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A New Nonlinear Equations Test Problem

J.E. Dennis, Jr.*
David M. Gay**
Phuong Ahn Vu***

ABSTRACT

This report presents a set of test problems for nonlinear equations and non-
linear least-squares algorithms. These problems, sent to us by C.V. Nelson of the
Maine Medical Center, come from a dipole model of the heart. They are 6X6 or
8x 8, easy to code, cheap to evaluate, and not easy to solve. In support of the
latter contention, we present test results from MINPACK and NL2SOL.

1. Introduction
Consider the following two problems:

NLEQ: Given F:R"-R", solve F(x) =

NLLS: Given F:R"~R™, minimize &(x) = % Fx)TF(x).

Most algorithms for the solution of these two problems are based on the assumption that F
can be adequately modeled by an affine function in some neighborhood of a point of interest,
whether that point is close to or far away from the solution to the problem. The purpose of this”
note is first to add an interesting test function to the current list of test problems for nonlinear
equations and nonlinear least squares, and second to use that test function to give some indications
that affine modeling by the first two terms of the Taylor series is not necessarily the best strategy
for Newton-type methods far from the solution to the problem. This claim will be supported by
computational results from five codes: .

¢ HYBRD from MINPACK — intended for NLEQ — uses a secant affine model for F;

¢ f-d HYBRD from MINPACK — intended for NLEQ — uses a Newton affine model for F;

@ LMDIF from MINPACK — intended for NLLS — uses a Newton affine model for F;

@ NL2SNO from NL2SOL — intended for NLLS — uses a mixed quadratic model for ¢;

® DN2F — intended for NLLS — a slight modification of NL2SOL.

In the next section, we will give a brief description of the test problems mentioned above.
Section 3 will discuss the way the five codes handle their corresponding problems and Section 4
gives the computational results together with some conclusions. A listing of the Fortran subroutine
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used to evaluate the test function appears in the appendix, as do five sets of experimental data and
corresponding solutions.

2. The Test Problem

We give here a brief description of a problem communicated to us by C.V. Nelson (1980).
The interested reader can find a detailed description of the problem together with the derivation of
the equations in Nelson and Hodgkin (1981). The problem comes from experiments using two
artificial dipoles in a circular disk containing electrolyte to determine the resultant dipole moment
of the human heart. Potentials from electrodes around the boundary of the disk are measured and
the Gabor-Nelson (1954) equations are used to solve for the magnitude, directions, and locations
of the two independent dipoles in the disks. The problem reduces to that of solving the following
8X8 system of nonlinear equations in the unknowns a, b, ¢, d, ¢, u, v, w:

a+b=2IM

c+d=2ZM,

ta+ub—-ve-—wd=2ZA

va+whb+tc+ud=2%B

a(t?=v? — 2ctv + b(u?— w?) - 2duw =2 C

c(s2— v¥) + 2arv + d(u?— w?) + 2buw = 2D

ar(t2— ) + ev(vi- 32 + bu(u?- 3w?) + dw(w?— 3u®) =S E
ct(t— 3v?) — av(vi- 3t} + du(u?- 3w?) - bw(w?— 3u®) = S F,

where the right-hand sides of the equations in each experiment were evaluated from measured
potentials. Note that since the first two equations are linear in the variables, we can eliminate two
of the first four variables to obtain a 6X6 system which might be easier to solve. Below, we will”
assume that the equations have been rewritten to have right hand side equal to zero and we will
refer to the 8 X8 system as the full problem and to the 6X6 system as the reduced problem.

This appears to be a good test problem for NLEQ and NLLS algorithms because it is easy to
code, cheap to evaluate, and hard to solve, judging from our experience with the five codes listed
above. In all of the problems, we did a LINPACK-type condition estimate of the Jacobian matrix-
F'(x) at the solution and it was never greater that 10°.

3. The Codes Tested

In this section we will give a brief description of the five codes we tested. We used the
finite-difference version of each. All five codes use model-trust region algorithms; for detailed
explanations of such algorithms, see Chapters 6, 8, and 10 of Dennis and Schnabel (1983).

Only two of the five codes tested, HYBRD and f-d HYBRD, use the nXn structure of the
problem. They both use a modification of Powell’s (1970) dogleg algorithm as a global strategy,
and the local strategy is based on an affine model of F(x). In f-d HYBRD this is done using for-
ward differences. In HYBRD, the model is constructed at each iterate using the Broyden (1965)
secant update to approximate the Jacobian F'(x). Broyden’s scheme provides a model that matches
the two most current F-values rather than the current F and F' values. This indicates that perhaps
the Broyden scheme is better able to remember the general shape of the function over several itera-
tions far from the solution, and conversely, less able to forget outdated information as the iteration
proceeds. The initial model Jacobian is provided by finite differences and if the updated affine
model seems to be too inaccurate for reasonable progress at_ any iteration, then the Jacobian
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approximation is refreshed by finite differences. When the Broyden update is used, the linear alge-
bra to compute an iterate only requires 0 (n?) flops.

The other three programs consider the nXn systems as nonlinear least-squares problems, i.e.,
instead of solving F(x) = O, they solve min -;—F (x)TF (x). By posing the problems in this way, we

are able to use the LMDIF code from MINPACK and the NL2SNO code from the NL2SOL pack-
age to obtain a solution. As a result of these experiments, we discovered that NL2SOL was com-
puting a lower bound for the Marquardt parameter that was smaller than intended. DN2F is a vari-
ant of NL2SOL that appears in PORT 3, the third edition of the subroutine library described by
Fox, Hall, and Schryer (1978). It is similar to NL2SOL, except that the bounds on the Marquardt
parameter are computed as in LMDIF, the trust radius is sometimes not changed at the beginning
of an iteration (specifically, the trust radius is not allowed to decrease if the last step was a “‘good”
one), and scaling (i.e., the choice of D* in (3.1)) is based on the infinity-norm of the Jacobian
matrix columns rather than their Euclidean norm. All three of these codes require O (n*) flops to
do the linear algebra at each iteration. LMDIF uses a modification of the Levenberg-Marquardt
algorithm, i.e., given a current estimate x; to the solution, it determines a search direction s; and
subsequent iterate x;.q by

e + mDos = —JIF () 3.1
Xpey = X T 5

where J,=F '(x;), D; is a positive diagonal matrix, and n, is a nonnegative scalar that is adap-
tively chosen.

Thus LMDIF builds a local quadratic model of ¢ by matching the current functional and gra-
dient values and using J(x)7J(x;) as a Hessian approximation. We call this the Gauss-Newton
model of &, and it is the quadratic model obtained by building a Newton affine model of F(x) at
x;, i.e., a model that matches F and F' at x;, and then taking the sum of squares of the affine
model. This Gauss-Newton model of ¢ only coincides with the full Newton quadratic model of ¢
if F is truly affine or zero in each residual. However, the problems being considered here have
zero residuals at the solution, so the Gauss-Newton method will have the same quadratic conver-
gence as Newton’s method near the solution.

The Hessian approximation used by NL2SNO and DN2F includes a cheap variable-metrit-
secant approximation to the part of the Hessian of ¢ that the Gauss-Newton model neglects. Thus,
it is a compromise between the Gauss-Newton use of information only at x, and the secant
method's memory of past F-values. The algorithm decides adaptively at each iteration whether to
use this Hessian augmentation. The decision is based on quadratic model information from a trust-
region implementation. For details the reader should consult Dennis, Gay, and Welsch (1981) or
Dennis and Schnabel (1983).

Both the NLLS algorithms use basically the same global strategy. It is usually viewed as
obtaining the next iterate by minimizing a local quadratic model of & in some region about the
current iterate where the model can be reasonably trusted to adequately model &(x). The only
difference is that LMDIF never has to worry about encountering negative curvature in the model
and so the computation of each iterate is a bit simpler. Details for LMDIF can be found in Mor¢
(1978) or in Chapter 6 of Dennis and Schnabel (1983). Details for NL2SNO can be found in Gay
(1981).

All three implementations compute an approximate Jacobian matrix by forward differences
using a step size in the ith coordinate direction of |x; | (machep)''?, where machep is the machine
epsilon or unit rounding error of the arithmetic. Also, all three codes have the capability of either
letting the user choose a fixed diagonal scaling-matrix for the independent variable, or determining
it internally and updating it at each iteration.
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4. Computational Results

Everything is coded in Fortran and run on a VAX®1/750 under a UNIX®operating system
using DOUBLE PRECISION arithmetic (for which we take machep = 2755, Both the full and
reduced problems are run with and without scaling of the independent variable (i.e., with D, in
(3.1) chosen dynamically by the algorithm and with D, = I). Also, we execute all five algorithms
using as initial guess xo, 10xg, and 100xy, where xq is the experimental data provided by Nelson
and given in the appendix. Since there are five sets of data, this gives us a total of 60 test cases.
We always found the same single solution for each experiment, independent of initial guess, scal-
ing option, and whether or not we solved the full or reduced system. In comparing off-the-shelf
codes, there is always the problem of differing stopping conditions. We used the same tolerances
for the same tests whenever possible. The convergence tests used by the NLLS codes are quite
similar, but our version of HYBRD uses only a test on the relative change in the dependent vari-
able. The other codes use this test also; the tolerance was set to machep'’? for all the runs.

To obtain the results reported for HYBRD, we had to comment out its tests for lack of pro-
gress. Without this change, HYBRD failed on about a third of the test problems. We did not
have to make this change, however, to f-d HYBRD, which we had obtained by modifying HYBRD
to force a new finite-difference calculation of the Jacobian after every successful step.

Output from NL2SNO and DNZ2F tells us that the algorithms tended to use the augmented
Gauss-Newton mode! far away from the solution and the traditional Gauss-Newton model near the
solution. This seems to suggest that the augmentation of the Gauss-Newton Hessian not only plays
an important role in large-residual problems, but also gives a better approximation to the least-
squares Hessian in the small-residual case when we are far from the solution. Perhaps our earlier
discussion of the possible advantages of memory in the secant methods is relevant here.

On the other hand, the occasional efficiency of DN2F suggests that sometimes it would be
worthwhile in the nonlinear equations problem to find an analog to the NL2SOL secant augmenta-
tion, sizing, and model switching so that memory of past points can be suppressed as the solution is
approached, while providing a better model than the affine approximation for the function in the
early iterations. A sophisticated new approach to this problem based on tensor updating is sug-
gested in Schnabel and Frank (1984).

VAX is a trademark of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.
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Table 1 - Total number of residual calculations with scaling.

HYBRD LMDIF NL2SNO(*) DN2F(*) f-d HYBRD

Full Red. Full Red. Full Red. Full Red. Full Red.
Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob.

X 123 137 327 217 286 198 309 340 225 242
I 10xg 188 127 426 211 381 170 346 186 337 192
100x¢ 170 104 361 219 391 228 327 223 325 196
Xg 17 15 37 29 45 35 45 35 37 2§
I 10x, 1292 61 109 92 | 1889 658 108 91 109 92
100xq | 1902 438 630 356 | 4302 | 1407 717 313 235 177
X 31 -1 273 1348 696 | 1454 641 | 1082 705 295 448
IO | 10xq 2452 863 3525 963 | 4904 | 1108 | 4126 610 428 419
100xq 272 308 4278 | 1916 | 5338 | 3684 | 5035 | 7117 451 577
Xo 1015 666 1208 626 | 1659 569 | 1303 551 211 257 |
IV | 10x, 795 661 755 | 3063 | 2723 | 2760 | 3827 671 175 486
100x¢ 310 192 1951 | 1183 | 5199 | 2834 | 1229 809 302 |~ 305
-
X 385 419 1082 508 | 1747 378 | 1076 415 545 1289
v 10xg 1135 138 978 400 | 3730 630 | 1082 459 178 228
100xq 2327 | 143 1593 | 1004 | 5072 | 3197 | 1686 636 226 291
I Exp. 791129 IIl:  Exp. 0121a V:  Exp. 0121c
I: Exp. 791226 IV: Exp. 0121b
(* Both NL2SNO and DN2F were run with the LMDIF default initial step bound of

100* ||Dg*x¢]|. Also V(RDFCMX), the maximum factor by which the trust region radius
may be increased at one time is changed from the default value of 4 to be the same as the
LMDIF default value of 2.
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Table 2 - Total number of residual calculations without scaling.

HYBRD LMDIF NL2SNO(*) DN2F(*) f-d HYBRD

Full Red. Full Red. Full Red. Full | Red. Full Red.

Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob. | Prob.

X 180 126 700 443 552 344 439 255 372 262

1 10xq 195 115 340 205 1269 183 274 172 289 207
100x¢ 144 109 3719 219 660 172 309 222 327 196

r X 17 15 37 29 45 35 45 35 37 29
11 10x, 336 423 109 138 1115 356 108 91 109 85
100xq 3806 401 | 2166 683 9027 1594 664 335 523 145

X 784 379 | 1479 724 1904 500 | 1339 640 430 434

I | 10xg 294 590 | 2255 | 2527 3924 | 2039 | 4144 | 2288 397 727
100x, 716 277 966 | 1476 | 13736 | 1990 | 4818 | 7116 524 149

xg 399 426 | 1414 728 1228 506 | 1284 419 461 /842

IV | 10xq 278 1191 880 | 5004 3764 | 3087 | 3263 | 3186 204 403
100xq 870 311 | 3107 | 1942 | 19373 | 2384 | 1285 815 195 1 143

X 303 172 | 1326 529 2153 905 1264 445 163 151

\% 10xg 1006 375 939 | 1041 4596 | 1623 840 834 158 2083
100x 1430 306 | 1010 | 2235 | 23801 2749 | 2320 - 399 236 144

I Exp. 791129 m: Exp. 0121a V: Exp. 0121c
I Exp. 791226 IV:  Exp. 0121b
(*) Both NL2SNO and DN2F were run with the LMDIF default initial step bound of 100* ||x,||.

Also V(RDFCMX), the maximum factor by which the trust region radius may be increased
at one time is changed from the default value of 4 to be the same as the LMDIF default

value of 2.
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6. Appendix

LetS = (S M, 3SM,SA B 3C 3D, SE SF.

Exp. 791129

S = (.485, —.0019, —.0581, .01S, .105, .0406, .167, —.399)7
Xo = (.299, .186, —.0273, .0254, —.474, .474, —.0892, .0892)7

X* = (—6.321349025¢ — 3, 4.913213490e —1, —1.998156408¢ —3, 9.815640840¢ — 5

Exp. 791226

1.226569755¢ —1, —1.003153205¢ — 1, —4.023517593¢ +0, —2.071785527¢ —2)7

S = (—.69, —.044, —1.57, —1.31, —2.65, 2.0, —12.6, 9.48)T
Xo = (—.3, —.39, .3, —.344, —1.2, 2.69, 1.59, —1.5)T

X' = (—3.116266056e —1, —3.783733944e — 1, 3.282442301e —1, —3.722442301e — 1

Exp. 0121a

—1.282227094¢ +0, 2.494300312¢ +0, 1.554865879¢ +0, —1.384637843¢ +0)7

S = (-.816, —.017, —1.826, —.754, —4.839, —3.259, —14.023, 15.467)7
X, = (—.041, —.775, .03, —.047, —2.565, 2.565, —.754, .754)7

X" = (3.099869097¢ —3, —8.190998691e —1, —2.239405352¢ —4, — 1.677605946¢ —2

Exp. 0121b

2.681514498¢ +0, 2.250215931¢ +0, —2.024170463¢ +1, 7.970982952¢ —1)T 7~

s = (~.809, —.021, —2.04, —.614, —6.903, —2.934, —26.328, 18.639)7
Xy = (—.056, —.753, .026, —.047, —2.991, 2.991, —.568, .568)7

-

X* = (9.034542990e —3, —8.180345430e —1, —4.450738446¢ —4, —2.055492616¢ —2

Exp. 0121c

2.773429036¢ +0, 2.529477259¢ +0, —1.480097186¢ +1, 5.220468844¢ —1)T

s = (-.807, —.021, —2.379, —.364, —10.541, —1.961, —51.551, 21.053)7
X, = (—.074, —.733, .013, —.034, —3.632, 3.632, —.289, .289)

X* = (5.140417418¢ —2, —8.584041742¢ —1, 1.047333626¢ —3, —2.204733363¢ —2

Heart Problem

2.861205288¢ +0, 2.949155438¢ +0, —8.30424348%¢ +0, —1.454992413¢ — nT
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SUBROUTINE FCN(N, X,

o000 00n0n

IPICK =
IPICK = 2 -~--> reduced problem.

-9.

FVEC, IFLAG)

This is an example of a subroutine to evaluate the "heart model”
function to use with HYBRD of MINPACK.

1 -=~> full problem.

INTEGER N, IFLAG
DOUBLE PRECISION X(N),FVEC(N)

INTEGER IPICK
DOUBLE PRECISION SIGMAX,

1

sI

GMAE,

COMMON /SIGMA/ SIGMAX,

1

DOUBLE PRECISION AT,

1

IF (IPICK

T2MV2
u2mMw2

T2M3V2
v2M3T2
U2M3W2
W2M3U2 =

cTvV
DUW
ATV
BUW
AT
BU
cv
Dw
CT
AV
DU
BW

FVEC(1)
FVEC(2)
FVEC(3)
FVEC(4)
FVEC(5)
FVEC(6)
FVEC(7)
FVEC(8)

X(3)
X{4)
xX(1)
X(2)
x(1)
X(2)
X(3)
X(4)
X(3)
X(1)
X(4)
X(2)

GO TO 999

10 T2MV2
uU2Mw2

T2M3V2

Heart Problem

.N

*

* & &k k k &k ® k ¥k %k ®

X(1) + x(2)
X(3) + x(4)

SI

GMAE,

SIGMAY, SIGMAA, SIGMAB, SIGMAC, SIGMAD,
SIGMAF

SIGMAY, SIGMAA, SIGMAB, SIGMAC, SIGMAD,
SIGMAF, IPICK

ATV, AV, B, BU, BUW, BW, CT, CTV, CV, D, DU,

DUW, DW, T2M3v2, T2MvV2, U2M3wW2, U2MwW2, V2M3T2, W2M3U2

E. 1) GO TO 10

X(5)*%%2
X(6) %2
X(5)%x2
X(7)%%2
X(6)#x2
X(8)#s2 -

X(5)
X(6)
X(5)
X(6)
X(5)
X{6)
X(7)
X(8)
X(5)
X(7)
X(6)
X(8)

* k %k %

X(7)%%2
X(B8)#x2

3.0D0
3,000
3.0D0
3.0D0
X(7)
X(8)
X(7)
X(8)

™

X(7)%%2
X(5)%»2
X(8)#x2
X(6)xs2

* % &

- SIGMAX
- SIGMAY

AT + BU - CV - DW - SIGMAA

AV + BW + CT + DU - SIGMAB

X(1)#T2MV2 - 2.0D0#CTV + X(2)#U2MW2 - 2.0D0sDUW - SIGMAC
X(3)«T2MV2 + 2.0DO*ATV + X(4)*U2MW2 + 2.0DO%BUW - SIGMAD
AT#T2M3V2 + CV#V2M3T2 + BU*U2M3W2 + DW#W2M3U2 - SIGMAE
CT*T2M3V2 -~ AV#V2M3T2 + DU#U2M3W2 - BWsW2M3U2 - SIGMAF

X(3)##2 - X(5)%x»2
X(4)»%2 = X(6)%s2

= X(3)#%2 = 3.0D0 # X(5)%x%2
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V2M3T2 = X(5)%%2 - 3,.0D0 # X(3)#x2
U2M3W2 = X(4)#%2 - 3.0D0 # X(6)#*x2
W2M3U2 = X(6)#%2 - 3.0D0 # X(4)#x2

B = SIGMAX - X(1)
D = SIGMAY ~ X(2)
CTV = X(2) * X(3) * X(5)
DUW = D & X(4) # X(6)
ATV = X(1) # X(3) » X(5)
BUW = B * X(4) # X(6)
AT = X(1) = X(3)
BU = B » X(4)
CvV = X(2) # X(5)
DW = D * X(6)
CT = X(2) # X(3)
AV = X(1) # X(5)
DU = D # X%X{(4)
BW = B % X(6)

c
FVEC(1) = AT + BU -~ CV - DW - SIGMAA
FVEC(2) = AV + BW + CT + DU - SIGMAB
FVEC(3) =
FVEC(4) =
FVEC(5) =
FVEC(6) =

999 RETURN

c

END

Heart Problem

January 31, 1986

X(1)%T2MV2 - 2.0D0*CTV + B#U2MW2 - 2.0D0*DUW - SIGMAC
X(2)*T2MV2 + 2.0DO*ATV + D#U2MW2 + 2.0D0O*#BUW - SIGMAD
AT#T2M3V2 + CV#V2M3T2 + BU#U2M3W2 + DW*W2M3U2 - SIGMAE
CT#T2M3V2 - AV#V2M3T2 + DU#U2M3W2 - BWsW2M3U2 - SIGMAF
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