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Fast estimation of false alarm probabilities of STAP
detectors - the AMF

Rajan Srinivasan and Muralidhar Rangaswamy

Abstract

This paper is an initial attempt to harness the power of adaptive importance sampling techniques for estimating false alarm probabilities
of space-time adaptive radar detectors. Fast simulation using importance sampling have been notably successful in the study of conventional
constant false alarm rate radar detectors, and in several other applications. The principal task here is to examine the viability of using
importance sampling methods for STAP detection. Though a modest beginning, the adaptive matched filter detection algorithm is analyzed
successfully using fast simulation. Two biasing methods are proposed in this paper. One of them known as the g-method is shown to yield
excellent results. The important problem of detector threshold determination is also addressed, with matching outcome. The work reported
here serves to pave the way to development of more advanced estimation techniques that can facilitate design of powerful and robust detection
algorithms designed to counter hostile and heterogenous clutter environments.

I. Introduction

Estimation of false alarm probabilities of space-time adaptive processing (STAP) detection algorithms is examined
here using forced Monte Carlo or importance sampling simulation (IS). STAP algorithms are of considerable importance
for radar detection in airborne and spaceborne applications. They are notoriously intensive from a computational point
of view, with the more advanced (and robust) ones being also analytically difficult to quantize, [2]. Therefore it is
appropriate to attempt to develop fast simulation methods that could be used in their analysis and design. Related
work by [3] considers a Chernoff bound approach for importance sampling applied to a specific class of STAP algorithms.

In this paper we use lessons learnt from developing IS techniques for characterizing conventional constant false alarm
rate (CFAR) detectors, [4], and describe an experiment in applying them to STAP detection. The starting (and ending)
point of this unpretentious effort is the celebrated adaptive matched filter (AMF) derived in [1] and which represents
the arrayed version of the workhorse cell averaging CFAR detector for conventional radar signal processing algorithms.
The false alarm probability (FAP) performance of the AMF detector is known in integral form and can be numerically
computed to any desired accuracy. Thus it forms a suitable basis for validating our simulation experiments. Two specific
IS methods (described in the sequel) are presented and the better (and also easier) one is implemented. On a general
note, IS is the chief simulation methodology for rare event estimation. It is an enduring method that has distinguished
itself in several areas of science and engineering. Briefly, IS works by biasing original probability distributions in
ways that accelerate the occurrences of rare events, conducting simulations with these new distributions, and then
compensating the obtained results for the changes made. The principal consequence of this procedure is that unbiased
probability estimates with low variances are obtained quickly. The main task in IS therefore is determination of good
simulation distributions for an application, either as a one-shot feat or adaptively. Simulations performed using such
distributions can provide enormous speed-ups if they are chosen with due care and mathematical precision. Indeed, if
applied successfully, simulation lengths needed to estimate very low probabilities become (only) weakly dependent on
the actual probabilities. It is thus possible to evaluate any probability in reasonable amounts of simulation time.

During the conduct of simulations reported herein, some issues concerning the adaptive IS algorithms used arise, and
these are discussed briefly. More investigation is required into them. However, the positive outcome of the methods used
is that excellent match with numerical results is obtained. The succeeding sections provide a short statement of the AMF
algorithm, how IS biasing can be performed to hasten false alarm events, description of the so called g-method which
is a conditional IS technique developed originally for studying sums of random variables ([5]), the fast algorithms used,
how inverse IS can be used to estimate (and therefore design) detector thresholds, simulation results, and a concluding
discussion.

II. The AMF detector

In a radar system consisting of a linear array of Ns antenna elements, a burst of Nt pulses is transmitted and each
element receives as many return samples in any one range gate. The NsNt = N samples are complex (because of
I and Q channel processing) and are referred to as the primary data. They may contain a target and represent the
range gate to be tested. The samples are arranged in an N × 1 column vector and denoted as x. The target return
is modelled as consisting of a known direction vector s with an unknown complex amplitude in addition to clutter,

R. Srinivasan is with the Telecommunication Engineering Group, University of Twente, PO 217, 7500 AE Enschede, The Netherlands. His
work is supported by the European Office of Aerospace Research and Development (EOARD), Contract FA8655-04-1-3025, in collaboration
with the Air Force Research Laboratory, MA, USA. (r.srinivasan@el.utwente.nl)

M. Rangaswamy is a Senior Electronics Engineer at + the Air Force Research Laboratory, MA, USA. (Muralid-
har.Rangaswamy@hanscom.af.mil)



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF
ABSTRACT

18. NUMBER 
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code) 

09-05-2005 Conference Journal Article 2004

Fast estimation of false alarm probabilities of STAP
detectors - the AMF

N/A

N/A

61102F

2304

HE

2304HE01

Rajan Srinivasan, University of Twente, Netherlands, and Muralidhar 
Rangaswamy, AFRL/SNHE, Hanscom AFB, MA 01731

Electromagnetic Scattering Branch (AFRL/SNHE)        Source Code: 437890
Electromagnetic Technology Division, Sensors Directorate
80 Scott Drive,
Hanscom AFB, MA 01731-2909

N/A

Air Force Office of Scientific Research/NM
875 North Randolph Street
Arlington, VA 22203

AFRL-SN-HS

AFRL-SN-HS-JA-2005-0182

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED. 

ESC Public Affairs Clearance #:  ESC 05-0182; Published in Proceedings of IEEE 2005 International Radar Conference

This paper is an initial attempt to harness the power of adaptive importance sampling techniques for estimating false alarm 
probabilities of space-time adaptive radar detectors. Fast simulation using importance sampling have been notably successful in the 
study of conventional constant false alarm rate radar detectors, and in several other applications. The principal task here is to 
examine the viability of using importance sampling methods for STAP detection. Though a modest beginning, the adaptive matched 
filter detection algorithm is analyzed successfully using fast simulation. Two biasing methods are proposed in this paper. One of 
them known as the g-method is shown to yield excellent results. The important problem of detector threshold determination is also 
addressed, with matching outcome. The work reported here serves to pave the way to development of more advanced estimation 
techniques that can facilitate design of powerful and robust detection algorithms designed to counter hostile and heterogenous 
clutter environments.

STAP; false alarm probabilities; adaptive sampling techniques, adaptive matched filter, biasing methods

U U U UU 11

Muralidhar Rangaswamy



SUBMISSION FOR RADAR 2005 CONFERENCE 2

interference, and noise. There are L other N -length complex vectors, called the secondary data, obtained from as many
nearby range gates and assumed to be free of target signal. These are denoted as x(l), l = 1, . . . , L. The primary and
secondary data vectors are assumed to be jointly independent and complex Gaussian, sharing the N × N covariance
matrix R = E{XX†}, where the superscript † denotes complex conjugate transpose. Under these assumptions the AMF
detection test, as obtained in [1], is given by

|s†R̂−1x|2
s†R̂−1s

H1

≷
H0

η (1)

where

R̂ ≡ 1
L

L∑

l=1

x(l)x(l)†

is the estimated covariance matrix of x based on the secondary data (also referred to as sample matrix), and η is a
threshold used to set the FAP at some desired level. This test has the CFAR property. The FAP α of the test is known
to be given by

α =
L!

(L−N + 1)!(N − 2)!

∫ 1

0

xL−N+1(1− x)N−2

(1 + η x/L)L−N+1
dx (2)

which can be used to numerically determine the threshold setting for a desired FAP. As shown in [1], the test in (1) can
be rewritten as

|s†R̂−1x|2
H1

≷
H0

η s†R̂−1s

= η s†R̂−1R̂R̂−1s

= η s†R̂−1 1
L

L∑

l=1

x(l)x(l)†R̂−1s

=
η

L

L∑

l=1

s†R̂−1x(l)x(l)†R̂−1s

=
η

L

L∑

l=1

|s†R̂−1x(l)|2 (3)

This is in the form of a vector (or, array) version of the usual CA-CFAR test. The LHS is a square law detector, being
the output of a matched filter (matched to the direction s in which the array is steered) for incoherent detection using
the so-called sample matrix inversion beamformer weights R̂−1s. The RHS represents a cell averaging term. Further
details on these issues can be found in the references mentioned above.

III. False alarm probability estimation using IS

Two methods to quickly estimate FAPs are two-dimensional (2-d) biasing and the conditional g-method procedure,
described in this section.

A. 2-d biasing

To estimate FAP using IS, we make the following observations. Suppose each complex sample of a secondary vector
is scaled by a real number θ1/2. This has the effect of scaling the covariance matrix estimate R̂ by θ. Therefore, as far
as the covariance estimate is concerned, both sides of the test in (3) remain unaffected by the scaling. However, each
secondary vector being scaled by θ1/2 results in a scaling of the RHS by θ. Hence choosing θ less than unity will have
the effect of compressing the density function of the random threshold of the test. Further, a scaling of each complex
component of the primary vector by a real a1/2 will achieve a scaling of the LHS of the test by a. Thus, choosing a
larger and θ smaller than unity will achieve an increase in the frequency of occurrence of a false alarm event during
simulation. The IS optimization problem will be a two-parameter one.

The (unbiased) IS estimator, using (1), can be expressed as

α̂ =
1
K

K∑
1

1(|s†R̂−1X|2 > η s†R̂−1s)W(X,XL;a, θ);

∼ f? (4)



SUBMISSION FOR RADAR 2005 CONFERENCE 3

where the notation∼ f? means that all random variables are drawn from biased distributions, and XL ≡ (X(1), . . . ,X(L))T

with K denoting length of the IS simulation. In setting up their joint densities, we use the fact that the FAP of the
AMF has the CFAR property and is independent of the true covariance matrix R. This is true under the assumption
of Gaussian distributions for the data. In such a case, the simulation of the AMF test can be carried out for data
possessing a diagonal covariance matrix I, denoting the N ×N identity matrix. Therefore, primary and secondary data
can be generated as complex vectors with independent components. The unbiased joint densities are

f(x) =
e−x†x

πN
and f(xL) =

e−
PL

1 x(l)†x(l)

πLN

so that

f(x,xL) =
e−x†x−PL

1 x(l)†x(l)

π(L+1)N

With scaling performed as described above, the biased joint density takes the form

f?(x,xL) =
e−

1
ax†x− 1

θ

PL
1 x(l)†x(l)

π(L+1)NaNθLN

resulting in the weighting function

W (X,XL;a, θ) , f(x,xL)
f?(x,xL)

= CaNθLNeA/aeB/θ (5)

where

A ≡ x†x, B ≡
L∑
1

x(l)†x(l), and C ≡ e−(A+B)

The variance of the IS estimator α̂ can be expressed as

var α̂ =
1
K

[I(ν)− α2] (6)

where ν is the vector biasing parameter (a, θ)T ∈ [1,∞)×(0, 1]. Denoting by A the false alarm event in (4), the quantity
I is given by

I(ν) = E?{1(A)W 2(X,XL; ν)}
= E{1(A)W (X,XL;ν)} (7)

where the expectation E? proceeds over biased distributions. Minimization of var α̂ with respect to the biasing parameters
is equivalent to minimization of I and is described in the Appendix. Although not implemented here, this description
has been included since it is foreseen that such a method could be useful in situations wherein the g-method might be
difficult to apply.

B. The g-method estimator

This method exploits knowledge of underlying distributions more effectively, yielding a more powerful estimator.
Additional advantages are that only a scalar parameter optimization problem needs to be tackled and the inverse IS
problem (for threshold optimization or selection) can be easily solved. The FAP can be written as

α = P (|s†R̂−1X|2 > η s†R̂−1s|H0)

= E{P (|s†R̂−1X|2 > η s†R̂−1s|XL,H0)}
, E{g(XL)} (8)

Note that the conditioning in the second step above is equivalent to the condition that a covariance matrix estimate is
given. We proceed to estimate α using the form in the third step above.

With the condition in mind it is easy to show, assuming that X is rotationally invariant and Gaussian, that the random
variable s†R̂−1X , w†X is distributed as CN 1(0,w†Rw) with independent real and imaginary components, and the
weight vector w = R̂−1s. The random variable Y , |s†R̂−1X|2 therefore is exponential and has density function

f(y|XL,H0) =
e−y/w†Rw

w†Rw
, y ≥ 0
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Therefore

g(XL) = P (Y ≥ η s†R̂−1s|XL,H0)

= e−η s† bR−1s/w†Rw

Note that if R̂ = R, then g(XL) = e−η and this is the FAP of the AMF when the covariance matrix is known. As
discussed before, we are simulating with homogeneous data possessing an identity covariance matrix, that is, with R = I.
The g-method IS estimator then takes the form

α̂g =
1
K

K∑
1

g(XL)W(XL; θ)

=
1
K

K∑
1

e−η DW (XL; θ); ∼ f? (9)

where

D ≡ s†R̂−1s
|w|2

=
s†R̂−1s

s†(R̂−1)2s

Choosing the (single) biasing parameter θ < 1 thus produces a decrease in D, thereby causing a higher frequency of
occurrence of the false alarm event or, more appropriately in this case, a larger value of the g-function. Note that use
of the g-method obviates the need to bias primary data vectors. Determination of a good value of θ proceeds as before.
The weighting function is simply

W (xL; θ) = θLNe−(1−1/θ)B (10)

which can be deduced from (5) by setting a = 1. The scaling θ is optimized by

θm+1 = θm − δθ

Î ′g(θm)

Î ′′g (θm)

which is just a one-dimensional version of (13). Estimates of the I-function and its derivatives are given by

Îg(θ) =
1
K

K∑
1

g2(XL)W2(XL; θ); ∼ f?

Î ′g(θ) =
1
K

K∑
1

g2(XL)W(XL; θ)Wθ(XL; θ); ∼ f?

Î ′′g (θ) =
1
K

K∑
1

g2(XL)W(XL; θ)Wθθ(XL; θ); ∼ f?

See Appendix A for definition of the above quantities.

B.1 Simulation gain

A useful measure of the effectiveness of any IS procedure is the simulation gain Γ. It is the ratio of simulation lengths
required by conventional MC and IS estimators to achieve the same error variance. Setting the variance in (6) equal to
(α− α2)/k (being the MC variance) where k denotes the length required by the MC estimator, yields the gain

Γ =
α− α2

I(ν)− α2

While the simulation gain is useful in learning how much faster than MC an IS technique is in terms of simulation
length, it also serves the purpose of comparing different IS estimators. In actual simulations, an estimate of Γ is made
by using the estimates for α and I. The g-method estimator has simulation gain given by

Γg =
α− α2

Ig(θ)− α2
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Fig. 1. Numerically computed FAP of the AMF detector.

where Ig = E?{g2(XL)W2(XL; θ)}, and it can be estimated during simulation. It always has a smaller variance
and consequently larger gain than the IS estimator discussed in the previous section. Indeed, without IS (W = 1),
Ig = E{g2(XL)} < E{g(XL)} = α. That Ig < I with IS was proved in [4] for conventional CFAR detectors. The proof
in the case of the detectors considered here is similar, and will be omitted.

C. Inverse IS and threshold determination

The inverse problem, namely that of finding by fast simulation the value of detector threshold η satisfying a prescribed
FAP, is readily solved using the g-method estimator. This is done by minimizing the stochastic objective function

J(η) = [α̂g(η)− αo]2

where αo is a desired FAP. Minimization of J with respect to η is carried out by the algorithm

ηm+1 = ηm + δη
αo − α̂g(ηm)

α̂′g(ηm)
, m = 1, 2, . . .

where δη is a step-size parameter and the derivative estimator in the denominator is given by

α̂′g(ηm) = − 1
K

K∑
1

D e−ηDW (XL; θ); ∼ f? (11)

with the prime indicating derivative with respect to η. Note in passing that this derivative estimator actually estimates
(negative of) the probability density function of the AMF statistic on the left hand side of (1) under H0.

IV. Numerical results

The FAP α obtained by direct numerical integration of (2) is shown in Figure 1 and is used for comparing IS results,
which are displayed in the remaining figures. The AMF detector consists of L = 704 secondary vectors each of length
N = 352. Shown in Figure 2 is one instance of adaptive IS estimation of FAP for a (known) threshold of η = 56.50432.
Figures 3 and 4 depict results from implementing the inverse IS algorithms. These are estimated threshold settings
and associated FAPs respectively. Optimum biasing parameters are shown in Figure 5 and simulation gains obtained in
Figure 6. It is evident that match with the results in Figure 1 is excellent and this has been numerically confirmed.

A. Discussion

The IS simulation results obtained here appear deceptively smooth and certainly beg an obvious question. Indeed, an
artifice has been employed here to generate them. It was used by the first author in previous work on capacity estimation
of MIMO channels and elsewhere, and found to be extremely useful. In conducting rare-event simulations of systems that
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Fig. 2. Convergence of FAP using adaptive IS algorithms.
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Fig. 3. Threshold optimization for AMF detector using inverse IS algorithms.

involve signal processing operations that are mathematically complex, there are two principal issues that contribute to
simulation time. These have to be dealt with effectively. The first issue concerns the rare event itself whose probability
is being sought, and this can of course be handled by suitable IS techniques. The second concerns the computational
intensity that accompanies the signal processing. The two are not unrelated. In the case of STAP detectors, the chief
processing burden is from inversion of the sample matrix. It is a daunting task to conduct conventional Monte Carlo
simulations that involve several millions of trials to estimate low FAPs, with as many matrix inversions. Assuming that a
good IS scheme can reduce the number of trials to, say, only a few thousands would still be computationally demanding
(a case in point being the three thousand 352 × 352 matrices that were inverted here). This is the point at which IS
departs from conventional Monte Carlo in a subtle but important manner. It is almost totally useless to run the same
random variables through a system in a straight MC simulation. With IS however, much can be learnt by repeatedly
using the (same) random variables. In fact, this is one of the powerful features that adaptive IS (and inverse IS) can
embed into complex system simulation. But how does an IS scheme become effective in the first place? Assume that we
have a biasing scheme that promises to be effective once the parameters of the biasing distributions have been optimized.
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For large systems (in the sense of number of random inputs involved), running truly randomized IS algorithms adaptively
could become demanding as pointed out above. If system performance can be characterized in terms of certain random
‘metrics’ (we use the word with a slight abuse of terminology), then these metrics can be pre-computed for a given set
of input variables, and used repeatedly (which, in complex systems such as STAP detectors eases the computational
burden) in adaptive biasing optimization algorithms. These latter algorithms themselves usually require no more than
100 iterations and can be extremely fast. Resulting IS simulation gains can be simultaneously estimated and these tell
us whether we need more or less pre-generated variables to achieve certain accuracies. Adjusting this latter number,
biasing and system parameter optimization (inverse IS) algorithms can be run, once. Thus there is an initial stage of
at most a few steps during which gains are estimated based on pre-computed metrics and the number of these metrics
is adjusted. All this is not as complicated as it appears. Turning attention to (9), (10), and (11), the only two random
quantities (or metrics) that are needed to estimate the FAP and associated detection threshold are B and D. This is for
the g-method. For 2-d biasing the only additional quantity required is the norm A of the primary vector, defined just
after (5) and this adds almost nothing to the computation. It turned out that generating K = 3000 random instances
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of B and D was certainly an overkill. If one looks at Figure 6, the gain provided by IS for estimating α = 10−6 is about
106. From usual asymptotic normality arguments, [4], it follows that about 100 optimally biased trials are sufficient
to guarantee an absolute estimation accuracy not exceeding 10% with 95% confidence. For 2-d biasing, the simulation
gain will be somewhat lower but the essential advantages of the method above remain. That is, handling a few hundred
inversions (once) is not at all a tall order. This method can produce such an avalanche of results that it is tempting to
think of it (with a slight stretch of imagination) as a ‘turbo-IS’. The above ideas certainly need quantification but it is
beyond the remit of this short paper to delve deeper.

An interesting observation comes from Figure 5, which shows that the biasing parameter is very close to unity and
has a small spread despite the range of FAPs considered. The implication is that the (one-sided) density of the metric D
has small variance, presumably owing to the choice of L and N . Smaller values of these constants would probably lead
to larger spread of biasing parameter. In the actual adaptations, a small value of the step-size parameter was used to
ensure gradual but safe convergence. This explains their apparently slow nature as seen in the figures. While configuring
results for a suite of system parameters, only the first adaptation need be somewhat long; subsequent adaptations can
be much shorter as they pick up starting or initial values from the previous one.

V. Conclusions

In this short and admittedly modest paper, we have made a small inroad into the use of adaptive IS algorithms to
characterize a STAP detector. The AMF was used as example and results have been very good. The chief reasons for
this are that we were able to invoke the g-method and inverse IS, find a suitable biasing strategy that could be easily
optimized adaptively, and find a way around the difficult task of inverting large matrices several times (as described
above). The hope is that applications to other STAP configurations, such as normalized AMF and those that handle
non-homogenous clutter, will also meet with success. But this remains to be seen as we are certainly not in position to
predict what subtleties these other detection algorithms can throw up. It is clear that IS is still in its infancy, especially
insofar as use for characterizing modern detection algorithms is concerned. The simulation experiments conducted here
have raised questions (at least in the authors’ minds!) that need to be answered definitively.

Appendices

I. Adaptive algorithms for 2-d biasing

The I-function is estimated as

Î(ν) =
1
K

K∑
1

1(A)W 2(X,XL;ν); ∼ f? (12)

and its minimization can be carried out using the 2-dimensional adaptive algorithm

νm+1 = νm − δĴ−1
m ∇̂I(νm) (13)
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Here, δ is a step-size parameter used to control convergence, and m is the index of recursion. This is a stochastic Newton
recursion. It achieves minimization of Î by estimating a solution of

∇̂I(ν) ≡ (Îa Îθ)T = 0

where Ia , ∂I(ν)/∂a and Iθ , ∂I(ν)/∂θ. The estimate of the Jacobian J (which is the Hessian matrix of I) is given by

Ĵ =
(

Îaa Îaθ

Îaθ Îθθ

)

where Ixy ≡ ∂Ix/∂y. It is straightforward to show that the various I-functions defined above can be obtained by the
notational equations

Ix = E?{1(A)WWx}
Ixx = E?{1(A)WWxx}
Ixy = E?{1(A)WWxy}

with various derivatives of the weighting function calculated as

Wa ≡ ∂W

∂a

=
(
N − A

a

)W

a

Wθ ≡ ∂W

∂θ

=
(
LN − B

θ

)W

θ

Waa ≡ ∂2W

∂a2

=
[(

N − 2A

a

)
(N − 1) +

A2

a2

]W

a2

Wθθ ≡ ∂2W

∂θ2

=
[(

LN − 2B

θ

)
(LN − 1) +

B2

θ2

]W

θ2

Waθ ≡ ∂2W

∂a∂θ

=
(
LN − B

θ

)(
N − A

a

)W

aθ

and they can be estimated as in (12). The FAP estimator in (4) and the adaptive biasing algorithm of (13) are
implemented simultaneously.
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