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Abstract
In this paper, we develop nonlinear constitutive equa-

tions and resulting system models quantifying the non-
linear and hysteretic field-displacement relations in-
herent to piezoceramic elements employed in present
nanopositioner designs. We focus specifically on piezo-
ceramic rods utilizing d33 motion and piezoceramic
shells driven in d31 regimes, but the modeling frame-
work is sufficiently general to accommodate a variety of
drive geometries. In the first step of the model develop-
ment, lattice-level energy relations are combined with
stochastic homogenization techniques to construct non-
linear constitutive relations which accommodate the
hysteresis inherent to piezoceramic compounds. Sec-
ondly, these constitutive relations are employed in clas-
sical rod and shell relations to construct system models
appropriate for presently employed nanopositioner de-
signs.

1. Introduction

Pieozoceramic materials have been employed as ac-
tuators in scanning tunneling microscopes (STM) and
atomic force microscopes (AFM) since their inception
due to their high set point accuracy, large dynamic
range, and relatively small temperature sensitivity [8].
More recent investigations have focused on the design
of AFM stages for employment in applications ranging
from nanoconstruction to the development of nuclear
magnetic resonance microscopes (NMRM) with the
goal of detecting single electron spins [6, 13, 20]. How-
ever, a fundamental challenge when employing piezoce-
ramic actuators even at the low drive levels required
for nanopositioning is the quantification and accom-
modation of hysteresis and constitutive nonlinearities
inherent to the materials as depicted in Figure 1.

For certain drive regimes, the hysteresis and constitu-
tive nonlinearities can be mitigated through either the
drive electronics or feedback loops incorporated in the
software. As detailed in [10, 11], the use of charge or
current controlled amplifiers can essentially eliminate
hysteresis. However, this mode of operation can be
prohibitively expensive when compared with the more
commonly employed voltage controlled amplifiers, and
current control is ineffective if maintaining DC offsets
as is the case when the x-stage of an AFM is held
in a fixed position while a sweep is performed with

the y-stage. For low scan rates, PID or robust con-
trol designs can be employed to accommodate hystere-
sis [4, 14]. However, at the high scan rates required
for real-time product diagnostics or monitoring of bi-
ological processes, increasing noise-to-data ratios and
diminishing high-pass characteristics of control filters
preclude a sole reliance on feedback laws to eliminate
hysteresis. This motivates the development of control
designs which incorporate and approximately compen-
sate for hysteresis through model inverses employed ei-
ther in feedback or feedforward loops.

In this paper, we develop models for this purpose
through a two step process. In the first step, Gibbs
energy relations at the lattice level are minimized to
provide models for the local average polarization gen-
erated by an applied field. The effects of material non-
homogeneities, polycrystallinity, and variable effective
fields are subsequently incorporated through stochas-
tic homogenization techniques to provide macroscopic
constitutive relations which quantify the nonlinear and
hysteretic field-polarization and field-strain behavior of
the materials. In the second step of the development,
these constitutive relations are incorporated in classical
rod and shell theory to provide system models which
quantify the displacements generated by prototypical
nanopositioning designs.

To place this modeling framework in context, we
compare it with the domain wall model employed in
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Figure 1. Quasistatic relation between the input field
E and displacements generated by a PZT stacked ac-
tuator in an AFM stage.
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[15] and Preisach model developed in [16] for charac-
terizing the hysteretic behavior of nanopositioners. For
certain choices of the Gibbs energy, the local polariza-
tion model in the present theory is the same as the
anhysteretic relation in the domain wall theory. At the
macroscopic level, however, the two models differ sig-
nificantly – from the perspective of implementation, the
present theory guarantees the closure of biased minor
loops whereas this is accomplished in the domain wall
model only if a priori knowledge of turning points is
available. Furthermore, it is illustrated in [18] that the
present theory provides an energy basis for extended
Preisach models which enforces deletion but not con-
gruency. Through the energy derivation, the proposed
theory inherits several of the advantages associated
with extended Preisach frameworks while avoiding the
disadvantages associated with temperature, frequency
and stress-dependent parameters.

We consider two motivating geometries for the model
development. The first encompasses PZT rods of the
type employed in AFM stages having the design de-
picted in Figure 2(a). In this case, strains are generated
through d33 mechanisms which translate to longitudi-
nal rod displacements. Appropriate 1-D constitutive
relations are developed in Section 2.1 and the corre-
sponding system model is constructed in Section 3.1.
The second geometry is comprised of a PZT shell in
which longitudinal, or z, displacements are generated
through d31 mechanisms – see Figure 2(b). The 2-D
constitutive relations and system model for this case
are respectively developed in Sections 2.2 and 3.2.

2. Constitutive Relations

When modeling the constitutive behavior of piezo-
ceramic rods and shells, we assume linear stress-strain
and strain-displacement relations in accordance with
classical theory. Furthermore, both classical theory,
[3, 9], and recent experiments have demonstrated that
in the biased regimes used to obtain bidirectional
strains, the relation between the polarization P and
strains ε is approximately linear, and we retain that
assumption throughout the development. At all drive
levels, however, the map between applied voltages V or
fields E and the polarization is nonlinear and hysteretic,
and it is the quantification of these inherent properties
which differentiates the proposed models from classical
linear theory for piezoceramic rods and shells.

2.1. 1-D Constitutive Relations
The 1-D constitutive relations necessary for charac-

terizing the strains generated by PZT rods follows from
the general theory developed in [19] for quantifying
the hysteresis and constitutive nonlinearities inherent
to ferroelectric compounds. We summarize here those
aspects of the theory pertinent to the development of
PZT stages employed in nanopositioning devices.

Positioner
Sample

x−piezo

y−LVDT

arm

arm

x−LVDT

y−piezo

(a)

z actuator

x−y actuator

(b)

Figure 2. Actuator configurations employed for sam-
ple positioning in AFM. (a) Stacked actuators em-
ployed as x- and y-stages, and (b) cylindrical PZT
transducer.

It is illustrated in [19] that for stress-free, fixed tem-
perature conditions, the piecewise quadratic Helmholtz
energy relation

ψ(P ) =




1
2η(P + PR)2 , P ≤ −PI

1
2η(P − PR)2 , P ≥ PI

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

(1)

quantifies the internal energy derived under the as-
sumption that dipoles are either aligned with the ap-
plied field or diametrically opposite to it. As depicted
in Figure 3, PI and PR respectively denote the inflec-
tion point and polarization at which the positive local
minimum of ψ occurs. The point PR is also the local
remanence polarization at the domain level. Finally,
the fact that η is the reciprocal of the slope in the E-
P relation after switching can be utilized to determine
initial parameter values when constructing the model
for a given piezoceramic compound and application.

To incorporate elastic interactions and ferroelectric
coupling, we also consider the extended Helmholtz re-
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Figure 3. (a) Helmholtz energy ψ and Gibbs energy G
for σ = 0 and increasing fields E. (b) Dependence of
the local polarization P on the field E at the lattice
level in the absence of thermal activation.

lation

ψe(P, ε) = ψ(P ) +
1
2
Y P ε2 − Y MγεP (2)

where Y P denotes the Young’s modulus at constant
polarization and γ is an electromechanical coupling co-
efficient.

To accommodate applied stresses and fields, we em-
ploy the Gibbs energy relation

G(E,P, ε) = ψ(P )+
1
2
Y P ε2−Y MγεP −EP −σε (3)

which incorporates the electrostatic, electromechanical
and elastic energy relations.

For operating regimes in which thermal relaxation
mechanisms are significant, the local average polariza-
tion at the lattice level is quantified by balancing the
thermal and Gibbs energies through the Boltzmann dis-
tribution

µ(G) = Ce−GV/kT (4)

where µ specifies the probability of achieving an energy
level G, C is a constant of integration, V is a reference
volume and k is Boltzmann’s constant. For brevity,
we omit this case here and refer the reader to [19] for
details concerning the extension of the constitutive re-
lations to include thermal relaxation mechanisms.

For regimes in which thermal relaxation is negligible,
the local average polarization P at the lattice level is
determined by the necessary conditions

∂G

∂P
= 0 ,

∂2G

∂P 2
> 0. (5)

This yields the piecewise linear relation

[P (E, ε;Ec, ξ)](t) =




[P (E, ε;Ec, ξ)](0)
E

η−2Y P γε
− PRη

η−2Y P γε

E
η−2Y P γε

+ PRη
η−2Y P γε

(6)

for the respective cases {τ(t) = ∅}, {τ(t) 6= ∅ and
E(max τ(t)) = −Ec}, {τ(t) 6= ∅ and E(max τ(t)) =
Ec}. The local coercive field is given by

Ec = η(PR − PI). (7)

The transition points τ are specified by

τ(t) = {t ∈ (0, Tf ] |E(t) = −Ec or E(t) = Ec} ,

and

[P (E, ε;Ec, ξ)](0) =




E
η−2Y P γε

− PRη
η−2Y P γε

ξ
E

η−2Y P γε
+ PRη

η−2Y P γε

denotes the initial dipole orientation for respective ini-
tial fields {E(0) ≤ −Ec}, {−Ec < E(0) < Ec} or
{E(0) ≥ Ec}.

The local relation (6) quantifies the hysteretic rela-
tion between E and P for homogeneous, single crystal
compounds having uniform effective field Ee = E. To
extend this mesoscopic model to macroscopic regimes
involving nonhomogeneous, polycrystalline compounds
with variable effective fields, we consider certain param-
eters to be manifestations of underlying distributions
rather than constant values.

Effective field effects (see [1]) are incorporated by as-
suming that the field at the lattice level is normally
distributed about the applied field E with the density

f̂(Ee) = c1e
−(Ee−E)2/b̄ (8)

where c1 and b̄ are positive constants. To incorporate
variations in the lattice structure, we assume that the
local coercive field Ec, specified by (7), is either nor-
mally or lognormally distributed. In the former case,
it will exhibit a density f analogous to (8) whereas in
the latter case, it has the density

f(Ec) = c2e
− ln(Ec/Ēc)/2b]2

where, if b is small compared with Ēc, Ēc denotes a
mean coercive field at which dipoles switch.

The macroscopic polarization model is then

P (E) = C

∫ ∞

0

∫ ∞

−∞
P (E, ε;Ec, ξ)f(Ec)f̂(Ee) dEedEc

(9)
where P is given by (6). It is detailed in [18] that
the formulation (9) provides an energy basis for certain
Preisach representations with the difference that tem-
perature and frequency dependencies are incorporated
in the kernel of (9) rather than the parameters as is the
case for Preisach models.

The elastic constitutive relation, in the absence of
internal damping, is determined from the equilibrium
conditions

∂G

∂ε
= 0 ,

∂2G

∂ε2
> 0

which yields
σ = Y P ε− Y P γP.
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To incorporate Kelvin-Voigt damping, we posit that
stress is proportional to a linear combination of strain,
strain rate and polarization which yields the 1-D con-
stitutive equation

σ = Y P ε + cP ε̇− Y P γP (10)

where cP denotes the damping parameter at fixed po-
larization. In combination with (9), the constitutive
relation (10) quantifies the material behavior in oper-
ating regimes dominated by uniaxial dynamics as is the
case for PZT rods employed in the x- and y-stages of
several present AFM designs.

2.2. 2-D Constitutive Relations
The constitutive behavior of a PZT shell employed

for nanopositioning differs from that of the rod in two
fundamental aspects: (i) the longitudinal actuation is
due to d31 rather than d33 mechanisms, and (ii) lon-
gitudinal and circumferential stresses and strains are
coupled due to the curvature (e.g., see [2]). The na-
ture of the actuation simply yields a different electrome-
chanical coupling coefficient which we denote by β in
this case. To designate the coupled material behavior,
we let εx, σx and εθ, σθ respectively denote the normal
strains and stresses in the longitudinal and circumferen-
tial directions and we denote shear strains and stresses
by exθ and σxθ. Finally, we let ν denote the Poisson
ratio for the material.

To simplify the discussion, we consider the develop-
ment of constitutive relations in the absence of internal
damping and refer the reader to [2, 7, 15] for the exten-
sions necessary to incorporate Kelvin-Voigt damping.
With Y P again denoting the Young’s modulus, appro-
priate 2-D constitutive equations are

σx =
Y P

1− ν2
(ex + νeθ)− Y P β

1− ν
P (E)

σθ =
Y P

1− ν2
(eθ + νex)− Y P β

1− ν
P (E)

σxθ = σθx =
Y P

2(1 + ν)
exθ

P (E) = C

∫ ∞

0

∫ ∞

−∞
P (E, ε;Ec, ξ)f(Ec)f̂(Ee) dEedEc

(11)
with P specified in (6). These relations are employed
when constructing the shell models in Section 3.2.

3. System Models

It was noted in Section 1 that two actuator geome-
tries commonly employed for nanopositioning are piezo-
ceramic rods and piezoceramic shells. In this section,
we construct system models for these configurations
based on the 1-D and 2-D constitutive relations devel-
oped in Section 2.

3.1. Stacked Actuator
When modeling the stacked actuator employed in the

x- and y-stages of an AFM, we make the assumption
that the cross-sectional area A is small compared with
the length ` and we consider only longitudinal displace-
ments u having the spatial coordinate x. In accordance
with present stage design, one end of the rod is as-
sumed fixed while the other encounters resistance due
to the connecting mechanisms. We assume that this
contribution can be modeled as a damped elastic sys-
tem with mass ML, stiffness kL and damping coefficient
cL. The density of the stacked actuator is denoted by
ρ and the Young’s modulus and Kelvin-Voigt damping
coefficients are again denoted by Y P and cP .

Force balancing along the stacked actuator yields the
relation

ρA
∂2u

∂t2
=

∂N
∂x

(12)

where the resultant N =
∫

A
σdA is given by

N = cP A
∂u

∂x
+ cDA

∂2u

∂x∂t
− cP AγP (E)

once the linear relation ε = ∂u
∂x is employed for the

strains. The nonlinear and hysteretic map between in-
put fields E and the polarization P is specified by (9).
The fixed-end condition yields u(t, 0) = 0 and balanc-
ing forces at x = ` yields

N (t, `) = −kLu(t, `)− cL
∂u

∂t
(t, `)−ML

∂2u

∂t2
(t, `).

Finally, initial conditions are taken to be u(0, x) =
∂u
∂t (0, x) = 0.

The relation (12) along with the boundary conditions
provides a strong form of the stacked actuator model.
For numerical implementation, it is advantageous to
reduce smoothness requirements on approximating el-
ements through consideration of a weak form of the
model obtained either through Hamiltonian principles
or integration by parts. Details regarding the deriva-
tion of a weak form for an analogous magnetostrictive
rod, and a description of the resulting ODE system ob-
tained through a finite element discretization of this
weak model, are provided in [5].

The performance of the model is illustrated in Fig-
ure 4 where the model prediction is compared with qua-
sistatic AFM data collected at 0.28 Hz. For the model
construction, normal densities f and f̂ were employed
when quantifying the coercive and effective field dis-
tributions. It is observed that the model accurately
quantifies the hysteresis loss and hence will eliminate
the delay associated with uncompensated hysteresis in
present control designs.

3.2. Cylindrical Actuators

Secondly, we consider the development of a model
for the cylindrical transducer depicted in Figure 2(b).
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Figure 4. Quasistatic experimental data from the
AFM stage depicted in Figure 2(a) and model predic-
tion.

We focus on the actuator employed for z-displacements
since real-time control of this component is required
to maintain constant forces between the sample and
micro-cantilever. The mass of the shell employed for
x-y translation is combined with the mass of the sample
to provide an inertial force acting on the free end of the
z-actuator.

For modeling purposes, we assume that the shell has
length `, thickness h, and radius R. The axial direction
is specified along the z-axis and the longitudinal, cir-
cumferential and transverse displacements are respec-
tively denoted by u, v and w. The density and Young’s
modulus are respectively designated by ρ and Y P , and
the region occupied by the middle surface of the shell is
specified by Γ0 = [0, `]×[0, 2π]. We consider the case in
which the bottom edge of the shell (x = 0) is clamped
and the opposite end (x = `) is acted upon only by the
inertial force associated with the combined mass m of
the x-y actuator and the sample. Finally, we simplify
the discussion by considering the model development
in the absence of internal damping. The extensions
necessary to incorporate Kelvin-Voigt damping can be
incorporated by assuming that stress is a linear combi-
nation of strain, strain rate and polarization as detailed
in [2, 15].

As detailed in [2], force and moment balancing yield
the Donnell-Mushtari shell equations

Rρh
∂2u

∂t2
−R

∂Nx

∂x
− ∂Nxθ

∂θ
= 0

Rρh
∂2v

∂t2
− ∂Nθ

∂θ
−R

∂Nxθ

∂x
= 0

Rρh
∂2w

∂t2
−R

∂2Mx

∂x2
− 1

R

∂2Mθ

∂θ2
− 2

Mxθ

∂x∂θ
+Nθ = 0

where Nx,Nθ and Nxθ are general force resultants and

Mx,Mθ and Mxθ are moment resultants. The bound-
ary conditions at the fixed end x = 0 are taken to be

u = v = w =
∂w

∂x
= 0,

and the conditions

Nx = −m
∂2u

∂t2
, Nxθ +

Mxθ

R
= 0

Qx +
1
R

∂Mxθ

∂θ
= 0 , Mx = 0

are enforced at x=`. The first resultant condition incor-
porates the inertial force due to the mass of the piezoce-
ramic cylinder employed for y-z translation along with
the mass of the sample.

The force and moment resultants are specified by in-
tegrating the stress relations (11), or the product of the
stress and moment arm, through the thickness of the
shell. In the absence of shear stresses, this yields

Nx =
Y P h

1− ν2
(ex + νeθ)− Y P hβ

1− ν
P (E)

Nθ =
Y P h

1− ν2
(eθ + νex)− Y P hβ

1− ν
P (E)

Nxθ =
Y P h

2(1 + ν)
exθ

and

Mx =
Y P h3

12(1− ν2)
(κx + νκθ)− Y P h3β

12(1− ν)
P (E)

Mθ =
Y P h3

12(1− ν2)
(κθ + νκx)− Y P h3β

12(1− ν)
P (E)

Mxθ =
Y P h3

24(1 + ν)
τ .

The midsurface strains and changes in curvature are
given by

ex =
∂u

∂x
, κx = −∂2w

∂x2

eθ =
1
R

∂v

∂θ
+

w

R
, κθ = − 1

R2

∂2w

∂θ2

exθ =
∂v

∂x
+

1
R

∂u

∂θ
, τ = − 2

R

∂2w

∂x∂θ
.

(13)

As with the stacked actuator, it is advantageous to
consider a weak form of the model when developing
approximation techniques. Details regarding this de-
velopment can be found in [2, 7].
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4. Concluding Remarks

In this paper, we have developed 1-D and 2-D consti-
tutive relations quantifying the nonlinear and hystere-
sis behavior of PZT transducers employed in present
nanopositioner designs. These constitutive relations
are then combined with classical rod and shell theory to
provide models which quantify the displacements gen-
erated by stacked and cylindrical PZT actuators. This
provides a design tool for future actuator design as well
as a framework amenable to inversion as a prelude to
control design employing approximate inverse filters to
compensate for the hysteresis and constitutive nonlin-
earities inherent to the materials [12].
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