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Abstract—The hierarchical image segmentation (HSEG) 
algorithm is a hybrid of hierarchical step-wise optimization and 
constrained spectral clustering. Unlike most other segmentation 
approaches, HSEG produces a hierarchical set of image 
segmentations. A single segmentation level can be selected out of 
the segmentation hierarchy by examining how the features or 
individual regions change throughout the different levels of 
detail. Subsequently, the selection of a single segmentation result 
for each region can effectively transform the segmentation 
hierarchy into a region-adaptive segmentation approach. The 
above task has previously been accomplished using supervised 
and time-consuming procedures. This paper presents a first step 
towards the automation of this process, where spatial, spectral 
and joint spectral/spatial features are used to investigate how 
regions change from one hierarchical level to the next for region 
identification in remotely sensed hyperspectral data sets. 
Comparative results are presented using Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) data collected over the 
Salinas Valley in California. 

Keywords-Image segmentation, Hyperspectral imaging, 
Segmentation hierarchy, Mathematical morphology. 

I.  INTRODUCTION 
Image segmentation is the partitioning of an image into 

related sections or regions. For remotely sensed images of the 
Earth, an example of an image segmentation would be a land-
cover map that divides the image into areas covered by distinct 
surface covers, such as water, minerals, types of natural 
vegetation, agricultural crops and other types of man created 
development. Hyperspectral imaging is a relatively new 
technique in remote sensing that generates hundreds of images, 
corresponding to different wavelength channels, for a certain 
area on the surface of the Earth. For instance, the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) covers the 
wavelength region from 0.4–2.5 µm using 224 channels and 
spectral resolution of 10 nm. The incorporation of AVIRIS-
type sensors on airborne/satellite platforms is currently 
producing a nearly continual stream of multidimensional data, 
and this high data volume demands efficient and unsupervised 
multi-channel data segmentation techniques. Specifically, in 
order to obtain high-quality segmentations in hyperspectral 
imaging, both the spatial and spectral properties of the data 
need to be taken into account.  

The hierarchical image segmentation (HSEG) algorithm 
developed by Tilton [1] is one of the few available approaches 
in the literature that naturally integrates the spatial and spectral 
information. HSEG is a hybrid of hierarchical step-wise 
optimization and constrained spectral clustering that produces a 
segmentation hierarchy, instead of a single segmentation result. 
A segmentation hierarchy is a set of several image 
segmentations of the same image at different levels of detail in 
which the segmentations at coarser levels of detail can be 
produced from simple merges of regions at finer levels of 
detail. In such structure, an object of interest may be 
represented by multiple segments in finer levels of detail, and 
may be merged into a surrounding region at coarser levels of 
detail. A single segmentation level can be selected out of the 
segmentation hierarchy by analyzing the spatial and spectral 
characteristics of the individual regions, and also by tracking 
the behavior of the image segmentations throughout the 
different levels of detail [2]. Unfortunately, the procedure 
above is usually accomplished by means of supervised 
procedures, e.g., an analyst intensive graphical tool that allows 
a trained user to interactively select which segmentation 
resolution is most appropriate for each individual region. 
Although such tool can be used to label all of the various 
composite regions in an image, manual interaction is often 
subjective and extremely time consuming. 

This paper represents our first step towards the automated 
selection of results in segmentation hierarchies. As a case 
study, we focus on hyperspectral image data sets. Three types 
of features, i.e., spatial (shape descriptors), spectral (vector-
based angle metrics) and joint spectral/spatial (multi-channel 
morphological operations) are used to investigate how regions 
change from one hierarchical level to the next. Hyperspectral 
data sets with ancilliary information are used in experiments to 
evaluate the accuracy of the final segmentations, and to assess 
the statistical significance of regions throughout the different 
levels of the segmentation hierarchy. 

II. HIERARCHICAL SEGMENTATION 
The hierarchical image segmentation algorithm, HSEG, 

used in this study is unique in two major aspects. While the 
core of the algorithm is the relatively widely utilized 
hierarchical step-wise optimization (HSWO) region growing 
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approach [3], the HSEG algorithm uniquely allows for the 
merging of spatially non-adjacent regions, as controlled by the 
spclust_wght parameter. For spclust_wght = 0.0, HSEG is 
essentially the same as HSWO where only spatially adjacent 
are allowed to merge, for spclust_wght = 1.0, spatially adjacent 
and non-adjacent merges are given equal weight, and for values 
of spclust_wght between 0.0 and 1.0, spatially adjacent merges 
are favored by a factor of 1.0/spclust_wght. 

Allowing for a range of merge priorities for spatially non-
adjacent regions provides HSEG with a great deal of flexibility 
in tailoring the segmentation results to a particular need. HSEG 
also provides a selection of dissimilarity functions for 
determining most similar pairs of regions for merging. The 
currently available selection of dissimilarity functions includes 
functions based on vector norms, and on mean-squared error. 
Options for other dissimilarity functions can easily be added. 

The other unique feature of HSEG is the provision of a 
method for selecting the most “significant” iterations from 
which the segmentation results are saved into an output 
segmentation hierarchy. The selection is performed by 
monitoring the behavior of the merging threshold. Whenever 
the ratio of the merging threshold for the current iteration 
divided by the merging threshold for the previous iteration 
exceeds a user settable threshold value, the segmentation result 
from the previous iteration is saved as a member of the output 
segmentation hierarchy. This down-selection to most 
significant results provides a more compact segmentation 
hierarchy for post-process analysis. Through this approach, 
HSEG provides a compact segmentation hierarchy in a single 
run in contrast to some other algorithms that require multiple 
runs to produce a segmentation hierarchy or algorithms that 
produce a voluminous complete segmentation hierarchy. 

The allowance for the merging of spatially non-adjacent 
regions in HSEG leads to heavy computational demands. These 
demands can be significantly reduced through a recursive 
approximation of HSEG, called RHSEG, which recursively 
subdivides the imagery data into smaller sections to limit the 
number of regions considered at any point in the algorithm to a 
manageable number, usually no more than 1000 to 4000 
regions. This recursive approximation also leads to a very 
efficient parallel implementation. The latest parallel 
implementation of RHSEG is so efficient that a full Landsat 
Thematic Mapper (TM) scene (roughly 7000 by 6500 pixels) 
can be processed in 5 to 10 minutes (depending on parameter 
settings) on a Beowulf cluster consisting of 256 2.4GHz CPUs 
(http://thunderhead.gsfc.nasa.gov). This is only 10 to 20 times 
the amount of time the Landsat TM sensor takes to collect this 
amount of data. 

A demonstration version of RHSEG and a companion 
HSEGViewer program (for visualizing and manipulating the 
hierarchical segmentation results) is available from 
http://tco.gsfc.nasa.gov/RHSEG/. 

III. FEATURE EXTRACTION TECHNIQUES 
In this section, we describe different techniques for feature 

extraction in the spatial and spectral domain. These features 
will then be used for automatic selection of features for regions 

at different segmentation levels. The considered approaches 
include spatial, spectral and joint spatial/spectral techniques. 

A. Spatial Feature Extraction 
Several shape analysis measurements can be used to 

analyze the spatial properties of regions at the individual levels 
of detail in the segmentation hierarchy. The considered feature 
measurements in this study included the area (number of pixels 
in the region), convex_area (number of pixels in the smallest 
convex polygon that can contain the region), solidity 
(proportion of the pixels in the convex hull that are also in the 
region, computed as area/convex_area) or extent, defined as 
the proportion of the pixels in the bounding box (the smallest 
rectangle containing the region) that are also in the region. 

B. Spectral Feature Extraction 
Spatial-based feature extraction does not take into account 

the wealth of spectral information provided by hyperspectral 
instruments. In order to incorporate spectral signatures into 
automated selection of segmentation levels of detail, we use a 
standard measures [4]: the spectral angle mapper (SAM). Let 
us consider two signatures ( )T

iN2i1ii ..., , , sss=s  and 

( )TjN2j1jj ..., , , sss=s , where N is the number of channels in the 
input data. The SAM between is  and js  is given by: 

( ) ( )jiji
1

ji cos ,SAM ssssss ⋅= −                     (1) 

The SAM is invariant in the multiplication of the input 
vectors by constants and, consequently, is invariant to 
unknown multiplicative scalings that may arise due to 
differences in illumination and sensor observation angle, a 
desired feature in hyperspectral imaging. Using the SAM, we 
can further define a measure of spectral homogeneity within a 
region as follows. Let K be the number of pixels in the region 

kR , and let { }K
1ii =p  be the set of spectral signatures of the pixel 

vectors that compose the region. We can simply define the 
spectral similarity of { }K

1ii =p , relative to a spectral signature js , 

as ( ) ( ) ( )∑ =
=

K
K ,RS

1i ijjk ,SAM 1 pss . In this work, we evaluate 

the spectral homogeneity of each region by computing 

( )kk c ,RS , where ( )∑ =
=

K

1i i 1 pc KK  is the centroid of kR . 

This measure provides an indication of how similar are the 
spectral signatures of the pixel vectors labeled as part of the 
same region by HSEG. Since the algorithm may associate 
together pixels that are spatially disjoint but spectrally similar, 
the homogeneity measures above may provide better results 
than spatial-based metrics in subsection II-A. 

C. Joint Spectral/Spatial Feature Extraction 
In this subsection, a combined spectral/spatial approach for 

feature extraction is described. The approach is based on 
mathematical morphology, an image processing technique with 
two basic operations: erosion and dilation. These operations are 
respectively based on the replacement of a pixel by the 
neighbor with the maximum and minimum digital value, where 



the pixel neighborhood is given by a so-called structuring 
element (SE). In order to extend the operations above to 
hyperspectral images, we impose an ordering relation in the set 
of pixel vectors lying within an SE, designed by B , by 
defining a cumulative distance between one particular pixel 

)y,x(f  and all the pixel vectors in the spatial neighborhood 
given by B  ( B -neighborhood) as follows: 

[ ] [ ]∑∑=
i j

j)(i, ),y,x(AMS)y,x(D fffB               (2) 

where )j,i(  refers to spatial coordinates in the B -
neighborhood. Based on the distance above, the extended 
erosion of f  by B  selects the B -neighborhood  pixel vector 
that produces the minimum value for BD : 

( ) ( ) ( ) ( ) ( )[ ]{ }{ }jyi,xDminarg'j,'i ,j'y,i'x)y,x( Bj,i ++=++=Θ ff f B

 (3) 

where the argmin operator selects the pixel vector is most 
highly similar, spectrally, to all the other pixels in the B -
neighborhood. On other hand, the extended dilation of f  by 
B  selects the B -neighborhood pixel vector that produces the 
maximum value for BD : 

( ) ( ) ( ) ( ) ( )[ ]{ }{ }jyi,xDmaxarg'j,'i ,j'y,i'x)y,x( j,i ++=−−=⊕ ff f BB

 (4) 

where the argmax operator selects the pixel vector that is most 
spectrally distinct to all the other pixels in the B -
neighborhood.  Based on the above operations, we define a 
measure of spectral/spatial homogeneity at a given pixel [4] as 
follows: ( )( ) ( )( )[ ]y,x ,y,xSAM)y,x(MEI BB Θ⊕=  ff . In this 
work, we use the mean of MEI scores of the pixels in a region 

kR  as a measure of its spectral/spatial homogeneity.  

IV. EXPERIMENTAL RESULTS 

A. Data Description 
The hyperspectral scene selected for experiments is a 

portion of a 2001 AVIRIS data set taken over an agricultural 
test site located in Salinas Valley, California. The scene 
consists of 512 lines by 217 samples, with 154 spectral bands 
after removing the water absorption and noisy bands. The data 
include vegetables, bare soils and vineyard fields with sub-
categories as given in Fig. 1, which shows the entire scene and 
a sub-scene of the dataset. The subscene, called “Salinas A” 
and outlined by a rectangle in Fig. 1, comprises 83x86 pixels 
and is dominated by directional classes. Figures of the ground-
truth take at the time of the data acquisition are also displayed. 
One of the most interesting features of the Salinas data set is 
that it represents a hyperspectral analysis scenario dominated 
by directional classes with very similar spatial and spectral 
properties. For instance, the romaine lettuce is at different 
weeks since planting and with growth increasingly covering the 
soil, which results in slightly distinct spectral signatures. This 
is a challenging segmentation scenario (in particular, for an 
unsupervised segmentation approach). In order to facilitate our 

exploration of the segmentation hierarchy based on spatial and 
spectral features, we focus on the analysis of the 
lettuce_romaine fields present in the “Salinas A” subscene. 

 
Figure 1.  AVIRIS data set collected over Salinas Valley in California. 

B. Analysis of the AVIRIS Salinas Data Set 
In order to carry out a preliminary analysis of segmentation 

accuracy, we first ran HSEG on the “Salinas A” data set and 
used ground-truth information in Fig. 1 to compute the true and 
false positive rates for each region and segmentation level 
produced by HSEG (see Table I).  

TABLE I.  TRUE (TPR) AND FALSE (FPR) POSITIVE RATES FOR 
SEVERAL REGIONS AT DIFFERENT SEGMENTATION HIERARCHY LEVELS 

Level 1 Level 2 Level 3 Level 4  

Region TPR FPR TPR FPR TPR FPR TPR FPR 
lettuce_4wk 0.25 0.00 0.43 0.01 0.75 0.03 0.85 0.17 
lettuce_5wk 0.25 0.01 0.43 0.02 0.64 0.03 0.99 0.11 
lettuce_6wk 0.12 0.00 0.33 0.02 0.99 0.05 0.99 0.15 
lettuce_7wk 0.26 0.00 0.62 0.01 0.95 0.05 0.95 0.12 

 

As shown by Fig. 2, most regions evolved from an instance 
of under-segmentation to levels where over-segmentations and 
false positives were clearly visible. Therefore, an automated 
selection of the best segmentation level for each region is 
highly desirable. Also, the scores in Table I demonstrate that 
level 3 may exhibit the level of segmentation detail that better 
fits available ground-truth information. An important question 
at this point is: what kind of features should be extracted from 
image objects in order to automatically select a single 
segmentation level out of the segmentation hierarchy? 

In the following, we explore different techniques to extract 
features able to describe spectral and spatial properties of 
objects in remotely sensed hyperspectral data. In order to 
evaluate if shape measurements can provide useful information 
for the selection of regions at different levels, we computed the 
metrics in section III-A for all spatially connected regions in 
Fig. 2, and found that only the solidity parameter was able to 



provide an indication about the compactness of each region at 
the different segmentation levels. In all cases, regions at 
segmentation levels 3 and 4 showed the highest compactness 
scores. However, it is clear from ground-truth information in 
Fig. 1 that, out of the extracted connected components at level 
4, only one corresponds to an optimal segmentation level for 
the region, while the other ones can be considered as a false 
positive detections. The false positives at segmentation level 4 
also showed high compactness scores. Subsequently, the 
solidity alone cannot be used as a measure to select a single 
segmentation result out of the hierarchy.  

Lettuce_romaine_4wk: 

    
Lettuce_romaine_5wk: 

    
Lettuce_romaine_6wk: 

    
Lettuce_romaine_7wk: 

    
Figure 2.  Tracking of lettuce_romaine regions from level 1 to level 4 (left to 

right) in the segmentation hierarchy produced by HSEG for “Salinas A.” 

TABLE II.  SPECTRAL HOMOGENEITY SCORES FOR REGIONS AT 
SEGMENTATION LEVELS: 3 AND 4 PRODUCED BY HSEG 

Level lettuce_4wk lettuce_4wk lettuce_4wk lettuce_4wk 
3 0.92 0.91 0.93 0.92 
4 0.56 0.69 0.71 0.58 

 

In order to resolve the issues above, we resort to the 
spectral information contained in the original hyperspectral 
image. Since the HSEG algorithm clustered together pixels that 
are spatially disjoint, here we consider each region not as a set 
of spatially connected components as in the previous 
experiment, but as a set of spectrally similar pixel vectors in the 
multi-dimensional space comprised by the input data. Table II 
shows the scores produced by the spectral homogeneity metrics 
in section III-B for the regions at segmentation levels 3 and 4. 
As shown by Table II, the spectral homogeneity scores for the 
regions in segmentation level 3 are close to optimal, but false 
positive regions at segmentation level 4 resulted in significantly 
lower spectral homogeneity scores. Interestingly, spectral 

homogeneity metrics allowed us to automatically discard false 
positive HSEG detections based on spectral properties of the 
data alone. 

The approaches explored thus far consider spatial and 
spectral information separately. To conclude this section, we 
investigate a joint feature selection approach that relies on 
simultaneous exploitation of spatial and spectral information. 
Table III shows the morphological eccentricity scores (defined 
in section III-C) for different segmentation hierarchy levels. A 
disk-shaped (isotropic) structuring element was considered, 
where the radius of the disk was set to the width in pixels of 
each field, computed using ground-truth information.  

TABLE III.  JOINT SPECTRAL/SPATIAL HOMOGENEITY SCORES. 

Region Level 1 Level 2 Level 3 Level 4 
lettuce_4wk 0.48 0.54 0.99 0.65 
lettuce_5wk 0.61 0.94 0.94 0.61 
lettuce_6wk 0.47 0.63 0.96 0.81 
lettuce_7wk 0.44 0.71 0.98 0.63 

Scores in Table III provide a measure of spectral/spatial 
consistency that exploits both the spatial properties (through 
the width of the structuring element) and spectral information 
(spectral homogeneity of the classes). A general requirement of 
multidimensional morphological operations, however, is to 
carefully set the spatial properties of the structuring element in 
order to obtain the desired performance. A method for 
automated selection of an optimal structuring element at each 
pixel was recently developed in [4] in order to alleviate the 
above constraint in general-purpose hyperspectral applications. 

V. CONCLUDING REMARKS 
Unlike most other segmentation approaches, the HSEG 

segmentation approach produces a hierarchical set of image 
segmentations. The potential of segmentation hierarchies 
remains largely unexplored in many application areas such as 
remotely sensed hyperspectral imaging, which can greatly 
benefit from automated techniques able to exploit segmentation 
hierarchies in a region-adaptive fashion. In this paper, several 
feature extraction techniques in the spatial and spectral domain 
have been proposed in order to investigate how regions change 
from one level to another in a segmentation hierarchy. Our 
experimental results provided several intriguing findings that 
may help data analysts in selection of feature extraction 
approaches for automating the exploitation of segmentation 
hierarchies in specific applications. 
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