundary layer assumption), 

leaving a better Nusselt number approximation for future work.  This is consistent with 

the rest of the paper, which assumes no drag parallel to the towline.  Thus, the DTL term 

in Equation 4.5 becomes dTL. For perpendicular flow across a cylinder, Nu for Reynolds 
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numbers within the range 41 10DRe< <  is shown by Kramer as reproduced in White 

(White, 1991:186) as 

 0.2 1/30.42 0.57 DNu Pr Pr Re= +  4.12 

This formula was determined from a curve fit of experimental data.  Pr is the 

Prandtl number, assumed to be ~0.7 for air in the range of ~275–850 Kelvin.  The Prandtl 

number changes very little as a function of temperature, and this approximation could be 

applied to even a greater range of temperatures.  The Reynolds number is calculated by 

 perpendicular TL
D

V d
Re

ν
=

G
 4.13 

where ν  is the kinematic viscosity, which can calculated directly by a fit to experimental 

data (personal communication, Ralph Anthenien) based on the film temperature: 

 -10 1.72358 x 10 fν = T  4.14 

where fT  is again in Kelvin.  Future development of a Nusselt number approximation 

that accounts for parallel flow will also have to develop a new Reynolds number 

approximation as well, assuming that Nu=f(Re). 

In order to determine the stored energy in the towline, specific heat is used.  

Specific heat is defined as the amount of heat per unit mass required to raise the 

temperature one degree Kelvin.  Since heat can be defined by the change in stored 

internal energy over the change in temperature, specific heat for the towline is 

represented as 

 stored

ol

Ec dV
dt

ρ
= Τ

�
 4.15 
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Here, ρ and olV  are the density and volume of the towline respectively, and dΤ /dt is the 

change in temperature over time.  The dt term comes in because the stored internal 

energy is a rate as well.   

Rearranging this gives the change in energy storage due to the temperature change 

 olstored
dE c V
dt

ρ=
Τ�  4.16 

where the specific heat value used in this analysis was an approximate value for steel of 

450 J/kg-K.  Combining Equations 4.2, 4.3, and 4.16 yields the energy equation at the 

surface of the towline 

 ( ) ols f s
dhA c V
dt

ρ− =
ΤT Τ  4.17 

 Thus, temperature can be calculated at any point by knowing the position, 

velocity, and previous temperature of the towline: 

 , 1

( )s f s
s t s

ol

hA
c Vρ+

−
= +

T Τ
Τ Τ  4.18 

where sΤ  is the temperature at the surface at the current time and , 1s t+Τ  is the new 

surface temperature at the new time. 

A new film temperature can then be calculated based on the new surface 

temperature value through the use of Equation 4.4.  This is used to calculate the air 

density in the boundary layer around the towline, which is used in turn to find the forces 

on the towline.  Density can be calculated by fit to experimental data in SI units (personal 

communication, Ralph Anthenien) as 

 -1.0041(357.88) fρ = T  4.19 

where it should again be noted that temperature is in Kelvin. 
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3.5. Integration Procedure 

Enough equations have now been derived to model the behavior of the towline 

and body, as well as the heat transfer to the towline, at all points in time and space.  

These equations were written into MATLAB® code following the numerical integration 

procedure as can be seen in Figure 3.5-1.  The code is attached in Appendices A through 

D. 

 

 

Figure 3.5-1  Numerical Integration Procedure 
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IV: Results and Discussion 

4 Results and Analysis 
 

 The MATLAB® code was written such that a change in initial conditions and 

system values could be easily altered.  The behavior of the towline was initially modeled 

with the aircraft under a constant speed with the towline extended directly back behind 

the aircraft at a constant angle down the line of 0.01 (a zero angle gives a negative 

tension error almost immediately).  These results were compared to the steady state 

values from Richardson.  This same procedure was also applied using the initial 

conditions from Richardson to test for constant values under steady state.  The system 

was then modeled under different perturbations, starting with the constant angle position 

of the towline from above.  Lastly, the heat transfer to the towline was modeled under a 

steady state position over time.  Due to the dynamic behavior of the code, and since no 

specific situations were under investigation, the general behavior of the towline is 

represented. 

 Although not shown in this paper (due to the difficulty of showing dynamic 

behavior in printed material), the towline can also be modeled as a pendulum at near zero 

velocity (zero velocity causes a slack condition).  This representation reveals a damped 

oscillation about a hanging position, with curvature in the line as the body gets farther 

from its final steady state.  This test, which was used to test the MATLAB® code for 

reasonable response, is an easy way to show that the methods used work. 

4.1. Initial Conditions 

 The initial conditions for the towline parameters and step sizes for a towline 

length of 30 meters were set as follows: 
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where most of these values were taken from previous work by Richardson.  The value for 

towline mass per unit length (μ) is based on an approximated average density for most 

steels of ~7600 kg/m3, and is a function of both density and diameter (dTL).  Schram and 

Reyle indicated (Schram and Reyle, 1968:218) that the value of ds/dt should be around 

1000 to get good results and ensure stability for small perturbations.  The values used 

here seemed to be stable for most cases, however.  Greater changes in velocity may 

require different values, and the code prints an error statement if either stability cannot be 

maintained (Equations 3.20 and 3.21), or tension becomes negative. 

 The code is unable to accommodate negative tension (i.e., compression) in the 

towline, due to the creation of imaginary numbers in the characteristic directions 

(Equations 3.20 and 3.21).  This is consistent, however, with the assumptions noted by 

Crist (see Section 2.3) in the fact that the minimum tension a line hanging freely can have 

is zero.  Thus, slack conditions take place at zero tension (tension cannot equal zero in 

code due to division by zero errors, so slack is assumed to happen at near zero values). 

 Unfortunately, the code is also currently unable to account for slack conditions.  

This is because the characteristic lines become zero with zero tension.  A line of slope 
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zero will never be able to transfer data between timesteps (see Figure 3.3-1).  Thus, 

consideration must be made in the towed body’s drag and mass, which can be altered to 

prevent slack.  It was found that usually either reducing the mass, or increasing the towed 

body’s drag coefficient or frontal area (i.e., increase the drag) prevented this condition.  

Although Crist notes that “the effects of slack cable must be included in most analyses” 

(Crist, 1970:73), the design of many towed bodies are made to prevent slack in the line, 

and it is assumed that an aircraft in combat will work at high enough speeds such that 

slack becomes nonexistent.  Line slack will create adverse effects such as line jerk that 

are undesirable anyway.  The values for mass and drag are changed in some of the 

following scenarios to prevent this effect, and any future work should note the restriction 

on this method. 

4.2. Steady State Analysis 

 Using the steady state values from Richardson’s code, the towline behavior 

should remain relatively stable.  If the code was started from a towline hanging position 

(either back or down, noting an initial nonzero angle must be given for the backward 

position), the behavior should eventually reach, or maintain (if given initial steady state 

values), a steady state value close to that from Richardson’s code. 

 Indeed, a steady state value is found that is consistent with that from Richardson.  

Using the initial values from Richardson, any towline movement is negligible, and a final 

shape can be seen to directly overlap the one from his code.  This is shown in a 50 m/s 

horizontal velocity simulation plotted in Figure 4.2-1, where the towline was started at 

Richardson’s steady state position. 
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Figure 4.2-1  Steady State Comparison 

 It should be noted that the mesh spacing was reduced to a ds value of 1 meter and 

a dt value of .001 seconds to increase accuracy.  Note the very slight difference between 

the two methods near the towed body.  This difference is small enough to be negligible.  

Any difference is most likely due to the accuracy of the method of characteristics, which 

is not as accurate as the procedure Richardson used.  His work utilized MATLAB®’s 

ode45 solver, which is a 4th order Runge-Kutta integration scheme.  The method of 

characteristics for this work used a preset mesh with straight characteristic lines, which is 

only 1st order accurate.  Thus, some small discrepancies may be found between the two 

procedures.  As mentioned, however, these are mostly negligible. 

 A final shape can be seen by also modeling the hanging position.  As mentioned 

before, the towline was started at a constant angle of 0.01φ = radians and released.  The 

aircraft was kept at a constant speed of 50 m/s, and the simulation took place over 50 
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seconds.  The results can be shown in Figure 4.2-2 through Figure 4.2-6.  The steady state 

values from Richardson are included on these plots in order to see the oscillations about 

steady state and model the damped response.  The towline eventually reaches the same 

steady state position as shown previously in Figure 4.2-1.  Tension is included in these 

results to show how it behaves over time.  Note that the tension is always less at the body 

than at the aircraft. 

 
Figure 4.2-2  Steady State Drop t=0s 
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Figure 4.2-3  Steady State Drop t=1s 

 
Figure 4.2-4  Steady State Drop t=1.5s 
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Figure 4.2-5  Steady State Drop t=3s 

 
Figure 4.2-6  Steady State Drop t=50s 
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 The towline initially goes down, crossing the steady state value.  The tension 

increases until this value starts to be crossed.  At this point, the tension decreases, and the 

towline starts to slow down.  What happens physically during this time is that the drag 

forces on the line and body start to catch up to the gravitational forces, thus reducing the 

tension.  The towline then goes back up past the steady state value, but not as far.  This 

oscillation happens until a steady state value is reached.  This value is very close to that 

of Richardson, such that the differences are negligible, and is the same shape as that 

shown in Figure 4.2-1. 

4.3. Single Perturbation 

 The aircraft was set at an initial horizontal velocity of 100 m/s in a similar manner 

as in the steady state analysis.  The reference frame for all of these plots is in the 

aircraft’s initial velocity and direction (100 m/s horizontal velocity, which is to the right 

in the x-y plane).  A way to visualize this is to think of being in a chase aircraft, traveling 

at a constant velocity with the initial velocity of the aircraft carrying the towline. 

 The code is set such that the acceleration is constant over a predetermined period 

of time.  This creates a jerk effect in the tension (not shown here), which could be 

reduced by ramping the acceleration.  Since the jerk is in acceleration, which is the 

second derivative of position, this has no noticeable effect on how the system behaves in 

space, and thus is mentioned only as an explanation of how the code works.   

 Horizontal Perturbation. 

  The decoy mass was set to 4 kg for this scenario.  The first perturbation had the 

aircraft slow down to 70 m/s over a period of 1 second, then immediately sped back up to 
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100 m/s over a period of 1 second.  The horizontal acceleration is shown in Figure 4.3-1 

through Figure 4.3-7. 

 
Figure 4.3-1  Horizontal Perturbation t=0s 

 
Figure 4.3-2  Horizontal Perturbation t=0.5s 
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Figure 4.3-3  Horizontal Perturbation t=1s 

 
Figure 4.3-4  Horizontal Perturbation t=1.5s 
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Figure 4.3-5  Horizontal Perturbation t=2s 

 
Figure 4.3-6  Horizontal Perturbation t=3s 
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Figure 4.3-7  Horizontal Perturbation t=20s 

 As can be seen, the entire system slows down and the body drops below its initial 

and final steady state value.  Upon acceleration back to 100 m/s, the body then comes up 

past its steady state value, and after oscillating about this value settles down in the 

original steady state position. 

 Vertical Perturbation. 

 This scenario also used a 4 kg mass.  The aircraft was accelerated to a 30 m/s 

vertical velocity over 1 second of acceleration.  This velocity was kept constant until 2 

seconds, at which point it was accelerated back to its initial vertical velocity of 0 m/s over 

a period of 1 second.  The results can be seen in Figure 4.3-8 through Figure 4.3-16. 
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Figure 4.3-8  Vertical Perturbation t=0s 

 
Figure 4.3-9  Vertical Perturbation t=0.5s 
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Figure 4.3-10  Vertical Perturbation t=1.5s 

 
Figure 4.3-11  Vertical Perturbation t=2.5s 
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Figure 4.3-12  Vertical Perturbation t=3s 

 
Figure 4.3-13  Vertical Perturbation t=3.5s 
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Figure 4.3-14  Vertical Perturbation t=4s 

 
Figure 4.3-15  Vertical Perturbation t=4.5s 
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Figure 4.3-16  Vertical Perturbation t=50s 

 Note the overshoot as the system returns to its initial vertical velocity.  When 

applying this to the concern of the towline crossing behind the engine, assuming that the 

engine plume is always in the horizontal direction, the towline can be seen to cross right 

down the middle of the plume.  This effect is not desirable when concerned about heat 

transfer to the line.  Since the towline is generally not deployed exactly behind the 

engine, and behavior represented here is only in the vertical direction, this is not 

necessarily the worst case.  However, it is one that should be avoided. 

 Although it is not very noticeable in these plots, the towline exhibits a curvature 

in the overshoot, which is expected.  The reason for the small amount of curvature is that 

the mass is contributing a large force in the y-axes due to weight.  The inertia from the 

overshoot is what causes the curvature, but since gravity is always acting on the body, the 
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force in the y-axis does not change enough to create a significant curving effect.  

Essentially, the weight serves to damp the curvature from inertia. 

 Transverse Perturbation. 

 This scenario also used a 4 kg mass.  The aircraft was accelerated to a 30 m/s 

velocity in the transverse direction (z-axis) over 1 second of acceleration.  At 1 second, 

this velocity was accelerated back to its initial vertical velocity of 0 m/s over a period of 

1 second.  The results can be seen in Figure 4.3-17 through Figure 4.3-26. 

 
Figure 4.3-17  Transverse Perturbation t=0s 
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Figure 4.3-18  Transverse Perturbation t=0.5s 

 
Figure 4.3-19  Transverse Perturbation t=1s 
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Figure 4.3-20  Transverse Perturbation t=1.5s 

 
Figure 4.3-21  Transverse Perturbation t=2s 
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Figure 4.3-22  Transverse Perturbation t=2.5s 

 
Figure 4.3-23  Transverse Perturbation t=3s 
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Figure 4.3-24  Transverse Perturbation t=3.5s 

 
Figure 4.3-25  Transverse Perturbation t=5s 
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Figure 4.3-26  Transverse Perturbation t=20s 

 Since the towline was not initially in a steady state position, the change in both 

the x-y and the z-y planes can be seen.  Although not explicitly clear here, the changes in 

the transverse direction affect the changes in the vertical direction and vice versa.  The 

curvature of the line is more distinct in these perturbations, since the weight only works 

in the y-axis.  Thus, the inertia in the z-axis becomes significant, causing curvature.  Of 

interesting note is that although the line goes past its steady state value, it does not come 

back and cross this position, which is most likely due to the small amount of overshoot.  

Since the force from weight is what brings the line back to steady state, and this force is 

relatively small due to the small angle the towline goes past its steady state value, the 

towline approaches its final position at a slow rate, thus producing little to no overshoot 

when it comes back.  A greater acceleration in the transverse direction would produce a 

noticeable overshoot on the return here. 
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4.4. Multiaxial Perturbation 

 Using the same values for the previous simulations with a 4 kg mass, the last two 

maneuvers from Section 4.3 were combined to produce an upward and rightward 

movement.  Here, however, the transverse velocity did not begin to accelerate back to 

zero until the 2 second mark.  The results can be seen in Figure 4.4-1 through Figure 

4.4-10, noting the scaling in the z-y plane, which changes so that the results can be more 

easily seen. 

 
Figure 4.4-1  Multiaxial Perturbation t=0s 
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Figure 4.4-2  Multiaxial Perturbation t=1s 

 
Figure 4.4-3  Multiaxial Perturbation t=2s 
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Figure 4.4-4  Multiaxial Perturbation t=3s 

 
Figure 4.4-5  Multiaxial Perturbation t=3.25s 
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Figure 4.4-6  Multiaxial Perturbation t=3.5s 

 
Figure 4.4-7  Multiaxial Perturbation t=3.75s 
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Figure 4.4-8  Multiaxial Perturbation t=4s 

 
Figure 4.4-9  Multiaxial Perturbation t=5s 
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Figure 4.4-10  Multiaxial Perturbation t=20s 

 The towline overshoots when the aircraft returns to its steady state value (note the 

aircraft’s final position at z = 60m and y = 60m with the body overshooting these values).  

It appears to cross right behind the aircraft.  Applying this to the concern of heat transfer 

to the towline, this case is potentially worse than the purely vertical perturbation.  The 

towline crosses behind the aircraft in both the y and z axes, which could put it right in the 

engine plume if the engine is off center from the towline attachment. 

4.5. Heat Transfer 

 All the previous analyses were assumed to be in standard atmosphere and 

pressure, thus keeping a constant air density with constant line temperature.  To analyze 

the change in towline temperature and air density about the towline, a routine was written 

(Tempset.m) to calculate these values at every point in space and time and is included in 
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Appendix C.  The code was written with the intention of given data being placed into an 

ambient temperature array as global or otherwise referenced values. 

 In the analysis here, however, it was assumed that the ambient temperature was 

held constant at 1000 K, and although the array is a function of time and three 

dimensional space (relative to the initial positions of the system), all of its values are the 

same.  This can be easily changed by adding known data.  Both the heat transfer to the 

towline, and the air density about the towline, were analyzed under this constant ambient 

temperature. 

 The vertical velocity perturbation in Section 4.3 was run in the same manner as 

before over a period of 150 seconds.  A 1 kg mass was used for this analysis, however, 

since a lower mass will produce more curvature in the towline (body weight works to 

damp any curvature).  The vertical maneuver was used in order to model how heat 

transfer is affected by a change in perpendicular velocity over the towline.  The aircraft 

was started at a 100 m/s horizontal velocity and was given an initial vertical acceleration 

over a period of 1 second to a final vertical velocity of 30 m/s.  This was held for 1 

second.  At the 2 second mark, the same procedure is done in reverse to slow the aircraft 

down to 0 m/s vertical velocity.  As mentioned, however, this time it was placed in an 

ambient temperature field of 1000 K.  The towline temperature was given an initial 

temperature of 288.2 K (value for standard atmosphere and pressure). 

 The first plot (Figure 4.5-1) shows the temperature in the towline as a function of 

time. 
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Figure 4.5-1  Temp Change Over Time 

Note that the line temperature asymptotically approaches the ambient temperature value 

of 1000 K.  This creates a near linear change initially and a much more gradual change as 

time goes on.  The reason that the line temperature at the aircraft increases faster is due to 

the towline shape in its steady state value.  This is shown in Figure 4.5-2. 
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Figure 4.5-2  Towline Shape at Final Steady State 

Note the shape of the towline, which allows for a greater perpendicular velocity over the 

line near the aircraft (right side of plot) versus near the body (left side of plot) since the 

system is traveling at 100 m/s to the right. 

 Also of note is the increased droop in the towline.  The final droop is about 0.93 

meters, whereas the initial droop is about 0.64 meters.  The initial position of the towline 

before the maneuver is shown in Figure 4.5-3. 
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Figure 4.5-3  Towline Shape at Initial Steady State 

This increased droop is due to the reduction in drag forces as a result of reduced air 

density.  The air density is shown in Figure 4.5-4. 
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Figure 4.5-4  Air Density Change Over Time 

Note how the density changes as a function of temperature.  A greater temperature causes 

a lower air density under constant pressure. 

 To illustrate the initial rate of heat transfer, the towline temperature is plotted for 

the first 5 seconds in Figure 4.5-5.  The towline shape can be seen over this time period in 

Figure 4.3-8 through Figure 4.3-15.  Note that, over this time period, the towline is 

traveling faster near the body than near the aircraft.  Thus, there is greater heat transfer 

near the body than near the aircraft.  The two values cross around 10 seconds, due to a 

slightly different slope in the steady state position.  It should be noted that the slope is the 

heat transfer rate. 
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Figure 4.5-5  Temp Change Over 7 Seconds 

 The change in the heat transfer rate at the aircraft is noticeable at the three 

inflection points for acceleration (1 second, 2 seconds, and 3 seconds).  The first second 

has the aircraft increasing in velocity (curved heat transfer slope).  The second second has 

the aircraft at a constant velocity, but higher than its initial and final velocities (linear 

heat transfer).  The third second has the aircraft slowing down to its final velocity (curved 

heat transfer).  After this final acceleration is complete and the system approaches steady 

state again, the heat transfer near the aircraft settles to an essentially linear behavior.  The 

curvature between 3 and 4 seconds is due to the system approaching its steady state.  The 

heat transfer at the body becomes a little more complex due to its oscillations about the 

steady state value, but follows expected behavior.  Note the slightly higher heat transfer 

rate at the body on the right side of the plot. 
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V: Conclusions and Recommendations 

5 Conclusions and Recommendations 
 

 This paper utilized a variety of research to develop a reliable code to model 

towline behavior under transient conditions.  When compared to past work, it has been 

shown to accurately predict the position of the towline under any transient maneuvers.  

This code can also accurately model the heat transfer to the line based on given initial 

data within the assumptions given (i.e., not heat transfer due to parallel airflow).  The 

theory is presented clearly and the code works effectively. 

5.1. Conclusions 

 A few conclusions can be drawn from the results shown here.  The first 

conclusion is that the method of characteristics gives a good approximation for the 

towline behavior in both transient and steady state analysis.  This was shown in 

comparison with past work, as well as the modeling of expected behaviors such as the 

pendulum test. 

 The second conclusion is that this method cannot analyze slack conditions.  Since 

most towed decoys, which are the focus of this research, are designed to prevent slack, 

this method should be able to analyze most cases of concern.  Although the slack 

conditions cannot be analyzed, the towline acts as it should when compared to previous 

work.  As a result, special consideration needs to be made regarding the towed body’s 

drag and mass, which must be adjusted in order to prevent slack. 

 The third conclusion regards the coupling of motion.  Previous research has 

indicated that disturbances in one plane generate disturbances in another (Schram and 
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Reyle, 1968:219).  This is seen in the results here as well except for the case of a straight 

towline undergoing maneuvers purely in the plane in which it starts (i.e., a purely vertical 

maneuver from straight, steady state flight).  Previous work indicated this exception as 

well (Schram and Reyle, 1968:219), so the effect is not unexpected.  This coupling of 

motion is due to the change in drag being put on the line and body due to the change in 

total velocity, which affects the towline’s behavior in multiple axes. 

 The fourth conclusion is that the heat transfer to the towline appears linear over 

short periods of time.  A gradual leveling off over longer periods of time happens, but for 

shorter periods, the change appears linear.  This is expected for large differences in 

temperature, since Newton’s law of cooling says that the rate of heat transfer is 

dependent on the difference in temperatures.  Thus, a smaller difference produces a 

smaller change. 

5.2. Future Work 

 Future work entails the development of a better way to approximate the Nusselt 

number, analyzing the boundary layer on the towline, modeling the effects of wake from 

the aircraft, modeling slack conditions in the line, the use of different mesh schemes, 

analyzing the towed body’s forces, and comparing to real results for specific applications 

(i.e., specific maneuvers).  In addition, in order to analyze heat transfer, a temperature 

field as a function of time and space must be referenced from known data. 

 As alluded to in previous sections, the method derived is limited in its ability to 

model heat transfer to the towline due to the Nusselt number.  Future research should 

entail a manner in which to find the Nusselt number at differing geometries, such that the 
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heat transfer to the line can be approximated for both parallel and perpendicular flow.  

This may require boundary layer analysis on the towline. 

 The drag and heat transfer from airflow parallel to the towline were both assumed 

to be negligible for this work.  One of the primary causes of this assumption is the 

formation of a boundary layer, which increases in thickness along the towline.  There is 

no sure way to analyze the boundary layer, however, because flow separation will start to 

occur along different points of the line.  Even though flow separation occurs, it was 

assumed still that the length size of the turbulence was much greater than that of each 

incremental length of the towline.  Due to this, all the airflow becomes, essentially, 

perpendicular, and thus a perpendicular airflow analysis may be sufficient.  More work 

should be done, however, to model the formation of the boundary layer, its effects on 

drag and heat transfer, and the result of turbulent effects due to flow separation. 

 All flow was considered to be laminar at every local point along the towline.  This 

is not necessarily true, especially since this system is being towed behind an aircraft.  An 

analysis of the turbulent wake from the aircraft would determine if this would affect any 

of the data. 

 Slack conditions cannot be analyzed with this model.  That is because the 

characteristics used to step data from one timestep to the next are functions of tension.  A 

zero tension value prevents the transfer of data by this method.  Thus, another method, or 

some alteration of the one used here, is necessary to allow for slack in the line.  This 

method could be added to the current code as an if statement, called up only during slack 

conditions. 
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 Although the first order scheme of Courant, Isaacson, and Rees (Ames, 1965:447) 

used here for the method of characteristics provides a very simple mesh setup, their’s is 

only first order accurate.  A better setup for the method of characteristics involves a 

second order solution based on Hartree’s hybrid method, as outlined by Ames (Ames, 

1965:445-448).  The technique used in this paper is essentially an approximation of this 

hybrid method.  Although probably not necessary, the alternate method Ames lays out 

would provide a more accurate approximation, especially at larger step sizes.  A larger 

step size would reduce computing time.  Unfortunately, it also requires iterative 

procedures for solutions, which increases computing time.  The payoffs or advantages of 

using this scheme are unknown.  However, if computing time becomes an issue, more 

should be looked into using the second order scheme instead.  Also, as was shown in the 

steady state analysis of Section 4.2, there is a slight discrepancy between the 1st order 

method used here, and the 4th order method used by Richardson.  Using this second order 

method from Ames should reduce the discrepancy.  These errors are small, however, and 

the work necessary to rewrite all the code may not be worth the slightly increased 

accuracy. 

 One assumption that was made involved the orientation of the body being always 

facing directly into the freestream.  This is not a bad assumption, but future work should 

involve a better modeling of the forces on the body.  Depending on the body’s weight and 

drag, it can have a very significant effect on the towline behavior.  Since the body shape 

was unknown and only assumptions were made for this work, future analyses using 

actual body properties will help produce very useful data. 
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 As an all theoretical work, data from this code should be compared to real life 

data.  There are many real life simulations available.  A lot of these (including other 

methods used to analyze this type of problem) can be found referenced in Kang and 

Latorre (Kang and Latorre, 1991:5-6).  Future work should entail comparing the results 

from this code to specific scenarios from experiment in order to predict behavior under 

the known conditions. 

 Other possible work involves some small additions to the code, both of which 

would be quite simple.  These include utilizing a ramp function for acceleration to reduce 

the “jerk” in the tension, and adding more possible maneuvers for each simulation 

(currently only 2 are allowed). 

 These conclusions and recommendations can be further substantiated with more 

research.  For now, however, the attached code is sufficient for modeling transient 

maneuvers in aircraft behavior, as well as heat transfer to the towline in a known 

temperature field.  
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Appendix A: Development of Angular Acceleration Term 
 
 
 
 Schram (Schram, 1968: Appendix B) developed a manner in which to calculate 

the three-dimensional rotational equations of motion of the body.  A simplified version of 

a manner in which to find angular acceleration can be based off of Equation 3.27, where 

it is noted that the angular terms become 

 [ ]( ) cos ( )L L b L L L b
Mb W U
dt

θ θ θ φ φ− + −   

for the lower boundary.  This can be added to the tension at the body to account for 

angular acceleration at the body. 
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Appendix B: MATLAB® Code – Primary Code 
 
 
 
%Theoretical Modeling of the Transient Effects of a Towline 
%Using the method of characteristics (June 2006) 
%Created by Ensign Christopher A. Hill, USN 
%Under the advice of Dr. Ralph Anthenien 
%Master Thesis work, Air Force Institute of Technology 
%For more information contact Christopher Hill at 612-532-6068 
%or Ralph Anthenien at 937-255-3636 x4643 
  
%Primary Code 
  
%all arrays of form f(position,time) 
  
clear all 
clc 
  
%Amatrix is a function of the form Amatrix(phi,theta), which forms the 
%transformation matrix [A] to convert from space to towline coordinates 
and 
%vice versa. 
  
set = set_values; %sets variables for maneuvers  
params = line_params; %brings in initial conditions 
  
%Set all initial values: 
    t=0; %sets initial time 
    ds = set.ds; %change in length (meters) 
    dt = set.dt; %change in time (sec) 
    time = set.time; %sec (total time) 
    L = params.LL; 
    mu = params.mu; %mass of towline per meter 
    g = params.g; 
    Wt = params.Wt; %Weight of towline per meter [N] 
    Mb = params.mD; 
    WB = params.WB; 
    Vol = set.ds*pi*params.dL^2/4; %total volume of towline 
    Area = set.ds*pi*params.dL; %total surface area of towline 
    C = params.Vx; %m/s - constants (velocity) of a/c 
    D = params.Vy; 
    E = params.Vz; 
    upert = set.upert; %perturbations in velocity of a/c 
    vpert = set.vpert; 
    wpert = set.wpert; %limits in these values 
    tpert = set.tpert; %constant acceleration until reaches final 
perturbation value at tpert 
    tstart2 = set.tstart2; %time to start second perturbation 
    upert2 = set.upert2; 
    vpert2 = set.vpert2; 
    wpert2 = set.wpert2; 
    tpert2 = set.tpert2; 
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    %Set values for finding heat transfer: 
        Cp = 450; %approx value for most steels at 300K - can be 
changed to a fnct of temp 
        Pr = 0.7; %Prandtl number 
        Temp_set = set.CT*ones(15,15,2,set.time/set.dt+1); %Ambient 
temp field: Temp_set(x,y,z,t) - currently uses const. temp value 
'set.CT' - value of 1 is initial position/time 
        GS = .1; %Spacial grid size spacing for Temp_set is 1/GS 
meters.  Thus GS = 10 means grid size for Temp_set is .1 meters 
        %Set the offset from the a/c at initial conditions for where 
the 
        %values begin for Temp_set matrix (+ is up and - is down): 
            xoffset = -30; 
            yoffset = -30; 
            zoffset = 0; 
  
% Setup Initial Conditions (this is to find steady state) 
% +1 is to account for the zero point on the line (i.e. a '1' 
position/time 
% refers to a position/time of 0, etc.)  
% note: we'll say that t=1 is initial given values, and t=2 is upper 
limit 
% conditions 
% note: everything is oriented about the b position in fig. 3.3-1 of 
paper 
% ('i' position in code refers to b position in paper) 
  
%Initialize arrays for data: 
    Phi = set.Phi*ones(L/ds+1,time/dt+1); %set an initial value for Phi 
for t0 - affects possible negative tension at initial values 
    Theta = set.Theta*ones(L/ds+1,time/dt+1); 
    U = zeros(L/ds+1,time/dt+1); 
    W = zeros(L/ds+1,time/dt+1); 
    V = zeros(L/ds+1,time/dt+1); 
    FX = zeros(L/ds+1,time/dt+1); %note: per meter! 
    FY = zeros(L/ds+1,time/dt+1); 
    FZ = zeros(L/ds+1,time/dt+1); 
    T = zeros(L/ds+1,time/dt+1); 
    u = zeros(L/ds+1,time/dt+1); 
    v = zeros(L/ds+1,time/dt+1); 
    w = zeros(L/ds+1,time/dt+1); 
    x = zeros(L/ds+1,time/dt+1); 
    y = zeros(L/ds+1,time/dt+1); 
    z = zeros(L/ds+1,time/dt+1); 
    %These two arrays are all set to the same value, with the 
understanding 
    %that the non t=1 array positions will be changed later 
    Temp = set.LTemp*ones(L/ds+1,time/dt+1); %sets entire line temp to 
be initial line temp 
    rho = 357.88*((set.LTemp+set.CT)/2)^(-
1.0041)*ones(L/ds+1,time/dt+1); %sets air density along line based on 
initial air and line temps 
  
%Set velocities down entire line = constant vel. values of a/c 
(spatial) 
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    u(:,1) = C; 
    v(:,1) = D; 
    w(:,1) = E; 
  
%The code between the lines takes in previous steady state data. 
%One can comment out this code if they would rather start from 
%non-steady state cases. 
%------------------------------------------------------------% 
%%The following sets up initial conditions by interpolation from  
%%previous tension data (since we have more data pts here).  It should 
%%be noted that the previous data plots the towed body at the zero 
position 
%%and follows the towline shape in the positive x-y direction up to the 
%%aircraft.  We need to shift everything down and to the left so that 
the 
%%aircraft is at zero and the towline hangs down and to the left. 
  
    % Create matrices to store values: 
        dx = zeros(L/ds+1,time/dt+1); 
        dy = zeros(L/ds+1,time/dt+1); 
        dz = zeros(L/ds+1,time/dt+1); 
  
    % Find steady state values: 
        [y1 y2] = towlinecomp; 
        x_init = y2(:,1); %spatial x pos of steady state line wrt arc 
length 
        y_init = -y2(:,2); %spatial y pos of ss line wrt arc length... 
negative due to sine convention 
        z_init = y2(:,3); %spatial z pos of ss line wrt arc length 
        dx_init = -y2(:,4); %spatial dx/ds of ss line... negative due 
to sine convention 
        dy_init = -y2(:,5); %spatial dy/ds of ss line... negative due 
to sine convention 
        dz_init = y2(:,6); %spatial dz/ds of ss line 
        T_init = y2(:,7)*params.T0; %tension in ss line... originally 
non-dim, thus multiplied by T0 
  
Last = length(x_init); %references last pt in initial data (same for 
all initial matrices) 
e = (Last-1)/(length(x(:,1))-1); %ratio for interpolation (same for all 
matrices) ... -1 used b/c 1st point is really at 0 (no 0 index) 
  
%The following puts the initial values into the initial matrices 
(swapped 
%for the convention in this program): 
for i=1:1:L/ds+1 
    %This sets up the indices for conversion from previous coordinates 
for 
    %this program using interpolation (A is previous point, B is next 
point 
    %...these values are subtracted from the 'Last' position in order 
to 
    %reverse the index): 
        A = round((i-1)*e); 
        if (i-1)*e > A 
            B = A+1; 
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        elseif A == 0 
            B = A+1; 
        else 
            B = A; 
            A = A-1; 
        end 
    %These are all in spatial coordinates: 
        x(i,1) = [(x_init(Last-B)*((i-1)*e-A) + x_init(Last-A)*(B-(i-
1)*e))*L - x_init(length(x_init))*L]; 
        y(i,1) = -[(y_init(Last-B)*((i-1)*e-A) + y_init(Last-A)*(B-(i-
1)*e))*L - y_init(length(y_init))*L]; 
        z(i,1) = -[(z_init(Last-B)*((i-1)*e-A) + z_init(Last-A)*(B-(i-
1)*e))*L - z_init(length(z_init))*L]; 
        dx(i,1) = dx_init(Last-B)*((i-1)*e-A) + dx_init(Last-A)*(B-(i-
1)*e); 
        dy(i,1) = dy_init(Last-B)*((i-1)*e-A) + dy_init(Last-A)*(B-(i-
1)*e); 
        dz(i,1) = dz_init(Last-B)*((i-1)*e-A) + dz_init(Last-A)*(B-(i-
1)*e); 
  
    %This finds the initial angles: 
        Phi(i,1) = atan(dy(i,1)/dx(i,1)); 
        Theta(i,1) = -asin(dz(i,1)); 
  
%------------------------------------------------------------% 
  
% for i=0:1:L/ds %comment out this line if using above for loop, 
otherwise 
% uncomment 
%      
%     %This sets up the values for a non-steady state case, setting the 
%     %towline positions to be directly backward from the aircraft. 
These 
%     %lines should be commented out if using the steady state values 
above: 
%         if i ~= 0 
%             x(i,1) = x(i,1) - ds*cos(Theta(i,1))*cos(Phi(i,1)); 
%             y(i,1) = y(i,1) - ds*cos(Theta(i,1))*sin(Phi(i,1)); 
%             z(i,1) = z(i,1) - ds*sin(Theta(i,1)); 
%         end 
%------------------------------------------------------------% 
         
    %This converts velocity to towline coordinates: 
        Spatial_vel = [u(i,1); v(i,1); w(i,1)]; 
        Tow_vel = Amatrix(Phi(i,1),Theta(i,1))*Spatial_vel; 
        U(i,1) = Tow_vel(1); 
        V(i,1) = Tow_vel(2); 
        W(i,1) = Tow_vel(3); 
  
    %The following is used to find heat transfer and density in ambient 
temp at next timestep. 
    %Due to computing power, it can be commented out when not analyzing 
heat transfer. 
        Tempset; 
     
    if i ~= L/ds 
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    %This sets up the aerodynamic forces on the line 
        F = Towforce(U(i,1),V(i,1),W(i,1),rho(i,1)); 
        FX(i,1) = -F(1); %note: per meter 
        FY(i,1) = -F(2); %notation is in positive X,Y,Z axes 
        FZ(i,1) = -F(3); 
    end 
end 
  
    %Find drag forces on the body and tension at lower end: 
        %No acceleration terms are included since it is assumed this is 
        %starting from rest. 
        F = 
Bodyforce(u(L/ds+1,1),v(L/ds+1,1),w(L/ds+1,1),rho(L/ds+1,1)); %Set 
forces on body in spatial axes 
        Fx = -F(1); 
        Fy = -F(2)-WB; 
        Fz = -F(3); 
        FTL = 
Amatrix(Phi(L/ds+1,1),Theta(L/ds+1,1))*[Fx;Fy;Fz];%Convert to towline 
coordinates 
        T(L/ds+1,1) = -FTL(2);%Tension is directed only along the 
towline Y-axis 
     
    %Set aerodynamic forces on line at lower end: 
        F = Amatrix(Phi(L/ds+1,1),Theta(L/ds+1,1))*[F(1);F(2);F(3)]; 
%Change to towline coordinates 
        FX(L/ds+1,1) = -F(1); %negative sign due to drag being in same 
direction as velocity 
        FY(L/ds+1,1) = -F(2); 
        FZ(L/ds+1,1) = -F(3); 
     
    %Set tension one step up line 
        T(L/ds,1) = T(L/ds+1,1)+ds*(-
FY(L/ds,1)+Wt*sin(Phi(L/ds,1))*cos(Theta(L/ds,1))); 
     
    %Set tension up rest of line 
        for i=L/ds-1:-1:1 
            T(i,1) = T(i+2,1)+2*ds*(-
FY(i+1,1)+Wt*sin(Phi(i+1,1))*cos(Theta(i+1,1))); 
        end 
  
for t=1:1:time/dt; %t=1 represents t0 (1st timestep) - we're finding 
values for next timestep based on this timestep value 
  
    %This sets up the perturbation velocities over time based on 
constant 
    %acceleration... t is used because we're concerned with the 
behavior 
    %at time t+1 (i.e., assume all perturbation velocities are 0 at 
t0), 
    %thus the total change in time up to that point will be t*dt: 
     
        %First perturbation (u/v/wstar values set twice since u/v/wstar 
        %values are changed in the second perturbation, but are based 
on 
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        %constant values of u/v/wstar - the '1' values - since the 
second  
        %perturbation happens after the first one): 
            if t*dt <= tpert 
                 ustar1 = upert*t*dt/tpert; 
                 vstar1 = vpert*t*dt/tpert; 
                 wstar1 = wpert*t*dt/tpert; 
                 ustar = ustar1; 
                 vstar = vstar1; 
                 wstar = wstar1; 
            end 
  
        %Second perturbation: 
            if t*dt >= tstart2 & t*dt <= tstart2+tpert2 
                t0 = t-tstart2/dt; %timestep that this starts at 
                ustar = ustar1 + t0*upert2*dt/tpert2; 
                vstar = vstar1 + t0*vpert2*dt/tpert2; 
                wstar = wstar1 + t0*wpert2*dt/tpert2; 
            end 
     
    for i=1:1:L/ds+1 
         
        %Characteristic directions: 
            Fa = sqrt(T(i,t)/mu);  
            Fb = -sqrt(T(i,t)/mu); 
            if i==L/ds+1 
                Fb=-sqrt(T(i,t)/Mb); %sets different characteristic 
value for lower bdry 
            end 
             
        %This checks for stability of mesh: 
            if (abs(Fa)*dt/ds) >= 1 
                fprintf('Out of boundary!\nTry changing ds & dt (set 
ds/dt to at least >= 1000).\nHit ctrl-c to quit\ni = %f\nt = %f\nFa = 
%f\n',i,t,Fa) 
                pause 
            end 
             
        %This checks for negative tension: 
            if T(i,t) < 0 
                if i == 1 
                    Told = T(i,t-1); 
                else 
                    Told = T(i-1,t); 
                end 
                fprintf('Tension is negative!\nTry making less drastic 
perturbations.\nNote: the code cannot analyze slack 
conditions.\ni=%f\nt=%f\nT=%f\nT(previous)=%f\nHit ctrl-c to 
quit\n',i,t,T(i,t),Told) 
                pause 
            end 
  
        %This sets values for the characteristic equations: 
            Ga = W(i,t)*sin(Theta(i,t)) - V(i,t)*cos(Theta(i,t)) + 
Fa*cos(Theta(i,t)); 
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            Gb = W(i,t)*sin(Theta(i,t)) - V(i,t)*cos(Theta(i,t)) + 
Fb*cos(Theta(i,t)); 
            if i == L/ds+1 %Sets values at body - based on body mass - 
this is currently not being used 
                Hb = (1/Mb)*(-FX(i,t) - WB*cos(Phi(i,t)));  
                Lb = (1/Mb)*(-FZ(i,t) - 
WB*sin(Phi(i,t))*sin(Theta(i,t))); 
            else %Sets values along towline - based on towline mass 
                Hb = (1/mu)*(-FX(i,t) - Wt*cos(Phi(i,t))); 
                Lb = (1/mu)*(-FZ(i,t) - 
Wt*sin(Phi(i,t))*sin(Theta(i,t))); 
            end 
            Ha = Hb; 
            Hatrack(i,t)=Ha; 
            La = Lb; 
            Ja = (V(i,t)-Fa); 
            Jb = (V(i,t)-Fb); 
            Ka = -U(i,t)*sin(Theta(i,t)); 
            Kb = Ka; 
             
        %This uses interpolation to find values along the alpha 
characteristic: 
            if i ~= L/ds+1 %these values don't exist for i=L/ds+1 
                b = i*ds; %b position is the next position along the 
line 
                a = (i-1)*ds; %a position is the current position along 
the line (note: line STARTS at i=1, thus subtract 1) 
                p = a + dt*Fa; %comes from |r-p| = dt*Fa and the fact 
that r = a (position along line) 
                % This defines values for interpolation: 
                Ua = U(i,t); %Ua is value at same position along line 
w/ previous timestep 
                Ub = U(i+1,t); %Ub similarly corresponds to the next 
position along the line 
                Wa = W(i,t); 
                Wb = W(i+1,t); 
                Phia = Phi(i,t); 
                Phib = Phi(i+1,t); 
                Thetaa = Theta(i,t); 
                Thetab = Theta(i+1,t); 
                % The following uses straight line interpolation to 
find values 
                Up = (1/ds)*((b-p)*Ua + (p-a)*Ub); 
                Wp = (1/ds)*((b-p)*Wa + (p-a)*Wb); 
                Phip = (1/ds)*((b-p)*Phia + (p-a)*Phib); 
                Thetap = (1/ds)*((b-p)*Thetaa + (p-a)*Thetab); 
            end 
             
        %This uses interpolation to find values along the beta 
characteristic: 
            if i ~= 1 %these values don't exist for i=1 
                d = (i-2)*ds; %d position is the previous position 
along the line 
                a = (i-1)*ds; %a position is the current position along 
the line 
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                q = a + dt*Fb; %comes from |r-q| = dt*Fb and the fact 
that r = a (position along line) 
                % This defines values for interpolation: 
                Ua = U(i,t); %Ua is value at same position along line 
w/ previous timestep 
                Ud = U(i-1,t); %Ub similarly corresponds to the 
previous position along the line 
                Wa = W(i,t); 
                Wd = W(i-1,t); 
                Phia = Phi(i,t); 
                Phid = Phi(i-1,t); 
                Thetaa = Theta(i,t); 
                Thetad = Theta(i-1,t); 
                % The following uses straight line interpolation to 
find values 
                Uq = (1/ds)*((q-d)*Ua + (a-q)*Ud); 
                Wq = (1/ds)*((q-d)*Wa + (a-q)*Wd); 
                Phiq = (1/ds)*((q-d)*Phia + (a-q)*Phid); 
                Thetaq = (1/ds)*((q-d)*Thetaa + (a-q)*Thetad); 
            end 
             
        % This finds the upper limit values of U,V,W,Phi,& Theta: 
            if i == 1  
                % The following finds phi by finding a zero value for 
the fnct: 
                    phi = fzero(@(phi) phi - (Up + Ga*Phip - Ha*dt - (C 
+ ustar)*sin(phi) + (D + vstar)*cos(phi))/Ga, .001); 
                % The following finds theta by finding a zero value for 
the fnct: 
                    theta = fzero(@(theta) theta - (Wp + (C + 
ustar)*sin(theta)*cos(phi) - (E + wstar)*cos(theta) + (D + 
vstar)*sin(phi)*sin(theta) + Ja*Thetap - Ka*(phi - Phip) - La*dt)/Ja, 
.001); 
                    if theta < 1e-10 %due to round off, this sets to 
correct zero value 
                        theta = 0; 
                    end 
                Phi(i,t+1) = phi; 
                Theta(i,t+1) = theta; 
                U(i,t+1) = (C + ustar)*sin(phi) - (D + vstar)*cos(phi); 
                V(i,t+1) = (C + ustar)*cos(theta)*cos(phi) + (D + 
vstar)*cos(theta)*sin(phi) + (E + wstar)*sin(theta); 
                W(i,t+1) = -(C + ustar)*sin(theta)*cos(phi) - (D + 
vstar)*sin(phi)*sin(theta) + (E + wstar)*cos(theta); 
            end 
     
        %This finds the values down the entire line using the 
characteristic equations: 
            if i ~= 1 & i ~= L/ds+1  
               Phi(i,t+1) = (Up - Uq - Gb*Phiq + Ga*Phip)/(Ga - Gb); 
               U(i,t+1) = (Up*Gb - Uq*Ga + Gb*Ga*(Phip - Phiq) + 
Ha*dt*(Ga - Gb))/(Gb - Ga); 
               W(i,t+1) = (Jb*Wp - Ja*Wq + Ja*Jb*(Thetap - Thetaq) + 
Jb*Ka*(Phip - Phi(i,t+1)) + Ja*Kb*(Phi(i,t+1) - Phiq) + La*dt*(Jb - 
Ja))/(Jb - Ja); 



 113

               Theta(i,t+1) = (Thetap*Ja - Thetaq*Jb + Wp - Wq - 
Phi(i,t+1)*(Ka - Kb) + Phip*Ka - Phiq*Kb)/(Ja - Jb); 
               V(i,t+1) = V(i-1,t+1) + .5*(U(i-1,t+1) + 
U(i,t+1))*cos(.5*(Theta(i-1,t+1) + Theta(i,t+1)))*(Phi(i-1,t+1) - 
Phi(i,t+1)) - .5*(W(i-1,t+1) + W(i,t+1))*(Theta(i-1,t+1) - 
Theta(i,t+1)); 
            end 
             
        %This sets up the aerodynamic forces on the line: 
            if i ~= L/ds+1 %Last value to be added later 
                F = Towforce(U(i,t+1),V(i,t+1),W(i,t+1),rho(i,t+1)); 
                FX(i,t+1) = -F(1); 
                FY(i,t+1) = -F(2); 
                FZ(i,t+1) = -F(3); 
            end 
    end 
  
    %This finds the values at lower boundary conditions: 
     
        %Use combination of equations to step values to lower boundary: 
            C1 = Gb+V(L/ds,t+1)*cos(Theta(L/ds,t+1))-
W(L/ds,t+1)*sin(Theta(L/ds,t+1))+(2*ds/dt)*cos(Theta(L/ds,t+1)); 
%constant for PhiL denominator 
            PhiL = 
((2*ds/dt)*Phi(L/ds+1,t)*cos(Theta(L/ds,t+1))+(V(L/ds,t+1)*cos(Theta(L/
ds,t+1))-W(L/ds,t+1)*sin(Theta(L/ds,t+1)))*(Phi(L/ds-1,t+1))-U(L/ds-
1,t+1)-Hb*dt+Uq+Gb*Phiq)/C1; 
            ThetaL = ((2*ds/dt)*Theta(L/ds+1,t)+V(L/ds,t+1)*Theta(L/ds-
1,t+1)-U(L/ds,t+1)*(PhiL-Phi(L/ds-1,t+1))*sin(Theta(L/ds,t+1))-Wq-
Jb*Thetaq+Lb*dt+W(L/ds-1,t+1)-Kb*(PhiL-Phiq))/(2*ds/dt+V(L/ds,t+1)-Jb);  
            UL = Uq-Gb*(PhiL-Phiq)-Hb*dt; 
            WL = Wq-Jb*(ThetaL-Thetaq)-Kb*(PhiL-Phiq)-Lb*dt; 
            VL = V(L/ds-1,t+1)+W(L/ds,t+1)*(ThetaL-Theta(L/ds-1,t+1))-
U(L/ds,t+1)*cos(Theta(L/ds,t+1))*(PhiL-Phi(L/ds-1,t+1)); 
     
        %Set values: 
            U(L/ds+1,t+1) = UL; 
            V(L/ds+1,t+1) = VL; 
            W(L/ds+1,t+1) = WL; 
            Theta(L/ds+1,t+1) = ThetaL; 
            Phi(L/ds+1,t+1) = PhiL; 
  
        %Convert to Spatial: 
            Spatial_vel = [UL VL WL]*Amatrix(PhiL,ThetaL); 
            uL = Spatial_vel(1); 
            vL = Spatial_vel(2); 
            wL = Spatial_vel(3); 
            u(L/ds+1,t+1) = uL; 
            v(L/ds+1,t+1) = vL; 
            w(L/ds+1,t+1) = wL; 
     
        %Find drag forces on the body and tension at lower end: 
            F = Bodyforce(uL,vL,wL,rho(L/ds+1,t+1)); %Set forces on 
body in spatial axes 
            if t == 1 %Solving for t=2: 
                au = (u(L/ds+1,t+1)-u(L/ds+1,t))/dt; 
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                av = (v(L/ds+1,t+1)-v(L/ds+1,t))/dt; 
                aw = (w(L/ds+1,t+1)-w(L/ds+1,t))/dt; 
            else 
                au = (3*u(L/ds+1,t+1)-4*u(L/ds+1,t)+u(L/ds+1,t-
1))/(2*dt); 
                av = (3*v(L/ds+1,t+1)-4*v(L/ds+1,t)+v(L/ds+1,t-
1))/(2*dt); 
                aw = (3*w(L/ds+1,t+1)-4*w(L/ds+1,t)+w(L/ds+1,t-
1))/(2*dt); 
            end 
             
            Fx = -F(1)-Mb*au; %negative sign on force is due to drag 
force orientation being same direction as velocity 
            Fy = -F(2)-WB-Mb*av; 
            Fz = -F(3)-Mb*aw; 
            FTL = Amatrix(PhiL,ThetaL)*[Fx;Fy;Fz]; 
            T(L/ds+1,t+1) = -FTL(2); 
             
        %Set aerodynamic forces on line at lower end: 
            F = Amatrix(PhiL,ThetaL)*[F(1);F(2);F(3)]; %Change to 
towline coordinates 
            FX(L/ds+1,t+1) = -F(1); 
            FY(L/ds+1,t+1) = -F(2); 
            FZ(L/ds+1,t+1) = -F(3); 
  
    %Set tension one step up line: 
        T(L/ds,t+1) = T(L/ds+1,t+1)+ds*((mu/dt)*(V(L/ds,t+1)-V(L/ds,t)-
W(L/ds,t+1)*(Theta(L/ds,t+1)-Theta(L/ds,t))+U(L/ds,t+1) 
*cos(Theta(L/ds,t+1))*(Phi(L/ds,t+1)-Phi(L/ds,t)))-
FY(L/ds,t+1)+Wt*sin(Phi(L/ds,t+1))*cos(Theta(L/ds,t+1))); 
     
    %Set tension up rest of line: 
        for i=L/ds-1:-1:1 
            T(i,t+1) = T(i+2,t+1)+2*ds*((mu/dt)*(V(i+1,t+1)-V(i+1,t)-
W(i+1,t+1)*(Theta(i+1,t+1)-Theta(i+1,t))+U(i+1,t+1) 
*cos(Theta(i+1,t+1))*(Phi(i+1,t+1)-Phi(i+1,t)))-
FY(i+1,t+1)+Wt*sin(Phi(i+1,t+1))*cos(Theta(i+1,t+1))); 
        end 
  
    for i=1:1:L/ds+1 
        %Find spatial velocity values: 
            Spatial_vel = [U(i,t+1) V(i,t+1) 
W(i,t+1)]*Amatrix(Phi(i,t+1),Theta(i,t+1)); 
            u(i,t+1) = Spatial_vel(1); 
            v(i,t+1) = Spatial_vel(2); 
            w(i,t+1) = Spatial_vel(3); 
         
        %Find spatial position values: 
            if i == 1  %Sets the value at the a/c - subtracing the 
initial velocities keeps system about these velocities 
                x(i,t+1) = x(i,t) + (u(i,t+1)-C)*dt; 
                y(i,t+1) = y(i,t) + (v(i,t+1)-D)*dt; 
                z(i,t+1) = z(i,t) + (w(i,t+1)-E)*dt; 
            else 
                x(i,t+1) = x(i-1,t+1) - 
ds*cos(Theta(i,t+1))*cos(Phi(i,t+1)); 
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                y(i,t+1) = y(i-1,t+1) - 
ds*cos(Theta(i,t+1))*sin(Phi(i,t+1)); 
                z(i,t+1) = z(i-1,t+1) - ds*sin(Theta(i,t+1)); 
            end 
  
        %The following is used to find heat transfer and density in 
ambient temp. 
        %Due to computing power, it can be commented out when not 
analyzing heat transfer. 
            Tempset; 
  
    end 
end 
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Appendix C: MATLAB® Code – Tempset Code 
 
 
 
%This takes in values of x, y, and z in meters, U, V, and W as m/s, 
%Told in K, and t as timestep and outputs the temperature and air 
%density at the current position for the next timestep.  This method 
%can be applied to the entire towline.  It is not applied to the towed 
%body, but values are calculated at the point of attachment between the 
%line and body, and these values are assumed to be the density values 
%for the body.  The body should be sufficiently far from a heat source, 
%thus this method should give accurate data. 
% 
%Time spacing in Temp_set is same as dt, thus 't' is timestep value. 
% 
%x,y,z values are relative to the initial aircraft position (this can 
be 
%altered by setting x,y,z values in other code to be dependent on a 
%different position). 
     
%Set up coordinates for interpolation: 
    %The +1 value is due to the first grid position being at zero 
    xpos = x(i,t+1)*GS+1-xoffset*GS; %sets true x position within grid 
points 
    ypos = y(i,t+1)*GS+1-yoffset*GS; %sets true y position within grid 
points 
    zpos = z(i,t+1)*GS+1-zoffset*GS; %sets true z position within grid 
points 
    x1 = floor(xpos); %finds the lower position for x for Temp_set 
    x2 = ceil(xpos); %finds the upper position for x for Temp_set 
    y1 = floor(ypos); %finds the lower position for y for Temp_set 
    y2 = ceil(ypos); %finds the upper position for y for Temp_set 
    z1 = floor(zpos); %finds the lower position for z for Temp_set 
    z2 = ceil(zpos); %finds the upper position for z for Temp_set 
     
    %The 'if' statements prevent an output of a zero value later due to 
x1=x2, y1=y2, or z1=z2. 
    if x1==x2 
        x2=x1+1; 
    end 
    if y1==y2; 
        y2=y1+1; 
    end 
    if z1==z2; 
        z2=z1+1; 
    end 
  
%Set up four values for interpolation at eight points: 
    T1 = Temp_set(x1,y1,z1,t+1); 
    T2 = Temp_set(x2,y1,z1,t+1); 
    T3 = Temp_set(x1,y2,z1,t+1); 
    T4 = Temp_set(x2,y2,z1,t+1); 
    T5 = Temp_set(x1,y1,z2,t+1); 
    T6 = Temp_set(x2,y1,z2,t+1); 
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    T7 = Temp_set(x1,y2,z2,t+1); 
    T8 = Temp_set(x2,y2,z2,t+1); 
  
%Set values at current position through interpolation: 
    %Since everything is in terms of grid position (i.e., not real 
position), no need to divide by grid size. 
    Tx1 = (x2-xpos)*T1 + (xpos-x1)*T2; %value along x-axis at y1,z1 
    Tx2 = (x2-xpos)*T3 + (xpos-x1)*T4; %value along x-axis at y2,z1 
    Tx3 = (x2-xpos)*T5 + (xpos-x1)*T6; %value alone x-axis at y1,z2 
    Tx4 = (x2-xpos)*T7 + (xpos-x1)*T8; %value alone x-axis at y2,z2 
    Txy1 = (y2-ypos)*Tx1 + (ypos-y1)*Tx2; %value in x-y plane at z1 
    Txy2 = (y2-ypos)*Tx3 + (ypos-y1)*Tx4; %value in x-y plane at z2 
    Txyz = (z2-zpos)*Txy1 + (zpos-z1)*Txy2; %final air temp 
interpolated at the position 
  
%This should be commented out for now since the Nusselt number in 
%currently only for perpendicular velocity (i.e., heat transfer only 
%happens in perpendicular direction): 
%-----------------------------% 
%Set the diameter to calculate values (we only use perpendicular 
velocity due to Nusselt number calculations - this is left for future 
work): 
%     Vperp = sqrt(U(i,t+1)^2 + W(i,t+1)^2); %perpendicular velocity 
%     Vpar = abs(V(i,t+1)); %parallel velocity - make positiv 
%     if Vpar ~= 0; %divide by zero error if it does 
%         Angle = atan(Vperp/Vpar); %angle at which airflow acts 
%         if Vperp/Vpar > params.dL/set.ds %if the air completely 
crosses the perpendicular component of line over the interval ds 
%             DL = params.dL/sin(Angle); %diameter over which airflow 
acts 
%         else %if the air completely crosses the parallel component of 
line over the interval ds 
%             DL = set.ds/cos(Angle); %diameter over which airflow acts 
%         end 
%     else 
%         DL = set.ds; %diameter over which airflow acts 
%     end 
%-----------------------------% 
      DL = params.dL; %diameter over which airflow acts - perpendicular 
diameter 
       
%Calculate values to find temp and rho: 
    %Old values: 
        Tf=(Temp(i,t+1)+set.CT)/2; %film temp based on old line temp 
        nu = 8e-10*(Tf)^1.7235; %kinematic viscosity based on old temp 
    %Calculate values based on old temp: 
        Re = abs(U(i,t+1))*DL/nu; %Reynolds number - this would change 
for a different Nu number calculation 
        Nu = 0.42*Pr^0.2 + .057*Pr^(1/3)*sqrt(Re); %Nusselt number 
        k = 0.0002235*(Tf)^0.8302; %thermal conductivity of air 
        h = Nu*k/params.dL; %convection coefficient 
    %Calculate new values: 
        Temp(i,t+2) = Temp(i,t+1) + Area*h*dt*(Tf-
Temp(i,t+1))/(Vol*params.rhoL*Cp); %new temp on line 
        Tf = (Temp(i,t+2)+set.CT)/2; %new film temp 
        rho(i,t+2) = 357.88*(Tf)^(-1.0041); %new air density in film 
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Appendix D: MATLAB® Code – Other Functions 
 
 
 
 The first function is used to set the initial values for the entire simulation, and is 

called up in multiple other functions.  It is currently set to model a 1 second vertical 

acceleration to 30 m/s, with an immediate acceleration back to zero over 1 second. 

function set=set_values() 
%Set initial conditions: 
    set.u = 100; %intial vel in x-dir 
    set.v = 0; %initial vel in y-dir 
    set.w = 0; %initial vel in z-dir 
    set.Phi = 0.01; %initial angle of towline (constant down line) - 
nonzero prevents negative tension 
    set.Theta = 0; %initial angle of towline (constant down line) 
  
%Set mesh spacing: 
    set.ds = 5; %change in length (meters) 
    set.dt = .01; %change in time (sec) 
    set.time = 10; %sec (total time) 
  
%First perturbation: 
    set.upert = 0.0; %perturbations in velocity of a/c 
    set.vpert = 30.0; 
    set.wpert = 0.0; %limits in these values 
    set.tpert = 1; %constant acceleration until reaches final 
perturbation value at tpert 
  
%Second perturbnation: 
    set.tstart2 = 1; %time to start second perturbation 
    set.upert2 = 0.0; 
    set.vpert2 = -30.0; 
    set.wpert2 = 0.0; 
    set.tpert2 = 1; 
  
%Set constant temp value [K] for air for Tempset.m (to be changed for 
temp field later) 
    set.CT = 288.2; %Sea level St. Atm. and Press. value is 288.2 K 
  
%Set value for initial line temp [K]: 
    set.LTemp = 288.2; 
 

 The second function was modified from Richardson and sets the initial parameters 

along the line.  These values were set somewhat arbitrarily (although some values, such 
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as the density of steel, were set specifically) to analyze different towline behaviors.  This 

function is also called into Richardson’s work for steady state analysis: 

function params=line_params() 
%Original program written by Ralph Anthenien and Tyler Richardson, 
AFIT/ENY 
%Modified by Ralph Anthenien and Christopher Hill, AFIT/ENY 
%function line_params 
%return parameters about towline and decoy 
  
set=set_values; 
  
params.g=9.8; %gravitational acceleration [m/s^2] 
params.dB=0.496; %decoy diam 
params.Ad=pi*params.dB^2/4; %frontal area [m^2] 
params.CdD=1; %Decoy drag coeff 
params.mD=4; %decoy mass [kg] 
params.WB=params.mD*params.g; %decoy weight [N] 
params.LD=1; %Decoy length [m] 
params.CdL=1.1; %Perpendicular line drag coeff 
params.CdLSF=0.04; %Skin friction line drag coeff (for Y-axis) 
params.rhoL=7600; %line density [kg/m^3] - approx. value for most 
steels 
params.dL=0.00127; %Line Diam [m] 
params.mu=params.rhoL*pi*params.dL^2/4; %Mass of towline per meter 
length [kg/m] 
params.Wt=params.mu*params.g; %Weight of towline per meter [N] 
params.Vx=set.u; %velocity (lookup to be used later) [m/s] 
params.Vy=set.v; %upward vel [m/s] 
params.Vz=set.w; %transverse vel [m/s] 
params.V=sqrt(params.Vx^2+params.Vy^2+params.Vz^2); %relative vel 
params.vchar=params.V; %characteristic velocity to calc char drag 
tension - assumed to be same as total velocity 
params.rhoa=357.88*((set.LTemp+set.CT)/2)^(-1.0041); %air density 
[kg/m^3] 
params.LL=30; %line length [m] 
params.tc=1; %time constant (for transient only) 
params.T0=params.LL*params.g*pi*params.rhoL*params.dL^2/4; 
  

 The third function is the transformation matrix to convert from towline to space 

coordinates and vice versa: 

function A = Amatrix(phi,theta) 
% This transforms from space to towline coordinate systems as follows: 
% Towline(3x1) = [A]*Space(3x1) 
% Space(3x1) = (Towline(1x3)*[A])' 
% note: phi and theta are angles btwn current and old line positions 
A11 = sin(phi); 
A12 = -cos(phi); 
A13 = 0; 
A21 = cos(phi)*cos(theta); 
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A22 = cos(theta)*sin(phi); 
A23 = sin(theta); 
A31 = -cos(phi)*sin(theta); 
A32 = -sin(theta)*sin(phi); 
A33 = cos(theta); 
A = [A11 A12 A13; A21 A22 A23; A31 A32 A33]; 
  

 The fourth function calculates the forces on the body in spatial coordinates: 

function F = Bodyforce(u,v,w,rho) 
% This calculates the total aerodynamic forces on the body 
params=line_params; 
Tot_vel = sqrt(u^2 + v^2 + w^2); 
Dx = .5*rho*u*Tot_vel*params.CdD*params.Ad; %Drag in x-direction 
Dy = .5*rho*v*Tot_vel*params.CdD*params.Ad; %Drag in y-direction 
Dz = .5*rho*w*Tot_vel*params.CdD*params.Ad; %Drag in z-direction 
F=[Dx Dy Dz]; 
  

 The fifth function calculates the forces on the towline in towline coordinates: 

function F = Towforce(U,V,W,rho) 
% This calculates the aerodynamic forces on the towline per meter 
params=line_params; 
V_perp = sqrt(U^2 + W^2); %total velocity in the perpendicular 
direction 
DX = .5*rho*params.dL*U*V_perp*(params.CdL+params.CdLSF); %Drag in X-
direction 
DY = 0; %Drag in Y-direction 
DZ = .5*rho*params.dL*W*V_perp*(params.CdL+params.CdLSF); %Drag in Z-
direction 
F=[DX DY DZ]; 
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