The Immersed Interface Method for Elasticity Problems
with Interfaces*

Xingzhou Yang' Bo Lit Zhilin Li?

Abstract. An immersed interface method for solving linear elasticity problems with
two phases separated by an interface has been developed in this paper. For the
problem of interest, the underlying elasticity modulus is a constant in each phase
but vary from phase to phase. The basic goal here is to design an efficient numerical
method using a fixed Cartesian grid. The application of such a method to problems
with moving interfaces driving by stresses has a great advantage: no re-meshing is
needed. A local optimization strategy is employed to determine the finite difference
equations at grid points near or on the interface. The bi-conjugate gradient method
and the GMRES with preconditioning are both implemented to solve the resulting
linear systems of equations and compared. Numerical results are presented to show
that the method is second-order accurate.

Keywords: elasticity, interfaces, jump conditions, finite differences, the immersed
interface method.
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1 Introduction

Elasticity problems of multiple phase elastic materials separated by phase interfaces
often arise in materials science [18, 21]. Two important examples of such problems
occur in the microstructural evolution of precipitates in an elastic matrix due to the
diffusion of concentration and in the morphological instability due to stress-driven
surface diffusion in solid thin films, cf. e.g., [2, 10, 13] and the references therein.
The understanding of these physical processes is crucial to improve material stability
properties, and in turn to develop new and advanced materials that have applications in
automobile manufacture, aircraft industries, and modern communication technologies.
However, solving such elasticity problems are often very difficult due to complicated
geometries, multiple components, and nonlinearities that appear in these problems. For
these reasons, there has been a great interest recently, in all materials science, scientific
computing, and applied mathematics communities, in developing efficient and accurate
numerical techniques for elasticity problems with interfaces separating multiple phases.
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In this paper, we consider a two-dimensional problem that can arise from many
modeling situations such as two-phase elastic plates in the setting of plane strain or
plane stress [5, 9, 20]. We assume that the elastic material occupies a bounded domain
Q C R? with boundary 'y = 99Q. For our computational purpose, we assume that the
domain Q is rectangular. The two phases of the material occupy regions Q7 and Q~,
respectively, so @ = Qt UQ~ and QT N Q~ = . We denote by I' = QF N Q— the
interface separating these two phases, cf. Figure 1.1.

[y =092
Figure 1.1: The geometry of the underlying problem.

The equilibrium equation, interface conditions on I', and the boundary conditions
on Iy [5, 9, 18, 20] are:

V.o+F=0 inQtuUQ,
[ul=0 onT,
[on] =T onT,

u=ug on Iy,

AA,.\,.\
S W N
N N’ S’ N’

where o is the stress tensor, F = (Fy, F»)? : O — R? is the body force which is known
(a superscript T denotes the transpose), u = (u1,up)” : Q = R? with u; = u(z,y) and
uo = ug(x,y) is the displacement field, for a function v, [v] = v+ — v~ with v* = v|q+
denotes the jump of v across the interface, n = (n;,n2)7 is the unit normal vector
to the interface I', pointing from the — phase to the + phase, T = (¢,1)" is a given
vector-valued function on the interface I' which measures the jump of the traction
on across the interface I', and ug is a given, vector-valued function that represents the
displacement on the boundary I'y. The jump condition (1.2) means that u is continuous
across the interface. It indicates that the underlying material has no fracture. Notice
that we have introduced a generally nonzero data T for the jump of the traction in
(1.3). This will be useful to model more general physical situations.

We assume that the material is isotropic. So, in the setting of plane deformation,
the stress-strain relation is given by

o = Mr(e)] +2ue
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()\_|_2u)8u1 +)\8U2 (8u1 +8u,2)
- o Ay ) (1.5)
p(G+%2) A4+
where
ouy 1 (0ur Oua
1 | i)
=5 (Vu+ (Vu)l) = (am N (,m) @ (1.6)
2 Ay
is the linear strain, I is the 2 x 2 identity tensor,
E Ev
- d A=
F=sa+y ™ 1+ v)(1—20)

are the Lamé constants, F is Young’s modulus, and v is Poisson’s ratio.

In modeling a two-phase elastic material, we assume that all the material parameters
U, A, E, and v are piecewise constants. In particular, we assume that the shear modulus
and Poisson’s ratio are given, respectively, by

pt in QT vt in QF
u:{u_ in Q™ and V:{u_ inQ™
where all put, p—, vt, v~ are positive constants. Usually, Poisson’s ratio vT,v~ €
(0,0.5) (cf. [1, 11]).
We let f = —F1/(u+ ) and g = —F»/(u + A), and equations (1.1) and (1.3) can
be written as

2(1 — u)% +(1—2v) %2;21 + g;—g?y = f(z, 1), (1.7)
(1- 21/)£;22 +2(1 - V)a;—;; g;—fg; = g(z,y), (1.8)
O
(33 2 (el o o

where [-] is defined as the jump of the quantity between the outside and the inside of
the interface.

There exist several numerical methods for solving general elasticity problems that
do not involve interfaces. Among them, the finite element method and the boundary
integral or boundary element method appear to be very successful, cf. e.g., [3, 19, 23]
and the references therein. However, in treating moving interface problems, the use
of fixed Cartesian grids often shows advantages in practical computations [12]. It is
therefore desirable to develop new, efficient methods based on finite difference schemes
on fixed Cartesian grids for our underlying elasticity problems with interfaces. This is
our primary goal of the work. Our idea is to use the immersed interface method [22,
15, 16] to derive a finite difference scheme for the elasticity problem with an interface.
This is a natural strategy, since the geometrical complexity of the problem is local.

The curved interface in the underlying problem brings up several substantial diffi-
culties in the development and analysis of numerical schemes.
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e Discretization. With a uniform Cartesian grid, the interface is typically not
aligned with the grid but rather cuts between grid points. Thus, for grid points
near the interface, the stencil of a standard finite difference scheme will contain
points from both sides of the interface. Due to the non-smoothness of u; and
uo, differentiating u; and ug across the interface using standard finite difference
schemes will not produce accurate approximations to the derivatives of u1 and us.
The cross derivative terms in the differential equations need special treatments
in the discretization on the grid points near or on the interface.

e Solving the system of discrete linear equations. Because of the presence of
interfaces and non-smoothness in the solution, the system of discrete equations
is no longer symmetric or positive definite. The structure of the system makes it
hard to find an efficient solver.

e Error analysis. Due to the complexity of interfaces and the non-smoothness in
the solutions, it is difficult to perform convergence analysis in the conventional
way.

Our main contribution of this paper is the development of the immersed interface
method (IIM) to the underlying elasticity problems with interfaces. The key in our
method is to utilize the local coordinate transformation to carefully analyze the rela-
tions of quantities from one side to the another. Such relations shall lead us to find
accurate finite difference schemes for grid points near or on the interface.

The paper is organized as follows. In Section 2, we describe our algorithm. In
Section 3, we introduce local coordinate transformation that is essential to the devel-
opment of our method. In Section 4, we describe interface relations. In Section 5, we
derive the finite difference scheme for irregular grid points. The linear solvers are also
discussed. In Section 6, we present our numerical results. Finally, in Section 7, we
draw conclusions.

2 Description of the Algorithm

For simplicity, we assume that the domain 2 is a square: Q = (a,b) x (¢, d) with
d—c=b—a. Let n > 1 be an integer and h = (b —a)/n = (d — ¢)/n. Let

l‘i:(l+ih, yJ:c-|—_7h,’ 1,7=20,---,n.

We wish to solve the problem using a finite difference method on the uniform Cartesian
grid. Our result will be a finite difference scheme of the form

Zk: ke (U1)itigg+in + zk:ﬁk(UZ)i—f-ik,j—i-jk = fij +C},

Ekl W (U1)itig it Xkl Or(Un)itingtin = 9ij +C @1)
at any grid point (z;,y;), where (U1); j and (Us); ; approximate ui(z;,y;) and ua(z;, y;),
respectively, fi; = f(zi,v;), 9i; = 9(zi,y;), and all ag, By, vk, and dj are undetermined
coefficients. Each sum over & in (2.1) involves only finite number of grid points that
are centered at (z;,y;) (at most nine grid points are involved in our algorithm), all
ik, jk € {—1,0,1}. The coefficients oy, Bk, Yk, and dx and the indices i, jx will depend
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on (7,7). We omit the dependency for simplicity. By finding these coefficients properly,
we can obtain a second-order accurate finite difference scheme.

2.1 Classification of grid points

Before we explain the finite difference scheme, we classify all grid points into two
categories: regular and irregular. We say a grid point (z;,y;) is regular (Figure 2.1 (a))
if the interface I' does not cut through any points in the standard nine point stencil
centered at (z;,7;). We say a grid point is irregular, if it is not regular. An irregular
grid point is further classified as type I, if the interface crosses the five point stencil
centered at this point (Figure 2.1 (b)), and type II, if otherwise (Figure 2.1 (c) and

())-

(a) regular grid point (b) type I irregular grid point

O—CO—C0Q 60—

interface
\//

06— &—60—=©®

® O—0 O0—@—0

(c) type II irregular grid point | (d) type II irregular grid point

interface
—@—=0© |

inside

outside

Yface
@ —0® O

1

Figure 2.1: Classification of grid points.

At a regular grid point (Figure 2.1 (a)), we use the standard central finite difference
scheme. At an irregular grid point (see Figure 2.1 (b)-(d)), we derive a finite difference
scheme according to how the interface cuts through the five-point stencil.
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2.2 Discretization at regular grid points

At a regular grid point (z;,y;), we have the following approximations of the second-
order partial derivatives for a given smooth function u

w(x;—1,Y5) — 2u(z;, yi) + u(xiz1,y;
uww(xuy]) _ ( i—1 y]) (}:2 y]) ( i+1 y]) +O(h2),
w(zi, Yj—1) — 2u(ws, y;) + ulzi, yj
uyy(xz;y]) _ ( i Yj 1) (hZ2 y]) ( 7 y]+1) +O(h2),
uwy(xi’yj) _ U($i+1,yj+1) + U($i1’yj1)4;2U(xibyj+l) - u($i+1>yj71) + O(h2),

cf. Figure 2.2. These lead to the following discretization of (1.7) and (1.8):

2(1h; v) ((Ul)i—l,j + (Ul)'H—l,j) + 1;7221/ ( (Ut)ij—1 + (Ul)z',j+1)
w(m) ij T 4h2 ((UQ)H-I,JH + (U2)i-1,j-1

_(U i—1,5+1 — U2 z—|—1,] 1) fzya
(2.2)

2)
1;17221/ <(U2)z>1,y (U2)is1 J) T 1 = ((UQ) g1+ (T2); ’]H)
(

3 —4v
—Q(Uﬂ irj 4h2( U)it1,5+1 + (U1)i-1,5-1

h2
—(U1)i-1,41 — (Ul)i+1,j71) = 9ij;

where (U); ; stands for the approximation of u(z;,y;), and in this case Cilj = ij =0,

cf. (2.1).
O—O®—©

O——@—~0

Figure 2.2: Discretization at a regular grid point.

2.3 Discretization at type I irregular grid points

Following [15] and [16], we use a nine-point stencil for u; and ug in both equations of
(2.1) at such a grid point (z;,1;) (cf. Figure 2.1 (b)). To determine the coefficients
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of the finite difference equations, we first choose a point (z} ,y;) on the interface T
that is near (z;,y;). We replace (U1)itiy,j+4, and (U2)iyiy,j+j, With the exact solution
U1 (Titig> Yjti,) a0d U2(Titiy, Yj+s,) in (2.1) and use the Taylor expansion at (z7,y;)
for each term in order to set up a system of equations for the coefficients. Since the
solution from both sides is involved, we use the superscript — and + to denote the
limiting values of a function from one side or the other. For example, if the point
(zi,y;) is located inside the interface, then we can expand u(z;,y;) to get

_ _ _ 1 -
U(.’I)z’,’yj) = U +ucc (:EZ - $;k) +uy (yj - y_;k) + Euzz(xl - 3":()2

]- — E3 — X X
5ty (U — U7)° + gy (@i — 2 (Y5 — ) + O(R?).

If we do such expansion at each grid point used in the finite difference equations in

(2.1), then the local truncation errors Tzlj and Tfj (for the first and second equation

respectively) can be expressed as a linear combination of all the values uf, ui, uliy,

+ +

+
Uigg ** "5 Uy and Udgy-

Next, we express all the values from + side, u;, ufx, ufy, R u;yy, ug;y, in terms
of the values on the — side, uy, uj,, Ugy, *y Uggyy Ugyyy Uggy- 1O do so, we need to
use the interface conditions,

uf =uy,  ug =y, (2.3)
2ut + 0t () + + +
T9F ((1 —v)(wm); +v (uz)y) ni+p ( (u1)y + (ug)x) N9
2u~ _ _ _ _
= (=) )z + v () ) m
7 (g + (wa); ) ma + &, (2.4)

+

wh ((m); + (u2)§r) L

o (v ()i + (1 =) (wa)f ) mo

= (w0 + ()i ) o+ e (v ()

+(1- y—)(ug)y—) na + 1. (2.5)

To obtain all the coefficients ag, Bk, Yk, and & in the finite difference equations (2.1),
more interface relations are needed. Differentiating the above equations and manipu-
lating the results allow us to perform the desired elimination, as detailed in Section 4.
In order to do so, it is very convenient to first perform a local coordinate transformation
in the normal direction ¢, and the tangential direction n of I' at (z7,y;).

Once the local truncation errors TZE and TZQJ are expressed as a linear combination
of the values from just one side, say u;, uy,, Uy Upggy Upyyy Upgys Ug o Ugg, Ugy, Uggy,
Ugyys Uggy, WE MuUst Tequire that the coefficient of each of these terms to vanish in order
to match the partial differential equation up to second order derivative terms. This
gives us a system of twelve linear equations from the first and second finite difference
equations respectively. Nine-point stencil will be used to obtain a solvable system, see
Section 5 for all these derivations.
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2.4 Discretization at type II irregular grid points
For a type II irregular grid point (cf. Figure 2.1 (c) and (d)), we use

e five-point stencil for u; and seven-point or four-point stencil for the cross deriva-
tive of ug in the first equation, and

e five-point stencil for uo and seven-point or four-point stencil for the cross deriva-
tive of w1 in the second equation.

Therefore equations (1.7) and (1.8) have the following form:

2(17;'/) (U1)i-1,5 + (U1)it1,5) + ¥ (U)ig1+ Un)ig
A h
—4v
_%(Uﬂm + 3 Be(Uo)iiy gt = figs (26)
k
1;722” ( (Uz)i-1,; + (Uz)i+1,j) + 2(27;1/) ( (U2)ij—1 + (U2)i’j+1)
— 4v
_%(Uﬁm‘ + > WU iviggtie = is- 21)
k

To determine the coefficients 8y and vy, in (2.6) and (2.7), we use four-point stencil.
For the grid points shown in Figures 2.1 (a) and (b), we can apply the following
expansion for a smooth function u to derive our finite difference scheme

u(l) — u(Z) — u(4) + u(s)

tay = —~ +O(h) (2.8)
W) };uw) 9 o 29
_ -l h;“m T u® +O(h) (2.10)
) };uw) O o -

where u(?) denotes u value at the point numbered i in Figure 2.1. Which formula from
(2.8) ~ (2.11) to use depends on how the interface crosses the nine -point stencil. In
the specific case in Figure 2.1 (d), we use the expansion (2.10) or (2.11), where points
numbered (4) to (9) are in the same side of the interface. However, when one grid point
is on the other side of the other eight grid points in the nine-point stencil as shown in
Figures 2.3 (a) and (b), we apply the following formula for a smooth function u. In
this case we have

u(2) — u(3) + u(4) — 2u(5) + u(G) — u(7) —+ u(8)

Uy = o + O(h?) (2.12)
D 4@ — 4@ 4 246) _ y® _ 4 ® L y®
_ W mur T +22“h2 VTR L om?). (213)

Whether we use (2.12) or (2.13) depends on the geometry. We use, for example, the
formula (2.12) in Figure 2.3 (a), and (2.13) in Figure 2.3 (b).
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00 O/ 09
A interface

(1)\\ &—0@ 6—@—0
(@) (b)

Figure 2.3: An illustration of the geometry of type II irregular grid points.

3 Transformations of Local Coordinates

For each type I irregular point (z;,7;), we need to find a point (z], y;) on the interface.
We usually take this point as the projection of (z;,y;) on the interface if the interface
is smooth at this point. Otherwise we can take any point on the interface where the
interface is smooth.

After (z, y;‘) is selected, we apply the local coordinate transformation at this point.
Let 0 be the angle between the x—axis and the normal direction, pointing in the
direction of the + side, cf. Figure 3.1. The transformation is defined as follows:

{ £ = (z—xj) COS'(9) + (y — yj) sin(6), (3.)
n = —(z—zj)sin(0) + (y — yj) cos(0).

Under this local coordinate transformation, the governing equations in (1.7) and (1.8)
become

(cos? 0 + 1 — 2v)urge — 28in 6 cos Qurg, + (sin® @ + 1 — 20)uyy,
+sin 6 cos Ougge + (cos” O — sin? @)ugg, — sin 8 cos Qug,y, = f, (3.2)
(sin® 0 + 1 — 2v)ugge + 25in 0 cos Qugg, + (cos® 6 + 1 — 2v)ug,y,
+5in 6 cos Ouige + (cos? O — sin? O)uyg, — sind cos Ouiy, = g, (3.3)

where f = f(z,y) = f(&,n), 9 = g(=,y) = §(§,n) for simplicity.

interface

Figure 3.1: The local coordinate transformation.
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4 Interface Relations

We consider a fixed point (x;‘,y;‘) and define a new &-n coordinate system based on
the directions normal and tangential to I' at this point using the formulas (3.1). In
a neighborhood of this point, the interface can be parameterized as £ = x(n), n = 7.
Notice that x(0) = 0 and x'(0) = 0 provided that the interface is smooth at (z7,y;).
We need to express all the quantities with the superscript + in terms of those quantities
with the superscript —.

First, using the same approach as that in [15] and [16], we easily get the following
jump conditions for u; and wus,

w (x(1), 1) lg=o = w7 (x(1);)|n=0 (4.1)
ug (x(1),m)ln=0 = u5 (x(1),m)ln=0, (4.2)
[ure]x” + [wingg) =0,  [uge]x" + [uany] = 0. (4.3)

The jump (4.3) can be rewritten as

uii_nn = u;nn + X,qug - X”uIﬁ’ (44)
u;nn = Uy, + X”U;,g - X”U;_g- (4.5)

Notice that, in the local coordinate system, the unit normal at any point (x(7),7n)
on the interface is

ﬁ:'ﬁ\lﬁET: 1 _Xl(n) T' .
(. 72) (\/H(x’(n))Q’ \/1+(x’(n))2> (+0)

Therefore, at (z7,y}), or (0,0) in the local coordinate system, we have

Ty = XX
ni L+ ('(n)?)? n=0

R N N7 )
nln= T+ OCm?], L, 1+ (X'(n)2)? n=0

Recalling that x(0) = 0 and x'(0) = 0, we have, at (z},yj), or (0,0) in the local
coordinate system, that

=1, =0, (4.7)

niy =0, g, =—x"(0). (4.8)

In the z-y coordinate system, we have n = (ny,n)”. The relation between (n,ns)7
and (n1,73)7 is determined by

n1 = N1 * cos f — 3 * sinf,
N9 = Ny * sinf + 5 * cos 0.

Hence, by (4.7) and (4.8), we obtain

ny = cos B, ng = siné, (4.9)
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Ninlp=0 = Mip|y=0 cos  — Mzy|p=0 sind = x"(0) sin 6, (4.10)

Nonlp=0 = Nipln=0 8N 0 + Nzp|p=o cos § = —x"(0) cos . (4.11)

These relations will be used to derive the interface relations for ui&n and u;&?'
The following result is required to find the interface relations so every quantity from
uf'g, ug'g, uf&], u;rfn, uﬂg and u;rff, can be expressed in terms of u; , u ,, Uy Uyggs Uiy

U gy U 5 Uy Usys Ugyyy Ugyy,s and Uy Its proof is trivial, and is omitted.

Lemma 4.1. If Det = ZH 212 # 0, then the system of linear equations
21 @22
a1z +apy = biizr +bizzo+ - + b2y
a1 +agy = bz +baze+ -+ bonzy

has the unique solution

b1 a2 bia a2 bin a2

xTr = _Dlet 21 + 29 _I_ . + Zn,
b1 a2 bao a2 bon,  a22
a1r bi a1 bio air bin

Y= Diet b | % + by |22 + o+ b Zn
a1 b a1 bao a1 bop

4.1 Interface relations for u, and ug,
Rewrite the interface conditions (2.4) and (2.5) as follow:
nl(a_'—ui'—w + l8+ué|—y) + TLQ,LL+ (uii_y + u;;c)
= ni(e uy, + B uyy) +nop (ug, + uy,) + (z,y),
nut (uf, + ) + ma(BTut, + atug)
=y (ugy + uy,) +12(Bur, + auy) + (2, y),

where n = (n1,n2)” = (n1(€,1),n2(£,n))7 is the unit normal to the interface and

2u™ 2u
A gt __AET
e e R I T i
_ 2u~ _ _ 2u~ _
e e A I e Va
Notice that 5
u .
—xl = u1¢€g + uiyne = cos(@)uie — sin(0)u1y,
U i
3—y1 = u1¢€y + Ny = sin(@)uie + cos(@)uiy,
ou .
—; = Uge€y + Ugyny = cos(0)uge — sin(0)ugy,),
U i
6—; = uge&y + uoyny = sin(@)uge + cos(0)ugy.

Thus, in the local &-n coordinate system, we have

niat cosO 4+ nou™ sin@)ut, + (—niat sind + nop™ cos O)u;
1€ 1n
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+(n1B% sin @ + nop™ cos 0)u;§ + (n18% cos @ — nou™ sin 0)u;’n
= (n1a” cos @ + nop” sin 9)“1_§ + (—n1a” sinf + napu™ cos G)ul_n

+(n1B” sin 6 + nopu™ cos O)uy, + (N1 cosf — nop” sinb)u,,

+6(&,m), (4.12)
(utn1sin + neBT cos H)UE + (n1pt cos 6 + noa sin 9)u§fE

+(n1pu™ cos§ — nyBt sin 9)qu77 + (=ptnysinf + nya™ cos H)u;n
= (" ny1sinfd + nyS” cos 9)“1_5 + (nip” cosf + noa” sin 0)112_f

+(n1p~ cos@ — no” sin 9)u1_n + (=g n1sinf + nya” cos 9)u2_n

+(€,n). (4.13)

Using the fact that ny = cos@, ny = sinf at (0,0) in the local coordinate system
and the jump conditions (4.1) and (4.2), we can solve for u;"g and u;'g from equations

(4.12) and (4.13) in terms of u , uy, -+~ Uy, In fact, using (4.9) we can rewrite the
equations (4.12) and (4.13) as
(o cos® 6 + p sin? G)uf'g + (BT + 1) sinfcos Gug'£
= (o cos® 0 + p~ sin® O)ure + (—a” +p7)sinfcosbug,
—(—at 4+ pT) sinf cos Gufn — (BT cos? @ — pt sin? O)u;“n
+(B™ + ) sinf cos u,, + (B~ cos? @ — p~ sin? 0)us,
+6(&m), (4.14)
(ut + BT)sinf cos QuILg + (4T cos® 6 + o sin® H)UQE
= (u~ +B7)sinb cos fuy, + (u~ cos? 0 + o~ sin’ 0)uge
—(p" cos® @ — BT sin? 0)'111",7 — (—pt 4+ a™)sinf cos Bu;'n
+(u~ cos? § — B~ sin? O)uy, + (—p~ + ) sind cos Quy,
+(&,m).- (4.15)

Since ufn = uy, and u%’n = U, the right hand sides of (4.14) and (4.15) become

by = (o cos?@+ pu~ sin? 0)ure
+[(a™ —a™) — (ut — )] sinf cos Ouy, + (B~ + p~) sinf cos Ouy,
+[(M+ - M_) Sin2 6 — (B+ - ﬁ_) COS2 0]“2_7; + ¢(f,7l),

by = (u +pB7)sinfcosbu,
+[(BT — B7)sin?0 — (uT — ) cos? Oluy, + (0~ cos? 0 + o~ sin? 0) g
+[(p" —p7) = (@ — a7 )]sinfcos Oug,, + (&, n)-
(4.16)

Let
a1 = cos? fat + sin? Out, ajs = (BT + u™)sinf cos b,

a1 = (ut + B7)sinf cos b, ag = ptcos? O + ot sin? 6.
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The determinant of the coefficient matrix for the linear system (4.14) and (4.15) is

a1l a2 cos? fat +sin?9ut (BT 4+ pt)sinfcosd -
. 2 + 2 =y .
as1 Qa2 (ut 4+ BT)sin@cosf® ptcos?O+ at sin? b
Since
2(pt)?
atut = T a,+ (1-vth) £0, (4.17)

the system (4.14) and (4.15) has the unique solution

1 b a 1
v 1 a2 | _
Uy = ot | by am ‘ = T (ag2b1 — a12bs), (4.18)
1 a1 b 1
= —— = ——(a11bs — asibs. 4.19
g atpt | aa by atput (a11b2 = azby (4.19)

Consequently, the values uf'g and u;% can be expressed in terms of uy, Upgy ** 5 Ungy-
Moreover, plugging (4.18) and (4.19) into (4.4) and (4.5), we can also express uf',m and

“;nn in terms of those values in the — side.

; + +
4.2 Interface relations for uj, and uy,

To find the interface relations for ui"gn and u;—én’ we differentiate (4.12) and (4.13) with
respect to 1. After some calculations, we obtain the following system of linear equations
about U;L&n and u;&n

+ + _
Allulfn + A12u2§n = Bl, (4 20)
A21uf—§n + A22u;§n = By,
where the coefficients A1, A12, As1, Agg are given by
A1 = niat cosf + nopT sin 6, A1o = n18T sinh + nau™ cos b,
A9y = nip™ sinf + na BT cos b, Ago = nip™ cos O + noat sin 6.
The terms B; and By involve uf'g, ué"g, ufm], u;m], and uq, Upgy ==y Uggp- However,
since we have already obtained that uil'g, u}%, uf'nn, and “;nn can be expressed as a
linear combination of u], Upg, * o5 Uggp, the values B; and Bs can also be expressed in
terms of these quantities as well. So we set
Bi = biuy +byul, + byuy, + bjulee + byug, + bgur,,
1~ 4 3l — 1,,— 10— 1, - R 1
+bruy + b8u2§ + byus,, + b10“2§§ + by ug,, + 612u2§n + by,
By = biuy +bjul, + bjuy, + biuje + biug, + bgur,,

+bFuy + buge + bgug, + bigtgee + b7 ts,, + blotse, + b3

Since n1 = cos# and ny = sin @, the determinant of the coefficient matrix of the system
(4.20) is

A Ar
Ag1 Ao

2 00t + sin2 Oyt + 4t 6
cos” fa™ + sin” Ou (BT 4+ ") sinf cos 6 —atput £0.

DET = ‘ (ut 4+ BT)sinfcos® ptcos?d+atsin?f |
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Thus, from Lemma 4.1, the solution to (4.20) is

o LA 1|6 A | 1|6 A
1€n DET | b2 A DET | b3 A DET | b3 Ag | ™
1 b A 1 bt A | _ 1 b A | _
TDET | 62 Ay | T DET| 02 Aw |“m T DET | B Ay |Men
LB A 1 B An | LB A |
DET | b% Ay | 2 DET| b Ax | % DET| bW Ax
1 b10 Ao 1 bl, Ap | _
tDET b3y Az et DET b3 Aoy |M2m
1|6y Ap | _ 1| b Am
—_— —_— 4.21
TDET| 12, As |60 DET| 02 A (4.21)
u_|_ _ 1 A11 b% -4 1 A11 b% -4 1 A11 bé w
2n DET | Ay b2 | " DET | Ay b2 | % DET| Ay b3 | ™7
1 | Ay b} 1 | A B | _ 1 | A b | _
TOET| An B |"“€ T DET | An 02 |“m T DET | 45 82 | M
4 1 A11 b% ur 1 A11 bé Lo 1 AH bé —_
DET | Ayy b2 |2 " DET | An b3 U2 T DET | Ay b3
1 A bl 1 A b |
Y DET Agr B2 U2e T DET Ay b2, |M2m
1 | A bly | _ 1 | Ay b
—_— —_— 4.22
YDET| An 02, |0t DET | Ay B2 (4.22)
These are the desired relations.
4.3 Interface relations for uf,, and ug,
From the differential equations (3.2) and (3.3), we have
(cos?6 4+ 1 —2uT )“155 2sin @ cos 0uf’§n (sin?@ +1 —2v+ )ulm7
+ sinf cos euzgg + (cos? @ — sin? H)Ué"gn — sin @ cos 9u27m —ft
= (cos’6+1— 2U7 Jupge — 2sin6 cos fuyg, + (sin?@ +1 — 207 Jug,,
+sin 6 cos Guge, + (cos® @ — sin® 0)uge, — sinb cos Ou,,, — f, (4.23)
(sin? @ + 1 — 21/Jr)u;66 + 25sin 6 cos Hugzn (cos?0+1—2vt )uQ7777
+sin @ cos 9u1"§‘5 + (cos® § — sin? 0)u1"§n — sin 6 cos 9“17777 —g"
= (sin®’@+1-— 207 Jugge + 28in 6 cos Guy,, + (cos®> O +1 — 207 Jugy,
+sin 6 cos fu ., + (cos® 6 — sin® 0)uyg, —sinf cosbu,,, —g~. (4.24)

We need to solve the above equations for u;'& and uf&. Observe that the determi-
nant of the coefficient matrix of the above system is

1 -2t 4+ cos?20 sinfcosh

— (1 — 2 (1 — vt
sin @ cos 0 1—2vF +5sin%0 =2(1-27)(1 -vT) £0,
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By (4.4), (4.5), (4.21), and (4.22), we can solve (4.23) and (4.24) for Ufgg and u;'&,
which are expressed in terms of u, Upey **y Uggy-

5 Derivation of the Finite Difference Scheme at Type I
Irregular Grid Points

We are now ready to derive the finite difference scheme for irregular grid points of type
I. We first rewrite the finite difference scheme (2.1) as follows:

9 9
Yk (U1)ivig,jrix + 20 Be(U2)ivig,j+in = f(Ti,y5) + Cz'lja
k=1 k=1 (5.1)

9 9
kZl Ye(U1)itig,j+ju + kzl 0k (Ua)iviy,j+in = 9(xisy5) + CF;.

We use the undetermined coefficient method to determine all the coefficients oy, B,
Vg, and .

Denote the &-n coordinates of the nine grid points in the finite difference stencil
(see Figure 5.1.)

(@i—1,Yj-1), (@i=1,Y5), (@i=1,Yj+1), (Zi, Yj-1), (@i, Yj),
(ﬂﬁi, yj-H)a ($i+1, yjfl)a (xi-l-layj)a (fb“i+1, yj+1)

as

(£la 771), (52,772), (&31773)1 (545 7)4), (551775)1 (5677’6)7 (575 777)5 (6877’8)7 (595 779)'

(Xi-1,Yj+1) @ @(Xi’ Yit1) @ (Xit1, ¥je1)
N\ =\ (¢
(2/ C), \@
(xi1,Yj) (zi, y5) (Xis1,Y;)
A (1) /-
(Xi-1, YJfl@ \4-y(xi, Vi-1) \7) (Xit1,¥j-1)

Figure 5.1: The labels of the nine grid points.

The local truncation errors at a grid point (z;,y;) are defined as

9 9
T = Zakul(-’ﬂi—i—ikayj—l—jk) + ZﬁkUQ(-Ti-i-ikayj'i‘jk) — f(zi,y;) — C
k=1 k=1
9 9
= Y anun (&) + Y Brua (s me) — f(&imy) — Cf, (5.2)
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9 9
TE = ) (@ivi, Yirg,) + Y Oktia(@iyiy, Yjag) — 9(zi,y;) — Cj
k=1 k=1
9 9
_ 2
= > e &) + Y Skua(Ee,me) — 9(&,n5) — Cj- (5.3)
k=1 k=1

We expand u1 (€, mx) and ug(Ex, nx) about (0,0) in Taylor series in the local coordinate
system from each side of the interface to get

1 1
wi@me) = up + gkuliﬁ + nkulin T 551%“1i§§ + fkﬁkuliﬁn + 5771%“?7771
+O(R?), (5.4)
1 1
wp(Gome) = up + §ku§t§ + nkuétn + §£I%U2i§§ + §k7)ku2i§n + Enl%UQirm
+0O(h?), (5.5)

where the + or — is chosen depending on whether (&, 7)) lies on the + or — side of T'.
Carrying out such expansion for each point involved in (5.2) and (5.3), we obtain the

following expressions of TZE and TZQJ for the local truncation errors as linear combinations

+ £ + + + + + + + + + + .
of the values u7, Ule, Uiy, Ulger Uiggy Uings U s Udg, Udp, Udges Udgp: and Udp*

Tzlj = aju; + azu]L + a3u1_§ + a4uf'§ + a5u1_n + aﬁufn
+a7ufgg + aguf'55 + agufm’ + aloufm + a11uy, n + a12ui"§n
+biuy, + bgu; + bgu;£ + b4u;rg + b5u2_n + b6u2n (5.6)

- + - + — +
Fbrtyge + bguiee + by, + biotyy, +biiugy, +bisuge,
B z; - C'Ll] + O(h')a

Tf] = cu; + CQUT + c;;uf5 + c;;uf} + c5ufn + cﬁufn
+C7“1_§§ + CSUT& + couy,, + clouf,m + cuuf&, + c12uf’§,7
+d1u2_ + bz’u,;_ + d3u2_£ + d4u;'§ + d5u2_77 + dsu;W (57)

Fdruge, + dgu;& + dyusy,, + dwu;,m + diug,, + d12u;§n
—9ij — Cin + O(h).

All the coefficients ag, by, cx, and dj depend only on the position of the stencil relative
to the interface. In particular, they are independent of the functions w1, us, f, and g.
If we define the index sets K™ and K~ by

K* = {k : (&,n;) is on the + side of T'},

then the coefficients ag, by, ci, and d; are given by

a; = Y. o, ag = Y, o, a3 = Y. &poy,

keK— kEK+ keK—
ag= Y, &og, az= Y, Mpoy, ag = Y. MKk,

keK+ L keK— L keK+ Lo (5.8)
ar= Y, s&ow, ag= Y, ok, a9 = D, 5N,

kEK- kEK+ kCK~

1
a0 =Y 3miak, a1 = Y, EMkag, a2 = Y, EpMkou,
keKT+ kEK— kEK™
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bl = Z /Bma b2 = Z /Bma
meK— meK~+
by = Z EmBm, bs = Z N Bms
meK+ Lo meK— Lo
b7 = Z igmﬂ'lnd b8 = Z Egmﬂﬂ?J
meK— L meKT
biop = Z ann,@m, bi1 = E EmNmBm,
meK+ meK—
Z Yk Z Yk
keK— keEKT
> &Kk 2o MEVks
REKF REK-
cr = Z 55]9716’ Cg = Z 55]97161’
kEK— keK+
o= Y sMvk cii= 2 kM
keKt kEK—
dl — Z 5ma d2 = Z 5m’
meK— meK+
d4 = Z fm‘sma d5 = Z nméma
meK+ meK~—
dr= Y 16m, ds= Y 30m
meK— L9 meK+
dip = Z Enmém’ din = Z gmnméma
meKT meK—

— —— —

b3— Z €m,8m,
meK—
bg = Z NMmBm,
meKt
5.9
bg: Z 277m:87’l’h ( )
meK—
bio = E gmnmﬂma
meK+
> &k
keEK—
Z+nm,
kEK
5.10
Cg = E %7)1%’)’10 ( )
keEK—
ci2 = &Mk
keEK+
d3: E £m5m1
meK—
d6: Z nmém,
meKT
dy = E % 5m, (5.11)
meK—
dig = Z §m77m5m
meKt

Let Uiz, Uigg, Utzy, Uag, Uagy, Uagy be 12 dimensional column vectors with every co-
ordinate for each vector corresponding one of the coeflicients of u;, “1_§> U, ul_&, Ul

+ + +
Upgps Ug s Usg, Ugy, u%g, Ugyy> Ugg, N the expressions of “1@“2@“1@, U n’ulgf u2€§
We can then rewrite u1§7 u;'g, uf&], “2+5n’ uf&, Uggee in terms of Ui, U14z, Utzy, Uzg, Uage,

ngy Let

Vec— = [“1 » U1gs Ui Urge> Yinn> Yign Yz » Uagr Yoy Uoges Yo “2&1]

(5.12)

From the interface conditions we derived in Section 4, we have the following simple

expression in the dot product form

Using the jump conditions for uf
truncation errors (5.6) and (5.7) as

— —
( ui"g = Vec_ -Uiz + wigy,
n — —
Uge = Vec_ - Ugy + wag,,
h — —
Ufge = Vec - Uigy + wigeg,
. i — —
Ugee = Vec_ - Usgy + wogg,,
I — —
Uje, = Vec_ - Uizy + Wigy,,
In — —
[ Ugepy = Vec_ - Uagy + Wogy,-

Tj; = (a1 + a2)uy + (a3 + X" ar0)ure + (as — x"a10)uf;

(5.13)

and u;m in (4.4) and (4.5), we can rewrite the
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+(as + ae)uy, + a7 — (cos?6 +1 — 207 )ugee + aguf'55

+lag + ao — (sin? @+ 1 — 207)|ug,y,

+[a11 + 2sinf cos 9]u1_§n + algufgn

+(b1 + ba)ug + (b3 + x"bio)uge + (ba — x"bro)uge

+(b5 + be)usy,, + (b7 — sinb cos O)uy,, + bgu;&

+(bg + b1 + siné cos 0)112_,7,7 + [b11 — (cos? @ — sin? 0)]u2_§n + blzu;&]

+[(cos®> 0+ 1 — 207 Jupge — 2s8in6 cos Buyg, + (sin®0 +1 — 207 Jup,,

+ sin 6 cos fuy,, + (cos? 0 — sin® 0)ugg, — sinf cos Ou,,, — f;;]

—Cj; + O(h), (5.14)
T = (e1 + ea)uy + (e3 + X"er0)uge + (ea — X" ero)uy

+(c5 + c6)uy,, + (c7 — sinf cos O)u, . + c@;uf'66

+(c9 + c19 + sinf cos O)uy,,

+[c11 — (cos? § — sin? 9)]uf§n + clguirgn

+(di +d2)uy + (ds + X" dio)uge + (da — x"dio)ug,

+(d5 + dﬁ)u;n + [d7 — (sin2 0+1— 2V_)]u§§§ + dgu;&

+[dy + d1o — (COS2 0+1— 21/_)]’112_7]77

+(d11 — 2sin 6 cos 9)“2_§n + dlgu;'gn

+[(sin?0 +1 — 21/_)u2_& + 2sin 6 cos fuy, + (cos?0 41 — 207 Jug,,

+ sinf cos Qu g, + (cos® @ — sin® 0)ug, — sinf cosbuy,, — g;;]

—Cj; + O(h). (5.15)

Notice that from the equations (3.2) and (3.3), we have

(cos? 6+ 1 — 207 Jugee — 2sinf cos Oug,, + (sin? +1 — 207 Jup,,
+ sin 6 cos fuy,, + (cos? O — sin? 0)uge, — sinf cos buy,, = fi7,

(sin?0 +1 — 207 Jugee + 28in 6 cos Ouyy, + (cos?0+1— 207 Jug,,
+ sin 6 cos fujg, + (cos? O — sin? 0)uyg, — sinf cos bu;,, = g;..

From (5.12) and (5.13), we can rewrite the truncation errors T..

i T in (5.14) and
(5.15) as

— — — —
TZIJ =Vec_- [71 + (as — X" a10)Urg + agUrgs + a12U14y

—  — — (5.16)
+(bs — x"b10)Uzg + bgUsgq + b12U2wy] + A1 +0O(h),
— — — —
Tz% =Vec_ - [72 + (ca — X" c10)Urg + 8Ulzz + c12U1zy (5.17)

— — —
+(ds — X"d10)Uss + dsUza + d15Uszy | + A2+ O(B),

where ?1 and ?2 are twelve dimensional vectors similarly defined as Uiz, Uiz, Ulzy,
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—_— />
U2$a UZJ:J:, UZJ:y’ and

Vl(l) = a1 + ag, V1(2) =a3+ X”alo,

Vi(3) = a5 + ag, Vi(4) = a7 — (cos?0+1—2v7)

Vi(5) = ag +ayo — (sin?0+1—2v7),  Vi(6) = a1 + 2sinfcos¥,

Vi(7) = by + b, Vi(8) = b3 + x""buo,

V1(9) = by + bg, V1(10) = b; — sinf cos 0,

Vi(11) = bg + bio + sinf cos 6, V1(12) = b11 — (cos? 6 — sin? 0),

Vo(1) = c1 + ¢, V2(2) = c3 + x"c10,

Va2(3) = ¢5 + cs, V2(4) = ¢7 — sinf cos 6,

Va(5) = ¢g + c19 + sinf cos 0, V2(6) = ¢11 — (cos? § — sin? §),

Vo(7) = dy + da, Va(8) = d3 + x"dyo,

V2(9) = ds + ds, V2(10) = d7 — (sin?0 + 1 — 2v7)

Vo(11) = dg + d1p — (cos? 0+ 1 —2v7), V(12) = dy; — 2sinf cos 0,
A1 = (ag —a10 - X" (0))wig + aswigg, + ar2Wign (5.18)

+(bs — b1o - X" (0))wag, + bswaeg, + brawagn, — Ci '

Ag = (ca — 10 X"(0))wigy + csWiggy + Cr2wigno (5.19)

+(da — do - X"(0))wag, + dgwagg, + drawaey, — C7

_)
where V1(7), V2(3) are the i-th components of V1 and V3 respectively.

To minimize the truncation errors, we choose the coefficients ay, Bx, Vi, and 0 so
tha‘F tht.e coefficients of u; , Upg, Uy Upger Uiy u;&?,.u;, Ugg, Ugp, Ungg 1.1277177’ and u,,
vanish in (5.16) and (5.17). Hence we set the following system of equations by (5.16)
and (5.17):

— —— ——
‘7{ + (a4 — X" a10) Uiz + agUzz + a12U1ay
— — =
+(ba — X"b10)Uzg + bsUsgg + b12U2zy = 0, (5.20)
— — —
72 + (c4 — X" c10) Utz + c8Utzg + c12U1ay
—— —— ——
+(ds — x"d10)Uzg + dgUsgg + d12Usgy = 0, (5.21)
Al = 0; AQ = 0. (522)

[if

The system of equations (5.20) and (5.21) can be solved separately. Notice that in
(5.20) or (5.21), there are 18 unknowns and 12 equations. The optimization method
(cf. [6, 17]) is used to solve the system of equations. Once the coefficients ag, Bk, Vi,
and 0 are obtained, the correction terms Cil, ; and CZ-QJ- can be obtained directly from
(5.22) as follows:

Ciy = (as—aw-x"(0))wig, + aswieg, + a12wien,

+(bg — b1o - X"(O))w%o + bgwagey + biawogy,, (5.23)
CiQ,j = (C4 —C10 X”( )’wlgo + CgWi1ge, + C12W1gn,

)
+(ds — d1o - X"(0))wae, + dswage, + dr2wagy,-

To make the system of finite difference equations better conditioned, we impose the
sign restriction on the coefficients oy in (5.20) and the coefficients ¢ in (5.21)

a5 <0 ifk=5, ap > 0 otherwise, (5.24)
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05 <0 if k=25, dx > 0 otherwise. (5.25)

We also impose the following restrictions for all the coefficients:

—1.1 % bnd < ag, B, Yk, 0k < 1.1 % bnd (k=1,2,---,9), (5.26)
where 23 —dv-) 23— dvt) 1
—dv~ — 4dv
bnd = max ( 2 , 2 , W) . (5.27)

With these restrictions, the solution for ay, B, vk, and d; obtained by the optimization
method are of order O(1/h?).

Once we have all the coefficients in (2.1), we can set up a large system of linear
equations (2.2), (5.1) and (2.6), (2.7) with 2(m — 1)(n — 1) unknowns. To solve such
a system of linear equations, we have tested SOR, preconditioned GMRES(m), and
Bi-CGSTAB methods. Comparisons among these methods show that the precondi-
tioned GMRES(m) [4, 8] and preconditioned Bi-CGSTAB [4, 7, 14] are almost equally
successful. We will give some results in the next section using the GMRES(m) method
with a diagonal preconditioning.

6 Numerical Examples

We have performed a number of numerical experiments on Sun’s Ultra-10 workstations.
In these numerical experiments, the computational domain is a rectangular region with
either an ellipse or a circle interface within the domain.

We present two numerical examples. We define the following quantities

e
1B oo = max ||ua (4, §) — Uyjl|,  Ratioy = I® (DHOO’
%] || %77)”00
IED)|o = max [|uz(i, §) — Unigll, ~ Ratiop = :: (2)”00_
, 2n 0

They are used in Table 6.1 and Table 6.2.

Example 1. In this example, the domain is @ = (—1/2,12) x (—=1/2,1/2) and the
interface is defined by z2 + 4y? = 0.352. The values of the Poisson ratio and the shear
modulus are, respectively,

vt =020 inQF p = 1,500,000 in QF
vV = s = .
v- =0.24 in Q° ©- = 2,000,000 in Q°

The Dirichlet boundary condition and the interface conditions are determined from
the following exact solution:

() = zy +sin(1 + 22 + y?) — 322 + 92 in Q7F,
e zy +sin(1 + 22 +9%) - 222 +5942 -4 in Q,

(z.) cos(1+z2 —9y?) + 522y + 22 —y2 +2 in Q7
U m’ = .
25y cos(1+ 22 —9y?) + 522y +322+ 7942 -6 inQ .
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Table 6.1 gives the grid refinement analysis, where m is the number of iterations
before restarting in the GMRES method. Second order accuracy is achieved since the
error ratios approach number four. Figure 6.1 shows plots of the computed solutions
u1 and ug and the maximum error with the number of subintervals along each side

n = 40 and m = 30.

n| | |E,(11) llo | Ratio; | | \E7(L2) |lo | Ratiog | m | iterations
20 | 2.5749e-3 * 1.9612e-3 * 20 | 174
40 | 5.0891e-4 | 5.0595 | 4.1027e-4 | 4.7802 | 20 | 429
80 | 1.4667e-4 | 3.4699 || 9.4880e-5 | 4.3241 | 25 | 1681
160 | 3.6265e-5 | 4.0443 || 2.3726e-5 | 3.9990 | 30 | 2873
320 | 8.6890e-6 | 4.1737 || 5.4118e-6 | 4.3841 | 32 | 8831

Table 6.1: The grid refinement analysis for Example 1.

GMRES(m) method: The computed solution for ul
m = n =40, with 20 restarts

GMRES(m) method: error plot for ul
m = n =40, with 20 restarts

x 107
—2.4 6
iy
AR a
-2.8 7/
’ % <>\M
-3 =8 2
-3.2 '; o
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Figure 6.1: The computed solution and the maximum error of Example 1.
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Example 2. In this example, the computational domain is @ = (—1,1) x (—1,1) and
the interface is the circle 2 + y? = 1/4. The Dirichlet boundary condition and the
interface condition are obtained by the following exact solution:

—(r* + ¢ log(2r)) /10 — 72 + (r§ + co log(2r9))/10 in QF,

U (J"a y) = —7‘2

u2($a y) =

in Q7

In(1 + 22 + 3y?) + sin(xy) — 4r? + 473 in QF,
In(1 + 22 + 3y?) + sin(zy)

in Q7

where 7o = 0.5, ¢cg = —0.1, and 7 = /22 + y2. The values of the Poisson ratio and the

shear modulus are, respectively,
in QF
inQ~’

vt =0.20
v- =024

in QF
in Q-

ut = 25,000,000
1~ = 30,000,000

Table 6.2 gives the grid refinement analysis. Second order accuracy again is verified.
Figure 6.2 shows plots of the computed solutions u; and ue and the maximum error
with the number of subintervals along each side n = 40 and m = 30.

GMRES(m) method: The computed solution for ul
m = n =40, with 25 restarts
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Figure 6.2: Computed solutions and the maximum error for Example 2.
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n| | |E'7(l1) llo | Ratio; | | \E;LQ) |lo | Ratiog | m | iterations
20 | 9.8376e-3 * 3.4529e-2 * 20 | 158
40 | 1.9038e-3 | 5.1675 || 6.6401e-3 | 5.2001 | 25 | 415
80 | 4.3297e-4 | 4.3970 || 1.5098e-3 | 4.3979 | 25 | 1161

160 | 1.0680e-4 | 4.0539 || 3.6397e-4 | 4.1483 | 30 | 3723

320 | 2.5572e-5 | 4.1765 || 8.5800e-5 | 4.2420 | 35 | 8702

Table 6.2: Grid refinement analysis for Example 2.

7 Conclusions

In this paper, we have developed an immersed interface method for elasticity problem
with interfaces. We use an optimization method to determine the coefficients of the
finite difference equations. We employ the GMRES(m) or Bi-CGSTAB to solve the
large, sparse, and non-symmetric linear system equations arising from the discretiza-
tion of the elasticity equation together with the interface condition. Our numerical
experiments confirm that our scheme is second-order accurate.
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