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Abstract: The author addresses the impact of diverse polarisations on clutter statistics in the
context of waveform diversity for multi-functional operation from a specific platform as well as
for multiple sensing from multiple platforms. A key issue in this context is that of clutter mitigation
via the use of diverse waveforms. Classical space–time adaptive processing (STAP) methods for
radar target detection can be viewed in the context of a whiten and match filter. To this end,
efficient waveforms that lend themselves for such processing are sought. The author specifically
considers a statistical analysis of experimental data collected at low grazing angles to validate
the fact that vertical transmit–vertical receive (VV) polarised data conform to Rayleigh scatter,
whereas horizontal transmit–horizontal receive data do not. Consequently, VV data are suitable
for whiten and match processing adopted in conventional radar STAP.

1 Introduction

This research is motivated by the problem of adaptive radar
target detection in heterogeneous clutter scenarios. The
problem is complicated by the fact that the statistics and
spectral properties underlying the clutter are typically
unknown. Classical adaptive signal processing methods
have relied upon the use of estimated clutter covariance
or clutter spectrum to devise mitigation strategies. Space–
time adaptive processing (STAP) is an example of such a
signal processing technique. Broadly speaking, STAP for
clutter mitigation can be viewed as a process of whitening
followed by matched filtering, which asymptotically
attains optimality for the case where the clutter scenario
conforms to Gaussian statistics under regularity assump-
tions. Much of the research on STAP has focused on obtain-
ing performance close to the optimal performance by
innovative design of adaptive receivers, which reduce the
sample support and computational cost requirements [1–6].
An emerging new direction in this context is that of

waveform diversity for improved radar performance. This
approach relies upon the use of a suite of waveforms to
improve radar performance while maintaining a fixed
receive signal processing structure. As a result, it becomes
important to determine waveforms which give rise to
Gaussian clutter statistics and separate them from those
waveforms which result in impulsive clutter behaviour.
Clutter probability density functions (PDFs) for which
P(x . h) . exp(2h) are defined to be impulsive clutter
scenarios. In other words, these clutter scenarios have a
tail that exceeds the order of the exponential distribution.
Gaussian clutter scenarios are well suited to whiten and
match processing, whereas the latter requires a modification
of the waveform to produce clutter statistics which lend
themselves to whiten and match processing. This paper
considers a statistical analysis of clutter returns from

experimental data corresponding to two different polari-
sation states. Experimental data collected from AFRL/
SNHE experiments in a wind-roughened reservoir are used
in our analysis. The radar system used for this data set
employed simple pulse transmission to achieve resolution
in range. The single frequency S-band carrier signal was
modulated by the 100 ns duration pulse in a travelling
wave tube amplifier, with no additional modulation or
coding. The resulting monostatic range resolution was
approximately 15 m. A 1.2 m parabolic reflector antenna
with a dual-polarised feed was used both for transmitting
and receiving the vertical transmit–vertical receive (VV)
and horizontal transmit–horizontal receive (HH) signals.
Vertical and horizontal polarisations were transmitted on
alternate pulses with emitted PRF of 500 Hz. The experi-
ments were conducted at a reservoir located in central
Massachusetts. The radar system was installed in a station-
ary truck located near the edge of the reservoir at a ground
elevation of approximately 5 m above the water. The radar
antenna was mounted on a telescoping tower that was
fully extended to approximately 20 m and anchored with
Kevlar guy lines. Thus, the radar antenna was approximately
25 m above the water surface. Grazing angles were between
3 and 3.48 to the centres of the respective range gates. The
reservoir depth in the area of the measurements was approxi-
mately 3.3 m, constituting deep water conditions for the
11 cm radar wavelength. The fetch was approximately
1.25 km, with no swell for these experiment conditions.
Wind speed was 6.7 m/s, and the radar observation direc-
tion was 658 from upwind. A two-channel receiver was
used to collect the vertically and horizontally polarised
echoes simultaneously. The relevant system parameters
are reported in Table 1. Related work on the statistical prop-
erties of clutter resulting from ocean scatter can be found in
[7, 8], where the K-distributed amplitude PDF was proposed
for these scenarios.

2 Problem statement

Through a detailed statistical analysis involving moment
calculation [9], spectral estimation methods [10] and
goodness-of-fit tests [11], it is specifically demonstrated
that VV and HH give rise to clutter returns with differing
statistical and spectral properties. In particular, the mean,
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calculated as defined below for the data sets
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where fX(x) is the PDF of the random variable X. However,
while dealing with measured data, the ensemble averages
defined in (1) are unknown. Consequently, these quantities
are replaced by their corresponding sample moments [11].
Specifically, it is shown that VV data conform to
Rayleigh scatter, thereby lending itself to whiten and
match processing. However, HH data tend to be highly
impulsive. Details of our approach are described in
Section 3. The experimental data consist of 7500 radar
returns from three range bins corresponding to VV and
HH data, respectively. A covariance function estimate of
the VV and HH data sets is performed first. The covariance
function estimate is given by [10]

Ĉxx ¼
1

N � k

XN�k�1

i¼0

½xðnÞ � m̂�½x�ðnþ kÞ � m̂��

m̂ ¼
1

N

XN
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xðiÞ

ð2Þ

The covariance function estimate yields the decorrelation
time for VV and HH data sets. The decorrelation time is
defined to be the number lags in which the normalised
covariance function decays from its maximum value of
unity to 0.1. Specifically, the VV data is found to decorre-
late after 15 lags, whereas the HH data decorrelates after
ten lags. This information is used to select uncorrelated
samples from the VV and HH data sets, respectively, for
further statistical analysis. In practice, it may not be pos-
sible to have the luxury of a large number of statistically
independent identically distributed samples because of
system considerations such as bandwidth and fast scanning
arrays. In these instances, the analysis has to be modified
somewhat to account for the data starved scenarios.
However, for the analysis in this paper, moderate to large
number of clutter samples were available, which enabled
the selection of uncorrelated clutter data. This allows us
to undertake a statistical analysis of the measured data.
Sample moments of the data (mean, variance, skewness,

kurtosis and inverse defection) [12] are calculated to
validate the findings of our statistical analysis.

3 Measured data analysis

Fig. 1 shows a plot of the VV data power against time,
whereas Fig. 2 depicts the plot of HH data power against
time. Three range bins of data consisting of 7500 pulses cor-
responding to VV and HH polarisations, respectively, are
plotted in Figs. 1 and 2. Figs. 3 and 4 plot the amplitude
and phase histograms for VV and HH data, respectively.
Observe from Figs. 3 and 4 that the HH amplitude data
are more impulsive compared to the VV data, although
the phase histograms of both data sets conform to a
uniform phase distribution in the interval (2p, p).

Fig. 5 shows the power spectral density estimate for the
VV data and HH data using the periodogram. The results
reveal that VV and HH data exhibit significantly different
spectral properties, which is consistent with the findings
of [7, 8, 13]. Fig. 6 shows the covariance function for
VV and HH data. Again, it is seen that the VV and HH
data decorrelate on different time scales. The decorrelation
time is defined to be the number of lags of the covariance
function after which the magnitude of the covariance
function decays to 0.1 times its maximum value. The decor-
relation time is used to select data samples that are
approximately uncorrelated. Decorrelation times observed
under these experiment conditions of limited fetch and
light winds and at the S-band measurement frequency are
greater than the 5–10 ms observed at X-band in [7, 8]. A
detailed discussion of this phenomenon requires

Table 1: Experimental data parameters

Parameter Value

Frequency, GHz 2.7

Pulse width, ms 0.1

PRF, Hz 250

Peak transmitted power, W 500

Range resolution, m 15

Fig. 1 Clutter power against time: VV data

Fig. 2 Clutter power against time: HH data
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comprehensive research pertaining to the physics of the
scattering mechanism underlying the clutter, which is
beyond the scope of this paper. This issue will be
addressed in a future publication. The results of Fig. 4
are consistent with the findings in [14]. A Kolmogorov–
Smirnov (KS) test [11] was then performed on the real
and imaginary parts (I and Q components) of the VV and
HH data sets to determine statistical consistency with the

normal distribution. The KS test determines statistical con-
sistency of a set of a random data with a specified PDF
through a statistical hypothesis test of the form:

H0: Data are consistent with the specified PDF

H1: Data are not consistent with the specified PDF.

Any desired PDF may be chosen for the specified PDF
under the H0 hypothesis. For the purpose of this paper,
determining statistical consistency of the data with
Rayleigh scatter is of interest, which corresponds to the
Gaussian PDF for the in-phase and quadrature components
of the complex data. Consequently, when dealing with stat-
istics of the scattered power, the statistical consistency of
the scattered power with the exponential distribution is con-
cerned. For convenience of analysis, the complex data sets
are normalised to have zero mean and unit variance. This is
accomplished by estimating the sample mean and sample
variance of the data. In order to complete the KS test, a
specific Type-I error probability is chosen. The Type-I
error is the probability of observing under H0 a sample
outcome at least as extreme as the one observed [11] and
hence provides the smallest level at which the observed
sample statistic is significant. The Type-I error chosen for
this paper is 0.05. The real and imaginary parts indicated
statistical consistency with the normal distribution at a 5%
significance level. On the other hand, real and imaginary
parts of the HH data did not indicate statistical consistency
with the normal distribution at a 5% significance level. The
results of the KS test for the real and imaginary parts of the
VV data are presented in Fig. 7. In particular, the theoretical
cumulative distribution function (CDF) and empirical data
CDF for the real and imaginary parts of the VV data are
shown in Fig. 7. The results demonstrate excellent agree-
ment between the theoretical CDF corresponding to the
standard normal (Gaussian) distribution and empirical
CDFs in all cases. As a result, the VV data sets conform
to Rayleigh scattering characteristics. Corresponding
results for HH data are shown in Fig. 8. In all cases for
the HH data, the KS test rejected the null hypothesis at a
5% significance level. The results of Figs. 7 and 8 confirm
the Rayleigh scattering characteristics of VV data, while
showing that the HH data depart from Rayleigh scatter
and are thus more impulsive. The statistics of the scattered
power corresponding to VV and HH data are then exam-
ined. The results pertaining to range bins 29–31 are

Fig. 4 Amplitude and phase histograms for HH data

Fig. 3 Amplitude and phase histograms for VV data

Fig. 6 Covariance function for VV and HH data

Fig. 5 Power spectral density estimate for the VV and HH data
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presented in Figs. 9 and 10. First, the scattered power stat-
istics of VV and HH data for conformance with Rayleigh
scatter are tested. This is accomplished by undertaking a
KS test of the scattered power data with the standard

exponential distribution, whose PDF and CDF are given by

f RðrÞ ¼ expð�rÞ; r . 0

FRðrÞ ¼ 1� expð�rÞ; r . 0
ð3Þ

The mean and variance corresponding to the exponential
distribution are given by

EðRÞ ¼

ð1
0

r expð�rÞ dr ¼ 1

s2
R ¼ EðR2Þ � ½EðRÞ�2 ¼

ð1
0

r2 expð�rÞ dr � 1 ¼ 1

ð4Þ

Consequently, the inverse defection for the exponential
distribution is given by

d�2 ¼
s2
R

½EðRÞ�2
¼ 1

Thus, the inverse defection is a valuable metric for detecting
departures from Rayleigh scatter. In particular, values of
d22

� 1 correspond to deviation from Rayleigh scattering
behaviour. Furthermore, the skewness of the exponential
PDF is 2. Therefore large deviations of the skewness from

Fig. 8 Results of the KS test for HH data

Fig. 10 KS test results for HH data power

Fig. 11 KS test results for VV and HH data powerFig. 9 KS test results for VV data power

Fig. 7 Results of the KS test for VV data
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2 correspond to a departure from the Rayleigh scattering
behaviour. Finally, it can be shown for the normal distri-
bution that the kurtosis is 3. Therefore data exhibiting kur-
tosis greater than 3 are representative of non-Rayleigh
scattering phenomena.
For VV data, the null hypothesis (that the scattered power

data conform to the exponential distribution) could not be
rejected at a 0.05 significance level. The theoretical and
empirical CDFs plotted in Fig. 9 show excellent agreement
as evidenced by the KS test. Fig. 10 shows a similar plot of
the empirical and theoretical CDFs of the scattered power
for HH data. In this instance, the KS test rejected the null
hypothesis at a 0.05 significance level for all cases.
Finally, a double version of the KS test was used to deter-
mine whether the VV and HH data share the same PDF.
The null hypothesis that the two data sets have the same
PDF was rejected by the KS test at a 0.05 significance
level for each range bin. The empirical CDFs for the VV
and HH data sets from range bins 29–31 are plotted in
Fig. 11. These results were further validated by moment cal-
culations, which confirmed the findings of Figs. 5–9. The
moment calculations for VV and HH data sets are summar-
ised in Tables 2 and 3. The mean, variance, skewness and
inverse defiection pertain to the scattered power, whereas
the kurtosis is calculated for the real and imaginary parts
of the complex data. However, the table reports only the
calculation of the real part since the imaginary part has
identical kurtosis as the real part.

4 Conclusions

This paper presents a statistical analysis of measured
data from experiment to analyse the impact of diverse
waveforms on clutter statistics. For this purpose, data corre-
sponding to three range bins with VV and HH polarisations

were processed. Statistical analysis of the data showed that
the VV data and the HH data had drastically differing stat-
istical and spectral properties. Furthermore, VV data were
found to conform to Rayleigh scatter, whereas HH data
exhibited an impulsive behaviour. Future work will
involve the design of suitable transformations on the trans-
mit waveform to have clutter returns which conform to
Rayleigh scatter. Thus VV data lend itself to whiten and
match processing adopted in conventional radar STAP.
However, HH data do not lend itself to such processing.
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Table 3: Moment calculations: HH data

Moment Bin 29 Bin 30 Bin 31

m 0.2205 � 1025 0.1725 � 1025 0.0712 � 1025

s2 0.24 �1029 0.12 � 1029 0.002 � 1029

a3 6.95 6.99 2.05

a4 139.86 116.05 9.76

d22 50.23 39.07 3.11

Table 2: Moment calculations: VV data

Moment Bin 29 Bin 30 Bin 31

m 0.8 � 1024 0.88 � 1024 0.96 � 1024

s2 0.58 �1028 0.82 �1028 0.98 �1028

a3 0.5 0.70 0.68

a4 2.8 3.5 3.3

d22 0.91 1.05 1.06
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