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Abstract

This paper addresses the problem of radar target detection in severely heterogeneous clutter environments. Speci0cally,
we present the performance of the normalized matched 0lter test in a background of disturbance consisting of clutter having
a covariance matrix with known structure and unknown scaling plus background white Gaussian noise. It is shown that
when the clutter covariance matrix is low rank, the (LRNMF) test retains invariance with respect to the unknown scaling
as well as the background noise level and has an approximately constant false alarm rate (CFAR). Performance of the
test depends only upon the number of elements, the number of pulses processed in a coherent processing interval, and the
rank of the clutter covariance matrix. Analytical expressions for calculating the false alarm and detection probabilities are
presented. Performance of the method is shown to degrade with increasing clutter rank especially for low false alarm rates. An
adaptive version of the test (LRNAMF) is developed and its performance is studied with simulated data from the KASSPER
program. Results pertaining to sample support for subspace estimation, CFAR, and detection performance are presented.
Target contamination of training data has a deleterious impact on the performance of the test. Therefore, a technique known
as self-censoring reiterative fast maximum likelihood/adaptive power residue (SCRFML/APR) is developed to treat this
problem and its performance is discussed. The SCRFML/APR method is used to estimate the unknown covariance matrix in
the presence of outliers. This covariance matrix estimate can then be used in the LRNAMF or any other eigen-based adaptive
processing technique.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper addresses the problem of signal detec-
tion in interference composed of clutter (and possi-
bly jamming), having a covariance matrix with known
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structure but unknown level and background white
noise. The technique developed in this paper ensures
invariance with respect to the unknown level and the
background noise power. The research is motivated
by the problem of space-time adaptive processing
(STAP) for airborne phased-array radar applications.
Typically, a radar receiver front end consists of an
array of J antenna elements processing N pulses in
a coherent processing interval. We are interested in
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the problem of target detection given the JN × 1
spatio-temporal data vector.
Previous eBorts [9,10,13] derived the normalized

matched 0lter (NMF) test for the problem of detect-
ing a rank one signal in additive clutter modeled as
a spherically invariant random process [37,53]. The
NMF test is given by

�NMF =
|eHR−1

c x|2
[eHR−1

c e][xHR−1
c x]

H1

?
H0

�NMF; (1)

where x is the observed data vector, e is the known
spatio-temporal signal steering vector, and Rc is the
known clutter covariance matrix. A statistic similar in
spirit was also considered in [14,15] for vector sub-
space detection in compound-Gaussian clutter.
Related work of [21,22,41,42,44,45] considered an

invariance framework for the problem of signal de-
tection in a background of Gaussian clutter having a
covariance matrix with known structure but unknown
level. For a rank one signal, the test statistic derived
for this problem in [21–23,41,42,44,45] reduces to
the NMF test of (1). Performance of the NMF test
in Gaussian [23] and non-Gaussian clutter scenarios
[9,10,13,28–31] has been addressed in some detail.
Recent work [43] discusses adaptive subspace detec-
tion and beamforming using oblique projections at the
heart of which lies a reduced rank Wiener 0lter.
This paper seeks to extend previous work by in-

cluding the eBect of additive white Gaussian noise.
Speci0cally, we consider the binary hypothesis testing
problem given by

H0: x = d = c + n;

H1: x = ae + d = ae + c + n; (2)

where x is the observed data vector, c denotes the
Gaussian clutter vector having a covariance matrix
sRc with known structure and unknown level s, n de-
notes the additive white Gaussian noise vector hav-
ing covariance matrix 	2I, where I is the JN × JN
identity matrix and 	2 is the unknown noise power,
e denotes the steering vector and a is the unknown
complex amplitude of the target. For the sake of com-
pactness, d is used to denote disturbance consisting of
clutter plus white noise. Consequently, the disturbance
covariance matrix is given by Rd = sRc + 	2I. The
invariance properties discussed in [21,22,41,42,44,45]

fail for the problem where the clutter power and noise
variance are unknown and diBerent from each other.
This is due to the fact that invariance condition of
[21,22,41,42,44,45] requires a common unknown scal-
ing on the clutter and background white noise—a
condition that is seldom satis0ed in practice. A uni-
formly most powerful invariant (UMPI) [41] test for
this problem becomes mathematically intractable in
general. However, in many practical airborne radar
applications Rc has rank r which is much less than
the spatio-temporal product M = JN . For example,
the clutter rank in the airborne linear phased array
radar problem under ideal conditions (no mutual cou-
pling between array elements), is given by the Brennan
rule [52]

r = J + �(N − 1); (3)

where �=2vpT=d is the slope of the clutter ridge, with
vp denoting the platform velocity, T denoting the pulse
repetition interval, and d denoting the inter-element
spacing. A nominal value of �=1, yields a clutter rank
r ≈ J + (N − 1)�M especially for large J and N .
This fact is advantageously used to obtain a test which
oBers invariance to the unknown clutter power and
noise level. Additionally, the low rank approximation
enables reduction of training data support compared
to full dimension STAP processing. An adaptive ver-
sion of the test is also developed and its performance
is studied. Target contamination of training data has
a deleterious impact on the performance of the test.
Therefore, a technique known as self-censoring reiter-
ative fast maximum likelihood/adaptive power residue
(SCRFML/APR) is developed to treat this problem
and its performance is discussed. The SCRFML/APR
method is used to estimate the unknown covariance
matrix in the presence of outliers. This covariance ma-
trix estimate can then be used in the low rank nor-
malized adaptive matched 0lter (LRNAMF) or any
other eigen-based adaptive processing technique. The
remainder of the paper is organized as follows:
In Section 2, we introduce the low-rank normal-

ized matched 0lter (LRNMF). The performance of
the LRNMF in terms of analytical calculation of false
alarm probability (Pfa) and detection probability (Pd)
is presented in Section 3. Section 4 introduces an adap-
tive version of the LRNMF known as the LRNAMF
and discusses its performance with respect to CFAR,
sample support for subspace estimation and detection
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performance using data from the KASSPER program.
A new algorithm for outlier removal in training data
is developed in Section 5 and its performance analysis
is carried out. Conclusions are presented in Section 6.

2. Low rank NMF test

The disturbance covariance matrix can be expressed
as Rd=UDUH, whereU is the matrix whose columns
are the normalized eigenvectors of Rd and D is the
diagonal matrix of eigenvalues of Rd. When Rc has
rank r�M , Rd can be expressed as [7]

Rd =
r∑

i=1

(s�i + 	2)uiuHi +
M∑

i=r+1

	2uiuHi : (4)

For s�i�	2, it follows from [20] that the inverse co-
variance matrix can be approximated as

R−1
d ≈ 1

	2 (I − P); (5)

where P =
∑r

i=1 uiuHi is a rank r projection matrix
formed from the eigenvectors corresponding to the
dominant eigenvalues ofRd. ForRc with known struc-
ture, the dominant modes are readily determined and
are unaBected by s.
We now use the form ofR−1

d given by (5) to express
the LRNMF test as

�lr =
|eH(I − P)x|2

[eH(I − P)e][xH(I − P)x]

H1

?
H0

�lr : (6)

Observe that the LRNMF test is invariant to s and 	2.
Furthermore, let e1=(I−P)e and x1=(I−P)x. Thus,
the LRNMF test can be expressed as

�lr =
|eH1 x1|2

[eH1 e1][x
H
1 x1]

H1

?
H0

�lr ; (7)

which allows for important interpretations of the
test statistic as normalized matched 0ltering in the
sub-dominant disturbance subspace or a dominant
mode rejector followed by quadratic normalizations
to ensure CFAR.
It is helpful to note in this context that the low rank

approximation to the clairvoyant RMB beamformer

[38] given by

�LRRMB =
1
	4 |eH(I − P)x|2

H1

?
H0

�LRRMB (8)

and the low rank approximation to the matched 0lter
[40] for rank one signal detection in Gaussian noise
given by

�MFLR =
1
	2

|eH(I − P)x|2
[eH(I − P)e]

H1

?
H0

�MFLR (9)

incur an explicit dependence on 	2. Consequently,
they do not oBer CFAR with respect to 	2.
The work of [18–20] considered a test involv-

ing the numerator of the test statistic of (8) and its
adaptive version. However, such a test incurs ex-
plicit dependance on 	2. Therefore, it lacks CFAR.
Consequently, performance analysis in [18–20] was
presented in terms of the output signal-to-noise ratio
(SNR), with elegant derivations for the output SNR
probability density function (PDF). In this paper, we
concern ourselves with the performance of the test of
(6) and its adaptive version.

3. Performance of the LRNMF Test

We now consider the performance of the test of
(6). Analytical expressions are derived for the prob-
ability of false alarm and probability of detection for
the LRNMF. For convenience, we work with the test
of the form of (7) to carry out the analysis. Not-
ing that a unit vector in the direction of e1 is given
by e2 = e1=

√
eH1 e1, xH

1 x1 can be expressed as the
sum of the squared magnitudes of projections along
the subspace of e2 and the orthogonal complement
space of e2 denoted by "⊥. Let wi, i = 1; 2; : : : ; M −
r − 1 denote an orthonormal basis set for "⊥ and
X0 = eH2 x1, Xi = wH

i x1, i = 1; 2; : : : ; M − r − 1. Then,
Xi, i = 0; 1; : : : ; M − r − 1 are statistically indepen-
dent complex-Gaussian random variables. Let �1 =
|X0|2=	2, �2 = (1=	2)

∑M−r−1
i=1 |Xi|2, and � = �1=�2.

The test statistic of (7) admits a representation of the
form

�lr =
�

(1 + �)
: (10)

Under H0, Xi, i = 1; : : : ; M − r − 1 are complex-
Gaussian random variables distributed as CN (0; 	2).
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Consequently, �2 is a Chi-squared distributed random
variable with (M−r−1) complex degrees-of-freedom
[33]. Also under H0, X0 is a complex-Gaussian ran-
dom variable distributed as CN (0; 	2). Hence, �1 is
a chi-squared distributed random variable with one
complex degree-of-freedom. It follows from [1] that
� is a central-F distributed random variable, whose
probability density function (PDF) is given by

f�(�) =
1

�(1; M − r − 1)
1

(1 + �)M−r ; (11)

where

�(m; n) =
∫ 1

0
’m−1(1 − ’)n−1d’: (12)

Using a straightforward transformation of random
variables, we show that the PDF of �lr under H0

follows a beta distribution given by

f�lr (y) = (M − r − 1)(1 − y)M−r−2: (13)

The probability of false alarm is given by

Pfa = P(�lr ¿�lr|H0) = (1 − �lr)M−r−1: (14)

Observe that the false alarm probability is indepen-
dent of the nuisance parameters s and 	2. Instead, it
depends only on M and r, which are functions of sys-
tem parameters such as the number of array elements,
number of pulses in a CPI and the slope of the clutter
ridge. Thus, a low rank approximation of R−1

d results
in CFAR for the LRNMF test.
We then proceed to calculate the probability of

detection for the test of (6). Under H1, the PDF of
�2 remains unchanged. However under H1, X0 is a
complex Gaussian random variable distributed as
CN (a

√
eH1 e1; 	

2). Consequently, �1 is a non-central
chi-squared distributed random variable with one
complex degrees-of-freedom having non-centrality
parameter A = |a|√eH1 e1=	. Noting that |a|2eH1 e1 is
the signal energy in the sub-dominant disturbance
subspace it follows that A2 = |a|2eH1 e1=	2 is simply
the SNR arising in the sub-dominant disturbance sub-
space. Thus, the non-centrality parameter is related to
the SNR in a straightforward manner. Hence, � has
a non-central F distribution in this instance. Again
using a straightforward transformation of random
variables, it follows that �lr follows a non-central
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Fig. 1. Pfa versus threshold.

beta PDF given by

f�lr (y) =
∞∑
k=0

exp(−A2)
A2kyk(1 − y)M−r−2

k!�(M − r − 1; k + 1)
;

06y6 1: (15)

The probability of detection is given by

Pd = P(�lr ¿�lr|H1)

= 1 − E;

E = (1 − �lr)M−r−1
M−r−1∑

k=1

"(M − r)
"(k + 1)"(M − r − k)

F;

F =
(

�lr
1 − �lr

)k

×[1 − gammainc(A2(1 − �lr); k + 1)]; (16)

where "(·) is the Eulero–Gamma function and

gammainc($;M) =
1

"(M)

∫ $

0
zM−1 exp(−z) dz:

(17)

It is important to note that Pd depends on 	2 only
through A2 (SNR) and not on nuisance parameters
such as exact signal shape, signal complex amplitude
or exact noise variance. Fig. 1 shows a plot of the false
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Fig. 2. Pd versus SNR.

alarm probability versus threshold for the LRNMF test
with the clutter rank r as a parameter. We observe
a signi0cant increase in the threshold with increasing
clutter rank for a given Pfa value. A plot of Pd ver-
sus SNR for the LRNMF test with r as a parameter is
shown in Fig. 2. Relevant test parameters are reported
in the plot. We note that a 1:32 dB loss in detection
performance is encountered as the rank varies from
r=4 to 55. Fig. 3 presents a comparison of the perfor-
mance for the LRNMF with r=4 and 55 with the full
rank NMF for the case where the disturbance consists
of white noise alone with a full rank covariance matrix
and no clutter. Relevant test parameters are reported
in the plot. For completeness, we reproduce below the
analytical expressions for the false alarm and detection
probabilities of the full rank NMF [31]. Speci0cally,

Pfa–NMF = P(�NMF ¿�NMF |H0)

= (1 − �NMF)M−1 (18)

Pd–NMF = 1 − (1 − �NMF)M−1G;

G =
M−1∑
k=1

"(M)
"(k + 1)"(M − k)

H;

H =
(

�NMF

1 − �NMF

)k
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×[1 − gammainc(A2
1(1 − �NMF); k + 1)]; (19)

A2
1 =

|a|2eHe
	2 ;

where A2
1 is the full rank NMF output SNR. The

curves in Fig. 3 reveal important features of the low
rank approximation to the covariance matrix. Curve
1 corresponding to r = 0 (no clutter) upper bounds
the performance of the low-rank approximation. Fur-
thermore, for the clutter rank r = 4 of the LRNMF
test attains performance close to its upper bound,
i.e., the full rank(M × M covariance matrix) NMF
test performance in background white noise with un-
known power level. This is due to the fact that the
for Pfa = 10−6, �NMF = 0:1969, while �lr = 0:2088
(a slight threshold increase). Furthermore, for r = 4,
A2 ≈ A2

1 (negligible SNR loss). For instance, if
e= (1=

√
M)[1 1 : : : 1] and P is a rank four projec-

tion matrix, A2 = 0:9375A2
1. Hence, the LRNMF for

r = 4 attains performance close to the upper bound
(indistinguishable from the upper bound performance
in Fig. 3).
As the clutter rank increases, performance of

the LRNMF degrades. The performance degrada-
tion (approximately 4 dB loss) with increasing rank
(from r = 4 to 55) can be accounted for due to
the fact that the threshold incurs an increase with
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increasing clutter rank. Furthermore, A2, which is
a measure of the output SNR, is also decreased
with increasing clutter rank. Since Pd is a mono-
tonic function of A2, performance is degraded with
increasing r.
This is expected since the full rank NMF test for

r = 0 is invariant to the unknown white noise level.
However, addition of clutter results in the loss of gain
invariance in general. Nevertheless, imposing a low
rank structure approximation of the clutter covariance
matrix restores the gain invariance for small values of
clutter rank. When the clutter rank follows the Bren-
nan’s rule (r = 33), we note that there is a slight de-
tection loss of the LRNMF compared to the full rank
NMF test with r = 0. However, the LRNMF test still
retains the advantage of not requiring knowledge of s
and 	2.

4. Low rank normalized adaptive matched (lter

In this section, we present the performance analy-
sis of an adaptive version of the LRNMF test of (6).
The disturbance covariance matrix is seldom known
in practice and thus must be estimated using repre-
sentative training data. Speci0cally, we consider the
LRNMF test of (6) with P replaced by its estimate P̂
formed from a singular value decomposition (SVD)
of a data matrix Z whose columns zi, i = 1; 2; : : : ; K
contain representative training data. The resulting test
is called the LRNAMF. It can be readily demonstrated
using arguments similar to those employed for the
LRNMF test that the LRNAMF oBers invariance to
the unknown clutter power as well as the background
noise power for large clutter-to-noise ratio (CNR), i.e.,
s�i�	2. In radar applications this condition is satis-
0ed in most instances. For example, the MCARM [25]
and KASSPER [2] data sets oBer an average CNR of
40 dB.
Typically r is unknown in practice. Consequently,

a key issue in this context is the determination of r
from the training data. Several techniques for deter-
mining r are available in the literature [6,39,46,54].
The method of [6] is best suited for our analysis since
it does not require explicit knowledge of 	2. Further-
more, the method of [6] has been successfully applied
to radar data from the multichannel airborne radar
measurement (MCARM) [25] and research labora-

Table 1
KASSPER data parameters

Parameter Value

Carrier frequency (MHz) 1240
Bandwidth (MHz) 10
Number of antenna elements 11
Number of pulses 32
Pulse repetition frequency (Hz) 1984
1000 range bins (km) 35–50
91 azimuth angles (deg) 87; 89; : : : ; 267
128 Doppler frequencies (Hz) −992 to 992
Clutter power (dB) 40
Platform speed (m/s) 100
Target speed (m/s) 26.8
Number of targets 226
Target Doppler frequency range (Hz) −99:2 to 372

Table 2
RLSTAP data paramters

J 14
N 8
K 80
Number of jammers 2
Jammer angles (deg) 50, 80
Jammer powers (dB) 30, 30
Clutter power (dB) 45
Clutter power error (dB) 10
y 2.32
Signal Doppler (deg) 171
Signal spatial angle oB-boresight (deg) 0
Antenna boresight angle (deg) 315

tory space-time adaptive processing (RLSTAP) [24]
programs.
Data from the L-band data set of the KASSPER

program [2] is used for carrying out performance
analysis of the LRNAMF. The L-band data set con-
sists of a datacube of 1000 range bins corresponding
to the returns from a single coherent processing inter-
val (CPI) from 11 channels and 32 pulses resulting
in a spatio-temporal product of 352. Relevant sys-
tem parameters for the L-band data sets from the
KASSPER and RLSTAP programs are provided in
Tables 1 and 2, respectively. Further detail is con-
tained in [2]. Since analytical expressions for Pd and
Pfa for the LRNAMF are mathematically intractable,
we resort to performance evaluation using Monte
Carlo simulation.
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Fig. 4 shows the eigenspectrum of the KASSPER
data. This plot is obtained from an SVD of the
KASSPER datacube. Relevant test parameters are re-
ported in the plot. We observe that the eigenspectrum
exhibits a signi0cant roll oB (nearly 60 dB) after ap-
proximately 50 eigenvalues. The rank of the clutter
subspace is determined using the procedure outlined
in [6]. The procedure of [6] yields a clutter rank of
42 for this example, which is in agreement with the
Brennan rule (3).
Fig. 5 shows the variation of the LRNAMF Pfa as

a function of normalized Doppler beam position for a
0xed steering angle. Relevant test parameters are re-
ported in the plot. For ease of simulation, we present
the results for the case of two channels and 32 pulses.
The curve which rePects a constant false alarm prob-
ability as a function of Doppler corresponds to the
LRNMF and is obtained using (14). A large increase
of the LRNAMF threshold in the vicinity of zero
Doppler is observed resulting in increased false alarm
probability. Also the LRNAMF threshold decreases
with increasing K , the sample support used in form-
ing P̂. Hence, Pfa has less variability with increasing
sample support. A modest CFAR loss is incurred
with respect to the normalized Doppler beam position
(particularly in the vicinity of zero Doppler). Our
simulations also reveal that the threshold is insensitive
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to the unknown clutter power level and noise vari-
ance as long as the CNR is high. Invariance breaks
down when the CNR attains a threshold value in
accordance with the results of [49,50].
Fig. 6 presents a similar result for the threshold

variation as a function of angle with a 0xed Doppler.
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These plots correspond to range bins 200 and 800, re-
spectively. The true covariance matrix corresponding
to these two range bins [2] is used to generate data
for the Monte Carlo simulations. Relevant test param-
eters are reported in the plots. A slight variation of the
threshold as a function of angle is seen in both cases.
However, this has minimal impact on the false alarm
probability. Therefore, the LRNAMF oBers CFAR
like behavior with respect to normalized angular beam
position.
Fig. 7 shows a plot of the LRNAMF Pd as a function

of signal-to-interference-plus-noise ratio (SINR). Rel-
evant test parameters are reported in the plot. The ana-
lytical curve corresponding to the LRNMF represents
the upper bound on performance of the LRNAMF.
With K = 2r training data samples for estimating P̂,
we observe a 4 dB decrease in performance with re-
spect to the analytical curve. The performance loss is
reduced with increasing K . Speci0cally, for 3 dB de-
tection (Pd) performance K =5r training data vectors
are needed. The work of [38] noted that 3 dB perfor-
mance in terms of SNR requires the use of K = 2M
target-free training data vectors. In [32] it was shown
that 3 dB performance for Pd using sample matrix in-
version calls for K=5M training data vectors. This is
due to the fact that although Pd is a monotonic func-
tion of SNR, it is a highly nonlinear function. Con-
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sequently, the training data support needed for 3 dB
SNR performance is quite diBerent from the 3 dB per-
formance for Pd. The work of [19,20] derives an ex-
pression for the PDF of the output SNR of the princi-
pal components inverse technique and shows that the
training data support for 3 dB performance is K =2r.
A similar result is also noted in [48] while consider-
ing the low rank problem in a maximum likelihood
estimation framework and in [12] while dealing with
eigenprojection methods. Fig. 7 reports for the 0rst
time the corresponding training data support for 3 dB
performance in terms of Pd for low rank adaptive pro-
cessing methods. This result is very similar in spirit to
that reported in [32] for the sample matrix inversion
technique.
In Fig. 8, we present an example where the rank

of the clutter subspace is incorrectly estimated.
Speci0cally, we consider the case where r has been
underestimated and show a plot of Pd versus SINR.
The predicted r from the Brennan rule is 42, whereas
the estimated rank is 33. The error in estimating r is
caused due to the use of an ad hoc procedure for de-
termining r instead of the method of [6]. The speci0c
method used in determining r is based on calculat-
ing the ratio of the sum of the squared magnitude
of the dominant singular values and the sum of the
squared magnitude of all the singular values arising
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in the SVD and setting the ratio to 0.9. Signi0cant
performance degradation of the LRNAMF is noted
for this case. A similar result (not reported here) was
noted for overestimation of the clutter rank. Thus, it is
extremely important to estimate the clutter subspace
rank properly.

5. Self-censoring reiterative fast maximum
likelihood method

Crucial to the performance of the LRNAMF is the
availability of target free training data to estimate the
projection matrix pertaining to the clutter subspace.
In practice, strong clutter discretes and dense target
scenarios result in severe training data contamination.
Consequently, this causes signal cancellation of the
targets of interest. Therefore, it becomes imperative
to test (for target presence) and train against the same
data set. This section presents the SCRFML/APR
method developed for this purpose. For this method,
a single adaptive weight vector is calculated from
the training data and applied back to each training
data vector. There are no guard cells or the sliding
window processing which is normally associated
with using guard cells. In this case, the disturbance
covariance matrix structure is assumed to have the
form Rd = Ri + I, where Ri is a positive semidef-
inite matrix. The system noise covariance matrix is
the identity matrix component of Rd. Let Z denote a
data matrix, whose columns zi, i = 1; 2; : : : ; K denote
K realizations of training data. The SCRFML/APR
method consists of two parts: a self censoring reiter-
ative (SCR) method for outlier removal in training
data and the fast maximum likelihood (FML) method
[48] for reducing training data support in covariance
matrix estimation. For the sake of completeness, the
FML method is briePy summarized below and the
interested reader is pointed to [48] for details. Let
Z denote a data matrix, whose K columns contain
M -tuple training data vectors.

(1) Set [U;S;V] = (1=
√
K) svd(Z) where svd(·) de-

notes the MATLAB operation for singular value
decomposition and Z = USVH, where U, and
V are unitary matrices, whose columns corre-
spond to the left and right singular vectors of
Z and S is a diagonal matrix, whose elements

snn, n = 1; 2; : : : ; M denote the singular values
of Z.

(2) Set D̃= diag[min(s2nn; 1)], n= 1; 2; : : : ; M .
(3) R̃ =UD̃UH.

Iterative techniques [11] employing the FML
method in conjunction with the adaptive power residue
(APR) and the generalized inner product (GIP) ap-
proach [3], respectively, are proposed for outlier
removal and their performance is compared here. The
resulting approaches are termed SCRFML/APR, and
SCRFML/GIP, respectively. We now summarize the
SCRFML using the APR and GIP approaches. Both
methods assume that the system noise covariance ma-
trix is known to be the M ×M identity matrix IM and
a steering vector e is available. Certainly, the ther-
mal noise level is unknown in applications like sun
spot data time series analysis. However, for systems
operating at microwave frequencies, the noise is not
dominated by unknown external thermal noise but
by the receiver thermal noise, which can be readily
measured [47]. Furthermore, radar hardware employs
only the last two signi0cant bits to represent system
noise, thereby providing an upper bound on the sys-
tem noise level. Without loss of generality, this can
be normalized to unity. The SCRFML/APR method
consists of starting with the FML of an estimated
covariance matrix, normalizing the estimate by the
square root of the APR and iterating till convergence
results. This method is summarized in the following
steps. The APR approach is reported here for the 0rst
time.

(1) Set R̃0 = FML(R̂0) where R̂0 = ZZH=K and
FML(·) denotes the FML algorithm operator on
the argument.

(2) For l= 1; 2; : : : ; L (L=number of iterations)

R̂l+1 =
1
K

1
+l

K∑
i=1

zizHi
|zHi R̃−1

l e| ;

+l =
1
K

K∑
i=1

1

|zHi R̃−1
l e| ;

R̃l+1 = FML(R̂l+1): (20)

(3) The adaptive power residue is simply |zHi R̃−1
l e|2.

No speci0c stopping criterion has been applied
here. This is a topic for further investigation.
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Fig. 9. APR versus range: number of iterations = 1.
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Fig. 10. APR versus range: number of iterations = 3.

Although the approach cannot be cast in a rigorous sta-
tistical formalism, an intuitive explanation of the tech-
nique can be oBered in terms of the output of an adap-
tive RMB beamformer [38]. The rationale underlying
our technique is that a peak in the RMB beamformer
output occurs when training data is contaminated by
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Fig. 11. APR versus range: number of iterations = 15.

a target signal sharing the same angle-Doppler in-
formation as that of a target of interest. The RMB
beamformer output energy designated as the adaptive
power residue provides a basis for separating contam-
inated training data from target-free training data. The
SCRFML/GIP is a variant of the above procedure in
that the GIP, zHi R̃

−1
l zi, is used in step 2 as opposed to

the square root of the APR. A number of eBorts [3–
5,17,26,27,34–36] have considered the use of the GIP
for selecting representative training data while [8,16]
use the GIP normalization for covariance estimation
in compound Gaussian clutter. A comparison of the
FML, SCRFML/APR, and SCRFML/GIP methods is
shown using data from the RLSTAP hi-0delity clutter
model [24]. Two targets of range extent 3 are cen-
tered at range bins 480 and 487. The relevant test
parameters used in these examples are reported in
Table 1. In order to demonstrate the generality of
the SCRFML/APR technique, jamming is included in
addition to clutter and white noise.
Figs. 9–11 depict the adaptive power residue as a

function of range for each method. The 0gures corre-
spond to number of iterations for the reiterative meth-
ods varied from one to 0fteen. Observe that with as
few as three iterations, the SCRFML/APR method
converges to the steady-state solution. Furthermore,
in all cases, the SCRFML/APR method is shown to
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signi0cantly outperform the SCRFML/GIP and FML
methods; i.e., the two targets are clearly observable
from the output residue (about 22 dB above the APR
associated with the target free range cells). The lat-
ter two methods show poor but similar performance
in all cases. The SCRFML/APR method is most use-
ful in instances where detection and training have to
be performed on a common data set. While no op-
timality property of the approach is claimed, the ad
hoc SCRFML/APR method oBers a powerful tool for
removing outliers in training data.

6. Conclusions

This paper presents an analysis of the NMF test for
the case of clutter plus white noise. Imposing a low
rank structure on the known clutter covariance matrix
enables approximate CFAR behavior yielding robust-
ness with respect to unknown clutter scaling and un-
known background noise level. Analytical expressions
for the detection and false alarm probabilities are pre-
sented and illustrated with numerical examples in the
form of plots of Pd versus SNR. We observe a degra-
dation in performance as the clutter rank increases.
This loss (approximately 4 dB) is quite signi0cant at
low false alarm rates.
Performance of the LRNAMF, an adaptive version

of the LRNMF is studied using the KASSPER radar
data. We observe a 4 dB degradation in performance
due to the 0nite sample support used in estimating
the clutter subspace. Furthermore, we note a loss of
CFAR for the LRNAMF due to the threshold depen-
dence on the Doppler beam position. An important
feature of the LRNAMF is the ability to reduce the
training data support for subspace estimation. Finally,
we note that accurate determination of the rank of the
clutter subspace signi0cantly impacts detection perfor-
mance. Critical to the performance of the LRNAMF is
the ability to obtain representative training data. How-
ever, in dense target environments, signi0cant perfor-
mance penalty is incurred due to target contamination
of the training data. This results in signal cancella-
tion causing a degradation in the SNR. Consequently,
the SCRFML/APR method presented here is useful
for rejecting outliers in the training data and obtain-
ing good estimates of the projection matrix. Further
performance analysis using this technique with the

LRNAMF will be investigated in future. An important
issue in this context is the development of a suitable
stopping criterion for the SCRFML/APR method.
Additionally, 0nite sample support used in clutter

subspace estimation causes subspace perturbation [51]
and subspace swapping [49,50]. The impact of these
eBects on LRNAMF performance is currently under
investigation. These issues will be reported on in a
future publication.
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