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Abstract
We address the problem of comparing the performance of

classifiers. In this paper we study techniques for generat-

ing and evaluating confidence bands on ROC curves. His-
torically this has been done using one-dimensional confi-

dence intervals by freezing one variable—the false-positive

rate, or threshold on the classification scoring function. We
adapt two prior methods and introduce a new radial sweep

method to generate confidence bands. We show, through
empirical studies, that the bands are too tight and in-

troduce a general optimization methodology for creating

bands that better fit the data, as well as methods for eval-
uating confidence bands. We show empirically that the

optimized confidence bands fit much better and that, us-

ing our new evaluation method, it is possible to gauge the
relative fit of different confidence bands.

1. Introduction/Motivation
We address the problem of comparing the performance
of classifiers. Receiver-Operator Characteristic (ROC)
analysis is an evaluation technique used in signal detec-
tion theory, which in recent years has seen an increas-
ing use for types of diagnostic, machine-learning, and
information-retrieval systems (Swets, 1988; Provost &
Fawcett, 1997; Ng & Kantor, 2000; Provost & Fawcett,
2001; Macskassy et al., 2001). ROC graphs plot false-
positive (FP) rates on the x-axis and true-positive
(TP) rates on the y-axis. ROC curves are generated in
a similar fashion to precision/recall curves, by varying
a threshold across the output range of a scoring model,
and observing the corresponding classification perfor-
mances. Although ROC curves are isomorphic to pre-
cision/recall curves, they have the added benefits that
they are insensitive to changes in marginal class dis-
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tribution. Often the comparison of two or more ROC
curves consists of either looking at the Area Under
the Curve (AUC) or focusing on a particular part of
the curves and identifying which curve dominates the
other in order to select the best-performing algorithm.

Much less attention has been given to robust statisti-
cal comparisons of ROC curves. This paper addresses
the creation of confidence bands on ROC curves. Prior
work has considered sweeping across thresholds on the
classification scoring function, creating confidence in-
tervals around the TP/FP points for various thresh-
olds (Fawcett, 2003), or sweeping across the FP rates
and creating vertical confidence intervals around av-
eraged TP levels (Provost et al., 1998). Confidence
bands could be created by connecting these confidence
intervals (as we will show). We examine 1 − δ confi-
dence bands on a model’s ROC curve. We ask whether,
assuming test examples are drawn from the same,
fixed distribution, one indeed should expect that the
model’s ROC curves will fall within the bands with
probability 1 − δ.

Figure 1 shows an example of what such prototypical
confidence bands should look like with δ = 0.05. In the
figure, any ROC curve that does not lie completely in
the shaded area would be said to be different from the
mean curve with a 95% confidence.

In this paper we examine methods for creating and
evaluating such confidence bands for a given learned
model. As we will show, the bands created by prior
techniques are too tight. We introduce a new tech-
nique that creates more realistic bands based on an
empirical distribution. To these ends, we describe a
framework for evaluating the fit of ROC confidence
bands.

The rest of the paper is organized as follows. The next
section discusses related work on creating confidence
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Figure 1. Prototype ROC Confidence Bands

intervals for ROC curves, followed by a section de-
scribing our methods for generating ROC confidence
bands from confidence intervals. We then describe
our evaluation methodology and a case study showing
that our initial methods do not perform as well as ex-
pected. We then describe a general optimization-based
methodology that can be applied to each of the band-
generating techniques, and discuss a perhaps more rea-
sonable evaluation measure and finally revisit the case
study using the optimized method.

2. Related Work
Prior work on creating confidence intervals for ROC
curves has for the most part been in the context of
creating one-dimensional confidence intervals.

Pooling is a technique in which the i-th points from all
the ROC curves in the sample are averaged (Bradley,
1997). This makes a strong assumption that the i-th
points from all these curves are actually estimating the
same point in ROC space, which is at best a doubtful
assumption.

Vertical averaging looks at successive FP rates and av-
erages the TPs of multiple ROC curves at that FP rate
(Provost et al., 1998). By freezing the FP rate, it is
possible to generate a (parametric) confidence inter-
val for the TP rate based on the mean and variance;
multiple curves are generated using cross-validation or
other sampling techniques. A potential weakness of
this method is the practical lack of independent con-
trol over a model’s false-positive rates (Fawcett, 2003).
(We also show that the distributional assumptions typ-
ically used with this technique are violated in our case
study.)

Threshold averaging seeks to overcome the potential
weakness of the vertical averaging by freezing the
thresholds of the scoring model rather than the FP rate
(Fawcett, 2003). It chooses a uniformly distributed

subset of thresholds among the sorted set of all thresh-
olds seen across the set of ROC curves in the sam-
ple. For each of these thresholds, it identifies the set
of ROC points that would be generated using that
threshold on each of the ROC curves. From these ROC
points, the mean and standard deviations are gener-
ated for the FP and TP rates, giving the mean ROC
point as well as vertical and horizontal confidence in-
tervals.

Medical researchers also have examined the use
of ROC curves and have introduced perhaps the
most comprehensive techniques for creating confidence
boundaries. One such technique is similar to that
of threshold averages in that it creates a confidence
boundary around each of the N ROC points associ-
ated with N discrete events in an underlying model
(Tilbury et al., 2000). It does this by considering each
axis as independent and considering an N -dimensional
vector along each axis, where the i-th element in the
vectors represent the i-th point in the ROC curve.
Discretizing the values and assuming a binomial dis-
tribution, it then generates a probability distribution
of the likelihood that the j-th value lies in each dis-
cretized cell. It map this probability density back into
ROC space thereby generating confidence boundaries
for each point in the ROC curve. These models are
very complex and are not tractable for a large set of
ROC points as is typically found in the ROC curves
common in machine learning studies.

Others have looked the simpler problem of comparing
an ROC curve to that of the expected performance of
a random model (Macskassy, 2003). As the true theo-
retical bands can be generated under the assumption
of a random predictor, this method was used to gen-
erate an ROC confidence band around the expected
random performance given a specific test set.

Use of the bootstrap (Efron & Tibshirani, 1993) as a
more robust way to evaluate expected performance has
previously been used for evaluating cost-sensitive clas-
sifiers (Margineantu & Dietterich, 2000). In this work,
bootstrapping was used to repeatedly draw predictions
p(i, j), where p(i, j) is the probability that an instance
of class j was predicted to be in class i. Using these
sample predictions, it was possible to generate a final
cost based on a cost-matrix. They did this repeatedly
to generate a set of estimated costs, which they then
used to generate confidence bounds on expected cost.

3. Generating Confidence Bands
In this section we describe our methodology for gen-
erating confidence bands for a classification model or
modeling algorithm. The main assumption we make
for being able to generate these confidence bands is
that we can generate (or are given) a set of ROC
curves. These can be generated by running a learning



algorithm on multiple training sets, testing on multiple
testing sets, or resampling the same data. These ROC
curves will be used to generate confidence bands about
an average curve. We adapt two existing methods:
vertical averaging and threshold averaging for gener-
ating confidence intervals. We also introduce a new
radial-sweep method, which generates bands based on
a radial sweep of the curves as we describe below.

Our methodology comprises the following steps.

1. Creating a distribution of ROC Curves
2. Generating 1-dimensional confidence intervals

• Choosing a distribution
• Sweeping across the ROC curves

3. Creating confidence bands from the confidence in-
tervals

3.1. Creating the Distribution of ROC Curves
There exist various ways of generating a distribution
of instances from which to generate a confidence in-
terval. The most common methods, including Cross-
validation (Kohavi, 1995), repeatedly split a data set
into training and test sets. Each such split gives rise to
a learned model, which can be evaluated against the
test set—thereby generating one ROC curve per split.
Although to our knowledge it has not been used be-
fore to generate multiple ROC curves, bootstrapping
(Efron & Tibshirani, 1993) is a standard statistical
technique that creates multiple samples by randomly
drawing instances, with replacement, from a host sam-
ple (the host sample is a surrogate for the true popu-
lation). We will describe how we use bootstrapping in
Section 5.3.

3.2. Generating 1-Dimensional Confidence
Intervals

3.2.1. Distribution Assumption

Most methodologies assume a normal distribution, but
it may be that ROC points are not distributed nor-
mally. For example, for a given x-value (FP rate) the
y-value (TP rate) is a proportion. So a binomial dis-
tribution may be appropriate. We consider three dis-
tributions for creating confidence intervals: normal,
binomial, and empirical. Let us assume that we are
given a sample distribution D of points along some
dimension and a confidence threshold of δ.

We generate confidence intervals under the assump-
tion of a normal distribution by calculating the mean
µ and standard deviation σ of D. We then look up
the statistical constant, z, for a two-sided bound of
δ confidence on a distribution size of |D| giving us a
confidence interval of µ ± ·z · σ.

For the binomial distribution, we calculate the variance
as V = µ · (1 − µ), thus giving confidence interval
µ ± z ·

√
V
|D| .

For an empirical distribution we sort the values of D
and choose vl and vu, such that vl is the value is smaller
than 1−δ

2 of all values and vu is larger than 1−δ
2 of all

values, thus 1 − δ of all values lie between vl and vu.

We will examine these three techniques for calculating
1-dimensional intervals (i.e., given a sample distribu-
tion of values for one variable). If not stated otherwise,
results presented will be based on the empirical distri-
bution.
3.2.2. Sweep Methods

So what are these dimensions along which the confi-
dence intervals will be created? These are defined by
how one “sweeps” across the collection of ROC curves.
A sweep samples the set of points that define a point
on the average ROC curve and the confidence inter-
val about it. We use three different sweep orientations
to sample ROC points. The first two are adaptations
from existing methods and the last, the radial sweep,
is a method we introduce in this paper.

The vertical sweep method sweeps a vertical line from
FP = 0 to FP = 1, sampling the distribution of TPs
from the collection of ROC curves at regular points
along the sweep. For each such sampling at a fixed
FP, TP confidence intervals can be created using any
of the distribution assumptions mentioned above.

The threshold sweep method works a little differently
than the vertical sweep. It sweeps along the thresh-
olds on the model scores from −∞ to +∞, sampling
the distribution of ROC points generated with each
threshold. It then generates the mean (FP,TP) point
for each sampled threshold and finds the confidence
intervals of the FPs and TPs, using any of the distri-
bution assumptions mentioned above.

Both of these consider only the x or y axis as the
axes for orienting the confidence intervals. The draw-
back with both of these is that they do not take the
curvature into account. For example, vertical inter-
vals will tend to be much wider for smaller FP rates
than for larger FP rates (due to the slopes of the
curves). In fact, for cost-sensitive classification cor-
responding points on different ROC curves are points
where the tangent lines to the curves have the same
slope (Provost & Fawcett, 2001). Thus, one might ar-
gue that it is proper to have confidence intervals that
are normal to an average curve. Producing intervals
normal to an average curve is not easy (nor even well
defined); for this paper we introduce a straightforward,
intuitive approximation.

For the radial sweep method, rather than freezing the
threshold or the FP rate, we instead do a radial sweep
of the given curves by affixing one end of a vector to
the lower right corner (at position (1,0)) and sweeping
it radially from (0,0) to (1,1). At fixed angular inter-
vals, we sample the points where all the given ROC
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Figure 2. Transforming vertical sweep into confidence
bands.

curves intersect the vector. For each such sampling at
angle θ—which ranges from 0 at (0,0) to π

2 at (1,1)—
and for each ROC curve, we get a polar coordinate
(θ,length) where the curve intersects the sweep vector.
The length in the polar coordinates (the distance of the
point from the lower right corner) is the variable for
which we will compute the confidence interval—again
using any of the distribution assumptions mentioned
above. Although the sweep vector rarely is truly or-
thogonal to the ROC curve tangent at any given in-
tersection, the sweep method does provide us with a
straightforward approximation.

All of our sweep methods require three parameters:
1. The confidence δ, which we set to 0.05 for a 95%

confidence bound throughout this paper. We did
test with other δ’s (0.10 and 0.01) with similar
results as those presented below.

2. The distribution assumption under which the con-
fidence intervals are generated. We test under all
three distribution assumptions mentioned above:
normal, binomial, and empirical.

3. The set of points to sample along the sweep, which
we set to a uniformly distributed 100 points. This
number can be changed depending on how fine-
grained a curve is needed.1

3.3. Creating Confidence Bands from
Confidence Intervals

3.3.1. Vertical Sweep

Vertical sweep can be adapted directly to generate con-
fidence bands rather than a set of distinct confidence
intervals. What we do is to consider all the upper
(lower) interval points as the points making up the
upper (lower) band. Figure 2 illustrates this method-
ology. For each FP (0.00 through 0.99—1.0 always has
a TP of 1.00), we generate a distribution of possible
TPs across all the sampled ROC curves and generate
the bands based on this distribution.
3.3.2. Threshold Sweep

This method is a little more problematic to adapt to
our framework as there are various ways to deal with

1While this is a free variable that will have some effect
on the overall fit of the bands, we do not investigate its
effect in this paper.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
Po

si
tiv

e

False Positive

Threshold Sweep Confidence Intervals

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
Po

si
tiv

e

False Positive

Threshold Confidence Bands and Intervals

mean curve
95% confidence bands

Figure 3. Transforming threshold sweep into confidence
bands.
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Figure 4. Transforming radial sweep into confidence bands.

two confidence intervals. In this paper we chose the
simplest approach: discount the confidence interval
for FP and only use the confidence interval for TP.
Because of this, the bands we generate turn out to be
somewhat conservative and containment probably is
underestimated. Figure 3 illustrates the transforma-
tion as well as the drawback. In the figure, we clearly
see that some FP intervals reach outside the confidence
bands (opposite to the vertical intervals, the horizon-
tal intervals will tend to be larger for higher FP rates).
We are currently investigating more robust and better-
performing ways to generate confidence bands from
threshold sweeps.
3.3.3. Radial Sweep

As with the vertical sweep method, generating the con-
fidence bands from this method is straightforward. For
each sampled vector at angle θ, we can generate the far
(near) point from the polar confidence intervals which
we then map back into ROC space to generate the
points for the upper (lower) confidence band. Figure 4
illustrates how this method is applied.

4. Evaluation
The key question we ask in this paper is how good are
these bands? As with confidence intervals on a single
variable, we would like to be able to say that given a
δ, the bands generated can be expected to fully con-
tain the curve from a given model with a probability of
1− δ (assuming that new test instances come from the
same distribution). As we will show, for none of the
methods proposed above does this hold. Later, we will
introduce an optimization method below for generat-
ing better bands, as well as new evaluation measures
that give a sense of how well the bands do fit.



5. Case Study

5.1. Data
We now present a case study using the Covertype data
set from the UCI repository (Blake & Merz, 1998).
We chose this data set because its large size enabled
us to do more in-depth testing, across a wide range of
training- and test-set sizes. The Covertype data set
consists of 581, 012 instances having 54 features, 10
being numerical and the rest being ordinal or binary.
While it has seven classes, there is a large variation
in class membership sizes. To study the ROC curves,
we chose examples of the two classes with the most
instances, giving us a data set of 495, 141 instances
(57.2% base error rate).

5.2. Learning Method
We use a modified C4.5R8 (Quinlan, 1993) that gen-
erates a Probability Estimation Tree (PET) (Provost
& Domingos, 2002). PETs are generated by consid-
ering the predictions made for each leaf in a decision
tree. If a leaf matches p positive examples and n neg-
ative examples, the probability of class membership
in the positive example is p

p+n . Further, to produce
a better class-probability estimate, we apply a simple
Laplace correction (Niblett, 1987) under the assump-
tion of uniform class distribution 1

C for C classes—
giving us a final probability estimate of p+1

p+n+2 , as we
have 2 classes. Further, we do no pruning of the tree,
as standard pruning does not consider differences in
scores that do not affect 0/1 loss (but may deflate the
ROC curve) (Provost & Domingos, 2002).

5.3. Bootstrap-based Evaluation
To generate and evaluate confidence bands, we use the
following method based on a bootstrapped empirical
sampling distribution.

1. Randomly split the complete data set into a train-
ing set of 256,000 instances and a test set of
125,000 instances, keeping these two sets disjoint.

2. Sample with replacement from each of these two
sets to generate a training set, multiple “fitting”
sets, and multiple test sets:

(a) Fix the training size, sample a training set of
that size, and learn a classifier.

(b) Fix the test size and repeatedly generate “fit-
ting” sets of that size. For each fitting set,
generate an ROC curve for the model. The
result is a set of ROC curves, one per fitting
set.

(c) Generate confidence bands based on the ROC
curves generated in the fitting step (b).

(d) Do 1000 sampling runs. For each run we pick
a test set using the same size as in (b), from
which we then generate an ROC curve. We
then calculate how many of the resulting 1000
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Figure 5. ROC Bands using various test sizes.

ROC curves fall completely within the gen-
erated confidence bands.

This methodology has three parameters: the training
size, the test size, and the number of sampling runs
used in step (b) to generate the confidence curves. We
examine the sensitivity to each of these parameters in
the next section. Note that for this paper, we do not
consider variance in curves due to the training set—
only confidence bands on the ROC curve of a partic-
ular (learned) classifier. However, a similar methodol-
ogy would apply to the generation of confidence bands
for a learning algorithm.

5.4. Trends in Confidence Bands
In this section we examine the experimental parame-
ters identified above, and choose values for our eval-
uation. Unless stated otherwise, we will use the ra-
dial sweep method under the empirical distribution
assumption for the figures presented. All other sweeps
and distributions had similar performances, though
this combination is the best performer among the
methods described thus far.
5.4.1. Training Size

This parameter is the least interesting for this particu-
lar case study. As the training size increases, the ROC
curves become higher as would be expected. However,
while this has some effect on the width of the confi-
dence bands, it is more a matter of considering differ-
ent learned models than of how to generate good bands
for a given model. As such, we do not consider this to
be an important dimension for further discussion here
and fix the training size to 1000 instances.
5.4.2. Test size

Test-set size should have an obvious effect on the bands
generated. We fixed the test size to 125, 625, 1250,
6250, 12500 and 25000 instances (0.1%, 0.5%, 1%, 5%,
10% and 20%, respectively, of the complete test set).
As the test-set size increases, the approximate confi-
dence intervals generated by any of our sweep methods
become narrower and therefore so do our confidence
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Figure 6. ROC Bands using varying number of sampling
runs.

bands. This is a general statistical property—with too
few samples, the estimate of the confidence interval
tends to be inaccurate and biased to be too wide. The
same thing is happening in the ROC space. Figure 5
illustrates this effect clearly.

To limit our presentation for this paper, we fix the test
size to 12500, though the results hold for other sizes
as well.
5.4.3. Number of Sampling Runs

The number of sampling runs used to create the em-
pirical distribution (step 2(b) in Section 5.3) is the
last free parameter that we consider. In order to gen-
erate the ROC bands, we need to have a sample of
ROC curves from which to generate these bands. The
question to answer is how many such ROC curves—
the number of sampling runs—are needed to generate
reasonable bands. While the effect of this variable is
not as intuitive as the test or training size, it still does
have an effect as can be seen in Figure 6. While the
lower band is fairly stable we see that the upper band
widens with more sampling runs. (This would be ex-
pected from a distribution with a long tail.)

As we observe from Figure 6, the upper bands between
using 1000 and 5000 sampling runs were very similar.
Based on this observation, we fix the number of sam-
pling runs to 1000, though our results hold for other
values as well.

5.5. How Good Are The Bands?
Having fixed our experimental parameters, let us now
ask our main question: do the 1 − δ confidence bands
actually contain 1 − δ of the empirical distribution?
Our mechanism allows us to ask two variations on this
question: do the bands contain 1 − δ of the “fitting”
distribution? Do the bands contain 1− δ of the “test”
distribution?

As per our bootstrap-based methodology, we randomly

distribution assumption
empirical normal binomial

Method δ̂fitting δ̂test δ̂fitting δ̂test δ̂fitting δ̂test

radial 73.5 63.9 51.9 41.5 00.0 00.0
vertical 31.6 01.7 42.7 00.0 00.0 00.0

threshold 00.9 00.0 00.8 00.0 00.0 00.0

Table 1. How many ROC curves fall within the bands
of each method using a given distribution for generating
bands? δ̂fitting is the percentage of samples used to gener-
ate the bands and δ̂test is the percentage of samples drawn
afterwards.
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Figure 7. Comparison of bands generated under the empir-
ical and normal distribution assumptions.

sampled test sets of size 12,500 with replacement from
the original test set of 125,000 and counted how many
of the 1000 ROC curves fell within each band. We
did this for each of our three methods using each of
the three distribution assumptions. Table 1 shows how
many ROC curves fall within the bands of each method
using a given distribution assumption for generating
the bands. δ̂fitting is the percentage based on the “fit-
ting” samples that were used to generate the bands
and δ̂test is the percentage of ROC curves based on
samples drawn after the bands had been generated.

Surprisingly, none of the bands get anywhere near the
95% that we would expect. In particular, we see that
the binomial distribution assumption generates very
bad bands and that neither the vertical sweep nor
threshold sweep methods perform as well as the radial
sweep method.2 Interestingly, bands generated under
the normal distribution assumption did not perform as
well as the bands generated under the empirical dis-
tribution. Figure 7 shows the bands generated under
these two distribution assumptions side by side. Note
that they are very similar in shape, though the em-
pirical distribution bands are much more jagged. The
empirical bands are noticeably wider (on the “high”
side). Would one expect ROC curves to be distributed
normally with respect to the vertical, threshold, or ra-
dial dimensions? We do not have a good answer, but
the empirical bands do seem to fit better.

What remains to be addressed is the poor containment
2Recall that the bands generated by the threshold sweep

method are overly conservative and that better bands may
be found with a better connecting method.



Method δ̂fitting δ̂test

opt-radial 96.8% 86.2%
Table 2. Percentage of curves contained within the bands
generated by the optimized radial sweep method.

of the bands. While the radial sweep method produced
the best fit, it still fell far short of the expected con-
tainment of the empirical distribution of ROC curves.
Is it possible to produce better bands? Is there a bet-
ter way to evaluate ROC bands? The rest of the paper
presents first steps toward answering these questions.

6. Optimized ROC Bands
None of the methods performed as expected, even on
the ROC curves (the fitting curves) that were used to
generate the bands in the first place. We propose to
revisit the way in which these bands were generated
and optimize them such that they fit the empirical
distribution of curves better. To do so, we use the
following optimization methodology:

1. Generate an empirical distribution using a
method appropriate for the problem domain (e.g.,
our bootstrap mechanism).

2. Select a method for generating bands (e.g., ra-
dial sweep) based on some underlying distribution
(e.g., the empirical distribution).

3. Optimize the bands with respect to an objective
function that is suitable for the problem domain.

We instantiate this methodology by generating the
sampling distribution as given before. Because the
radial sweep method performed well using the empiri-
cal distribution, we choose these as the baseline from
which we will optimize. For the optimization step, for
this paper we adopt a very simple method:

1. For each sampling in the radial sweep generate a
set of polar coordinates. Let θα be the angle of
the vector used to draw this sample, and let N be
the number of ROC curves in the distribution.

2. Sort the values by length, giving us the sorted set
lθα,1 < . . . < lθα,N .

3. Starting at the outermost bands (L = 1 and U =
N), we define the candidate lower band as the set
of points lθi,L for i = 1 . . . N and the candidate
upper band as the set lθi,U for i = 1 . . .N . Set
W to the number of curves in our sample that fall
completely within (or lie on) these bands.

4. Increase L by 1 and decrease U by one and recal-
culate W .

5. Continue until the candidate bands contain fewer
than 1 − δ of the “fitting” curves and use U + 1
and L − 1 to generate the final bands.

Table 2 shows the performance of this Optimized Ra-
dial Sweep method, opt-radial, using the same evalua-
tion as before with same parameter settings. As we can
see, this method was able to generate bands that had

Train
Test

Figure 8. Example of point outside the curve.

a better containment than the non-optimized meth-
ods. However, it still did not fit the test set as well as
expected.

7. Evaluation Revisited
One possible explanation for the below-expected con-
tainment even of the optimized method is that maybe
there is no good way to generate bands that fit well
due to the chaotic behavior often found in ROC curves
where they crisscross many times (as seen in Figure 6).
With curves such as these it may be unlikely to be able
to do any better than the convex hull in order to get
the expected containment. Looking more closely, the
convex hull of the fitting samples used to generate the
bands might still not be enough. If even one point
falls outside the convex hull as shown in Figure 8, the
complete curve is not contained. If the fitting samples
are chaotic and crisscross many times, why would new
samples behave differently? They may be very likely
have at least one point outside the bands found in the
original samples. Maybe we should not require the
bands fully contain an ROC curve, but instead to con-
tain “almost all” of the ROC curve. If we can quantify
“almost all” then we can evaluate how well the bands
fit the data with respect to this measure.

The measure we use for this evaluation is based the
percentage ε of the points of an ROC curve that falls
outside the bands. For a set of confidence bands, we
calculate ε for each of the ROC curves in the empirical
distribution, and identify ε̂ such that 1 − δ of all the
curves have ε ≤ ε̂. To use such δ, ε confidence bands, a
new ROC curve would be considered statistically dif-
ferent if more than ε̂ of its points fall outside the bands.
We can then evaluate the fitness of a type of band by
assessing its ε̂.

8. Case Study Revisited
We now revisit our case study and compute the ε̂’s
for each method. Figure 9 graphs, for our four sweep
methods using the empirical distribution, the percent
of curves contained as we increase ε. The vertical
line is 95% (1 − δ) containment. As is clear from the
graph, the optimized radial sweep outperformed all the
other methods though all methods were able to achieve
95% containment at varying εs. Table 3 shows the ε̂’s
needed by each method using the normal and empiri-
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distribution assumption
empirical normal

Method ε̂train ε̂test ε̂train ε̂test
opt-radial 0.0000 0.0208 — —

radial 0.1765 0.1250 0.2353 0.2083
vertical 0.2843 0.2500 0.2451 0.2245

threshold 0.5588 0.5417 0.5588 0.5306

Table 3. What ε’s are needed to achieve a 95% contain-
ment.

cal distributions.3 For example, the optimized sweep
completely contained (by construction) the 95% of the
fitting curves, and required ε = 0.02 to contain 95% of
the test curves. The other methods required consider-
ably higher ε values to achieve 95% containment.

9. Discussion and Limitations
In this paper we evaluated various methods for gen-
erating confidence bands for ROC curves. We intro-
duced a new radial sweep method for generating con-
fidence bands around the ROC curve and developed
a general framework for optimizing such bands using
bootstrapping techniques. We showed that methods
based on existing techniques produced bands that were
far too narrow. The optimized method performed con-
siderably better, but still was too narrow. We then in-
troduced a new measure to evaluate the containment
of ROC confidence bands and showed how our opti-
mized radial sweep method required relatively little
leeway to achieve proper containment.

However, although we introduced the radial sweep
method to approximate confidence bands that are nor-
mal to an ROC curve at any given point, a better
technique might yield improved results. One question
that we did not investigate here was how sensitive the
bands are to the number of points sampled along the
sweep. Further, although we introduced the notion of
optimizing the bands, we only considered a straight-
forward and simplistic optimization in this paper. Fi-
nally, it is still an open question whether the bands

3Note that we have dropped the comparison to the bi-
nomial distribution as it performed so badly in the previous
evaluation.

found are too loose in certain regions of the curve and
too tight in others. These are all issues that we hope
to investigate further.

We hope this work takes a significant step toward more
robust comparisons of machine learning methods using
ROC analysis.
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