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INTRODUCTION 
This report is a summary of research conducted from 1 October 1993 through 30 Sep-
tember 2004 for the project titled Sensor Management for Fighter Applications (SMFA). 
Two United States Air Force organizations sponsored this research:  

• The Mathematics and Information Sciences Directorate of the Air Force Office of 
Scientific Research (AFOSR/NM), and  

• The Sensors Directorate of the Air Force Research Laboratory (AFRL/SN).  
This report is the final written document for Project SMFA, which carried the number 
designation of Task 2304 ES. 
 
In a modern aircraft, data fusion is the process by which the target environment is meas-
ured by sensors, and data from sensing actions are combined into estimates, reasoned 
over, and presented to the pilot. Determining which data to measure and when to take 
those measurements is critical to achieving effective data fusion. But the need for data 
depends on uncertain, interrelated, and dynamic factors. This fact has pushed the activity 
of planning and scheduling data-sensing beyond the ability of the pilot, and has led re-
searchers to study structured decision-aiding systems called sensor managers.  
 
A sensor manager must consider questions such as where each sensor should point, what 
mode of sensing should be used, and how the sensors should be sequenced in time. Effec-
tive sensor management produces early target detection, accurate target track, and clear-
cut identification. The objective of this research was to develop automated methods for 
the intelligent allocation of agile airborne sensors in a real-time environment comprised 
of targets that can be observed by those sensors. 
 
Acceptable sensor allocation methods must be able to handle heterogeneous sensor types, 
targets that are moving and at rest, finite sensing assets, imperfect sensed data, and situa-
tion uncertainties. A sensor manager performs its work by identifying needs, by deter-
mining which available sensors can satisfy those needs, by prioritizing potential associa-
tions of sensors to needs, by scheduling the best sensing options, and by continually 
adapting to the changes of a dynamic environment.  
 
The systems-level character of managing sensors caused the domain of effort in this pro-
ject to be quite broad, extending across architectural concepts, planning techniques, poli-
cies for guiding sensing actions, scheduling considerations, and mathematical frame-
works for fusing data. Adaptively selecting the appropriate sensing actions under re-
source and operational constraints is fundamentally a problem in mathematical optimiza-
tion, with connections to operations research, decision theory, stochastic estimation, in-
formation theory, machine intelligence, and data fusion.  
 
This report is a summary, not a retelling. That is to say, this report describes the problems 
that were addressed, briefly summarizes the progress that was made in their solution, 
identifies more advanced work for which our results were foundational, and provides a 
full list of references that document this project. In so doing, we hope to assemble a re-
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cord that is a starting point for other investigators. We will not redevelop any model, re-
explain any method, or rehash in detail any experiment, and the few results we do present 
are merely illustrative. We are confident that those who need to dig deeper in sensor 
management will be able to find their way among the extensive collection of papers that 
we wrote for the open literature, papers that are listed here in the References section.  

STAFFING 
Dr. Jon Sjogren of AFOSR/NM was the manager of this 11-year project. The following 
individuals were its primary contributors:  

• Mr. Stanton H. Musick, principal investigator, Automatic Target Recognition and 
Fusion Algorithms Branch of the Sensors Directorate of the Air Force Research 
Laboratory (AFRL/SNAT) at Wright-Patterson AFB, Ohio;  

• Mr. Raj P. Malhotra, co-investigator, also of AFRL/SNAT;  
• Dr. Keith Kastella, primary industry collaborator, Unisys (and its successors) in 

Eagan, Minnesota, and then General Dynamics in Ann Arbor, Michigan;  
• Dr. Yan M. Yufik, Institute of Medical Cybernetics, Potomac, Maryland. 

 
These five individuals also made substantial contributions: 

• Dr. Wayne Schmaedeke, Unisys in Eagan, Minnesota; 
• Dr. Christopher Kreucher, General Dynamics and University of Michigan, both in 

Ann Arbor, Michigan; 
• Dr. Milton Cone, Embry-Riddle Aeronautical University in Prescott, Arizona and 

AFOSR Summer Faculty at Wright-Patterson AFB, Ohio; 
• Mr. John Greenewald, General Dynamics and Nonlinear Vision in Dayton, Ohio. 

 
Mr. Musick managed this project, conducted research for it, and published results over its 
entire 11-year history. Mr. Malhotra and Dr. Kastella participated for the first eight years 
1993-2001, Dr. Cone for the five summers 1993-1997, Dr. Kreucher in the 1999-2001 
time frame, and Mr. Greenewald for the period 2000-2004. From time to time, other indi-
viduals also contributed products to this work, as can be seen by the author names on 
various papers cited in the References section. 

PROBLEM BACKGROUND 
To better appreciate the sensor management problem and the challenges it presents, it is 
useful to look back at the situation that existed in the early 1990s when rigorous founda-
tional work was just beginning. Here is a list (not exhaustive) of issues, assumptions and 
conditions that predominated at that time:  

• operational sensing schedules were largely fixed, not adaptive 
• in planning, sensor behavior was often assumed to be deterministic 
• the possibility for target motion was sometimes ignored 
• the estimation approach made unwarranted assumptions, e.g. independent targets 
• single-objective optimization predominated, e.g. either identification or tracking, 

but not both 
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• often single sensor/single target reasoning 
• myopic solutions 

 
At the beginning of this project, the way forward in each of these areas was an open ques-
tion. For example, how to move from fixed to dynamically adaptive sensor schedules, 
how to portray stochastic target motion in a manner consistent with the structure of a sen-
sor allocation system, how to strike a reasonable balance between the objectives of 
search, track and identification, how to weigh the value of measurements well into the 
future, how best to represent the generalized multitarget problem, and so forth, were all 
unresolved matters.  
 
Prior to the 1990s, designers typically approached sensor management problems in an ad 
hoc manner, often utilizing rule-based methods, or some combination of rules and proce-
dures that was optimized for a subset of functions. Such solution approaches are subject 
to many faults. They can be brittle meaning that small deviations in scenario assumptions 
erodes their effectiveness disproportionately; they are usually untrustworthy because they 
are not guided by an underlying theory that directs their development and allows com-
parison to a performance bound; and they are often difficult to implement and maintain 
because of their specialized nature. 

A Typical Problem and Its Technical Issues 
To place these issues in context, consider the problem of detecting, tracking, identifying 
and intercepting a collection of airborne targets by combined use of radar and other sen-
sors. During the early phases of such an engagement, detection will be intermittent and 
the system can be easily confused by false alarms. Based on these initial intermittent de-
tections, additional sensor resources must be allocated to determine which of them repre-
sent valid targets. This additional resource may be in the form of different wave forms or 
sensing from other platforms. Initially, individual targets will be unresolvable and raid 
assessment may be necessary to determine how many targets are present. For low-flying 
targets, multipath interference can be a significant problem for radar systems. In this case, 
the high angular resolution of an imaging sensor can be particularly useful. Once targets 
have been detected and localized, they need to be classified and threatening targets inter-
cepted. To classify them, sensors may switch modes to provide classification signatures. 
However, this is only useful if targets are sufficiently localized by the sensors for the 
classification modes to be effective. Finally, ownship maneuvers may be required during 
weapon engagement to achieve favorable launch or sensing geometry.  
 
Current approaches to sensor management and data fusion suffer from a number of defi-
ciencies when confronted with this type of coupled problem. First, most existing systems 
model targets as a collection of independent objects. Assuming object independence is 
equivalent to assuming that the joint probability density for the targets factorizes into a 
simple product form. Such a form fails to portray the correlation in the density that arises, 
for example, when targets are crossing or close together as in convoy. The existence of 
this correlation effect means that tracking can be improved for close targets if additional 
sensor resource is allocated to them. However, if the data fusion system fails to model the 
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correlation effect, then determining how to allocate sensors for close targets is more diffi-
cult.  
 
Second, many existing sensor management schemes are based on relatively limited sub-
sets of the information provided by the data fusion system, such as predicted position or 
velocity error. Such schemes have no way to evaluate the shared utility of non-
commensurate quantities such as velocity sensitive sensor modes against modes that are 
primarily effective in classifying well-localized targets.  
 
The third and final issue in most tracking systems is that they are based on Kalman filter 
estimation, which yields a Gaussian approximation of the probability density of the mul-
titarget state. There are many situations where such an approximation breaks down. 
Poorly localized targets often have highly multimodal densities that are not well-
approximated by a Gaussian form, or any other standard form for that matter. Geometry 
effects such as multipath interference can lead to multimodal densities. Nonlinear dynam-
ics can lead to highly non-Gaussian densities, even if they remain mono-modal. Finally, 
the Kalman approach requires that it be possible to associate sensor measurements with 
corresponding objects in the state estimate, an action that can easily fail, especially at low 
signal-to-noise ratios (SNR). Techniques to relax the Gaussian assumption inherent in the 
Kalman approach, thereby treating the probability density of the target state in a more 
general manner, are referred to as nonlinear filtering methods.  
 
This project addressed three fundamental issues required for effective sensor manage-
ment, issues suggested by the tactical scenario above. First, a framework is needed to a) 
describe the disparate interacting components of the tactical scene, and b) to account for 
uncertain target dynamics and imperfect measurements. For example, during the early 
stages of this engagement, not only were the individual target locations uncertain, but the 
number of targets itself was uncertain partly because the targets were closely spaced. 
Later, the target number may be well-resolved but the target locations and classes are un-
certain. For effective sensor management to take place, these joint uncertainties must be 
modeled by multitarget data fusion systems. Second, measures of expected utility for 
sensing alternatives are needed. The complexity of the joint multitarget uncertainty 
makes this task particularly difficult. Third, numerical methods are required to approxi-
mately solve the measurement-based estimation problem for our stochastic system, and to 
evaluate the resulting utility measures.  

Setting the Stage 
Bearing in mind the limited amount of formal development that had occurred in sensor 
management prior to the early 1990s, we took up the problems identified in the last sec-
tion. To begin, the state of sensor management was assessed in the 1994 paper “Chasing 
the Elusive Sensor Manager” by Musick and Malhotra, [1]. This paper described the sen-
sor management problem, reviewed its history, and sketched various techniques that 
might contribute to a rigorous and effective general theory to underpin our research. This 
paper was sobering for the large number of potentially viable techniques it found – the 
situation cried out for visionary insights or at least shrewd tactics. This paper has been 
referenced often by other researchers over the ensuing years. 
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MATHEMATICAL RESULTS 

Discrimination Gain 
In the months just prior to the start of this project, Keith Kastella and Wayne Schmae-
deke, both then working at Unisys, had begun to look at sensor management techniques 
that used information metrics such as entropy and discrimination. Building on their pre-
liminary work, over the period 1993-1997 this project developed and evaluated a tech-
nique to guide sensor allocation that employed the information measure called Kullback-
Leibler discrimination. This technique used KL discrimination to predict how much the 
density function of the target state would shrink for any particular sensor mode and tar-
get/sensor pairing. The expected density shrinkage is a scalar that was termed the dis-
crimination gain. The sensor management policy is then straightforward: search through 
all reasonable sensing combinations and select the one with the largest gain.  
 
The idea of discrimination gain for sensor management originated at Unisys with Kastella 
and Schmaedeke. They developed this technique in 1994, and in 1997 Kastella published 
it in journal form [13]. Performance comparisons of discrimination gain with other plau-
sible methods were conducted by Kastella, Schmaedeke and Musick, and published in 
1994-96 at various conferences [2, 6, 7, 10].  
 
The basic notion of discrimination gain for use in sensor management is quite simple and 
can be understood as follows. It assumes that a probability density is available to describe 
the state of a collection of targets in a region – call this the target state. The number of 
targets, their locations and target classes, and their motion condition may all be uncertain, 
with all of those uncertainties captured in the associated probability density. Furthermore, 
a sensor model is available to provide the measurement probability density given the tar-
get locations and classes. For any postulated measurement, the expected gain in discrimi-
nation of the updated target density with respect to the current density can be computed.  
 
Suppose we want to assess the utility of a particular measurement in a particular region. 
Since the current density is available, the probability for alternative measurement out-
comes (detection versus non-detection, say) can be computed, the density updated with 
the hypothetical measurements, and the resulting discrimination evaluated. Although 
computationally expensive, this computation can be carried out across all possible sensor 
allocations and the discrimination maximizing allocation can be selected. 
 
To illustrate its power, reference [6] contrasts discrimination gain with three other meth-
ods for guiding a sensor that is searching for a single stationary dim target that occupies 
one cell in a large space of cells. This classic detection problem can be approached in 
many ways. The methods we investigated were named direct search, alert/confirm, and 
index rule. The direct search method, which allocates the same number of measurements 
to each cell in the search space, was chosen as a baseline because it is the simplest (and 
most naïve) policy possible. The alert/confirm method, which allocated additional meas-
urements to any cell where a detection occurred on an initial look, was chosen because it 
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has been used in operational systems. Finally, the index rule was chosen because it is 
provably optimal for the special circumstances of this example (search for a single target 
in a case where the measurement density is complementary and symmetric).  
 
A Monte Carlo simulation was used to investigate the performance of these four methods. 
A single simulation run consisted of 1000 measurements, with 1000 independent runs in 
the full ensemble of runs for each method. Each method was implemented to ingest 
measurements into the probabilistic target state using optimal Bayesian updating tech-
niques. At intervals of 100 measurements, the simulation was paused and the decision-
maker was forced to declare where it currently thought the target was located. For a par-
ticular measurement epoch, the percentage of wrong answers over 1000 repetitions of the 
experiment represents the probability of error. Figure 1 is a plot of that probability as a 
function of increasing sensing effort (gauged by measurements expended), by method.  
 
Figure 1 shows that direct search performs worst and the index rule best [6]. Both results 
were expected. However, it was revealing and encouraging that discrimination gain per-
formed almost as well as the optimal index rule, and considerably better that the opera-
tional method named alert/confirm.  
 

Comparing search methods that use an imperfect sensor
to find a single dim stationary target in a large space

(SNR = -3dB ~ Pd = 0.69, Pf = 0.31)
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Figure 1.  Comparison of four search methods  

 
 
As matters turned out, this project would continue to use discrimination gain to guide 
sensor allocation throughout its history. Discrimination gain confers compelling advan-
tages, the foremost ones being near optimality, the ability to work with generalized den-
sity functions, tractable computation (although relatively high computational burden), 
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and the ability to simultaneously balance the demands of diverse objectives like search, 
track and identification.  

Joint Multitarget Probability 
To treat the problem of simultaneous detection, tracking and identification in multitarget, 
multisensor applications, systems must model the joint uncertainty between all elements 
of a scene. This can be achieved through the use of the so-called joint multitarget prob-
ability (JMP). JMP is founded on Bayesian principles which permit using the standard 
tools of Bayesian analysis, including measurement updating via Bayes’ rule, density 
propagation via the Fokker-Planck partial differential equation, and information theoretic 
notions such as discrimination. In particular, given the JMP framework, the expected gain 
in discrimination can be computed and used to guide sensor allocation decisions. This 
leads to a complete approach to data fusion based on a) tracking the probability for an 
unknown number of targets using a joint collection of multitarget probabilities, and b) 
maximizing the expected discrimination gain for each sensor dwell.  
 
JMP was introduced by Kastella in [10] and may be understood as follows. JMP is based 
on the conditional probability density ( )Z|x,,xp nL1  that a) there are exactly n  targets 
in the scene, and b) they are located at nx,,x L1  based on a set of observations Z . The 
joint collection of all such conditional probabilities for N,,,n L10=  comprises a com-
plete probability density, the JMP density, with a total mass that sums to one. Here N  
may be thought of as the maximum number of targets that could occur in the scene of in-
terest. Given a measurement and a sensor model, Bayes’ rule is used to update 
( )Z|x,,xp nL1  for all ix  and for each value of n . Target dynamics are modeled as 

Markovian, which leads to a time-evolution of ( )Z|x,,xp nL1  that is independent of the 
measurement history. This Markov process can be modeled in discrete time or in the con-
tinuum limit, where the time-evolution of ( )Z|x,,xp nL1  is then governed by the Fok-
ker-Planck PDE determined by the dynamics of the individual targets. The expected dis-
crimination gain for sampling a region with a sensor can be computed from 
( )Z|x,,xp nL1 . The sensor is moded and directed to the region that maximizes the ex-

pected gain for each sample. In comparison to directly sampling all of the cells, optimiz-
ing the discrimination significantly increases the probability of detecting and localizing 
all of the targets.  
 
Results obtained using JMP and discrimination gain in a variety of multitarget applica-
tions are reported in [10, 17, 19, 20, 21]. Figure 2 and Figure 3 illustrate such results for 
the problem of tracking two targets that pass one another while moving along a line in a 
one-dimensional space. Here the problem is to detect and track these targets in a region 
where the number of targets is not known a priori and where there is a very high false 
alarm rate (corresponding to about 0 dB SNR). In this test case the targets lie mostly be-
tween cells 4 and 8. Figure 2 shows the allocation of sensing effort through time using 
discrimination gain. Figure 3 shows the conditional probability that there are two targets 
in the space.  
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In Figure 2, location is indicated across the page, time goes into the page and the vertical 
axis gives average sensing effort. The targets are initially in cells 5 and 7. Between time 
10 and 20, both targets are in cell 6. After time 20 the targets move apart. A simple sen-
sor model is used where for each dwell the sensor can examine a single target cell. For 
each dwell the expected discrimination gain is computed, given the current value of the 
probability that one or more targets are in the cell. Then the cell with the highest expected 
gain is sampled. Ten sensor dwells are allocated for each time step. For the first time step 
the sensing effort is nearly uniformly distributed across the region. Once the targets are 
detected, discrimination gain automatically drives the sensor system to focus most of its 
effort in the target-containing region. 
 
 
 

 
 

Figure 2.  Sensing effort as a function of location and time for the 2-target example. 
 
 
 
In Figure 3, the direct search (Dir) and discrimination gain (DG) methods are again com-
pared, this time in terms of each method’s ability to estimate the correct number of tar-
gets in the scene. The targets, which are moving, are co-located between times 10 and 20. 
During this period, the sensor cannot resolve them so they appear as one target and the 
probability for two targets falls. The upper curve was obtained using discrimination gain 
and the lower curve is the direct search result. Discrimination gain converges to 1 (the 
ideal answer) more quickly than direct search, representing improved performance.  

Location 

Time 

Sensing 
Effort 
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Figure 3.  JMP probability P2 that there are 2 targets in the scene. 

 
 
JMP became the favored state representation for all efforts under Project SMFA. When 
target count is unknown, which is the usual case in practice, JMP provides significant ad-
vantages including mathematical rigor, a framework that can account for all sources of 
uncertainty, and compatibility with sensor management via discrimination gain. The big-
gest drawback with JMP is the high computational burden imposed in propagating the 
JMP density, especially when that solution is implemented by solving the Fokker-Planck 
PDE. Much of our work in the latter years of this project was directed at finding efficient 
means for solving this problem.  

Nonlinear Filtering 
The JMP formulation presents a classic problem in nonlinear filtering (NLF). The Bayes-
ian foundations of NLF were laid in the context of single-target tracking and date to the 
1960s. The feature that most distinguishes NLF from Kalman filtering and its many off-
spring is this: NLF uses a representation for the probability density of the target state that 
is entirely general, whereas Kalman assumes that density is Gaussian. Of course, when its 
assumptions hold, Kalman is the preferred approach because of its computational sim-
plicity. The advantage of a general density is that it enables the nonlinear filter to treat the 
nonlinear effects of target dynamics and non-Gaussian measurements more realistically, 
thereby producing more accurate solutions. Furthermore, NLF has two particularly useful 
features: a) under the usual assumption of Markovian processes, the nonlinear filter is 
recursive, and b) the nonlinear filter is optimal within the Bayesian framework.  
 
Early work on nonlinear estimation built upon the extended Kalman filter, leading to ap-
proximations such as Gaussian sum, point mass, and the unscented filter. These early ap-
proximations were pursued because the full nonlinear filter was generally viewed as un-
feasible for real-time applications. Today, with faster computers and more efficient nu-

Sensing Effort 
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DG 

P2
Dir 

2-target  
probability 
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merical methods, NLF is a viable option for some applications. Today NLF techniques 
include spectral methods, separation of variables schemes, convolution methods, and 
Monte Carlo simulation schemes like particle filtering.  
 
Tracking and identification problems are best modeled as having continuous-time target 
dynamics and discrete-time sensor measurements. After initialization, implementing a 
nonlinear filter consists of two basic steps: a) determining how the target state probability 
density evolves between measurements, and b) updating the target state probability den-
sity when a new measurement is obtained. The evolution of the target density can be de-
termined by solving the Fokker-Planck (partial differential) equation (FPE), which de-
scribes how the target state density evolves between measurements under the influence of 
both deterministic and random effects. This entails solving a linear partial differential 
equation between sensor measurement epochs. The Bayes' rule implementation used for 
the measurement update is a relatively simple point-wise multiplication operation.  
 
Most of the computational complexity and burden in NLF lies in propagating the target 
state density through time. If we assault the problem directly by employing finite differ-
ence methods to solve the FPE, an open question is which finite difference method is best 
in multitarget tracking and identification applications. To investigate this question, 
Kastella and Zatezalo developed and tested a variety of PDE solvers, including one based 
on the so-called Alternating Direction Implicit (ADI) finite difference scheme [11, 29]. 
ADI has a rigorous mathematical basis and its computational complexity is proportional 
to the number of grid nodes M used to approximate the target density, i.e. complexity is 
O(M). Apparently, ADI’s utility for problems of this type had not been previously recog-
nized.  
 
To illustrate ADI performance, consider the problem of detecting and tracking a dim tar-
get moving in a two-dimensional space where target dynamics are non-linear and image 
measurements are non-Gaussian. In particular, noise corrupts the image, producing an 
SNR of 3 dB. Additional problem facts include:  

• the area of interest (AoI) is 6.4 km on a side;  
• the maneuvering target travels in this AoI at 100 m/s for 70 sec, making a 1 G 

hairpin left turn over the sub-interval (20, 50) sec, see Figure 6;  
• maneuvers are modeled as “nearly-coordinated”, with a stochastic motion model 

that contains five states, [ ]T,y,y,x,xX ω= && ;  
• these five states are related nonlinearly, the deterministic part of the stochastic 

motion model being [ ]T,x,y,y,x)X(f 0&&&& ωω−= ;  
• the sensor is a downward-looking device that produces pixilated images of the en-

tire AoI at 1 sec intervals;  
• each sensor image is a 6464×  array of measurements, with pixels 100 m square;  
• sensor intensity errors are distributed as Rayleigh noise; 
• the filter is initialized with a uniform density over the full range of each variable. 

 
Simulation results obtained for this situation are shown in Figure 4 through  
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Figure 6. Figure 4 shows a single image from the Rayleigh imaging sensor – note how 
difficult it is at 3 dB to tell which pixel contains the target.  
Figure 6 shows six snapshots of the evolving marginal for the x-y target position. (Note 
that intensity values in these six marginals are plotted on a logarithmic (dB) scale.)   
Figure 6 portrays an improving situation, e.g. the marginals are growing more compact 
and the error ellipses (not shown) contract by at least an order-of-magnitude during the 
70 sec scenario. In most runs, about 20 sec (20 image scans) were required to localize the 
target in x-y position, 30 sec for x-y velocity, and 40 sec for ω . Once converged, the es-
timates are maintained through the remainder of the scenario.  
Figure 6, an ensemble average of 10 runs, shows a well localized target through the 
straight portions of the trajectory but a significant increase in uncertainty during the 1 G 
turn itself. The turn rate ω  has its greatest influence on the other states during the turn, 
and, as asserted above, is the state that was most difficult to estimate. These results are 
consistent with RMS error plots (not shown) across the ensemble. Raising SNR to 5 dB 
allows tracking through the turn to be substantially tighter. 
 
 

 
 

Figure 4.  A single image at -3 dB, target at (27, 13) 
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Figure 5.  Position marginal, average over 10 runs 
 
 

 
 

Figure 6.  Low SNR image tracking, average over 10 runs, true dotted, estimate solid 
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TENET 
In 1999, we began to study Monte Carlo methods for NLF as an alternative to directly 
solving the Fokker-Planck equation. Monte Carlo methods such as particle filtering 
emerged in the 1990s and quickly became prime candidates for the numerical solution of 
nonlinear problems. Such methods represent a probability density like JMP with a collec-
tion of particles that become dispersed over the probability density in numbers propor-
tional to that density’s mass concentrations. All particles are time-propagated per the sys-
tem dynamic models via Monte Carlo simulation. At measurement update epochs, parti-
cles are evaluated by sampling the measurement at the discrete particle points and 
weighting the result according to a “proposal density”. This step is called importance 
sampling. These resulting weights are used as the empirical sampling of the joint density 
of the state conditioned on the measurement. During the sampling step, particle filtering 
may generate many particles of low importance due to using randomization in the pro-
posal process. A resampling step is used to replace low importance particles with higher 
importance particles so the particle distribution better represents the a posteriori density. 
This approach is fully Bayesian. 
 
In 2000, Musick, Kastella, Kreucher and Greenewald developed a challenge problem in 
nonlinear filtering around a dim target tracking application. This challenge problem, 
which we named TENET (TEchniques for the Nonlinear Estimation of Tracks), was de-
vised to encourage wider participation by the research community in NLF studies. 
TENET was introduced at a two-day workshop in February 2001 in Dayton that was 
hosted by AFRL/SNAT and attended by over 40 researchers, most of whom were active 
in NLF and/or in tracking. A web site was created at the following URL to facilitate dis-
tribution of the TENET software and documentation [43]. 
 

https://www.vdl.afrl.af.mil/programs/tenet 
 
This is an open website, available to anyone who wishes to participate in the TENET 
NLF challenge problem.  
 
References [38, 39, 41] are TENET-related conference papers written by contributors to 
Project SMFA. Although the TENET software and documentation have been downloaded 
some many times over the last five years, TENET has been cited only 14 times in related 
NLF papers over that same period. Furthermore, to our knowledge only one study has 
been conducted that used the TENET low-SNR scenario directly. Although one can never 
be sure about what motivates others, based on this low level of interest it seems clear to 
the authors of this report that capable and productive researchers are reluctant to under-
take demanding work that has little prospect of financial return. Thus our failure to fol-
low through with funding and other actions for this research effectively wasted the prom-
ising start that occurred in 2000-2001.  

Applications of Nonlinear Filtering 
This section describes several problems of Air Force interest that were addressed using 
SMFA technology. 
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Tracking in the presence of multipath interference 
When radar observes a target near a reflecting surface such as the sea, it will generally 
receive echoes from both the target and the nearby surface. If the viewing geometry is 
constructive (as it is when the target is observed at low grazing angles over the surface), 
both echoes arrive at nearly the same time from nearly the same direction, creating recep-
tion patterns known as multipath interference. Such interference degrades detection per-
formance and makes the direct echo from the target difficult to resolve from the reflecting 
surface echoes. Ultimately, multipath interference leads to difficulties in estimating target 
altitude above the surface. Although radar designers have found means in both hardware 
and signal processing to deal with radar multipath, current solutions are expensive and 
inaccurate, leaving much room for improvement.  
 
In this study, NLF methods were used to exploit target motion to solve the altitude esti-
mation problem. Ideally, target altitude could be estimated directly from the probability 
density of the radar measurement conditioned on target range and altitude. This direct 
approach is usually unfeasible because the measurement density generally has many false 
peaks that yield multiple solutions for target altitude. However, as target range varies, the 
locations of the false peaks fluctuate rapidly while the true peak steadily tracks target alti-
tude. 
 
In [20], Kastella and Zatezalo describe a nonlinear filter that exploits these measurement 
density peculiarities to estimate target altitude. This nonlinear filter recursively computes 
the probability density for altitude and altitude rate conditioned on the radar measurement 
sequence. The time evolution of this density between measurements is determined by the 
FPE, which is solved in real-time using the ADI finite difference scheme. The radar 
measurement density is computed from a physical model and used to update the condi-
tional density of the target state using Bayes’ rule.  
 
In simulation testing with a typical shipboard radar that made measurements at 10 Hz, the 
nonlinear filter was able to reliably acquire and track transonic targets through mild ma-
neuvers to produce an accuracy of about 12 m RMS (root-mean-square) in altitude, and 7 
m/s RMS in altitude rate. These results demonstrate the feasibility of tracking in the pres-
ence of multipath interference using NLF techniques.  

Association-free bias estimation 
Nonlinear filtering research has consistently shown that by directly estimating the prob-
ability density of a target state using a track-before-detect scheme, weak and densely-
spaced targets can be tracked, and data association can be avoided. Data association, 
which associates measurement reports with tracks, imposes a heavy burden on tracking, 
both in its design where complex data management structures are required, and in its exe-
cution which often levies a heavy computational burden. Therefore, avoiding data asso-
ciation can have significant advantages. However, a concern had long existed that data 
association is essential for estimating and correcting sensor biases, which are nearly al-
ways present.  
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This effort demonstrated that target tracks and sensor biases can be estimated simultane-
ously using association-free NLF methods based on the JMP representation. We began by 
defining a state consisting of target locations and a slowly drifting sensor bias. Stochastic 
models for state dynamics and for the measurement function were presented. A track-
before-detect nonlinear filter was constructed to estimate the joint density of all state 
variables. A simulation that emulates estimator behavior was exercised under low SNR 
conditions. Simulation results showed that RMS values for both kinematic and bias states 
contracted as measurements were accumulated over time. This work, which is docu-
mented in [27, 30, 42], extended the useful range of NLF methods in tracking.  

Tracking through radar clutter 
The objective of this task was to track a single moving vehicle using measured radar data 
from a DARPA data collection. The technical challenges to achieving accurate estimation 
with this data were clutter that was intermittently heavy, data anomalies, and vehicle ob-
servations that changed radically in shape and size as the vehicle maneuvered over a vari-
able ground terrain.  
 
Several methods are available to track moving targets in clutter and noise from sensed 
kinematic and identity data. Among the most capable is track-before-detect (TBD), which 
delivers performance at lower ratios of signal-to-clutter-plus-noise (SCNR) than conven-
tional tracking methods. Against isolated single-cell targets for example, TBD can detect 
and track at SCNRs as low as 0-6 dB.  
 
This paper [44] explored the performance of TBD in scenarios involving multiple 
closely-spaced vehicles where radar sensors delivered a combination of kinematic and 
identity data. The identity data are range-profiles, obtained from a high range resolution 
(HRR) mode of the radar, that are used to help gauge the severity of vehicle maneuvers, 
while the kinematic data are ground moving target indications (GMTI). The TBD estima-
tor, which is implemented using particle filter methods, is able to exploit the structure in 
the vehicle signature to better handle corruptors like poorly-modeled kinematics, clutter 
and noise. This paper described the TBD estimation method, discussed the experiments 
that were performed to test the method using real GMTI/HRR data, and presented the 
simulation and metrics that were used for evaluation. Results show that the method was 
able to operate at low SCNR in stressful estimation situations.  

A method for finding distributed objects 
Detecting and identifying distributed objects in an image is a recurrent problem in Auto-
matic Target Recognition (ATR), and in application areas like astronomy, speech recog-
nition, and biomedical imaging. Part of the challenge of such problems lies in the fact 
that the individual “spots” that comprise the distributed object may hold little intrinsic 
identification information. In such cases, identification can only be assured when the en-
tire distributed object conforms to the expected pattern. In this work, knowledge of an 
object’s geometric shape and spot configuration makes its detection possible, even amid 
heavy clutter.  
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This paper [50] appeals to particle filtering methods to detect, localize, and identify a dis-
tributed object in a single cluttered image. By maximizing the joint probability that a par-
ticular collection of spots is the object of interest, the decision can be made with an ac-
ceptable error rate. The setting for this work is a government program that has restricted 
the release of information about the actual problem. Thus, the method is illustrated using 
a surrogate estimation problem that retains the essential attributes of the original problem. 
Results demonstrate that the proposed method yields acceptable error levels in both false 
detection and localization when the SCNR is above 5 decibels. 
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MACHINE LEARNING RESULTS 
The sensor management problem provides several motivations for the investigation of 
machine learning (ML) techniques. First, tactical sensor managers will be required to op-
erate under harsh time constraints – real-time optimization may not be feasible. ML could 
allow us to leverage off-line processing toward a complex on-line problem. Thus, it may 
offer an attractive computational tradeoff: extensive learning trials are traded for a 
quickly-computed, reactive policy (if state=x then action=u). Secondly, sensor manage-
ment is plausibly modeled as a large, stochastic, Markov decision process (MDP). Such 
models can be optimally solved using dynamic programming (DP), but only when state 
propagation dynamics and objective functions are known to be linear and quadratic, re-
spectively. In the absence of these conditions, an exact, closed-form solution cannot be 
found and, for reasonable size problems, the iterative DP approach becomes computa-
tionally prohibitive. ML allows us to closely approximate optimal but incalculable DP 
solutions while addressing the computational burden issues as well. Finally, sensor man-
agement appears to exhibit complex mathematical relationships between actions and con-
sequences. A precise, closed-form expression for this has not been obtained – ML pro-
vides a means to learn to approximate this relationship. Ideally, ML obtains the action-
consequence relationships in the mean sense (this is provably optimal for MDPs). 
 
In carrying out our ML research, two distinct approaches were taken: Reinforcement 
Learning (RL) and Virtual Associative Networks (VANs). Both theoretical extensions 
and applications were explored. This work is briefly described in the next two subsec-
tions.  

Reinforcement Learning in Sensor Management 
The three points mentioned above provided the impetus to study Reinforcement Learning 
(RL) for sensor management. However, there are maturity issues with RL which hamper 
its effectiveness. Several questions in particular arise;  

• How can we best set the learning (or synthesis) parameters in order to maximize 
our success?  

• How can we judge the performance of a learned policy on-line and gracefully de-
grade in the face of changing conditions?  

• How can we use RL in conjunction with other on-line techniques (i.e., discrimina-
tion gain)?  

These questions needed answers in order to improve the plausibility of a reinforcement 
learning approach for sensor management.  
 
In FY96, SMFA work concentrated on finding and applying analytical techniques that 
could help understand and predict the performance of RL in different environments. We 
made incremental improvements to the simulation model from FY95 (added more realis-
tic object motion, a Linear-Quadratic-Gaussian case) and began to look at the perform-
ance of Temporal Difference Learning (TDL) for various cases (variations of system pa-
rameters). We observed that TDL is sensitive to synthesis parameters and in different 
ways for the various learning environments. The variation of performance for TDL was 
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significant: well over an order-of-magnitude difference in the root-mean-square error of 
the Value Function was observed in different conditions. This sensitivity of performance 
to operating conditions motivated us to find methods to predict the performance of RL in 
sensor management and other problems. 
 
At this time we also began to examine various techniques for predicting the behavior of 
RL systems via simulation. The studied techniques included: 1) optimal stopping to pre-
dict the performance after a given, finite amount of training; 2) a body of work in sam-
pling theory based on the central limit theorem was used to predict rate of convergence of 
the algorithms; and 3) an ordinary differential equation (ODE) method was used to pre-
dict performance asymptotes for infinite training times.  
 
The average case behavior of RL in differing conditions can be studied by using the third 
method, the ODE method. Ljung's results in particular allow one to characterize all syn-
thesis and system parameters in the ODE. One can then study the family of ODEs based 
upon the family of learning environments. Further, this could be applied to a linear quad-
ratic Gaussian (LQG) problem so that the predicted asymptotes can be compared to an 
optimal (closed-form) solution. This method was successfully used to predict the per-
formance of Temporal Difference Learning in various simple scenarios containing lim-
ited numbers of states and possible observations, as well as simple state transition laws. 
This use of the ODE Method was expanded to allow for predictions of performance on 
more complicated scenarios reflective of sensor management. 
 
In FY97 we formulated new RL-directed search policies based on TDL. While synthesiz-
ing these algorithms we discovered several fundamental challenges for the application of 
RL to the static target detection problem. First, the challenge of posing the problem to the 
learning agent in a workable fashion was paramount. The continuous-valued hypotheses 
on which we learn to base current actions constitute infinite-dimensional state spaces. 
Learning over such spaces is a challenge for RL and generally requires the use of some 
function approximation methods (such as multi-layer perceptrons with back propagation). 
These, in turn, introduce a host of  synthesis decisions and performance constraints which 
impact the amount of information an agent can process in a given time step (e.g., can the 
agent learn to simultaneously consider hypotheses from multiple cells/locations). Sec-
ondly, we encountered a sensitivity to our choice of incremental and final rewards for the 
learning agent. We examined information-theoretic incremental rewards based on entropy 
and cross-entropy as well as a formulation using true hypothesis error as a final reward. 
We found that the information-theoretic rewards produced a behavior which could only 
reach an asymptote at an error level of 0.08 (given more measurements the agent still 
identifies the target location wrong 8% of the time). This asymptotic performance was 
alleviated by training the agent with true hypothesis error as a final reward. 
 
Using simulation to examine a detection scenario, we compared the performance of RL-
directed search against an index policy that is optimal under certain narrow circumstances 
and an uninformed search policy which maintains a fixed search pattern regardless of 
new sensor information. RL-directed search proved best among these schemes: it per-
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formed nearly as well as the optimal index policy when the narrow circumstances were 
obtained and much better when they were not (e.g., the case of multiple targets). 
 
An overview of this work and our findings in Reinforcement Learning follows. 
 
• Tested and documented the variation in performance of Temporal Difference Learn-

ing in [9] and in subsequent simulations. 
• Studied statistical methods which can be used to predict and understand the perform-

ance of RL algorithms in sensor management problems modeled as Markov decision 
problems. Found several applicable methods: 1) Optimal stopping problem literature; 
2) Central limit theorem/sampling theory literature; 3) Ordinary differential equation 
(ODE) literature. Pursued the ODE method by applying it to a simple Markov process 
to observe the method’s ability to predict the asymptotic value of the value function. 
The ODE Method successfully predicted convergence values for these simple cases 
characterized by a limited number of states and possible observations, and simple 
state transition laws. 

• Enhanced war game simulation to have more realistic object motion (based upon ac-
celerations being applied and the laws of physics) and added an LQG scenario which 
allows for an optimal closed-form solution 

• Compared TDL performance with different parameters (learning rates, eligibility ho-
rizons, etc) against each other and against the LQG solution. 

Virtual Associative Networks for Sensor Management 

In FY98, machine learning for sensor management refocused away from pure RL ap-
proaches and feed-forward neural networks toward Virtual Associative Networks. The 
impetus for this redirection came from limitations that were suspected early on [1] and 
then proven over the course of our investigations. Specifically, RL methods suffer when 
applied to problems of large scale. In the case of the sensor management problem, the 
large scale arises from the combinatorial explosion in both the state space and the deci-
sion space, a fact that necessitates excessively long training times and/or heuristic reduc-
tions in the number of states in the model. The scale of a realistic sensor management 
problem is simply so large that RL will always ultimately fail.  
 
By contrast, VANs utilize a graph-theoretic representation of learned associations be-
tween features to drastically condense the decision space into a manageable size and 
form. The VAN paradigm is based upon experimental results in neuroscience which indi-
cate that biological intelligence is rooted in mechanisms for association/dissociation 
across neuronal pools. The VAN paradigm instantiates this idea in the form of a self-
partitioning, hierarchal graph structure whereby elementary features are represented as 
nodes which are connected by real-valued vertices representing associations between fea-
tures. By weighting the vertex associations, subgraphs arise out of the structure that can 
be used to guide a search process. This shift to VANs was instigated by Mr. Malhotra in 
collaboration with Dr. Yan Yufik, the developer of the VAN paradigm. 
 
In FY98 we applied VANs to the management of sensors in dense target environments 
where many objects must be scanned in a time-stressed situation. We assumed features 
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are extracted by the sensors with some noise and we use these features to recognize ob-
jects which have differing priorities. The goal is to recognize objects of interest (targets) 
within the large ensemble as quickly as possible. We compared various VAN-based 
strategies against a random search (as a benchmark) and achieved nearly two orders-of-
magnitude increase in speed. This problem is intended to be broadly representative of the 
challenges associated with sensor management in reconnaissance missions. 
 
In FY99 we continued to investigate how machine learning techniques based on VANs 
could be applied to problems involving sensor management. Our investigations were cen-
tered in three areas. 
 
In the first we gathered information and refined our tool base to model the problem of 
managing the sensors in a geographically distributed reconnaissance scenario. Here we 
considered means for routing homogenous unmanned aerial vehicles (UAVs) in a dense 
target environment in which targets may dynamically appear or disappear in a probabilis-
tic fashion. The task involves planning and re-planning UAV routing and sensor activity 
to maximize some measure of performance (probability of correct classification, expected 
target coverage, etc.). This situation, which we treated as a variant of the classic vehicle 
routing problem, was investigated along that line. 
 
In the second area we expanded our simulation abilities to more closely reflect the prob-
lem area described above. We introduced the routing aspect into the distributed sensor 
management problem as well as unique stochastic characteristics such as random winds 
and service times, and variable travel times (which depend on travel direction as related 
to wind direction). We applied VANs to plan UAV routes and schedule sensor activity. 
We compared various VAN-based strategies with a greedy routing method coupled with 
random search. We observed between one and two orders-of-magnitude performance ad-
vantage in terms of time to classify high priority targets. 
 
In the third area we explored issues relating to the maturation of the VAN paradigm. This 
included exploring various graph partitioning algorithms (a key step for VANs), and their 
efficiency and suitability for large graphs. We also considered the introduction of the 
concept of reinforcement into the VAN paradigm. This can produce a more rigorous 
paradigm which will not require domain-specific knowledge and ad hoc methods to lev-
erage the information stored in the weighted graph of the VAN.  
 
In FY00 we continued to investigate the applicability of the VAN paradigm to problems 
involving sensor management and dynamic routing of platforms with onboard sensors. 
Our efforts resulted in improvements in two areas, including expanding the simula-
tion/model for multi-platform intelligence, surveillance, and reconnaissance (ISR) mis-
sions to include more realistic operational conditions, and enhancing the theoretical foun-
dations for VANs by introducing the mechanism of reinforcement (a.k.a. reinforcement 
learning) into the packet formation process. Our FY00 activities are described below.  
 
First we gathered information, met with product organizations, and refined our knowl-
edge relating to sensor management of geographically distributed reconnaissance assets. 
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Here we considered the problem of routing multiple, homogeneous UAVs in a dense tar-
get environment in which sensor tasks may dynamically appear or disappear in a prob-
abilistic fashion - this problem domain is known in the scientific literature as the general 
vehicle routing problem. We expanded our model to include tasks with geometric con-
straints requiring sensor platforms to view target areas from a particular direction; this 
mimics current operational reconnaissance and battle damage assessment requirements. 
Further, we introduced the target-to-sensor clustering problem in which we account for 
the fact that several targets may be viewed by a single sensor “footprint”. This introduces 
an algorithmic requirement to associate targets to sensor footprints. These enhancements 
were cited as desirable in our discussions with ISR product organizations and were in-
cluded in our updated simulations. We applied VANs to plan/re-plan platform routes and 
schedule sensor activity. We compared various VAN-based strategies with a greedy rout-
ing method that used random search. We continued to observe between one and two or-
ders-of-magnitude performance advantage in terms of time to classify high priority tar-
gets with the larger gains being observed as target density and target constraints in-
creased. 
 
Finally, we continued to explore issues relating to the maturation of the VAN paradigm. 
Here the primary thrust involved the incorporation of the notion of reinforcement to 
guide the formation of clusters within the graph. The concept of reinforcement allows one 
to weight associations between certain features (nodes in a VAN’s graph-like structure) 
more heavily than others based upon the observed significance of actions with outcomes. 
Although this application of reinforcement to the VAN paradigm was new, we believe it 
helped to mature this approach for large-scale resource allocation problems such as sen-
sor management and dynamic route re-planning. 
 
In FY 01, we continued to investigate the VAN approach and its applicability to the gen-
eral vehicle routing problem. In particular, we investigated needed theoretical extensions 
for VANs that would improve tractability and performance. Our efforts focused on alter-
native mechanisms for introducing reinforcement into the VAN model, as well as incor-
porating related concepts from approximate dynamic programming, such as MDP mod-
els. We also investigated using information-theoretic measures (such as entropy) to guide 
the associative processes (packet formation and dissolution), a key component of the 
VAN model. These investigations produced notional concepts for maturating the VAN 
approach to sensor management. 
 
In FY01 we also expanded our model to include precedence constraints between tasks 
and grouped tasks – this reflects current operations in which tasks may be ordered or 
grouped to accomplish specific objectives such as geo-locating a target, or maintaining 
identification of moving targets under difficult conditions. We applied VANs to plan/re-
plan platform (UAV) routes and schedule sensor activity. Again, we compared various 
VAN-based strategies with a greedy routing method and observed roughly an order-of-
magnitude performance advantage in time to identify all high priority targets with the 
larger gains being observed as target density and target constraints increased. 
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NEW DIRECTIONS 
After seven years of effort, the mathematical line of attack in Project SMFA had devel-
oped mathematical and information-based foundations for sensor management in multi-
target multisensor settings that were complete, theoretically rigorous, and high perform-
ing, even under difficult conditions such as crossing targets and low SNR. Although these 
accomplishments were significant, the computational burden for employing those founda-
tions was extreme and our efforts to lower that burden (e.g. [19, 29]) had met with only 
limited success. Clearly, new ideas and more concerted efforts were needed if principled 
sensor management was to become reality. 
 
In 2000, Dr. Kastella led a General Dynamics (GD) team that won an award for the 
DARPA program called Integrated Sensing and Processing (ISP). This program was the 
brainchild of Dr. Dennis Healey and Dr. Douglas Cochran, the latter becoming its pro-
gram manager. ISP’s goals were to foster research in sensor management and related sen-
sor signal processing disciplines in order to enhance their theoretical foundations. With 
DARPA instructions to uncover new and fundamental insights, Dr. Kastella’s team 
sought to build on results from Project SMFA to implement an innovative, principled and 
practical system that could be expected to work in realistic multitarget multisensor envi-
ronments. GD’s work on ISP has recently concluded. This section synopsizes that work. 
 
GD’s ISP team consisted primarily of Dr. Keith Kastella and Dr. Christopher Kreucher. 
Dr. Alfred Hero of the University of Michigan worked closely with the GD team with 
funding from a related DARPA MURI titled “Sequential Multi-Modality Target Detec-
tion and Classification Using Physics-Based Models”. Dr. Kreucher was a primary ISP 
contributor, earning his Ph.D. under Dr. Hero in the topic “An Information-Based Ap-
proach to Sensor Resource Allocation”. His dissertation was focused wholly on the ISP 
problem.  
 
In [54], Kreucher and Kastella summarize GD-ISP progress as requiring the following 
three interrelated developments. (The following descriptions are slight alterations of their 
words, made only to adjust for the context of this report.) 
 

• Bayesian Multitarget Tracking. First, GD-ISP constructed a high fidelity non-
parametric probabilistic model that captures the uncertainty inherent in the multi-
target tracking problem. This was done via the joint multitarget probability den-
sity (JMPD1), which is a single entity that probabilistically describes the knowl-
edge of the states (e.g., position and velocity in 2 dimensions plus identification) 
of each target as well as the number of targets. Due to the nature of the target 
tracking problem, it is essential to capture the correlations in uncertainty between 
the states of different targets as well as the coupling between the uncertainty 
about the number of targets and their individual states. The JMPD captures these 

                                                 
1 JMP and JMPD are identical probabilistic representations. However, the numerical techniques developed 
in ISP for solving the associated NLF problem were quite different from those developed in SMFA. Of the 
two, ISP’s is undoubtedly more capable and preferred. 
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couplings precisely as it makes no inherent factorization, independence, or para-
metric form assumptions about the density. Due to the high dimensionality and 
non-parametric nature of the density, advanced numerical methods are necessary 
to estimate the density in a computationally tractable manner. To this end, GD-
ISP developed a novel multitarget particle filter with an adaptive sampling 
scheme that automatically factorizes the JMPD when permissible, and provides a 
measurement directed bias for target addition and removal. This filter allows re-
cursive estimation of the JMPD in a Bayesian setting. A recent reference on this 
work is [51]. 

 
• Information-based Sensor Resource Allocation. Second, GD-ISP used the esti-

mate of the JMPD to make (myopic) sensor resource allocation decisions. As was 
done in SMFA, GD-ISP took an information-based approach, where the funda-
mental paradigm is to make sensor tasking decisions that maximize the expected 
amount of information gained about the scenario, as measured by the. (The Rényi 
Divergence is also called α -divergence, the parameter α  defined on ( )10,  where 
KL discrimination is a special case of Rényi as α  goes to 1.) This unifying metric 
allowed GD-ISP to automatically trade between sensor allocations that provide 
different types of information (e.g., actions that provide information about posi-
tion versus actions that provide information about identification) without any ad 
hoc assumptions as to the relative utility of each. A recent reference on this work 
is [52].  

 
• Multistage Sensor Scheduling. Third, GD-ISP took up the problem of extending 

the information-based sensor resource allocation paradigm to long-term (non-
myopic) sensor scheduling. This extension allows the consideration of long-term 
information gaining capability when making decisions about current actions. This 
aspect is particularly important when the sensor has time-varying target response 
characteristics due to sensor motion, the behavior of the vehicles being tracked, or 
dynamic terrain features. GD-ISP developed two numerically efficient methods of 
approximating the long-term solution, as the exact solution is computationally in-
tractable. The first is an information-directed search algorithm which focuses the 
Monte Carlo evaluations on action sequences that are most informative. The sec-
ond is an approximate method of solving the Bellman equation which replaces the 
value-to-go with an easily computed function that approximates the long term 
value of the current action. A preliminary report is available in [53]. 

 
 
GD’s final ISP report [54] contains dozens of results, insights and conclusions, a collec-
tion that we cannot do justice to here. We choose three results that we trust will illustrate 
the power and potential of an information-based approach to sensor management.  
 
Figure 7 is a snapshot of an area of interest containing three targets. This figure contrasts 
performance with and without sensor management, the left panel being the case with sen-
sor management via Rényi Divergence, and the right panel the case without where peri-
odic scan is used. (Periodic scan was previously called direct search.) Targets are marked 
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with an asterisk, the (x,y) covariance spread of the filter estimate is shown by the ellipses, 
and the grey scale at the right of each panel indicates the number of times each cell has 
been measured at this time step (the total number of measurement looks is identical in 
each case). In the case of periodic scan, an entire row constituting one twelfth of the re-
gion is scanned at each time step, starting at the bottom and proceeding to the top before 
repeating (cells scanned at this snapshot epoch are indicated by the white stripe). With 
sensor management, measurements are used only in areas that contain targets. Here is a 
direct quote from [54]: “Qualitatively, in the managed scenario measurements are fo-
cused in or near cells that the targets are in. Quantitatively, the covariance ellipses calcu-
lated by the filter show that performance is significantly better in the managed scenario.” 
These results are typical of what happens with and without sensor management. 
 

 
Figure 7.  An illustration contrasting managed and non-managed tracking performance 

 
 
Figure 8 illustrates the power of intelligent sensor management in terms of reducing sens-
ing effort to achieve a particular goal. Again we are quoting from [54]. “A more detailed 
examination is provided in the Monte Carlo simulation results of Figure 8. We refer to 
each cell that is measured as a “look", and are interested in empirically determining how 
many looks the non-managed algorithm requires to achieve the same performance as the 
managed algorithm at a fixed number of looks. The sensor management algorithm was 
run with 24 looks (i.e. was able to scan 24 cells at each time step) and is compared to the 
non-managed scheme with 24 to 312 looks. Here we take 999990.=α  to approximate 
the KL divergence. It is found that the non-managed scenario needs approximately 312 
looks to equal the performance of the managed algorithm in terms of RMS error. Multi-
target RMS position error is computed by computing the average RMS error across all 
targets. The sensor manager is approximately 13 times as efficient as compared to allo-
cating the sensors without management. This efficiency implies that in an operational 
scenario target tracking could be done with an order of magnitude fewer sensor dwells. 
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Alternatively put, more targets could be tracked with the same number of total resources 
when this sensor management strategy is employed.” 
 
 

 
 

Figure 8.  Quantitative comparison of intelligent and naïve sensor management. 
 
 
Finally, Figure 9 presents empirical results illustrating the computational burden associ-
ated with using the GD-ISP algorithm in realistic scenarios. In particular, JMPD is im-
plemented using 250 particles in the particle filter, sensor management is myopic with 
Rényi Divergence at 50.=α , and the measurements are thresholded. The simulation in-
volves a 15 × 15 km ground surveillance region with moving targets numbering in the 
range 2 to 100. The imaging sensors are able to measure 100m × 100m cells on the 
ground, meaning that at each time step there are 22,500 cells where the expected Rényi 
Divergence must be computed in order to determine the best sensing action. The simula-
tion was implemented on an off-the-shelf 3 GHz Linux box.  
 
We now quote from [54] again. “For equitable comparison in Figure 9, as the number of 
targets increases, the number of sensor resources increases (i.e. the number of sensing 
resources per target is kept constant throughout the algorithm). With modest optimiza-
tion, a hybrid MatLab/C implementation of the algorithm is able to track on the order of 
40 targets in real time and perform tracking and sensor management on 10 targets in real 
time.”  
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Figure 9.  Execution time for myopic sensor management 
 
 
 
In summary, GD-ISP produced the following advancements in the fields of target track-
ing and sensor management. Again, the words in the bulleted lists that follow are from 
[54] but adapted to this report. 
 

• The development of a tractable particle filter based multitarget tracker to recur-
sively estimate the joint multitarget probability density (JMPD). This approach 
simultaneously addresses estimation of target number and the state of each indi-
vidual target, is nonparametric, and makes no assumptions of linearity or Gaussi-
anity.  

• The development of the Rényi Divergence metric for resource allocation in the 
multitarget tracking scenario. This method chooses sensor taskings in a manner 
that automatically trades between detection information, kinematic information, 
and identification information. The metric is general enough so that additional 
knowledge about the priority of each task can be incorporated.  

• The extension of the information based sensor scheduling approach to multi- 
stage decision making through direct approximation and learning techniques. 

 
 
As a result of GD-ISP work, we can draw the following broad conclusions about the 
problem domain and the overall utility of this project.  
 

• By appropriate design of the importance density, it is possible to construct a trac-
table particle filter based multitarget tracker capable of estimating both the num-
ber of targets and the individual states of each in situations involving tens of tar-
gets and sensors.  
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• The Rényi Divergence framework for resource allocation is theoretically 
grounded and provides a natural method for trading the effects of different sens-
ing actions. 

o The particle filter estimation and Rényi Divergence resource allocation al-
gorithm are robust in the face of model mismatch. 

o Through marginalization and weighting, the Rényi Divergence can be 
used as a surrogate for task specific metrics. 

o In the case of discrete action spaces, this method provides a tractable 
method of resource allocation. 

o This method outperforms heuristic methods designed with domain knowl-
edge.  

• Multistage planning results in significant performance gain in situations where the 
system dynamics are changing rapidly. 

o Simple approximations to the MDP can provide good approximations to 
the multistage solution in many common scenarios. 

o Reinforcement learning methods are broadly applicable and can be used to 
address the multistage scheduling problem when training data and compu-
tational resources are available. 

 
 
One final remark is in order. GD-ISP’s demonstrated ability to manage tens of targets and 
sensors is a major improvement over the very small numbers that had typically been used 
in Project SMFA for testing and proving theory. Moreover, using advanced numerical 
techniques based on importance sampling, GD-ISP showed via simulation that tracking 
hundreds or thousands of targets is not necessarily computationally intractable (see 
Figure 9). More efficient implementations, for example through vectorization or paral-
lelization, would certainly offer substantial gains that have not yet been explored. Thus, it 
is fair to conclude that GD-ISP reached a level of development where many diverse real-
time applications in sensor management are now feasible for the first time.  
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