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Abstract

Problems on the identification of two-dimensional spatial domains arising in the
detection and characterization of material damage are considered. For electromag-
netic nondestructive evaluation systems, observations of the magnetic flux from the
front surface are used in a output least-square approach. Parameter estimation tech-
niques based on the method of mappings are discussed and approximation schemes
are developed applying a finite-element Galerkin approach. Theoretical convergence
results for computational techniques are given and results are applied to numerical
experiments to demonstrate the efficacy of the proposed schemes.

1 Introduction

Detection and characterization of small cracks and corrosion embedded in the structures
of aircraft are critical issues in the maintenance of aging aircraft. For instance, carbon
fiber reinforced plastics (CFRP) have been widely used in the advanced aircraft and, as
a result, demand has grown for assessing the structural integrity of structures made from
those materials. An important effort on such problems entails quantitative nondestructive
evaluation methods in SQUID-based NDE system [1]. It is well known that SQUIDs (su-
perconducting quantum interference devices ) have very high sensitivity for magnetic flux
measurements. Due to the highly sensitive magnetic flux measurements, inverse analyses
on electromagnetic problems are effectively used for detecting and characterizing cracks
and delamination. Initial efforts on such inverse problems include nondestructive testing
under SQUID measurements using the direct current method [2]. However, the detections
of non-through crack and corrosion-like damage by direct current flows are insufficient be-
cause of the lack of information for deep-lying effects from vertical component of magnetic
flux measurements. Since a skin depth of metal varies according to frequency of flowing
current, it is possible to detect the deep-lying flows by controlling the frequency. To
this end, SQUID based nondestructive evaluation (NDE) systems using injection current
methods have been recently developed [3, 4]. In this paper, we propose a computational
method for recovering corrosion-like damage with magnetic flux density data from the
SQUID based NDE system with alternating current force. The idea of the method of
mapping techniques ([5, 6]) are effectively used in our inversion procedures. Figure 1
illustrates the overall configuration of SQUID based NDE system proposed here. In this
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Figure 1: Overall Configuration of SQUID based NDE System

inspection procedure, alternating current forces with multiple angular frequencies are ap-
plied to the sample material inspected. A damage corrupts the current flows inside the
conductor and we can detect this disturbance from the magnetic flux measurements by
the SQUID. The task we consider here is to identify the geometrical shape of the damage
from input and output data. Throughout the paper, we assume that the damage is lo-
cated sufficiently far from both sides of the sample and that the direction of current flow is
uniform with respect to the length direction. In Section 2, we consider a two-dimensional
mathematical model for inspections based on a SQUID-based NDE system. In Section 3,
a direct problem is formulated in variational form in an appropriate Hilbert space. In
Section 4, the inverse problem is discussed in the context of a nonlinear output least
square problem. The class of admissible parameters are given and the existence of solu-
tions is demonstrated using the idea of the method of mappings. Section 5 is devoted to
theoretical convergence for the proposed computational method. Numerical experiments
are summarized in Section 6 to demonstrate the efficacy of the proposed method. Related
efforts on similar problems are given in [7, 8, 9] where eddy current based techniques are
used and the focus is model reduction techniques are opposed to the use of the method
of maps employed here.

2 Mathematical Model of Inspection Procedures

Our forward analysis is considered on a cross section of the conducting material sample,
i.e.,

Gc = { x = (x1, x2) | |x1| < dc, 0 < x2 < h0 }
as illustrated in Fig. 2. Assuming that the material is of infinite extent in the x3 direction,
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our problem is defined on an appropriate computational “window” given by

G = { x | |x1| < d, |x2| < h (h0 < h <∞) } .

A set of alternating current sources Ji with frequencies ωi is applied to the sample material

Ji(t,x) = (0, 0, Js(x))T cos(ωit).

The set of applied frequencies ω = {ωi}Mo
i=1 can be determined in accordance with the skin

depth condition,

δ =

√
2

σµω
(1)

where µ denotes the magnetic permeability and where σ denotes the electrical conductivity
of the sample. Given that skin depth of a metal changes according to frequency of
flowing current, it is possible to detect a configuration of deep-lying defects by varying
the frequency. For the output, measurements can detect the gain margin and phase
change of the voltage using a LCZ meter. This means that the SQUID measurements can
be represented as

B(t,x) = B(x) cos(ωt+ θ(x)).

Thus it is natural and convenient that the state variables be described by complex phasor
representations. The phasor form of Maxwell’s equations is given by

∇ · B = 0, (2)
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∇ · E = 0, (3)

∇× E = −jωB, (4)

∇× H = J. (5)

Following a standard approach, we introduce the magnetic vector potential A =
(Ax1 , Ax2, Ax3) defined by B = ∇×A and the cross product of Eq. ( 4 ) can be replaced
by representing E + jωA as the gradient of a scalar electrical potential φ, i. e.,

E = −jωA −∇φ.
In conjunction with Ohm’s law J = σE and the constitutive law B = µH, the system
state A is governed by

∇× 1

µ
∇× A = −jωσA− σ∇φ (6)

∇ · (jωA + ∇φ) = 0. (7)

We assume here that the sample is of nonmagnetic material, so that the magnetic per-
meability µ is equal to that of air, i.e., µ = µ0. In our formulation, the magnetic vector
potential becomes A = (0, 0, A3). Therefore, the equation for the component of magnetic
vector potential A3 = A is simply rewritten as

− 1

µ0
∇2A + jχcσωA = −χcσ

∂φ

∂x3

where χc denotes the characteristic function of the conducting region Gc. Taking into
account that the right side of the above equation is composed of the source current
density, it follows that

Js = −σ ∂φ
∂x3

in Gc.

Consequently we can formulate the two dimensional forward problem in terms of the
equation:

− 1

µ0

(
∂2A(x1, x2)

∂x2
1

+
∂2A(x1, x2)

∂x2
2

)
+ jχcσωA(x1, x2) = χcJs(x1, x2). (8)

Since the boundaries in the x2 directions are assumed to be sufficiently far from the
sample, we assign a Dirichlet boundary condition on this part of the boundary, i. e.,

A = 0 on SD (9)

where
SD = { x | |x1| < d, |x2| = h }.

We also consider the boundaries in the x1 directions to be sufficiently far from the damage
so that Neumann boundary conditions in the x1 direction can be set as:

∂A

∂n
= 0 on SN (10)
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Figure 3: Setting of the boundary condition on the window

where
SN = { x | |x1| = d, |x2| < h }.

Figure 3 denotes the boundary conditions on the computational window. In contrast
to other magnetic sensors, SQUID measurements can directly detect the magnetic flux
densities that are independent of the applied frequencies. Suppose that the scanning
strategy is given on the line

I = { x ∈ G | |x1| ≤ r (dc < r), x2 = −hf },
as shown in Fig. 4. Thus the observation mechanism involves data

B2(x
p) = − ∂A

∂x1
(xp) for xp ∈ I, p = 1, 2, · · · , m. (11)

and the observations are given by

z = HA ∈ Cm (12)

where H denotes the bounded operator given by

{H}p = − 1

|Op|
∫
Op

∂(·)
∂x1

dx1

∣∣∣∣∣
x2=−hf

(13)

and Op denotes the sub-interval of I defined by

Op ⊂ (p = 1, 2, · · · , m). (14)

and |Op| denotes the length of the sub-interval Op.
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Figure 4: Scanning procedures

3 Weak Formulation

Let q be a constant vector which characterizes an unknown damage shape where we
assume

[H-0] The admissible set Q of damage parameters is a compact subset of RM .

We introduce the “suspect region” Gs ⊂ G which covers the suspected but unknown
damage. More precisely, as depicted in Fig 5, the domain Gs is described by

Gs = { x = (x1, x2) | |x1| < c, 0 < x2 < h } .

For convenience of discussions, the suspect region Gs is decomposed into two subre-
gions which correspond to the air region G1

s and the conducting region G2
s and these

are parametrized by q. Thus the “window” G is decomposed into three sub-regions G0,
G1

s and G2
s as follows:

Gs = G1
s(q) ∪G2

s(q), G0 = G−Gs.

We assume the boundary of G is decomposed into

S0
N = {x | |x1| = d, |x2| ≤ h }
S0

D = {x | c < |x1| < d, x2 = h } ∪ {x | |x1| < d, x2 = −h }
S1

D = {x | |x1| ≤ c, x2 = h }
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Figure 5: Domain decomposition

and that the interface among sub-regions are defined by

S01
I = {x | |x1| = c, h0 ≤ x2 < h }
S02

I = {x | |x1| = c, 0 < x2 < h0 } ∪ {x | |x1| ≤ c, x2 = 0 }

and S12
I is defined by the interface between G1

s(q) and G2
s(q). The form of S12

I will be
described in the later discussions. The system state is then denoted by

A := A0 in G0 A := Ai in Gi
s (i = 1, 2)

where
Ai := AR

i + jAI
i (i = 0, 1, 2).

In the sequel, we suppose that the electric conductivity of the conducting material sample
has constant value σc, i.e.

σ = χcσc.

Thus the subsystem on G0 is described by

− 1

µ0

∇2AR
0 − χcσcωA

I
0 = χcJs (15)

− 1

µ0
∇2AI

0 + χcσcωA
R
0 = 0 in G0 (16)
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with the boundary condition

AR
0 = AI

0 = 0 on S0
D (17)

∂AR
0

∂n
=
∂AI

0

∂n
= 0 on S0

N . (18)

The subsystems defined on G1
s(q) and G2

s(q) are described respectively by

∇2AR
1 = 0 (19)

∇2AI
1 = 0 in G1

s(q) (20)

with the boundary condition

AR
1 = AI

1 = 0 on S1
D, (21)

and

− 1

µ0
∇2AR

2 − σcωA
I
2 = Js (22)

− 1

µ0
∇2AI

2 + σcωA
R
2 = 0 in G2

s(q). (23)

We also need the interface conditions between G0, G
1
s(q), and G2

s(q),

AR
0 − AR

1 = AI
0 − AI

1 = 0 (24)

∂AR
0

∂n
− ∂AR

1

∂n
=
∂AI

0

∂n
− ∂AI

1

∂n
= 0 on S01

I (25)

AR
0 − AR

2 = AI
0 − AI

2 = 0 (26)

∂AR
0

∂n
− ∂AR

2

∂n
=
∂AI

0

∂n
− ∂AI

2

∂n
= 0 on S02

I (27)

AR
1 − AR

2 = AI
1 − AI

2 = 0 (28)

∂AR
1

∂n
− ∂AR

2

∂n
=
∂AI

1

∂n
− ∂AI

2

∂n
= 0 on S12

I (q). (29)

Let ϕ be in the set

Vq = { ϕ ∈ H1(G0 ∪G1
s(q) ∪G2

s(q)) | ϕ = 0 on S0
D ∪ S1

D }
endowed with the norm

‖ϕ‖2 :=
∫∫

G0∪G1
s(q)∪G2

s(q)
|∇ϕ|2 dx1dx2.

Let us set
~ϕ := (ϕR, ϕI) ∈ Vq × Vq.

Then, for any ~ϕ, ~ψ ∈ Vq × Vq, we define the bilinear form on Vq × Vq

a(q)(~ϕ, ~ψ) :=
1

µ0

∫∫
G0∪G1

s(q)∪G2
s(q)

(
∇ϕR · ∇ψR + ∇ϕI · ∇ψI

)
dx1dx2

−ω
∫∫

G0∪G2
s(q)

χcσcϕ
IψRdx1dx2

+ω
∫∫

G0∪G2
s(q)

χcσcϕ
RψIdx1dx2 (30)
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and the linear form on Vq

L(q)(~ϕ) :=
∫∫

G0∪G2
s(q)

χcJsϕ
Rdx1dx2. (31)

Lemma 1: Suppose that

[H-1]: The applied angular frequency ω is properly chosen such that

ω ≤ ω0 <∞
and that

χcJs ∈ L2(G).

Then, for every q ∈ Q, there exists a unique solution ~A(q) = (AR, AI) ∈ Vq × Vq which is
the solution of

a(q)( ~A, ~ϕ) = L(q)(~ϕ) for ~ϕ ∈ Vq × Vq. (32)

Moreover, we have
‖ ~A(q)‖Vq×Vq ≤ K1‖χcJs‖L2(G) (33)

where K1 is a constant independent of q.

Proof: For arbitrary ~ϕ ∈ Vq × Vq, a(q) is Vq × Vq-elliptic with constant δ = 1/µ0 since

a(q)(~ϕ, ~ϕ) =
1

µ0

∫∫
G0∪G1

s(q)∪G2
s(q)

(∣∣∣∇ϕR
∣∣∣2 +

∣∣∣∇ϕI
∣∣∣2) dx1dx2 = δ‖~ϕ‖2

Vq×Vq
(34)

from which follows the coercivity. For the boundedness, it can be easily checked that∣∣∣a(q)(~ϕ, ~ψ)
∣∣∣ ≤ γ ‖~ϕ‖Vq×Vq

∥∥∥~ψ∥∥∥
Vq×Vq

. (35)

The linear functional L(q) is bounded on Vq × Vq, i.e.,

|L(q)(~ϕ)| =

∣∣∣∣
∫∫

G0

χcJsϕ
Rdx1dx2

∣∣∣∣+
∣∣∣∣∣
∫∫

G2
s(q)

Jsϕ
Rdx1dx2

∣∣∣∣∣
≤

∫∫
G0

∣∣∣χcJsϕ
R
∣∣∣ dx1dx2 +

∫∫
G2

s(q)

∣∣∣Jsϕ
R
∣∣∣ dx1dx2

≤


(∫∫

G0

|χcJs|2 dx1dx2

) 1
2

+

(∫∫
G2

s(q)
|Js|2 dx1dx2

) 1
2




×‖~ϕ‖L2(G0∪G1
s(q)∪G2

s(q))

≤ M ‖~ϕ‖Vq×Vq
for ~ϕ ∈ Vq × Vq.

Applying the Lax-Milgram lemma, for each q ∈ Q, we find there exists a unique solution
~A(q) ∈ Vq × Vq satisfying (32). Similarly, we have

δ‖ ~A(q)‖2
Vq×Vq

≤ a(q)( ~A, ~A) ≤M‖ ~A(q)‖Vq×Vq

9
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from which follows

‖ ~A(q)‖Vq×Vq ≤ K1 where K1 =
M

δ
.

This completes the proof.

Remark: In [H-1], the upper bound of angular frequency ω0 can be reasonably set for
the inspection. More precisely, the angular frequency ω of the applied current force must
be properly chosen by the skin depth condition (1).

4 Admissible Class and Method of Mapping

In this section, we restrict the corrosion-like damage so that it can be represented by a
simple parametrized function. The unknown defect shape is characterized by a function

x2 = r(x1;q) for |x1| ≤ c (36)

with
0 < r(x1;q) ≤ h0 ( < h <∞ ) and r(−c;q) = r(c;q) = h0

as depicted in Fig. 6. We describe by Q ⊂ RM an admissible set of possible parameter
values. The geometrical structure of the damage is restricted by the following hypotheses:

[H-2] For each q ∈ Q, r(·,q) ∈W 1
∞(−c, c) .
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[H-3] There exists a constant β such that, for each q ∈ Q,

0 < β ≤ r(·,q).

[H-4] There exists a function dist : Q×Q→ R1 with dist(q, q̃) → 0 as |q− q̃| → 0 such
that

‖r(·,q) − r(·, q̃)‖1,∞ ≤ dist(q, q̃) for q, q̃ ∈ Q.

The subregions G1(q) and G2(q) given in the previous section can now be explicitly
rewritten as

G1
s(q) = { x | |x1| < c, r(x1,q) < x2 < h }

and
G2

s(q) = { x | |x1| < c, 0 < x2 < r(x1,q) } ,
respectively. Associated with these sub-domains, we define the reference sub-domains as
shown in Fig. 7:

G̃1
s = { x | |x1| < c, h0 < x2 < h }

G̃2
s = { x | |x1| < c, 0 < x2 < h0 } .

We introduce the affine mapping:

x = T (q)x̃ =

{
T1(q)x̃ for x̃ ∈ G̃1

s

T2(q)x̃ for x̃ ∈ G̃2
s

(37)
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where

T1(q) =

{
x1 = x̃1

x2 = (h− r(x̃1;q))(x̃2 − h)/(h− h0) + h

T2(q) =

{
x1 = x̃1

x2 = r(x̃1;q)x̃2/h0
.

These mappings result in the following identities :

Gi
s(q) = Ti(q) ◦ G̃i

s (i = 1, 2). (38)

Figure 8 illustrates the transformation from the reference domain G̃1
s∪G̃2

s into the domain
with damage G1

s(q) ∪G2
s(q). Let ϕ̃ be in the set

Ṽ = { ϕ̃ ∈ H1(G0 ∪ G̃1
s ∪ G̃2

s) | ϕ̃ = 0 on S0
D ∪ S1

D }
endowed with the norm

‖ϕ̃‖2 :=
∫∫

G0∪G̃1
s∪G̃2

s

|∇ϕ̃|2 dx̃1dx̃2.

Let us set
~̃ϕ := (ϕ̃R, ϕ̃I) ∈ Ṽ × Ṽ .

Then, for any ~̃ϕ,
~̃
ψ ∈ Ṽ × Ṽ , the bilinear form a(q) can be represented on Ṽ × Ṽ as

ã(q)(~̃ϕ,
~̃
ψ) :=

1

µ0

2∑
i=1

∫∫
G̃i

s

{(
∇̃ϕ̃R

)
·
(
∇̃Ti(q)

)−t (∇̃Ti(q)
)−1 (∇̃ψ̃R

)

12



+
(
∇̃ϕ̃I

)
·
(
∇̃Ti(q)

)−t (∇̃Ti(q)
)−1 (∇̃ψ̃I

)}
det

∣∣∣∇̃Ti(q)
∣∣∣ dx̃1dx̃2

+
1

µ0

∫∫
G0

{(
∇̃ϕ̃R

)
·
(
∇̃ψ̃R

)
+
(
∇̃ϕ̃I

)
·
(
∇̃ψ̃I

)}
dx̃1dx̃2

−ω
∫∫

G̃2
s

σcϕ̃
Iψ̃R det

∣∣∣∇̃T2(q)
∣∣∣ dx̃1dx̃2

+ω
∫∫

G̃2
s

σcϕ̃
Rψ̃I det

∣∣∣∇̃T2(q)
∣∣∣ dx̃1dx̃2

−ω
∫∫

G0

χcσcϕ̃
Iψ̃Rdx̃1dx̃2 + ω

∫∫
G0

χcσcϕ̃
Rψ̃Idx̃1dx̃2. (39)

The linear form on Ṽ is also represented by

L̃(q)(~̃ϕ) :=
∫∫

G̃2
s

Jsϕ̃
R det

∣∣∣∇̃T2(q)
∣∣∣ dx̃1dx̃2 +

∫∫
G0

χcJsϕ̃
Rdx̃1dx̃2. (40)

Noting that

∇̃Ti(q) =




∂x1

∂x̃1

∂x1

∂x̃2

∂x2

∂x̃1

∂x2

∂x̃2


 ,

we obtain

∇̃T1(q) =




1 0

−r′(x̃1;q)(x̃2−h)
h−h0

h−r(x̃1;q)
h−h0


 ∇̃T2(q) =




1 0

−r′(x̃1;q)x̃2

h0

r(x̃1;q)
h0


 .

Similarly, we have

det
∣∣∣∇̃T1(q)

∣∣∣ = h− r(x̃1;q)

h− h0
det

∣∣∣∇̃T1(q)
∣∣∣ = r(x̃1;q)

h0
.

Hence the explicit form of Eq. (39) can be represented as

ã(q)(~̃ϕ, ~̃ψ) :=
2∑

i=1

∫∫
G̃i

s

{
ai

1(q)

(
∂ϕ̃R

∂x̃1

∂ψ̃R

∂x̃1

+
∂ϕ̃I

∂x̃1

∂ψ̃I

∂x̃1

)

+ai
2(q)

(
∂ϕ̃R

∂x̃1

∂ψ̃R

∂x̃2
+
∂ϕ̃R

∂x̃2

∂ψ̃R

∂x̃1
+
∂ϕ̃I

∂x̃1

∂ψ̃I

∂x̃2
+
∂ϕ̃I

∂x̃2

∂ψ̃I

∂x̃1

)

+ ai
3(q)

(
∂ϕ̃R

∂x̃2

∂ψ̃R

∂x̃2

+
∂ϕ̃I

∂x̃2

∂ψ̃I

∂x̃2

)}
dx̃1dx̃2

+
1

µ0

∫∫
G0

(
∂ϕ̃R

∂x̃1

∂ψ̃R

∂x̃1
+
∂ϕ̃I

∂x̃1

∂ψ̃I

∂x̃1
+
∂ϕ̃R

∂x̃2

∂ψ̃R

∂x̃2
+
∂ϕ̃I

∂x̃2

∂ψ̃I

∂x̃2

)
dx̃1dx̃2

+
∫∫

G̃2
s

a0(q)
(
−ϕ̃Iψ̃R + ϕ̃Rψ̃I

)
dx̃1dx̃2

+ω
∫∫

G0

χcσc

(
−ϕ̃I ψ̃R + ϕ̃Rψ̃I

)
dx̃1dx̃2 (41)
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where

a1
1(q) =

r′(x̃1;q)2(x̃2 − h)2 + (h− r(x̃1;q))2

µ0(h− h0)(h− r(x̃1;q))

a1
2(q) =

r′(x̃1;q)(x̃2 − h)

µ0(h− r(x̃1;q))

a1
3(q) =

h− h0

µ0(h− r(x̃1;q))

a2
1(q) =

r′(x̃1;q)2x̃2
2 + r(x̃1;q)2

µ0h0r(x̃1;q)

a2
2(q) = −r

′(x̃1;q)x̃2

µ0r(x̃1;q)

a2
3(q) =

h0

µ0r(x̃1;q)
,

and where

a0(q) =
ωσcr(x̃1;q)

h0
.

From (40), the transformed linear form can be explicitly rewritten by

L̃(q)(~̃ϕ) :=
∫∫

G̃2
s

Jsr(x̃1;q)

h0
ϕ̃Rdx̃1dx̃2 +

∫∫
G0

χcJsϕ̃
Rdx̃1dx̃2. (42)

Lemma 2: With the hypotheses [H-0] to [H-4], there exist positive constants α, λ,K2

and K3 such that, for q1,q2 ∈ Q, the bilinear form ã(q)(·, ·) satisfies the following in-

equalities for all ~̃ϕ,
~̃
ψ ∈ Ṽ × Ṽ :

ã(q)(~̃ϕ, ~̃ϕ) ≥ α
∥∥∥~̃ϕ∥∥∥2

Ṽ ×Ṽ
(43)∣∣∣∣ã(q)(~̃ϕ,

~̃
ψ)

∣∣∣∣ ≤ K2

∥∥∥~̃ϕ∥∥∥
Ṽ ×Ṽ

∥∥∥∥~̃ψ
∥∥∥∥

Ṽ ×Ṽ
(44)∣∣∣∣ã(q)(~̃ϕ, ~̃ψ) − ã(q̃)(~̃ϕ, ~̃ψ)

∣∣∣∣ ≤ K3dist(q, q̃)
∥∥∥~̃ϕ∥∥∥

Ṽ ×Ṽ

∥∥∥∥~̃ψ
∥∥∥∥

Ṽ ×Ṽ
(45)

where
dist(q, q̃) → 0 as |q − q̃| → 0.

Moreover, α, K2, and K3 can be chosen as constants which are independent of the pa-
rameter vector q.

Proof: It can be easily shown that, with c1, c3 > 0, any quadratic form satisfies

c1(ξ1)
2 − 2c2ξ1ξ2 + c3(ξ

2
2) ≥

c1c3 − (c2)
2

2
min

{
(c1)

−1, (c3)
−1
}

(|ξ1|2 + |ξ2|2).

14



From (41), the associated quadratic form for each suspect region Gi
s(i = 1, 2) becomes{

ai
1(q)(ξR

1 )2 + 2ai
2(q)(ξR

1 ξ
R
2 ) + ai

3(q)(ξR
2 )2

}
+

{
ai

1(q)(ξI
1)

2 + 2ai
2(q)(ξI

1ξ
I
2) + ai

3(q)(ξI
2)

2
}

≥ ai
1(q)ai

3(q) − (ai
2(q))2

2
min

{
(ai

1(q))−1, (ai
3(q))−1

}
×(|ξR

1 |2 + |ξR
2 |2 + |ξI

1 |2 + |ξI
2 |2). (46)

We easily find that
ai

1(q)ai
3(q) − (ai

2(q))2 = 1 for i = 1, 2.

Under the hypotheses [H-2] and [H-3], we admit that

(a1
1(q))−1 =

µ0(h− h0)(h− r(x̃1;q))

r′(x̃1;q)2(x̃2 − h)2 + (h− r(x̃1;q))2
≥ µ0

M1 +M2

(a1
3(q))−1 =

µ0(h− r(x̃1;q))

h− h0
≥ µ0

where

M1 = sup
q∈Q

sup
x1∈[−c,c]

|r′(x̃1;q)|2 M2 =

(
h− β

h− h0

)2

≥ 1.

This implies that, for G1
s,

min
{
(a1

1(q))−1, (a1
3(q))−1

}
≥ µ0

M1 +M2

. (47)

Similarly, noting that

(a2
1(q))−1 =

µ0h0r(x̃1;q)

r′(x̃1;q)2x̃2
2 + r(x̃1;q)2

≥ µ0β

h0(M1 + 1)

(a2
3(q))−1 =

µ0r(x̃1;q)

h0

≥ µ0β

h0

,

we obtain

min
{
(a2

1(q))−1, (a2
3(q))−1

}
≥ µ0β

h0(M1 + 1)
for G2

s. (48)

Choosing the constant as

α = min

{
µ0

M1 +M2
,

µ0β

h0(M1 + 1)
,

1

µ0

}

which is independent of q, we obtain the coercivity (43) of the transformed sesquilinear
form. To prove the boundedness, we note that, under the hypotheses [H-1] to [H-4], it
follows that

∣∣∣ai
j(q)

∣∣∣ ≤

sup

q∈q
sup
G̃i

s

∣∣∣ai
j(q)

∣∣∣2



1
2

(= M2) for i = 1, 2; j = 1, 2

∣∣∣ai
3(q)

∣∣∣ ≤ max

{
h− h0

µ0(h− β)
,
h0

µ0β

}
(= M3) for i = 1, 2

|a0(q)| ≤ ω0σc (= M4).
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Thus, by setting as
K2 = max

(
M2,M3,M4, µ

−1
0

)
,

we obtain the boundedness (44). To establish the continuity property, we note that, for
any q, q̃ ∈ Q,∣∣∣∣ã(q)(~̃ϕ, ~̃ψ) − ã(q̃)(~̃ϕ, ~̃ψ)

∣∣∣∣
≤

2∑
i=1

∣∣∣∣∣
∫∫

G̃i
s

[{
ai

1(q) − ai
1(q̃)

}(∂ϕ̃R

∂x̃1

∂ψ̃R

∂x̃1
+
∂ϕ̃I

∂x̃1

∂ψ̃I

∂x̃1

)

+
{
ai

2(q) − ai
2(q̃)

}(∂ϕ̃R

∂x̃1

∂ψ̃R

∂x̃2

+
∂ϕ̃R

∂x̃2

∂ψ̃R

∂x̃1

+
∂ϕ̃I

∂x̃1

∂ψ̃I

∂x̃2

+
∂ϕ̃I

∂x̃2

∂ψ̃I

∂x̃1

)

+
{
ai

3(q) − ai
3(q̃)

}(∂ϕ̃R

∂x̃2

∂ψ̃R

∂x̃2
+
∂ϕ̃I

∂x̃2

∂ψ̃I

∂x̃2

)]
dx̃1dx̃2

∣∣∣∣∣
+

∣∣∣∣∣
∫∫

G̃2
s

{a0(q) − a0(q̃)}
(
−ϕ̃Iψ̃R + ϕ̃Rψ̃I

)
dx̃1dx̃2

∣∣∣∣∣ .
With the hypotheses [H-1] to [H-4], it can be argued that ai

j(q)(i = 1, 2; j = 1, 2, 3) are

continuous in L∞(G̃i
s). We can thus infer the continuity of the bilinear form (41) with

respect to q ∈ Q. The proof has been completed.

Lemma 3: Let
~̃A(q) = ~A ◦ T (q)

be the transformed system state. Then, with the hypotheses [H-0] to [H-4], for every
q ∈ Q, there exists a unique solution

~̃A(q) ∈ Ṽ × Ṽ (49)

in the sense that
ã(q)(~̃A(q), ~̃ϕ) = L̃(q)(~̃ϕ) for ~̃ϕ ∈ Ṽ × Ṽ . (50)

Moreover the solution ~̃A(q) in the system on G = G0 ∪ G̃1
s ∪ G̃2

s is bounded in Ṽ × Ṽ
uniformly in q ∈ Q.

Proof: From Lemma-2 and from (30), (31), (41), and (42), we have that, for ~ϕ ∈ Vq×Vq

and ~̃ϕ ∈ Ṽ × Ṽ ,

α
∣∣∣~̃ϕ∣∣∣2

Ṽ ×Ṽ
≤ |a(q)(~ϕ, ~ϕ)| ≤ K2

∣∣∣~̃ϕ∣∣∣2
Ṽ ×Ṽ

and
a(q)(~ϕ, ~ϕ) = ã(q)(~̃ϕ, ~̃ϕ).

Taking into account that the constants α and K4 are independent of the unknown param-
eter q, this implies that the Vq × Vq-norm is equivalent to the norm of Ṽ × Ṽ uniformly
in q ∈ Q. Since, under the hypothesis (H-1),

∣∣∣L̃(q)(~̃ϕ)
∣∣∣ ≤ K4

∥∥∥~̃ϕ∥∥∥
L2(G)×L2(G)

,
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there exists the solution ~̃A in Ṽ × Ṽ in the sense of (50). The proof has been completed.

Lemma 4: With the hypotheses [H-0] to [H-4], q → ~̃A(q) is continuous from Q to
Ṽ × Ṽ .

Proof: Let qk → q in Q and let ~̃A(qk), ~̃A(q) be the corresponding solutions of (50).
Then, from (50), we have

ã(qk)(~̃A(qk), ~ϕ) − ã(q)(~̃A(q), ~ϕ) = [L̃(qk) − L̃(q)](~ϕ) for ∀~ϕ ∈ Ṽ × Ṽ .

Then we may rewrite

ã(qk)(~̃A(qk) − ~̃A(q), ~ϕ) + [ã(qk) − ã(q)](~̃A(q), ~ϕ) = [L̃(qk) − L̃(q)](~ϕ) for ∀~ϕ ∈ Ṽ × Ṽ .

Choosing as ~ϕ = ~̃A(qk) − ~̃A(q) in Ṽ × Ṽ and using (43) and (45) in Lemma-2, we find
that

α|~̃A(qk) − ~̃A(q)|2
Ṽ ×Ṽ

≤ dist(qk,q)
{
|χJs|L2(G) + |~̃A(q)|2

Ṽ ×Ṽ

}
|~̃A(qk) − ~̃A(q)|Ṽ ×Ṽ .

This yields the desired continuity, that is,

α|~̃A(qk) − ~̃A(q)|Ṽ ×Ṽ ≤ dist(qk,q)
{
|χJs|L2(G) + |~̃A(q)|2

Ṽ ×Ṽ

}
−→ 0 as qk → q.

The proof has been completed.

The observation for the transformed state ~̃A can be rewritten by

z̃(q;ω) = H̃~̃A(q;ω) (51)

where H̃ : Ṽ × Ṽ → Rm × Rm is given by

[
H̃~̃ϕ

]
i
= − 1

|Op|
∫
Op

(
∂ϕ̃R

∂x̃1
,
∂ϕ̃I

∂x̃1

)
dx̃1

∣∣∣∣∣
x̃2=−hf

(p = 1, 2, · · · , m).

Figure 9 depicts the procedures for gathering the measurement data from SQUIDs.

Lemma 5: With the hypotheses [H-0] to [H-4], the mapping q → z̃(q) is continuous
from Q to Rm × Rm.

Proof: Taking into account that the operator H̃ belongs to L(Ṽ × Ṽ ;Rm ×Rm) for each
q ∈ Q, we see that the above statement follows directly from Lemma-4.

The parameter estimation problem is formulated as follows:
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Figure 9: Data acquisition by SQUIDs

Shape Identification Problem SIDP:

Given the observed data {zd(ωi)}Mo
i=1 from applying the set of alternating injection currents

{Js cos(ωit)}Mo
i=1, then find the optimal q = q∗ which minimizes the fit-to-data functional

F (q) =
1

2

Mo∑
i=1

∣∣∣z̃(q;ωi) − zd(ωi)
∣∣∣2 (52)

with respect to q ∈ Q where Q is a compact set of RM .

Theorem 1: With the hypotheses [H-0] - [H-4], the problem SIDP has at least one
solution q∗ ∈ Q.

This follows immediately from the continuity properties given in Lemma 5 and the
compactness of Q.

5 Computational Method and Convergence Analysis

The computational scheme is based on the use of a finite Galerkin approach to construct
a sequence of finite dimensional approximating identification problems. To approximate
SIDP, we choose a sequence of finite dimensional subspace HN ×HN ⊂ Ṽ × Ṽ such that∥∥∥ΠN ~ϕ− ~ϕ

∥∥∥
Ṽ ×Ṽ

−→ 0 as N → ∞ for ~ϕ ∈ Ṽ × Ṽ (53)
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where ΠN is the orthogonal projection of

L̃2(G0 ∪ G̃1
s ∪ G̃2

s) × L̃2(G0 ∪ G̃1
s ∪ G̃2

s) onto HN ×HN (54)

The approximating system is defined for ~̃A
N

∈ HN ×HN by

ã(q)(~̃A
N

, ~̃ϕ
N

) = L̃(q)(~̃ϕ
N

) for ~̃ϕ
N ∈ HN ×HN . (55)

The observation output for the approximating system can be represented as

z̃N (q;ω) = H̃~̃A
N

(q;ω). (56)

Thus the computational method is formulated as follows:

Approximate Shape Identification Problem (ASIDP)N :

Find q̂N ∈ Q which minimizes

FN(q) =
1

2

Mo∑
i=1

∣∣∣z̃N (q;ωi) − zd(ωi)
∣∣∣2 (57)

Lemma 6: Let qN → q ∈ Q. Then

~̃A
N

(qN) −→ ~̃A(q) ∈ Ṽ × Ṽ . (58)

Proof: We have∥∥∥∥∥~̃A
N

(qN) − ~̃A(q)

∥∥∥∥∥
Ṽ ×Ṽ

≤
∥∥∥∥∥~̃A

N

(qN) − ΠN ~̃A(q)

∥∥∥∥∥
Ṽ ×Ṽ

+
∥∥∥∥ΠN ~̃A(q) − ~̃A(q)

∥∥∥∥
Ṽ ×Ṽ

.

From (53), it suffices to prove

∥∥∥∥∥~̃A
N

(qN) − ΠN ~̃A(q)

∥∥∥∥∥
Ṽ ×Ṽ

→ 0 for qN → q ∈ Q as N → ∞.

We obtain

ã(qN)(~̃A
N

(qN ), ~ψN) − ã(q)(~̃A(q), ~ψN) = [L̃(qN ) − L̃(q)](~ψN) for ~ψN ∈ HN ×HN .

Furthermore we have

ã(qN)(~̃A
N

(qN) − ΠN ~̃A(q), ~ψN) + ã(qN )(ΠN ~̃A(q) − ~̃A(q), ~ψN)

+[ã(qN) − ã(q)](~̃A(q), ~ψN) = [L̃(qN) − L̃(q)](~ψN ).
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Choosing ~ψN = ∆N = ~̃A
N

(qN) − ΠN ~̃A(q), we find that

α
∥∥∥∆N

∥∥∥2

Ṽ ×Ṽ
≤ K2

∥∥∥∥ΠN ~̃A(q) − ~̃A(q)
∥∥∥∥

Ṽ ×Ṽ
‖∆N‖Ṽ ×Ṽ

+dist(qN ,q)

∥∥∥∥~̃A(q)

∥∥∥∥
Ṽ ×Ṽ

‖∆N‖Ṽ ×Ṽ +Mdist(qN ,q)‖∆N‖Ṽ ×Ṽ .

Consequently, we obtain

α
∥∥∥∆N

∥∥∥
Ṽ ×Ṽ

≤ K2

∥∥∥∥ΠN ~̃A(q) − ~̃A(q)
∥∥∥∥

Ṽ ×Ṽ
+ dist(qN ,q)

(∥∥∥∥~̃A(q)
∥∥∥∥

Ṽ ×Ṽ
+M

)
.

Thus, given any qN → q ∈ Q, it follows that ∆N → 0 as N → ∞.

Since it can be shown that the approximate solution ~̃A
N

depends continuously on q,
solutions exist to the problem (ASIDP)N for each N . Having established the results of
Lemma 6, we can now use standard arguments [10, 11] to prove the following theorem.

Theorem 2: Suppose that the hypotheses [H-0] to [H-4] hold and let q̂N be a solution

of the problem (ASIDP)N . Then the sequence
{
q̂N
}

admits a convergent subsequence

q̂Nk with q̂Nk → q∗ as Nk → ∞. Moreover, q∗ is a solution of the problem (SIDP).

We now turn to a particular implementation of the method presented above. Let {BM
i (x1)}M

i=1

be the series of B-spline functions ([12]). To characterize the crack depth, the shape func-
tion r(x1) is represented as

x2 = r(x1;q) =
M+1∑
i=0

qM
i B

M
i (x1) for |x1| ≤ c < di (59)

with qM
0 = qM

M+1 = h0. In order to ensure the compactness of the parameter set Q ([H-0]),
we impose constraints,

Q =
{

q ∈ RM | β ≤ qi ≤ h0 i = 1, 2, · · · ,M
}
. (60)

Remark: The defect shape function satisfies the hypotheses [H-1] to [H-4].

For the state approximation, let us choose ∪∞
N=1{ψN

i }N
i=1 as a set of basis functions in

Ṽ . (In the calculations reported on below, we used piecewise linear finite elements.)
That is, for each N , {ψN

i }N
i=1 are linearly independent and ∪Nspan{ψN

i }N
i=1 is dense in

L2(G0 ∪ G̃1
s ∪ G̃2

s). Then the approximate subspaces can be chosen as ĤN = HN × HN

where HN = span{ψ̂N
i }2N

i=1. Thus we can reconstruct the basis function by

ψ̂N
i =




(ψN
i , 0) for i = 1, 2, · · · , N

(0, ψi−N) for i = N + 1, N + 2, · · · , 2N
.
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An approximate solution can be then defined by

~̃A
N

:=
2N∑
i=1

wN
i ψ̂

N
i

where the coefficient vector wN = {wN
i }2N

i=1 is chosen such that, for j = 1, 2, · · ·2N ,

ã(q)(
2N∑
i=1

wN
i ψ̂

N
i , ψ̂

N
j ) = L̃(q)(ψ̂N

j ).

Hence the system can be approximated by solving the linear system

KN(q)wN = fN(q) (61)

where
[KN(q)]i,j := ã(q)(ψ̂N

i , ψ̂
N
j ) for i, j = 1, 2, · · · , 2N

and where
[fN(q)]j := L̃(q)(ψ̂N

j ) for j = 1, 2, · · · , 2N.
The corresponding output can be computed as

z̃N (q;ωi) = H̃NwN(q;ωi) (i = 1, 2, · · · ,Mo) (62)

where
[H̃N ]i,j := [H̃N ]iψ̂

N
j for i = 1, 2, · · · , m; j = 1, 2, · · · , 2N.

Our computational algorithm is to seek the parameter q̂N ∈ Q which minimizes

FN(q) =
1

2

Mo∑
i=1

∣∣∣H̃NwN(q;ωi) − zd(ωi)
∣∣∣2. (63)

6 Computational Experiments

In the numerical experiments, the window, the suspect region, and the size of conducting
material sample in Fig. 9 were preassigned as

Window (domain) : d = 0.350[m] h = 0.240[m]
Suspect region : c = 0.025[m]
Conducting Material : dc = 0.025[m] h0 = 0.020[m]

Assuming that the sample material was a carbon fiber reinforced plastic (CFRP), the
conductivity σc and the permeability µ0 were taken as σc = 1 × 106 [S/m] and µ0 =
4π × 10−7 [H/m], respectively. In the numerical experiments, we assume that a single
frequency was used, i. e.,, M0 = 1 in (57). The alternating current Js and the applied
frequency f = ω/2π were respectively given by Js = 40 [mA] and f = 100[Hz]. The
number of observation points was set as m = 30 and the set of scanning positions of
SQUID coil probe given by (14) were chosen as

x̄1
i = −r + oi − ε x̄2

i = −r + oi + ε (i = 1, 2, · · · , 30)
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Figure 10: The decomposition of sample material

where
oi = 0.0125 + 0.025i, i = 1, 2, · · · , 30,

and where ε denotes a sufficiently small positive value to restrict the effective area of
the SQUID pick-up coil. The scanning line in Fig. 9 were set as r = 0.0375[m] and
hf = 0.003[m], respectively.

To discretize the system model by a finite-element method, the reference domain
G0∪G̃1

s∪G̃2
s was divided into a finite number of elements {ek}Ke

k=1 and a number Ne(> Ke)
of nodes defined by {x̃i = (x̃i

1, x̃
i
2)}Ne

i=1 were selected in the reference domain. Each element
is preassigned as an axiprallel rectangle with nodes at the vertices (see e. g., [13]). The
number of finite elements and nodes in the numerical experiments reported in the sequel
were set asKe = 3000(= 50×60) andNe = 3061(= 51×61) respectively. Figure 10 depicts
the decomposition of the conducting material treated here. The number of elements and
nodes in the material were taken as 200(= 10 × 20) and 231(= 11 × 21), respectively.
Integration in the element matrices KN(q) and the element vector fN(q) were computed
numerically by a Gauss-Legendre formula.

For these test example computations, simulated data {zd} were generated by first
solving the finite-Galerkin model (61) and (62). A series of random Gaussian noise were
added to the numerical solutions, thereby producing simulated noisy data for the algo-
rithm. The essential difficulties in (ASIDP)N come from the fact that real data are
heavily corrupted by observation noise and it often occurs that the corresponding model
output data are far from those practical data. Tikhonov regularization is one possible
technique for avoiding these serious difficulties in computational efforts. To this end, we
adopt Tikhonov’s regularization techniques to our inverse algorithm. More precisely, a
regularization term is added to the cost functional (63) (see [14] for more details):

FN
η (q) = FN(q) +

η

2

∣∣∣Lcq
∣∣∣2 (64)
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where

[Lc]i,j =




1 −1 0 · · · · · · 0
0 1 −1 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1 −1




∈ R(M−1)×M

In order to select the “optimal” parameter η, we used L-curve analysis (see [15, 16]). The
outline of this approach in these experiments is summarized as follows:

[L-curve analysis] : Given η ∈ [0,∞), solve

FN
η (q̂(η)) = min

q
FN

η (q), (65)

for each fixed η ∈ [0,∞), collect the points

(∣∣∣z̃N (q̂η;ω) − zd(ω)
∣∣∣2, ∣∣∣Lcq̂η

∣∣∣2) (66)

and plot the above points. Then the ”optimal” parameter η0 can be chosen as a point
that lies in the ”corner” of the resulting curve.

Evaluation of the vector gradient of the cost function (65) is the computationally expensive
part of our algorithm. This can be accomplished by using a co-state approach. For the
numerical results reported in this paper, we used the gradient projection method ([17])
which is a particularly useful technique for optimization problems with linear inequality
constraints such as those in (60). The iterative algorithm for finding q̂N in this experiment
is the same as that in [5].

In our test examples, we considered corrosion shape identification for conducting mate-
rial samples with corrosion-like damage (of varying corrosion shape) as depicted in Fig. 6.
The parameter function (59) to be identified is a piecewise linear spline function. We
denote the knot sequence for r by

−0.025 = τM
0 < τM

1 < · · · < τM
M+1 = 0.025

and the unknown parameter vector qM = {qM
i }M

i=1 is then given by

qM
i = r(τM

i ) for i = 1, 2, · · · ,M.

For the computational experiments, the dimensions of unknown parameter vector q was
taken as M = 19. The lower bound in (60) was chosen as β = 0.001. The initial guesses
for the parameters were given by

qM
i = h0(= 0.02) (i = 1, 2, · · · ,M)

which imply that there exists no corrosion in the material. Carrying out a number of
numerical experiments, we checked the robustness of the algorithm with respect to noise
for various kinds of corrosion type damages. Here we summarize the numerical results for
two typical examples.
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Figure 11: True function and estimated function in Example 1 (noise free)

Example 1: In this test example, we deal with the shape recovery for the CFRP sam-
ple with a symmetric type of corrosion as shown in Figure 11. The values of the true
parameters were given by

q19
1 = q19

19 = 0.0195 q19
2 = q19

18 = 0.0190 q19
3 = q19

17 = 0.0185 q19
4 = q19

16 = 0.0180

q19
5 = q19

15 = 0.0175 q19
6 = q19

14 = 0.0170 q19
7 = q19

13 = 0.0165 q19
8 = q19

12 = 0.0160

q19
9 = q19

11 = 0.0155 q19
10 = 0.0150.

The estimated parameters are listed in Table 1 using data that is with noise free, and with
data containing 5%, 10%,and 20% relative noise. Fig. 12 depicts the L-curve for 5% noise
case and ηo = 5.0 × 10−12 was chosen as the optimal regularization parameter in (64).
The successful results is demonstrated in Fig. 13 that depicts the estimated shape using
Tikhonov regularization with the optimal selection ηo and without the regularization.

Example 2: In this example, we deal with a somewhat more difficult case as compared
to that of Example-1. The type of damage was given by a non-symmetric function as
illustrated in Figure 14. We set the same dimension for the unknown parameter vector as
in Example 1 and we also used the same knot sequence. The values of the true parameters
were preassigned in

q19
1 = 0.0195 q19

2 = 0.0190 q19
3 = 0.0185 q19

4 = 0.0180 q19
5 = 0.0175

q19
6 = 0.0170 q19

7 = 0.0165 q19
8 = 0.0160 q19

9 = 0.0155 q19
10 = 0.0150
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Table 1: True value and estimated values in Example 1

q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8 q̃9 q̃10 q̃11
True Value (×10−2) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.55

Initial Guess (×10−2) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Noise iteration 10 1.97 1.93 1.89 1.84 1.79 1.74 1.69 1.64 1.58 1.53 1.58
Free iteration 20 1.96 1.92 1.87 1.82 1.77 1.72 1.66 1.61 1.56 1.48 1.56

(×10−2) iteration 30 1.95 1.91 1.86 1.81 1.76 1.70 1.66 1.61 1.56 1.48 1.56
5% iteration 10 2.00 1.99 1.96 1.90 1.83 1.76 1.69 1.61 1.57 1.59 1.62

Noise iteration 14 2.00 1.99 1.96 1.90 1.83 1.75 1.67 1.59 1.50 1.48 1.58
(×10−2)

10% iteration 8 2.00 1.99 1.96 1.91 1.85 1.78 1.71 1.63 1.63 1.68 1.69
Noise iteration 13 2.00 1.99 1.96 1.90 1.83 1.75 1.66 1.57 1.42 1.53 1.72

(×10−2)
20% iteration 10 2.00 2.00 1.99 1.95 1.90 1.84 1.78 1.72 1.74 1.80 1.82
Noise iteration 13 2.00 2.00 1.99 1.95 1.89 1.82 1.75 1.67 1.57 1.70 1.86

(×10−2)

q̃12 q̃13 q̃14 q̃15 q̃16 q̃17 q̃18 q̃19
1
19

∑
i≤19 |qi − q̂i|2

True Value(×10−2) 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95
Initial Guess(×10−2) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Noise iteration 10 1.64 1.69 1.74 1.79 1.84 1.89 1.93 1.97 1.26 × 10−5

Free iteration 20 1.61 1.66 1.72 1.77 1.82 1.87 1.92 1.96 2.62 × 10−6

(×10−2) iteration 30 1.61 1.66 1.71 1.76 1.81 1.86 1.91 1.95 9.19 × 10−7

5% iteration 10 1.64 1.69 1.77 1.84 1.89 1.94 1.97 2.00 5.11 × 10−5

Noise iteration 14 1.63 1.65 1.73 1.82 1.90 1.94 1.97 2.00 4.16 × 10−5

(×10−2)
10% iteration 8 1.69 1.73 1.80 1.87 1.92 1.95 1.97 1.99 9.45 × 10−5

Noise iteration 13 1.64 1.62 1.73 1.85 1.92 1.96 1.97 1.99 7.19 × 10−5

(×10−2)
20% iteration 10 1.81 1.82 1.86 1.91 1.95 1.98 1.99 1.99 2.62 × 10−4

Noise iteration 13 1.81 1.74 1.80 1.88 1.95 1.99 2.00 1.99 1.96 × 10−4

(×10−2)

25



0

5e-06

1e-05

1.5e-05

2e-05

2.5e-05

1.5e-16

=5.0 10-120
R

eg
ul

ar
iz

at
io

n 
te

rm

Residual norm
7.0e-16

η x

Figure 12: Tikhonov ”L”-curve in Example 1 (5% noise)
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Figure 13: True function and estimated function in Example 1 (5% noise)
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Figure 14: True function and estimated function in Example 2 (noise free)

q19
11 = 0.0145 q19

12 = 0.0140 q19
13 = 0.0135 q19

14 = 0.0130 q19
15 = 0.0125

q19
16 = 0.0120 q19

17 = 0.0140 q19
18 = 0.0160 q19

7 = 0.0180.

The dimension of the unknown parameter vector and the number of observation points
were chosen the same as in Example 1. Table 2 shows the estimated parameters for
the data, that is, with noise free, and data with 5%, 10%, and 20% relative noise. Fig-
ure 15 depicts the Tikhonov L-curve for 5% noise case. Estimated corrosion shapes using
Tikhonov regularization and without the regularization were demonstrated in Fig. 16.
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Figure 15: Tikhonov ”L”-curve in Example 2 (5% noise)
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Figure 16: True function and estimated function in Example 2 (5% noise)
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Table 2: True value and estimated values in Example 2

q̃1 q̃2 q̃3 q̃4 q̃5 q̃6 q̃7 q̃8 q̃9 q̃10 q̃11
True Value(×10−2) 1.95 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45

Initial Guess(×10−2) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Noise iteration 10 1.99 1.97 1.94 1.90 1.86 1.81 1.77 1.72 1.67 1.62 1.57
Free iteration 20 1.97 1.94 1.89 1.84 1.79 1.73 1.68 1.63 1.59 1.55 1.52

(×10−2) iteration 190 1.92 1.93 1.85 1.80 1.74 1.72 1.63 1.58 1.54 1.49 1.45
5% iteration 9 2.00 1.99 1.99 1.91 1.92 1.80 1.80 1.70 1.66 1.63 1.61

Noise iteration 12 2.00 2.00 1.97 1.93 1.87 1.81 1.75 1.68 1.62 1.57 1.55
(×10−2)

10% iteration 10 2.00 2.00 1.96 1.94 1.87 1.83 1.76 1.72 1.61 1.61 1.64
Noise iteration 13 2.00 2.00 1.97 1.93 1.87 1.81 1.75 1.68 1.60 1.50 1.59

(×10−2)
20% iteration 10 2.00 2.00 1.97 1.94 1.87 1.83 1.74 1.69 1.52 1.65 1.73
Noise iteration 13 2.00 2.00 1.98 1.93 1.87 1.80 1.73 1.63 1.48 1.49 1.78

(×10−2)

q̃12 q̃13 q̃14 q̃15 q̃16 q̃17 q̃18 q̃19
1
19

∑
i≤19 |qi − q̂i|2

True Value(×10−2) 1.40 1.35 1.30 1.25 1.20 1.40 1.60 1.80
Initial Guess(×10−2) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
Noise iteration 10 1.53 1.47 1.26 1.40 1.52 1.60 1.72 1.85 1.76 × 10−4

Free iteration 20 1.48 1.38 1.22 1.33 1.52 1.43 1.66 1.80 7.86 × 10−5

(×10−2) iteraton 190 1.42 1.36 1.29 1.19 1.38 1.35 1.55 1.75 2.43 × 10−5

5% iteration 9 1.59 1.52 1.37 1.47 1.62 1.70 1.78 1.92 3.13 × 10−4

Noise iteration 12 1.58 1.52 1.31 1.29 1.52 1.72 1.79 1.93 2.24 × 10−4

(×10−2)
10% iteration 10 1.63 1.51 1.41 1.55 1.70 1.77 1.80 1.92 4.08 × 10−4

Noise iteration 13 1.66 1.54 1.31 1.40 1.65 1.80 1.81 1.91 3.45 × 10−4

(×10−2)
20% iteration 10 1.66 1.53 1.55 1.68 1.79 1.85 1.85 1.91 6.17 × 10−4

Noise iteration 13 1.73 1.49 1.40 1.58 1.78 1.88 1.85 1.90 5.71 × 10−4

(×10−2)
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7 Concluding Remarks

A computational method was considered for the nonlinear output least square problem
arising in electromagnetic nondestructive testing based on SQUID measurements. An
important feature of the problem treated here was the use of a method of mapping tech-
nique for identifying the corrosion shape on the back surface of the conducting material.
This method was effectively used both in the theoretical convergence for approximating
identification problems and in the related computational methods. The practical utility of
our computational algorithm is demonstrated through a series of numerical experiments
as summarized in the previous section. Carrying out a large number of other numerical
tests in addition to those reported for Examples 1 and 2, we report that the algorithm
performed quite well for various noise levels. In the numerical experiments, robustness of
the algorithm with respect to observation noise in the simulated data was demonstrated.
A graphical method was also tested for determining the Tikhonov parameter by using the
L-curve method. In all cases, our computational packages performed very well up to 5%
noise level. We are currently pursuing computational experiments with laboratory data.
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