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ABSTRACT 

Boeing Phantom Works collaborated with Air Force Research Laboratory (AFRL) researchers at 

the Aerospace Vehicles Technology Assessment and Simulation (AVTAS) Laboratory and with 

Northrop Grumman to conduct the Open Control Platform (OCP) Hardware-In-The-Loop 

(HITL) project sponsored by the DARPA Software Enabled Control (SEC) Program. The pur-

pose of this project is to develop the capability to be an OCP test-bed and to evaluate the OCP 

controls and simulation environment for a specific test case. The OCP, developed by Boeing, 

provides an open, middleware-enabled software framework and development platform for devel-

opers of distributed and embedded software applications. The middleware isolates the program-

mer from the details of the operating system and provides a mechanism for communication with 

other OCP software components.  A Traffic Collision Avoidance System (TCAS) was chosen as 

a representative flight controls application to exercise OCP. The programmatic approach taken 

by the OCP-HITL project was a series of simulation experiments with increasing complexity.  

The first simulation was an “all software” simulation, conducted in August 2002.  A portion of 

the “all software simulation” was then migrated to a VME based system running VxWorks.   A 

readiness review of the HITL simulation was conducted in March 2003, followed by a successful 

HITL simulation demonstration on 13 May 2003.  The demonstration tested a 2-ship non-co-

operating scenario, a 2-ship cooperating scenario, and a pilot-in-the-loop scenario.  Future test-

ing, planned for May 2004, includes formation flight and fault injection scenarios.  

 

INTRODUCTION 

The OCP is a software infrastructure being developed by the Boeing Corporation sponsored by 

the DARPA SEC Program. It is intended to enhance the ability to develop and test control  
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algorithms which will eventually execute in embedded software within Uninhabited Air Vehicles 

(UAVs).  The OCP supports distributed computing and communication allowing heterogeneous 

components to interoperate across platforms and network protocols while dealing with tight con-

straints on bandwidth, response time, and reliability. By using OCP, control engineers can con-

centrate on the controls problem at hand without having to worry about the details of component 

connectivity.  The “middleware” design of OCP isolates the operating system and the underlying 

hardware allowing development and testing to take place on a system architecture different from 

the final target.  The well-defined interfaces inherent with an OCP design facilitate efficient par-

titioned software development and insure a relatively painless final integration.   

 

The HITL simulation using OCP was designed to evaluate some of the key OCP principles:   

1.)  Architecture isolation/independence - The simulation incorporated three different system ar-

chitectures; Windows2K on a PC, Linux on a PC, and VxWorks on a PowerPC; 2.)  Ease of port-

ing - The simulation was initially built and tested as an “all software” simulation.  The process 

initially running on the Windows 2K platform was migrated to the HITL; and 3.) Partitioned 

software development - Three teams were involved in the development of the simulation.  Our 

Boeing team provided OCP support and in particular provided key support on the integration of 

the PowerPC into AVTAS’s architecture. The Northrop team developed all of the components 

associated with the Traffic Alert and Collision Avoidance System (TCAS) algorithms and the 

aircraft models utilized in the simulation.  The AVTAS team built the OCP components neces-

sary to interface the facility’s Infinity Cube Simulator to the OCP HITL simulation.     
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This report will first provide an introduction to OCP followed by a discussion on the models and 

the TCAS algorithms employed in the simulation.  The simulation architecture and scenarios will 

then be presented.  The report will conclude with results of the testing to date and a discussion on 

transition and potential future work with OCP and vehicle simulation.  

 

OCP INTRODUCTION 

The OCP provides an open, middleware-enabled software framework and development platform 

for developers of distributed and embedded software applications.  The middleware layer of the 

OCP provides the software layer isolating the application software from the underlying compute 

platform.  It provides services for controlling the execution and scheduling of software compo-

nents, mediating inter-component communication, and enabling distribution of application com-

ponents onto a target system.  The OCP includes innovative scheduling techniques, adaptive re-

source management, and support for dynamic reconfiguration. 

 

The OCP is being developed by the Embedded Systems Research Team within Boeing Phantom 

Works.  Assisting Boeing in these efforts are the Georgia Institute of Technology, Honeywell 

Labs, and the University of California, Berkeley.  The OCP is being delivered to a host of uni-

versity and industrial researchers who are participating in the DARPA SEC Program. 

 

OCP OVERVIEW AND BACKGROUND 

The OCP is composed of many elements, discussed in later sections, which enable the rapid gen-

eration and test of embedded and distributed software application programs.  Included among 

these elements are: 
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1) a middleware software infrastructure component,  

2) a Controls API that allows for tool-based software architecture specification and auto-

coding of a software framework that implements the specification, and 

3) an integration with useful controls development tools, software tools, and simulation 

tools. 

The software infrastructure component has its heritage in the CORBA [1] (Common Object Re-

quest Broker Architecture) based, Boeing-funded software initiative called Bold Stroke. Under 

the Bold Stroke initiative, CORBA and its attendant object technologies were leveraged as a 

prime enabler for re-use of software components across product lines, and for rapid re-

implementation of existing solutions on changing and evolving computing hardware and operat-

ing system platforms - primary considerations in achieving affordable avionics software devel-

opment. 

 

Boeing, in prior flight demonstrations on multiple types of aircraft, has successfully demon-

strated application of this CORBA technology in the domain of non-safety critical mission proc-

essing, which required hard real time performance in tasks that ran at rates up to 40 Hz.  One of 

the goals of OCP is to bring the advantages of object oriented programming and CORBA to the 

domain of UAV multi-level flight control.  The application of CORBA in this domain introduces 

new challenges for the OCP that have spawned new requirements for OCP services.  Challenges 

include: 1) faster rates, 2) the need to ensure vehicle stability, 3) highly accurate timing in sensor 

processing, and, 4) achievement of hard deadlines at flight control rates. Candidate software in-

frastructure services have been implemented in the OCP to meet these challenges. 
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OCP MIDDLEWARE 

The middleware of the OCP can be used to fuse embedded and distributed system application 

software components together, controlling their execution and communication.   

 

A primary motivating factor in implementing a middleware-based architecture was the promise 

of isolating the application components from the underlying platforms.  This allowed for a more 

cost-effective path for implementing common software components that could be used (1) across 

different product lines, and (2) could be rehosted onto evolving embedded computing platforms.  

Support for rapid re-implementation of existing, tested designs onto evolving computing plat-

forms is important for maintaining an effectiveness advantage in currently fielded embedded sys-

tems. 

 

These evolving computing platforms are starting to be dominated by commercial hardware and 

software components, which have more dynamic lifecycles than previous military components, 

and which create more opportunities for incorporation of computing advances into existing sys-

tems.  Further, more commercial and military flying platforms are experiencing longer lifetimes, 

and the ability to inexpensively re-host existing functional and tested software on updated com-

puting platforms is very attractive. 

 

The embedded software framework of the OCP inherits the RT-CORBA (Real Time-CORBA) 

based middleware of Bold Stroke.  The inherent advantages of a middleware-based solution 

within OCP should prove to be an enabler for current and future embedded and distributed soft-

ware developments. 
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Use of the CORBA-based middleware helps isolate application software components from the 

underlying hardware and operating systems in the computing platform.  The resulting layered 

architecture is illustrated in Figure 1.   

 

 

 

 

 

 

 

Figure 1. OCP Layered Architecture 

 

The middleware also facilitates distributed processing and inter-component communications by 

supporting CORBA event-based communication, as illustrated in Figure 2. 

 

 

 

 

 

 

 

Figure 2. Distributed Processing and Inter-Component Communications 
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The ability of the OCP to isolate application components from the underlying system also can be 

used to enable efficient embedded and distributed system software development.  For initial de-

sign and development, application code integrated with the OCP middleware can be executed on 

familiar desktop systems, such as those using Windows or Linux operating systems.  Certain lev-

els of software testing can take place more conveniently on the desktop.  Then, the operating sys-

tem and hardware isolation features of the middleware would be instrumental in implementing 

the smooth transition of the developed embedded application code to the embedded hardware 

target -- perhaps a target executing a POSIX-compliant Real-Time Operating System (RTOS), 

such as VxWorks or QNX.  Isolation of the application would result in minimal code changes 

during transition to the embedded target. 

 

The middleware of OCP is being designed so that it offers the embedded software developer a 

rich set of features desirable for real-time applications.  These features include dynamic schedul-

ing; adaptive resource management; dynamic reconfiguration; hybrid system mode switching 

support; and convenient access to real-time triggers. 

 

Embedded applications built with the OCP middleware exhibit a layered architecture, as shown 

in Figure 3.  The bottom software layer shown is that of the operating system (OS).  The OCP 

has been designed to allow applications to be executable on a variety of OSs, including desktop 

non-real time Windows and Linux, as well as RTOSs, such as VxWorks and QNX. 

 

The OS portability is enabled with the next highest layer, an OS-abstraction layer implemented 

by the open-source Adaptive Communications Environment (ACE) software.  ACE provides 
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common OS services to software residing in the layers above it.  Software in these upper layers 

can access useful OS services with ACE calls, and ACE then translates the requests into OS-

specific requests. 

 

The advantages of CORBA are made accessible in OCP by the next highest layer, the TAO (The 

ACE ORB) layer.  TAO and ACE are available as open source implementations from Washing-

ton University in St. Louis. TAO has been developed as an ORB (Object Request Broker) im-

plementation that is portable across a variety of underlying compute platforms.  TAO itself pro-

vides some real-time performance extensions to CORBA.   

 

 

 

 

 

 

 

 

 

Figure 3. Layered Architecture of an OCP-Based Application 
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in fighter aircraft Mission Management embedded software.  The OCP includes further real-time 

performance support to handle the requirements of UAV control.  Some of the more important 

services are discussed below. 

 

CORBA Services (Real-Time Publish / Subscribe) 

The CORBA event channel (EC) can be used to route data between software components with-

out resorting to parameter passing or global memory pools, both of which are difficult to design 

and maintain for applications distributed over multiple threads, processes, and processors.  Data 

being generated by a software component, if it is needed elsewhere in a system, can be published 

over the EC.  Other software components in the system which have access to the ORB, and 

which need a particular input, can subscribe through the EC for that input.  The software compo-

nent publishing the data (as an output) and the one or more software components subscribing to 

that data (as an input) can reside anywhere the ORB exists -- in the same process, in different 

processes within the same computer, on different computers within the same chassis, on different 

computers at different locations (e.g., two different vehicles, or a vehicle and a ground station), 

etc.   

 

The CORBA EC can also be used to trigger the execution of a software component based on pro-

files of arriving inputs.  This can be used to relieve the software designer from trying to derive a 

correct cyclic executive that hopefully satisfies all input data dependencies correctly, which can 

be a daunting task for applications that have large numbers of application software components, 

have multiple threads, which span more than one process, and which span more than one proces-

sor. 
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OCP Services (Resource Management) 

The OCP's Resource Management component provides a mechanism for controlling and making 

better use of compute resources in the executing system. The OCP resource management com-

ponent is an extension of the Honeywell Labs Real Time Adaptive Resource Management (RT-

ARM) capability. [2]  With RT-ARM, it is possible to specify quality of service (QoS) informa-

tion about the various software components in the system.  An example QoS specification would 

be the allowable rates of execution for the proper operation of a software component.  While the 

system is in operation, the RT-ARM functionality can adapt the scheduling behavior of the sys-

tem to optimize utilization of the finite embedded compute resources based on the software com-

ponents which are currently active and their QoS information.  The resulting execution rates of 

the components, as scheduled by the RT-ARM capability, are communicated to the individual 

software components so that they can then modify their behavior based on their assigned rate 

(e.g., modify controller gains).  RT-ARM makes use of the TAO scheduling component [3]. 

 

OCP Services (Hybrid Systems Mode Change Support -- the Transition Service) 

A hybrid system combines both continuous and discrete elements.  For example, in a typical 

flight controls system, the lower levels of the architecture tend to be designed as continuous time 

controllers.  When moving to higher levels of the architecture, controllers tend to be of the dis-

crete supervisory type.  The composite system can function like a pseudo-continuous controller 

able to operate in one or more distinct modes. 
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To help meet the needs of this hybrid system philosophy, system mode support has been added 

to the OCP with the Transition Service.  Each system mode can be characterized as being made 

up of a specific profile of active (and inactive) software components, a specific QoS profile for 

the active components, and a specific profile of input/output interconnections between active 

components.  The Transition Service allows components to identify the current mode of the sys-

tem, allows components to trigger mode changes, and allows for smooth mode transitions at ap-

propriate times of system operation (e.g., after inner-loop control actuator command writes). 

 

Note also that for each system mode, a different profile of QoS parameters can be specified for a 

software component.  This provides a powerful way to allow use of RT-ARM to make the best 

use of available on-board resources, since some components are more critical in some system 

modes and would therefore have their more challenging resource demands reflected in their QoS 

specification for those modes.  

 

OCP Services (Accurate Time Triggering -- the Timer Service) 

UAV flight control applications have stringent real-time constraints on operation.  For example, 

flight control sensor sampling must be accomplished at precise time intervals, with very little 

frame-to-frame jitter and without missing a sample.  The Timer Service in the OCP provides a 

way to accurately trigger a software component based on time.  This is accomplished by provid-

ing a convenient API linking a physical real-time clock on the embedded processor board to a 

software component execution trigger. 



  

 
  

 

12

 

OCP Services (Performance Optimizations) 

Performance optimizations are being implemented in the OCP to reduce the amount of time that 

an OCP-based application spends in the CORBA-based middleware layer.  These optimizations 

include use of light-weight EC events, client-side caching to reduce the need for data passing in a 

distributed application, and the ability to allow efficient protocols to be plugged into the ORB to 

optimize data transfer speeds between specific components. 

 

OCP Controls API 

As mentioned previously, the OCP provides several advanced mechanisms such as adaptive re-

source management, reconfiguration during mode switches, and access to highly accurate timing 

sources for component triggering.  To help hide the complexity of these features from the con-

trols designer, and to shield the controls designer from C++ or object oriented programming, the 

OCP includes the Controls API -- a controls designer abstraction layer above the RT CORBA 

implementation.  This API allows the designer to focus on familiar tools and terminology whilst 

enabling the use of RT CORBA extensions.  This abstract layer was a collaborative Boeing - 

Georgia Tech effort.  The Controls API provides an interface for managing OCP components, 

setting system information, and controlling system execution.   

 

The Controls API allows a software system designer to lay out the system graphically using the 

popular Simulink tool.  Here, the designer specifies the software component names, their inputs 

and outputs, and the interconnections with inputs and outputs of other components.   
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This initial layout is then decorated with additional information by the system designer using an-

other graphical tool written in Java.  Here, all other pertinent information about the software sys-

tem is specified.  This other information includes specification of system modes, the active soft-

ware components and their interconnections in each mode, QoS information for active compo-

nents in each mode, specifications of which components get triggered by highly accurate timers, 

allocations of components to different processes, etc. The completed system model is then sent to 

the final portion of the Controls API for automatic generation of a C++ framework that will trig-

ger software components based on the system model, that will route inputs and outputs based on 

the model, and that will allow system mode changes as specified in the model.  The autogener-

ated framework contains placeholders in the code for the controls designer to insert the code for 

the individual software components. 

 

OCP INTEGRATION WITH CONTROLS DEVELOPMENT TOOLS AND SIMULA-

TION TOOLS 

The OCP provides integration with popular and useful controls and software design, develop-

ment, and testing tools.  Commercial tools like Microsoft Visual C++, Microsoft Visual Debug-

ger, the VxWorks real-time operating system, and Matlab/Simulink have wide acceptance in the 

software and controls communities.  Buildable and runnable examples delivered with the OCP to 

illustrate OCP features make use of these well-supported commercial products.  The debugger 

can be used, for example, during a running vehicle simulation to set breakpoints, single-step, and 

perform other useful testing functions while simulation displays show the dynamic state of the 

vehicle.   
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TCAS OVERVIEW 

Over the course of the HITL program, there has been a growing emphasis on automated collision 

avoidance.  As a result, logic from the commercially packaged software, TCAS algorithm, was 

used as a base model for the design of a mission manager executing in an OCP-based applica-

tion.   

 

TEST SCENARIOS 

Each vehicle in the HITL simulation is broken into eleven separate OCP Components (Figure 4).  

These eleven components are then separated into processes based on the hardware architecture.  

Since the UAV is the only vehicle to be flown HITL, it is the only one that is separated into two 

processes. One process runs the controller on the hardware and another updates the model out-

side of the hardware on a WinNT machine.  All other models are software only and therefore run 

on a single process. This structure is used as the basis for the HITL programs five specified soft-

ware test scenarios.  Each of these scenarios is then executed under multiple collision course ap-

proach angles (specifically acute and obtuse).  By running the scenario under acute and obtuse 

relative heading conditions, the TCAS algorithm can be tested under its worst-cases: the ex-

tremes of high and low closure rates.  The case of low rate closure causes the intruder vehicle to 

breach the separation threshold desired before the tau criteria, is breached and the obtuse case 

causes the closure rate to test the upper limits of TCAS.  

 

 

 

 



  

 
  

 

15

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Block Diagram of OCP Components 
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vehicles to negotiate a coordinated de-confliction plan where one dives and the other climbs.  It 

is noted that for the initial instance in which the vehicles detect a collision, each vehicle attempts 

to perform the entire de-confliction alone.  Once communications of the detection between the 

vehicles begin and they negotiate a solution, each vehicle commands half of the change in alti-

tude required to accomplish the desired separation.  This communication continues throughout 

the maneuver and is updated constantly resulting in the more maneuverable vehicle being re-

quested to do more of the change in altitude.  This is seen in the time histories where the more 

agile generic fighter aircraft is asked to perform more of the maneuver, as time goes on based on 

its performance response. 

 

   

 

 

 

 

 

 

 

 

 

Figure 5 – Scenario 2 Acute Time Histories 
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Scenario 3 adds a human-in-the-loop aspect to scenario 2 which allowed robustness testing of the 

mission manager. (Scenario 3 is discussed in more detail in the next section) The insertion of the 

pilot allows us to examine the reaction of the mission manager to unanticipated decisions by the 

other vehicle.  The ownship has to react to an intruder pilot overriding the negotiated TCAS 

outer loop command. 

The final two scenarios to be completed are adding a wingman to the ownship and fault injec-

tion.  The wingman will perform basic station keeping abilities while only communicating with 

the ownship.  The ownship will be the intermediary between the intruder and the wingman, who 

will not directly communicate throughout the scenario.  The final scenario is fault injection into 

the system.  This scenario will test the fault detection algorithm being developed as well as the 

reconfiguring of the vehicle’s performance.  The fault injector will be another component added 

to the architecture, which will insert faults into the model as data is passed to the fault detection 

isolation component.   

 

 

 

 

 

 

 

 

 

Figure 6 – Fault Detection Architecture 
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Pilot-in-the-Loop HITL simulation 

The pilot-in-the-loop portion of the simulation (scenario 3) is designed to evaluate the process of 

integrating an OCP based simulation into the AVTAS simulation architecture and to prepare 

AVTAS as a future OCP test bed.    

The Infinity Cube simulator is a state-of-the-art fix based research simulator containing four col-

limated displays in a cube arrangement, a projected Heads Up Display (HUD), and a 29” monitor 

for the Heads Down Display (HDD).  It contains a stick and throttle and a set of generic rudder 

pedals.   The out the window (OTW) display is driven by Subrscene, a locally developed image 

generation software package that runs on PC’s under Linux. Figure 7 shows the architecture em-

ployed for the pilot-in-the-loop simulation from the OCP vantage point 

 

 

 

 

 

 

 

 

 

 

Figure 7 -  Pilot-In-Loop-Architecture 
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communicates with a Virtual Battle space Management System (VBMS) server to update VBMS 

in real-time.  One Linux platform is used to host the VBMS display and an associated CORBA 

based VBMS server.   A second Linux platform runs OCP process 4 and the infinity cube I/O 

process.  Process 4 interfaces the rest of the OCP simulation to the Infinity Cube.  This platform 

will be discussed in more detail in succeeding paragraphs.  The final platform is the HITL sys-

tem and consists of a PowerPC running VxWorks. The controller process for the ownship (Proc-

ess 2) is run on this platform.   All machines are connected to a dedicated Ethernet network.  

 

 

 

 

 

 

 

 

 

Figure 8 – Infinity Cube Interface 
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the throttle are read via a Keithley I/O card by the I/O process.  This process then places the data 

into SCRAMNet memory where it is read by the HOTAS OCP component and sent to the in-

truder model via standard OCP signaling mechanisms.    The Subrscene component receives 

ownship and intruder state information via OCP signaling mechanisms and writes this informa-

tion into SCRAMNet. A Visual Driver process running on another Linux platform reads the state 

information from SCRAMNet and sends it to Subrscene via Ethernet.  Subrscene is run across 4 

Linux based platforms with one platform per infinity cube channel.  The Subrscene OCP compo-

nent also sends the state information to two other Linux platforms over Ethernet.  These plat-

forms generate the symbology for the HUD and the HDD. 

 

A standard HUD is being used with a modification to annunciate the condition when TCAS de-

tection occurs.  An existing HDD was modified to include a simple vertical and horizontal situa-

tion display to facilitate re-acquiring the ownship aircraft. The intruder model is set up to blend 

the inputs from the stick and the autopilot for stick inputs below a certain threshold.  When the 

stick inputs exceeded this threshold the autopilot is disengaged.  The paddle switch at the base of 

the stick is used to re-engage the autopilot.    

 

The general guidelines for running scenario 3 with pilot-in-the-loop are to allow the initial 

avoidance maneuvers to take place and then try to re-acquire the ownship and force another col-

lision avoidance situation.  Several team members flew the simulation in preparation for the 

readiness review.  This initial testing showed that all of the interfaces were functioning properly.  

The cube display system provided a compelling view of the initial avoidance maneuvers per-

formed by TCAS.  Stick and throttle inputs were verified to be correct though some difficulty 
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was experienced in flying the intruder manually due to the aero model currently being employed.  

During this initial checkout the ownship model was successfully re-acquired on several occa-

sions and performed evasive maneuvers as expected.  

 

FINAL DEMONSTRATION 

The final HITL demonstration is scheduled for late May 2004.  Multiple vehicles will be simu-

lated, including one vehicle with flight software executing in real-time on a VME-based 

PowerPC processing card. 

 

In support of this final demonstration, Boeing supported redesign of the prior demonstration ar-

chitecture to allow splitting the processing into multiple OCP instances, one for each vehicle.  

This was done for the convenience of those using OCP (Northrop Grumman, AFRL), who 

wanted to change the number of vehicles in a simulation scenario more easily.  Before this redes-

ign activity, changing the number of vehicles in an OCP-based simulation required a multi-step 

process of software rework with the Controls API to implement the new inter-vehicle software 

connections.   

 

During final demonstration software design and integration, Northrop delivered to Boeing a 

multi-vehicle simulation executing in a single Windows machine. Our Boeing team then ported 

the software to a distributed Linux and PowerPC/VxWorks architecture on hardware at the Phan-

tom Works site in St. Louis.  The hardware layout at Boeing was similar to the distributed hard-

ware architecture in the AFRL/VACD lab.  Part of the work that Boeing did to get the UAV 
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software to run in real time included putting Northrop Grumman’s Kalman Filter in its own, 

lower-rate thread, allowing all flight control software elements to meet their real-time deadlines. 

 

TRANSITION AND FUTURE WORK 

As part of a tech transition activity, our Boeing team contributed to a research paper, entitled 

“Hardware-in-the-Loop Simulation Using Open Control Platform,” written by Stanley Pruett of 

AFRL/VACD, Gary J. Slutz of Protobox, Jim Paunicka of Boeing, and Eric Portilla of NGC.  

The paper was presented by Mr. Stanley Pruett of AFRL/VACD and Dr. James Paunicka of Boe-

ing at the August 2003 AIAA Modeling and Simulation Technologies Conference.  The paper 

and presentation covered topics including OCP and distributed, real-time, HITL simulations lev-

eraging open systems, desktop computing, and middleware. 

 

Immediately after this presentation, Dr. Paunicka was approached by a representative of the Boe-

ing Commercial Airplanes (BCA) who had attended the presentation.  The BCA representative 

was a simulation engineer working a number of engineering simulations for their major product 

lines (e.g., 737, 747, 757, etc.).  These simulations at BCA are HITL (see Figure 9), allowing for 

mix-and-match avionics insertion into the simulation loop.  The avionics in these simulations 

include all pilot interface devices (displays, lights, switches, yoke, rudder pedals, etc.), naviga-

tion gear, flight computers, and other electronics.  For each airplane product line, its particular 

avionics are interfaced to multiple simulation computers executing real-time operating systems 

for activities such as simulation controllability, flight model execution, and instrumentation data 

logging.  The simulation systems are used for purposes such as new-product studies, training, 

investigations, etc. 
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Figure 9 – Commercial Airliner Cockpit Simulation 

 

Dr. Paunicka was invited to present the OCP HITL simulation work to the BCA simulation team.  

This team is considering a re-architecture of their multiple engineering simulations.  BCA is con-

sidering use of middleware to enable rapid design of real-time, distributed, HITL simulations.  In 

addition, BCA wants to allow for isolation of simulation software from underlying compute plat-

forms (processor hardware and operating systems) for ease of future upgrades to evolving, up-

dated compute platforms.  Ease of upgrades is important since the 7n7 products that these engi-

neering simulations support have very long lifetimes.  This briefing was given to the BCA team 

at their simulation facilities building near Boeing Field, Seattle, Washington on 15 December 

2003.  The BCA simulation team is still in the process of investigating re-architecture and poten-

tial use of OCP. 
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With the conclusion of this OCP HITL project, the AFRL/VACD lab now has a capability for 

distributed simulation of multiple vehicles, including HITL insertion of real-time flight software 

executing on a relevant PowerPC board in a VME environment.  The simulation is interfaced to 

high-value lab assets including the Infinity Cube displays and pilot input devices.  Man-in-the-

loop operation has also been demonstrated and is a capability available for future use. 

 

A flexible interface for sending multiple vehicle data for display on VBMS has also been devel-

oped and is available for future use.  This VBMS interface, and other simulation architecture ar-

tifacts from this effort were used in a program demonstration on the DARPA High Confidence 

OCP program. 

 

As part of the design of the final demonstration, with its multiple-vehicle configurations, Boeing 

supported a re-design that made it easier for AFRL/VACD and for the UAV simulation model 

and flight software developer, Northrop Grumman, to quickly modify the number of vehicles in 

the simulation environment.  This involved creating an architecture not used before which con-

sisted of a separate OCP instance for each simulated vehicle.  This multi-OCP architecture was 

applied to a distributed simulation design where major UAV processes were distributed among 

multiple computers, most of which were not running real-time operating systems.  This distrib-

uted architecture appeared to exhibit near real-time performance, although intensive investiga-

tions by AFRL/VACD personnel revealed that real-time operation of all vehicle instances, and 

time synchronization among all vehicle simulations, was not perfect.  Future work could improve 

on the design and synchronization of these multi-OCP instantiations applied to multi-vehicle, 

real-time simulations. 
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CONCLUSIONS 

The OCP has been shown to be an enabler for rapid design of distributed, HITL simulation.  

Software developed by three different teams is being integrated with little difficulty due to the 

well-defined OCP interfaces, demonstrating that OCP can be used also for efficient multi-

organization, parallel software development.  The ownship controller process that was developed 

and tested on a Win2k machine was easily ported to a VxWorks machine. The current HITL 

simulation is successfully running on a heterogeneous network of machines.   

 

Testing of the 2-ship non-co-operating, the 2-ship co-operating, and the pilot-in-the-loop scenar-

ios occurred May 2003.  Testing of the formation flight and fault injection scenarios is scheduled 

for May 2004.  
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