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Abstract  — This paper presents theoretical results on 
instability processes that occur in the positive-differential-
resistance region of nanoscale tunneling structures and 
reports on efforts to development advanced numerical 
techniques for use in future optimization studies. These 
results were obtained from numerical implementations of the 
Wigner-Poisson electron transport model.  Here, the primary 
focus of the reported research is on developing simulation 
methods that are adaptive to parallel-computing platforms. 
Together, these investigations demonstrate the high 
computational demands associated with modeling fully time-
dependent phenomenon in resonant tunneling structures 
(RTS) and offer new numerical solutions for the rapid and 
efficient analysis of these types of problems. Furthermore, 
the simulation tools under development will enable future 
investigations into new quantum phenomenon that strongly 
influence instability processes in RTSs. 

I. INTRODUCTION 

Resonant tunneling diodes possess extremely fast 
response times and have been utilized as the gain element 
in oscillator sources at frequencies approaching 1 
terahertz (THz). Unfortunately, the traditional 
implementation of an RTD oscillator (i.e., where the RTD 
is used as an extrinsic gain element) leads to low output 
powers that are on the order of microwatts [1]. The 
limited output power of the extrinsic RTD oscillator is 
directly a result of the broadband gain. Specifically, when 
an RTD device is embedded in an electrical circuit or 
cavity, there will be a tendency to induce current 
oscillations across the entire frequency-band where the 
gain exists. Hence, high-frequency output power will 
either be lost to unwanted spurious low-frequency modes 
or significantly scaled back due to reductions in device 
area (and therefore output current) that must be used to 
lower RTD capacitance to achieve low-frequency 
stabilization. These basic facts have motivated a 
theoretical search for an intrinsic RTD oscillator design 

that utilizes a microscopic instability mechanism directly 
[2]. In fact, our most recent efforts have been towards the 
specification of a resonant tunneling structure (RTS) that 
will yield current oscillations within the positive-
differential-resistance region of the average current-
voltage (I-V) characteristic. This particular scheme holds 
promise because it has the potential to realize a device 
with an intrinsic instability mechanism that will not 
produce oscillation modes outside a narrow prescribed 
domain. Hence, it may be possible to practically 
implement such an intrinsic RTS oscillator circuit without 
reducing the device contact area (along with the output 
current and power) as was needed for the low-frequency 
stabilization of the extrinsic RTD oscillator. 

 
Very recent simulation studies performed upon emitter 

engineered RTSs suggest that it may be possible to induce 
current oscillations within the PDR region of the average 
I-V characteristic [3]. Specifically, a Wigner-Poisson 
model was utilized to study the electron dynamics of an 
RTS with an emitter engineered region as shown in Fig. 1. 
Here, the fractional compositions of the Ga1-yAlyAs 

Fig. 1. Details of an emitter-engineered (EE) RTS. 
 

material in the emitter region have been graded to 
prematurely induce an emitter quantum-well (EQW) 
within the undoped portion of device in front of the first 
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barrier. This was done to alter the multi-subband structure 
that couples the EQW to the main quantum-well (MQW) 
of the RTD under a condition of applied bias. The goal of 
this particular engineering is to encourage a certain type 
of subband-coupling between the EQW and MQW which 
have been shown previously [3] to be the underlying 
instability mechanism for intrinsic oscillations in RTDs. 
The resulting average I-V curves for the RTS structure 
defined in Fig. 1 are given in Fig. 2.  Note the emergence 

 
Fig. 2. Average I-V results for the EE-RTS in Fig. 1. 

 
of two bias voltage windows (BVWs) with one residing in 
the PDR region.  In addition, there is an enhancement in 
the amplitude of the current-density oscillation in the 
second BVW as shown in the results given in Fig. 3. 

These  
Fig. 3. Oscillation results for the second BVW in Fig. 2. 

 
preliminary results suggest that it may be possible to 
design RTS-based oscillator circuits that do not induce 
extraneous low-frequency oscillations in the external 

circuit. However, these simulations of the isolated RTS 
device are very computationally intensive and required 
over a week of runtime on a serial platform. Obviously, 
the full time-dependent simulation of the RTS device 
embedded in an oscillator circuit will require the use of 
efficient numerical tools on parallel computing platform. 
This paper will report on efforts to develop advanced 
numerical techniques for use in future optimization 
studies. Here, the emphasis is on the development of fast 
and efficient tools, that are adaptive to parallel computing 
platforms, and that can be used for future investigations 
into new quantum phenomenon that influence the 
operation of RTS-based oscillator circuits. 
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I. WIGNER-POISSON ELECTRON TRANSPORT MODEL 

 
The Wigner function formulation of quantum 

mechanics was selected for these investigations into the 
RTS because of its many useful characteristics for the 
simulation of quantum-effect electronic devices, including 
the natural ability to handle dissipate and open-boundary 
systems. The Wigner function can be combined with the 
Poisson equation to provide for an adequate quantum 
mechanical description of the electron transport through 
tunneling nanostructures. Details regarding the derivation 
can be found elsewhere [4], but the model is a two 
equation system with the basic mathematical form 
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where the last term in Eq. (1) is given by 
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with the physical constant  and the 
integral expression defined by 
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where L is the length of the tunneling structure under 
consideration. The last term in Eq. (3) is due to scattering 
dissipation and is modeled using the relaxation time 
approximation [1]. The boundary conditions on 

at the emitter ( ) and collector ( ) are 
specified to approximate flat-band transport and 
equilibrium electron-distribution conditions [5]. 

B. Preconditioner Development - To solve the nonlinear 
equations that arise in the time integration, VODEPK uses 
a Newton-GMRES algorithm.  This is an iterative method 
that inds he root of a nonlinear function 

where the next iterate is found by 
stepping forward from the current iterate f

f t
mRmRG →:

n.  Note, for our 
problem, m=Nx*Nk and fn is the initial guess for the 
Wigner function at the current time.  The step direction, 
sn, solves the linear equation G'(fn)sn=-G(fn), where G'(fn) 
is the Jacobian matrix of G evaluated at fn. Therefore, a 
linear equation must be solved for every Newton iterate.  
Here, the equation is solved with an iterative method 
called GMRES.  This method does not require the 
computation of the coefficient matrix (i.e., Jacobian 
matrix in our case) or its storage, which is advantageous 
since as we refine the grids to get a more accurate 
simulation of the RTD, the dimension of this problem is 
expected to become quite large. Also, it has been well 
established that if a good preconditioner can be found, 
GMRES can efficiently find solutions to large systems of 
linear equations [9]. A preconditioner is another matrix, 
M, multiplied into the linear equation in hopes of better 
conditioning the Jacobian matrix, hence accelerating the 
convergence of GMRES.  So GMRES would solve the 
linear equation MG'(fn)sn=-G(fn), where MG'(fn) would be 
a better- conditioned coefficient matrix than the usual 
G'(fn). The Newton iteration successfully terminates when 
either the size of the next step is below a set tolerance, or 
norm of the nonlinear function is below a set tolerance. 
Note that both of these parameters will be approaching a 
very small value if the algorithm is converging to the 
correct answer. When applying VODEPK to the Wigner 
equation, the Jacobian matrix of the nonlinear equations in 
VODEPK have the form G , 
where A is some constant. If we ignore all the terms in 
W(f) except the Dx(f) term, then we get that 

. Therefore, a good preconditioning 
matrix would be M = (I – ADx)-1 since G’(f)-1 ≈ (I - ADx)-1. 
This preconditioner is also computationally inexpensive to 
implement since the matrix representation of Dx is sparse. 

)',( kxf 0=x Lx =

III. TEMPORAL INTEGRATION ALGORITHMS 

A. Integration Method - To track the time-evolution of the 
current density for a given value of applied bias voltage, 
the domain and equations are discretized and given to a 
numerical integrator, which accurately solves for the 
Wigner function, f, for given time interval over the 
discretized domain. So for a given time t, this method 
computes a vector f such that (f)ij  ~ f(xi,kj,t), which is the 
descretized Wigner function over space and momentum 
coordinates. These approximations are computed over the 
coordinates, xi, i=1,2,…,Nx and kj, j=1,2,…,Nk. Two 
separate methods were investigated and compared in 
terms of efficiency. While designing appropriate doping 
profiles, barrier well placement and widths, applied 
voltage biases, and other controllable physical parameters, 
several temporal simulations will be required.  If the 
method is too inefficient, some design methods could be 
impractical to perform or even infeasible. The first 
integrator considered was ROCK4 [6]. ROCK4 is a fourth 
order Runge-Kutta method which incorporates variable 
stages to enhance the method's stability.  ROCK4 is an 
explicit method, meaning the current solution calculated 
by the integrator is based only on previously computed 
data.  Therefore, the advantage of this method is that it 
requires low storage and the solution can be quickly 
calculated from known values.  The disadvantages of 
these methods are their stability regions.  In order for the 
algorithm to remain stable, an explicit method is forced to 
take small time steps, forcing the integrator to do more 
work. The second method explored by the authors was 
VODEPK [7,8]. This method is a variable-order implicit 
method. Since it is implicit, at each time step a nonlinear 
equation must be solved to compute the current solution. 
While this is a disadvantage when compared to explicit 
methods, the implicit methods are allowed to take larger 
time steps since these methods are not concerned with 
satisfying stability constraints. So if the nonlinear 
equations could be solved effectively, then the implicit 
method could have an overall advantage over the explicit 
method. 
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C. Numerical Results and Statistics - The new integration 
algorithms were implemented and tested in our base 
simulation code [10] used to derive the results given in 
Section I. It is important to note that the original code 
utilizes a coherence length, Lc, that is tied to the upper 
value of the x-space grid.  Hence, it is also important to 
monitor the value of Lc as we refine the grid. The table 
below summarizes the serial runtimes of the ROCK4 and 
VODEPK version of the simulations on several different 
grids. Note that all of the computations were performed on 
the IBM-SP3 at the North Carolina Supercomputing 



Center (NCSC). The runtimes below suggest that 
VODEPK handles time integration more efficiently than 
ROCK4, especially as the grids are refined. So VODEPK 
has been chosen for our future simulation since its 
performance will be better for generating accurate 
solutions to larger dimensional problems. Figure 4  shows 
the average I-V curves for the (Nx,Nk) grids of (86,72) and 
(64,128).  Note, the (86,72) grid results exactly duplicate  
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