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Abstract  — This paper presents theoretical results on
instability processes in nanoscale tunneling structures that
were obtained from a computationally improved physics-
based simulator. The results were obtained from a
numerical implementation of the Wigner-Poisson electron
transport model upon a parallel-computing platform. These
investigations considered various forms of multi-barrier
resonant tunneling structures (RTSs) and they were used to
test the robustness of the new modeling code. This improved
modeling tool is shown to be fast and efficient with the
potential to facilitate complete and rigorous studies of this
time-dependent phenomenon. This is important because it
will allow for the study of RTSs embedded in realistic
circuit configurations. Hence, this advanced simulation tool
will allow for the detailed study of RTS devices coupled to
circuits where numerical simulations in time and iterative
numerical optimization over the circuit parameters are
required. Therefore, this work will enable the future study
of RTS-based circuits operating at very high frequencies.

I. INTRODUCTION

The accurate study of instability processes in nanoscale
tunneling structures presents new and formidable
theoretical challenges. A complete and rigorous study of
electronic instabilities in nanostructures requires a
detailed consideration of time-dependent quantum
mechanical effects and this leads to computationally
intensive numerical simulation. These investigations
utilize a Wigner-Poisson model to study electron
transport and intrinsic oscillations within double- and
triple-barrier resonant tunneling structures (RTSs).
Studies of time-dependent processes in nanostructures are
important because it is believed that if the dynamics
surrounding intrinsic oscillations can be understood and
controlled then resonant tunneling structures have the
potential to supply significant levels of output power at
very high frequencies [1]. Here, an advanced and fast

numerical algorithm is developed and implemented on a
parallel-computing platform to facilitate these time-
dependent investigations.

This paper presents the details of that numerical
algorithm which allows for scientific investigations of the
underlying origins of the quantum-based fluctuations.
This fast solver is based on a complete restructuring of an
original Wigner-Poisson simulator that was the first to
theoretically demonstration intrinsic oscillations within
resonant tunneling diodes. This improved solver also
employs a new higher-order Runge-Kutta method and
utilizes efficient programming constructs that encourage
parallelization and the effective use of modern multi-level
caches. This simulator allows for detailed investigations
of the complex quantum-mechanical coupling within the
multi-quantum-well systems. These scientific studies
reveal fundamental insight into new methods for
generating and enhancing intrinsic oscillations within
multi-barrier quantum-well systems. Most importantly,
the parallel-platform-based numerical simulator
developed here will allow for the efficient study and
advanced design of novel nanostructures that have the
potential for functioning as very high frequency electronic
sources. Here, practical design studies will require the
detailed analysis of RTSs that are embedded within
optimized circuit configurations. Hence, numerical
optimization iterations are required for each time-domain
simulation and this mandates the need for a fast and
efficient electron transport simulator.

II. WIGNER-POISSON ELECTRON TRANSPORT MODEL

The Wigner function formulation of quantum mechanics
was selected for these investigations into RTSs because of
its many useful characteristics for the simulation of
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quantum-effect electronic devices, including the natural
ability to handle dissipate and open-boundary systems.
The Wigner function can be combined with the Poisson
equation to provide for an adequate quantum mechanical
description of the electron transport through tunneling
nanostructures. The Wigner-Poisson (WP) model has
been used by many groups in the past [2] and we have
applied it to isolated RTSs to provide a qualitative
explanation for the origins of the intrinsic oscillation [3]
and to reveal techniques for enhancing the effect [4]. The
focus of this work is towards improving the
computational aspects related to numerically solving the
WP model systems equations subject to the necessary and
sufficient boundary conditions. Details regarding the
derivation can be found elsewhere [2], but the model is a
two equation system with the basic mathematical form
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where the last term in Eq. (1) is given by
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where L is the length of the tunneling structure under
consideration. The last term in Eq. (3) is due to scattering
dissipation and is modeled using the relaxation time
approximation [1]. The boundary conditions on

)’,( kxf at the emitter ( 0=x ) and collector ( Lx = ) are

specified to approximate flat-band transport. Here,
equilibrium electron-distribution conditions are
prescribed for values of the Wigner function at 0=x  that
correspond to injection from the left (i.e., 0>k ) and at

Lx =  that correspond to injection from the right (i.e.,
0<k ) according to the mathematical relations [1]
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where 0µ  and Lµ  are the known Fermi energies at the

source and collector, respectfully. The total potential
energy function of the structure is given by
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where ( )xc∆  is the band offset function the defines the

barriers and wells within the RTS. The total potential
energy is dependent on the Wigner function through
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which defines the electron density function n(x). Once the
electron density profile is defined u(x) can be determined
by solving the Poisson equation in Eq. (2) using a
specified doping profile function )(xNd and the applied

bias boundary conditions

,0)0( =u  and   biasVLu −=)( .    (8)

Finally, the electron current density through the RTS is
given by the relation
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where m* is the free electron mass.

III. PARALLEL CODE DEVELOPMENT

A. Basic Goals

Many structural changes to the original code from [5]
were needed to enable parallelism, conserve storage, and
allow for the use of modern algorithms for temporal
integration and solution of linear and nonlinear
equations. The structural changes included,



• the reordering of loops to enhance locality of
references to memory,

• the elimination of banded matrix storage to
conserve memory and facilitate distributed
memory computation,  and

• the replacement of basic vector and matrix-vector
loops with calls to hand-tuned computational
kernels [6].

B. Development Steps & Details

The parallelization of the basic code has been done on
a four-processor node of an IBM-SP3 at the North
Carolina Supercomputing Center (NCSC). The shared
memory environment is sufficiently powerful and has
ample memory for simulations like those considered here
[3]. Further work in more than one space dimension or
the use of these models for optimization and design will
require distributed memory platforms such as the SP or a
Beowulf cluster.

The parallel results we report in this paper are based on
loop-level parallelism using the OPEN-MP programming
environment. In this mode of parallel programming the
outermost loops of the few most computationally
intensive components of the code are divided between a
small number (2--16) of processors.

The critical part of the code is the computation of the
integral in Eq. (4). Our approach to parallelism was to
use OPEN-MP directives to obtain four-way parallelism
of the outer loop and to use calls to LAPACK [6] to
speed up the inner integrals.

C. Temporal Error Control

The original code from [3] used a semi-implicit form
of the Euler methods. This method required the solution
of a large linear system at each time step. The solve was
performed with a direct solver for banded matrices. The
expense of this linear solve was, according to our
execution profiler, nearly 90% of the execution time and
required most of the storage during the simulation.

We have replaced this algorithm with ROCK4 [7,8] an
advanced Runge-Kutta code. ROCK4 uses varying orders
and stages to maximize the intersection of the stability
region and the negative real axis. In this way the
disadvantages of an explicit method with respect to
stability are reduced. An explicit method of this type
incurs no linear algebra costs, either in computation or
storage. A disadvantage of the ROCK4 code is that many
more function evaluations must be computed at each time
step to obtain the desired accuracy than would be

necessary with a standard fourth order Runge-Kutta code
[9]. The savings in linear algebra costs from the old code
are significant, i.e., being at least a factor of five.

A fully implicit integrator such as VODEPK [10,11]
which uses iterative methods for the large linear systems
that are needed to compute Newton steps might be even
more efficient if good preconditioners can be found [12].
The authors are investigating this option.

D. Simulation Results and Statistics

In the studies reported here, the simulation
performance of the modified code was considered for
three different types of RTSs. Namely, the modified
simulator was applied to the following basic RTS types,

(i) the basic double-barrier RTS that originally
demonstrated intrinsic oscillation behavior [3],

(ii) a modified double-barrier RTS that utilizes
emitter engineering of the doping profile to
enhance the intrinsic oscillations, and

(iii) a new double-well RTS that is being consider as a
alternative methodology for realizing subband-
coupling induced oscillatory behavior.

In the previous studies, time-domain simulations were
performed at a discrete set of applied bias that were
slowly sweep forward from zero to some maximum value
and then backwards to zero. Examples of the average
current-voltage (I-V) characteristic across a forward
voltage sweep that were obtained from this previous
study on a type-(ii) RTS are given in Fig. 1.

Fig. 1 Averaged I-V results from a type-(ii) RTS.
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At certain values of applied bias near the bottom of the
negative-differential-region, the RTS will demonstrate
intrinsic oscillations due to quantum subband-coupling
and this process is illustrated in Figure 2.

Fig. 2 Current verses time from a type-(ii) RTS.

The results obtained from the parallel simulator are both
qualitatively and quantitatively similar to the earlier
work. Most importantly, the new code reduces the total
simulation times from days to hours. Table I presents a
comparison of the simulation times on one and four
processors using the IBM SP-3 at the NCSC. The
performance of the code was estimated with a profiler
and we found that the one critical loop took 80-90% of
the execution time (ET) when in serial

Table I. CPU time in seconds.
RTS Type 1 processor 4 processors Efficiency

(i) 16784 6515 0.64
(ii) 21145 7748 0.68
(iii) 32138 13025 0.62

mode. A single OPEN-MP directive was applied to
parallelize this same critical loop and efficiencies of 60-
70% were obtained using four processors. Here, parallel
efficiency is defined by the relation:

4Pr

Pr

×ocessorsFouronET

ocessorOneonET

This is very good performance and is consistent with
almost perfect speedup for a block that takes 80-85% of
the CPU time for the serial code.

IV. CONCLUSION

The results of these computational studies have
demonstrated that parallel-platforms offer considerable
speedup in the simulation of instabilities in resonant
tunneling structures (RTSs). Hence, this work suggests
that modern scalable computer architectures and loop-
level parallelism may be exploited to facilitate the future
study of nanoelectronic-based circuits operating at very
high frequencies.
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