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EXECUTIVE SUMMARY 
The primary goal of this effort is to bring to maturity a select set of basic 

algorithms, hardware, and approaches developed under the Integrated Sensing and 
Processing (ISP) Phase I program, implement them on representative hardware, and 
demonstrate their performance in a realistic field environment. We have identified a few 
promising research thrusts investigated in ISP Phase I where field demonstrations are cost 
prohibitive but collected data sets are available. Here, we will conduct a thorough 
performance evaluation.  
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0. Technical Abstract 
Advances in sensor technologies, computation devices, and algorithms have 

created enormous opportunities for significant performance improvements on the modern 
battlefield. Unfortunately, as information requirements grow, conventional network 
processing techniques require ever-increasing bandwidth between sensors and processors, 
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as well as potentially exponentially complex methods for extracting information from the 
data. To raise the quality of data and classification results, minimize computation, power 
consumption, and cost, future systems will require that the sensing and computation be 
jointly engineered. ISP is a philosophy/methodology that eliminates the traditional 
separation between physical and algorithmic design. By leveraging our experience with 
numerous sensing modalities, processing techniques, and data reduction networks, we 
will develop ISP into an extensible and widely applicable paradigm. The improvements 
we intend to demonstrate here are applicable in a general sense; however, this program 
will focus on distributed sensor networks and missile seeker systems. 

1.0. Management Overview and Summary 

1. A. Program Summary 
The Raytheon Company, Missile Systems (Raytheon) ISP Phase II program is a 

twenty-four month contract with a Period of Performance (PoP) covering 1 March 2005 
to 28 February 2007. Raytheon has four universities and one small business as ISP Phase 
II subcontractors: Arizona State University (ASU); Fast Mathematical Algorithms and 
Hardware (FMAH); Georgia Institute of Technology (Georgia Tech); Melbourne 
University (UniMelb) and the University of Michigan (UM). 

1. B. Program Status 
The Raytheon ISP Phase II Program status can be summarized as remaining “on 

track.” All of the negotiations have been completed and all of the subcontractors are now 
under subcontract. We had incurred some minor schedule slips on both the distributed 
tracking and the Cooperative Analog Digital Signal Processing (CADSP) demonstrations 
during the PoP; however, the revised schedule still supports demonstration before 28 
February. We still expect to complete the contract on time and budget. One area of 
significant concern remains the availability of a suitable radar test and integration 
engineer. We continue to work this issue, but have yet to find an acceptable solution. 
This problem remains one of the higher risks for our program. 

1. C. Personnel Associated/Supported 
Raytheon 
Dr. Harry A. Schmitt    Principal Investigator 
Mr. Donald E. Waagen   Co-Principal Investigator 
Dr. Sal Bellofiore    Distributed Sensing Lead 
Mr. Thomas Stevens    Distributed Sensing Support 
Dr. Robert Cramer    Mathematical Support 
Mr. Craig Savage    Waveform Design and Control Lead  
Dr. Nitesh Shah    High Dimensional Processing Data Lead 
Mr. William Daniels    Radar Test and Integration Support 

FMAH 

Professor Paolo Barbano 
Professor Ronald Coifman 
Dr. Nicholas Coult 

ASU 
Professor Darryl Morrell 
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Professor Antonia Papandreou-Suppappola  

Georgia Tech 
Professor David Anderson  
Professor Paul Hasler 

UniMelb 
Dr. Barbara LaScala 
Professor William Moran 
Dr. Darko Musicki 
Dr. Sofia Suvorova 

UM 
Professor Al Hero 

Significant Personnel Actions: There was one significant personnel change during the 
current PoP. Dr. Neal Patwari has left the University of Michigan and taken a position at 
the University of Utah. 

1. D. Recent Accomplishments and Events 
 Integrated MATLAB code for two UniMelb 1-Bit trackers into the Raytheon Test 

Bed and collected preliminary test data in July 2006. Provided results and 
feedback to tune UniMelb researchers. 

 Received University of Michigan dwMDS self-localization algorithm in July 
2006. Integrated the TinyOS code into the Raytheon Test Bed in August 2006. 

 Presented “Comparison of Inter-class Divergence for Linear and Nonlinear 
Dimensionality Reduction, with and without Class Labels” and “Correlation of 
Inter-class Divergence and Classification Performance,” at the Combat 
Identification Systems Conference (19-22 June 2006, Orlando, Florida). 

 Released MATLAB simulation code used for the analysis in the “Cooperative 
Control of Multiple UAVs for Passive Geolocation,” paper to Professor Daniel 
Pack, United States Air Force Academy. This code is understood to be at a 
research-level and used for that purpose. 

 Supported the ISP-II PI meeting (13-15 June 2006 in Phoenix, Arizona). Provided 
detailed responses (7 July 2006) to action items arising from the PI meeting.   

 UM (Patwari) presented our technical results in the area of indirect radio 
interferometric localization at the EmNets 2006 workshop. 

 Raytheon (Harry Schmitt) attended Technical Interchange Meeting at the 
University of Melbourne 5-13 August 2006.  

1. E. Near Term Events 
 Collect preliminary data set for the University of Michigan dwMDS self-

localization algorithm and provide feedback 

 Present “Localization, Detection and Tracking for Wireless Sensor Networks” at 
the MSS BAMS Conference. Our goal is to bring to the attention of the military 
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sensing community some of the work that is currently being done under ISP-II. 
We have provided summaries of algorithms which have been (or are being) 
developed for use in our distributed tracking demonstration. We discuss the 
dwMDS algorithm for self-localization (UM), the energy detector algorithm 
(ASU) and the Virtual Measurement tracking algorithm (UniMelb).  

2. A. Technical Progress  
2.A.1. Raytheon Technical Progress 
2.A.1.a. Sparse Manifold Learning 

We are interested in performing dimensionality reduction for the purpose of 
classification of SAR images using only a limited number of training points. The reason 
for this is to reduce the storage and computational requirements when performing real-
time low-dimension embeddings of newly acquired points. We have tested the efficacy of 
a number of different training point selection techniques in addition to proposing our own 
algorithm. We show that our technique outperforms the existing methods by providing 
more exact low-dimensional embeddings using fewer training points. In these 
experiments we make use of the ISOMAP algorithm for performing the dimensionality 
reduction. The data set comes from the MSTAR database of SAR image data. The data is 
pre-processed using a CFAR algorithm that finds the target on the original SAR image 
and focuses on them using a 50 pixel by 50 pixel window. Below we describe the 
different set selection techniques:  

Random Selection of points: 
The simplest landmark selection technique is a random selection of points from 

the training set. This technique works fairly well provided that the number of points is 
sufficient.  

MaxMin Greedy Optimization: 
For selecting only a few training points, [Silva&Tenenbaum] suggest using a 

MaxMin greedy optimization technique that maximizes the separabilty of the selected 
points. This technique tends to outperform the random selection technique (in terms of 
maintaining manifold structure) when the number of selected landmarks is small, 
however as the number of landmarks increases they work equally well. 

Clustering: 
Another method for the selection of landmarks is to perform logical groupings 

and use a few training samples from each group. These groupings can be based on a 
priori information (i.e. groupings by azimuth angle for SAR data) or they can be data 
driven groupings (i.e. obtained using a clustering algorithm). 

Proposed technique: 
We are interested in reducing the storage and computational requirements for 

performing a low dimensional embedding of newly acquired points. Since the actual 
training is performed offline, we can afford to train with the whole data set. Rather than 
storing all the parameters of the full training procedure, however, we reduce the 
parameters by averaging the parameters associated with neighboring points in the original 
high-dimensional space. The assumption is that the candidate point to be embedded is 
approximately equidistant from training points in the same neighborhood. This makes it 
possible to combine the parameters associated with the neighboring points in the Nystrom 
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approximation. The actual storage and complexity requirements for performing the out-
of-sample extension then become the same as the techniques shown above. The only 
drawback to the technique is that a longer training time is required, however, since the 
training is performed offline, this is not problematic.  

We compare the efficacy of these techniques using a divergence measure 
technique that provides a measure of separability between two classes (). The graph-
based technique is a multivariate generalization of the Wald-Wolfowitz runs test. A 
minimal spanning tree is constructed from the union of the two samples with class 
(sample) labels. The test statistic R corresponds to the number of disjoint subgraphs 
generated by removing all edges of the tree that connect vertices (data points) with 
differing labels. In these results we show the separability as a function of reduced 
dimension for two classes of SAR images (an M-2 tank and a T-72 tank).  

In Figure 1 below, we present the divergence of the two data sets at different 
dimensions. We compare the four different set selection techniques described above (with 
only 25% of the original data) to the baseline generated using the complete data set. The 
MaxMin technique performs equally well to the random selection technique and has 
therefore been omitted from the plot. As the plot shows, the proposed technique 
(parameter averaging) outperforms the other methods for all dimensions and approaches 
the baseline for higher dimensions. The storage and complexity requirements for out-of-
sample extensions are identical for all techniques. A technical manuscript is currently in 
preparation that will discuss our research results related to landmark selection. 
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Figure 1: Separability of two classes as a function of dimension for four different training 
set selection techniques and the baseline generated by training with the complete data set. 
Training for four different techniques is performed using only 25% of original data set. 

2.A.1.b. Test Bed Demonstration: Detector and Tracker Integration 
At the Program Review held in Phoenix last June, we presented a test bed for the 

Distributed Tracking Demonstration.  This test bed, shown in Figure 2, gives the 
capability to easily integrate and test a variety of wireless sensor detectors and trackers.  
In June, we had integrated the Particle Filter Tracker from Arizona State University and 
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only one of the University of Melbourne’s trackers.  At this time, we have completed the 
integration of the second tracker from the University of Melbourne.  In addition to that, 
we have also created a Target Simulator for testing the test bed offline.  The target 
simulator simulates the motion of a target that moves randomly through a field of motes, 
and the motes ID numbers are written to the Buffer (refer to Figure 2). 

Processing Station (Laptop)Mote 1
(Detector)

Mote 2
(Detector)

Mote N
(Detector)

Base Station
Mote

RS-232

Matlab

Buffer Tracker

Display
Real Time

Results

Gateway

 
Figure 2: Test Bed Block Diagram. 

The results using the target simulator are shown in Figure 3 and 4 for both of the 
University of Melbourne’s trackers. 

 
Figure 3: Virtual Measurement Tracker Results. 
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Figure 4: UKF Tracker Results. 

Time-Stamping the detections was not available, and it is critical to playback the 
data offline to tune the trackers.  Thus, we have used the provided by TinyOS method 
which we found to be inaccurate.  The inaccuracy (i.e., bug) has been corrected and 
Time-Stamping the motes network detections is now possible.  These Time Stamps are 
incorporated into the buffer of our test bed (refer to Figure 2).  A sample of this buffer is 
shown on Figure 5 where its format is as follows.  The first column consists of the Time 
Stamp, and its format is HH:MM:SS.SSS (i.e., Hours, Minutes, Seconds, and Thousand 
of a Second).  The second column is an integer that represents the Mote ID that has 
detected the target.  

10:29:05.940 12 
10:29:05.960 12 
10:29:05.980 19 
10:29:05.990 2 
10:29:06.010 19 
10:29:09.204 2 
10:29:09.224 19 
10:29:09.234 19 
10:29:09.244 2 
10:29:12.468 19 
10:29:12.508 2 
10:29:15.732 2 
10:29:15.772 19 
10:29:18.976 19 
10:29:18.986 8 

 
Figure 5: Sample of the Buffer which includes the Time Stamp. 

It has been noticed that as the motes network covers a large area, the reception of 
the detections degrades.  Thus, some version of a network routing is needed to ensure 
reception from motes that are far away from the base station.  The Vanderbilt 
FloodRouting is a fairly well qualified (not in the military sense) package for alleviating 
this problem.  We have made progress in integrating the FloodRouting package into the 
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motes for the test bed demo.  This task is not yet completed; however, its completion is 
estimated within 80 hours of effort. 

2.A.1.c. Test Bed Demonstration: Self-Localization 
We have made progress on integrating the Vanderbilt Radio Interferometer 

Positioning System (RIPS) code for self-localization on to the MICA2 900 MHz version.  
RIPS was originally written for the MICA2 433 MHz version, and it is highly dependent 
on radio frequency and phase differentiation between received signals.  Operation of the 
Vanderbilt RIPS on the 900 MHz MICA2 would require significant effort to complete.  
Experiments with the Vanderbilt RIPS code will be conducted solely onto the 433 MHz 
MICA2.  The completion of these experiments is estimated within 40 hours of effort. 

We have received the self-localization work from University of Michigan.  The 
code has been modified to comply with the TinyOS standard and TinyOS make system 
such that integration to the test bed demo is possible.  Data has been collected for two 
topologies using the University of Michigan’s code.  Further testing will be conducted 
next week as well as the analysis of the data. 

2.A.2. ASU Technical Progress 
2.A.2.a. Mote Tracking Support: Detector Development 
Data Analysis and Filter Design 

The footstep data was analyzed using the spectrogram time-frequency 
representation (squared magnitude of short-time Fourier transform) to compute the 
frequency content of the footsteps as a function of time. Figure 6 shows the spectrogram 
of the acoustic signal generated by a person wearing boots walking on sand at a distance 
of 12 feet from the mote. The time-frequency plot shows that the footsteps have 
significant energy throughout the entire frequency band; it also shows that there is a 
significant low frequency noise component in the data. 

 
Figure 6: Spectrogram and time domain plot of the acoustic signal generated by a person 
wearing boots walking on sand at a distance of 12 feet from the mote. 

This time-frequency analysis suggested the use of a highpass filter to eliminate 
the lower frequency noise while retaining the high frequency components of the 
footsteps.  So we used the Remez algorithm in MATLAB to design a 21st order filter 
with a stopband edge of 606 Hz and cut off frequency of 1.0606 kHz. The resulting 
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filtered footstep data is shown in Figure 7.  Figure 8 shows the spectrum of the original 
and filtered data as well as the frequency response of the filter. 

 
Figure 7: Spectrogram and time domain plot of the highpass filtered footstep data 

 
Figure 8: Spectrum of footstep data before and after filtering. The top plot also shows the 
highpass filter response 

Data Collection 
Using the modified mote collection system in which acoustic data is collected 

using a mote that communicates to the base station using a wired connection, we have 
collected a large database of footstep data. This database includes footsteps on several 
different surfaces (sand, brick, and cement) with several different shoe types.  The data 
has been made available to the Raytheon team on the World Wide Web at 
http://www.fulton.asu.edu/~murishm/debejyo_web/motes/.  For each combination of 
surface and shoe type, footstep data was collected at distances from two feet to twenty 
feet away from the mote.  The sampling frequency was approximately 3.1 kHz with eight 
bits per sample.  

Receiver Operating Characteristic (ROC) Curves of Energy Detector 
In our last quarterly report, we discussed how we obtained ROC curves for the 

energy detector. With the highpass filtering operation, we now have improved ROC 
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curves. These are provided in Figure 9 (for footsteps at distances from two to twelve feet) 
and in Figure 10 (for footsteps at distances from fourteen to twenty feet). 

 
Figure 9: ROC curves for the energy detector using the highpass filtered footstep data at a 
distance of two to twelve feet from the mote 

 
Figure 10: ROC curves for the energy detector using the highpass filtered footstep data at 
a distance of fourteen to twenty feet from the mote. 

Mote Software Development 
We have developed software for the motes that collects acoustic data at a sampling rate 
of 3.1KHz, filters the data with a highpass filter, and then computes the energy in the 
filtered data. Beginning with an initial implementation, we have significantly improved 
the speed and robustness of the code. The highpass filter is a 9-tap FIR filter with integer 
coefficients whose response is shown in Figure 11. The energy detector computes the 
energy in a 500 sample window of the filter output and compares the energy to a 
threshold. If the energy exceeds the threshold, the mote detects the presence of the 
footstep and transmits a packet that includes the mote ID number and the energy value. A 
video demonstration of the detection on the motes using two mote sensors can be found 
at  
http://www.fulton.asu.edu/~murishm/debejyo_web/motes/videos/energy_detec
tor.AVI 
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Figure 11: Transfer function of the highpass filter implemented in the mote program 

 
2.A.2.b. Tracking Algorithms for the CADSP Configurable Imager 

We have extended our previous single target tracker for the CADSP imager to 
track a varying number of targets; the tracker estimates the number of targets as well as 
the target state (target size and 3-dimensional position and velocity). In our current 
implementation, the tracker uses image data provided by a simulated CADSP imager 
whose configuration is under the control of the tracker; the imager is simulated by a web-
camera whose output is filtered to simulate the CADSP imager. Our tracker is composed 
of the CADSP imager configuration strategy and the target tracking algorithm.  

The imager configuration strategy determines which 8 × 8 pixel blocks will be 
requested from each image frame acquired by the imager as well as the type of filtering 
operation (Gaussian or Mexican hat filter) to be performed on each of these blocks. The 
tracking algorithm uses the output of the CADSP imager as measurements in the particle 
filter state estimator. It estimates the number of targets present in the scene and estimates 
the state of the targets. The tracking algorithm is adapted to the scene using training data 
to determine distributions of foreground and background image blocks.  

The multiple target tracker has been evaluated for seven different video 
sequences. In three of the sequences the number of targets varies from zero to two; in the 
other four, the number of targets varies from zero to one.  An example of an image with 
two targets is shown in Figure 12.  The image blocks requested from the imager by the 
tracker at a given time are shown as white blocks. Which blocks are requested are 
determined by the tracker as follows. Each particle in the particle filter predicts the target 
location; for each predicted location, several image blocks in the center and on the edges 
of the predicted target location are requested from the imager. 
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Figure 12: Simulated CADSP image with two targets. 

Figure 13 shows the RMSE error of the tracker for the three video sequences with 
zero to two targets. The times of target arrival and departure, as well as the times where 
one target occludes another, are approximately the same in each of the three video 
sequences. The RMSE performance for the case where the simulated imager is used 
(labeled "ISP" in Figure 13) is comparable to the case where the complete image frame is 
used (labeled "No ISP"). This indicates that there is no performance degradation when 
the CADSP imager acquires only a subset of blocks in the image.   

 
Figure 13: RMSE performance of the tracker using the simulated imager (ISP) and the 
complete image frame (No ISP). 

Figure 14 shows the average number of blocks requested from the simulated 
CADSP imager (labeled "ISP") compared to the total number of blocks in the image 
(labeled "No ISP"); this figure shows that selectively requesting blocks that are important 
to the tracker can significantly reduce the number of blocks needed to be acquired by the 
imager. 
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Figure 14: Average number of blocks requested from the simulated CADSP imager (ISP) 
compared to the total number of blocks in the image (No ISP). 

Figure 15 shows the average number of lost tracks versus the frame number. The 
average number of lost tracks is close to 0.8 when one target is occluded by another 
target and is thus not observed by the camera. 

 
Figure 15: Average number of lost tracks versus the frame number. 

Figure 16 shows the estimated probability of zero, one, and two targets; the true 
number of targets in the scene is also indicated. The results were averaged over 20 Monte 
Carlo simulations. 
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Figure 16: Estimated probability of n=0, 1, and 2 targets. 

 2.A.3. UM Technical Progress 
In the three months since the last quarterly report we have made incremental 

progress on two fronts: 

 We have made more progress on CCDR out of sample extension and will be 
submitting a paper to a journal in a couple of weeks. The progress is in applying 
the method to very large datasets where learning from the training sample is not 
practical given the size of the SVD. We are testing the training phase of CCDR 
with an OSE that allows labeled points to be included as OSE candidates. A copy 
of the paper and the related code will be delivered to Raytheon once we get it to a 
draft stage that is presentable. 

 We are testing the GEM code and are trying to characterize when there are 
insufficient numbers of points to construct a reliable non-anomaly region. In 
conjunction with this, we are developing rules of thumb that can predict the 
number of points in training sample that are sufficient to detect an anomaly of 
given size - i.e., distance from the non-anomaly region. 

Most of the progress during the current PoP has been related to mote self-
localization for the distributed tracking demonstration. 

At the last quarterly report in May, we reported that the progress towards 
distributed localization algorithm implementation was at 75%.  During the past quarter, 
we finished this implementation, and tested the distributed localization system in a 
deployment test in an outdoor field.  This implementation used single-frequency 
measurements of received signal strength (RSS) between many pairs of neighboring 
sensors.  In the deployment test (Experiment I) we placed 14 sensors in a 4x4 grid in a 
4m by 4m square grassy area, allowed them to make measurements and then to perform 
the distributed coordinate calculation of the dwMDS algorithm described in [Costa2006].  
In Experiment I, the root-mean squared error (RMSE) was 64 cm.   
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Figure 17: Photo of deployment environment.  Here, Experiment III is photographed.  All 
tests were run with sensors placed on the ground, in the grass.  A laptop listens to and 
records the sensor packet traffic for later study; but is not involved in the coordinate 
calculation. 

Following the successful deployment test using single-frequency RSS 
measurements, we upgraded the system to allow multiple-frequency RSS measurements.  
This required implementing a frequency-hopping (FH) protocol on the motes.  In this 
implementation, motes measured the RSS of signals at 16 different center frequencies 
and averaged the result.  The benefit of FH is that the variance of the RSS measurement 
due to frequency-selective fading can be sharply reduced.  Using the new FH 
implementation, ran a new test (Experiment II) with 16 sensors in the same grid and 4m 
square area described above.  In Experiment II, the RMSE reduced to 25.6 cm. 

Finally, we made some adjustments to the implementation so that the system 
would allow for many more sensors, and then ran a deployment test (Experiment III) with 
36 sensors in a 6x6 grid, in a 6.67m by 6.67m square area.  This test ran successfully and 
recorded an RMSE of 55.3 cm.   

Table 1: Deployment Test Results 

Experiment Sensor Number  Area Size Frequency Hopping? RMSE 
I 14 4 x 4 m2 No 64 cm 
II 16 4 x 4 m2 Yes 25.6 cm 
III 36 6.67 x 6.67 m2 Yes 55.3 cm 
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Ongoing work with the sensors will use the implementation experience gained 
from these deployment tests to further develop the dwMDS implementation.  While the 
current dwMDS implementation separates measurement and calculation into two distinct 
stages, the next step will be to join them, so that movement can immediately impact 
position estimation, which is a key requirement for sensor tracking.  We proposed and 
were accepted to conduct a distributed localization demonstration at the ACM SenSys 
2006 conference in November [Patwari2006], which will incorporate this new update. 

2.A.4. UniMelb Technical Progress 
2.A.4.a Raytheon Technical Support 

In the previous quarter, work has been performed in three ongoing research areas: 

1. Theoretical scheduling 
2. Geolocation of ground targets 
3. Tracking smart targets 

Additionally, through National Information and Communication Technology of 
Australia (NICTA), some gene expression data has been obtained for evaluation of some 
of the high-dimensional data processing algorithms developed under ISP.   

Theoretical Scheduling 
As reported previously, we have considered optimal scheduling of Gauss-Markov 

systems (GMS) under certain constraints for a terminal cost function.  Optimality in this 
case refers to minimizing the sum of the estimated state error variance, or some function 
of the estimated state error covariance for vector-valued states.  We are considering 
removing those constraints, in addition to using different cost functions (e.g. discounted 
cost).  Along these lines, we have investigated rates of convergence of iterative equations 
[OrRh] to quantify reduction in the estimated state error covariance as measurements of 
each process are taken. 

Research in this area is ongoing.  The eventual goal is to determine an optimal 
scheduling methodology for general GMS, but the majority of the work to date has been 
on scalar systems. 

Geolocation of Ground Targets 
In previous reports, we have outlined the problem of geolocating a ground target 

utilizing a laser rangefinder and distributed passive sensors.  Our scheduling solution 
addresses a number of practical concerns, such as 

1. Scheduling passive sensors to conserve bandwidth and power 
2. Dynamic measurement quantization based upon track information 
3. Dynamic measurement rate scheduling to preserve track quality 
4. Evaluations of multiple-step-ahead methods, such as the rollout algorithm 

[BeC99] 

The work is being prepared for submission to IEEE Transactions on Aerospace 
and Electronic Systems. 

Tracking Smart Targets 
We continue research on tracking smart targets as described in our previous 

report.  A paper is being prepared for the upcoming DASP conference, to be held in 
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December.  Furthermore, we have begun research along the lines of Gittins [Gi79, 
GiRo79], which concerns itself with detection of an intelligent evader, as opposed to 
detection.   

 2.A.4.b Distributed Tracker Technical Support 
Mote Self-localization in Distributed Networks 

In the June 2006 report a computationally efficient method for mote self-
localization using Radio Interferometric Positioning (RIPS) measurements was described. 
This algorithm assumed that all motes were in communication range of each other. 
However, typically nodes in a wireless sensor network are cheap and low-powered. Thus, 
their communication ranges are often significantly less than the area covered by the entire 
network. Therefore, practical self-localization algorithms must operate in a multi-hop 
fashion. 

There are two main types of multi-hop localization — centralized localization and 
collaborative localization. In centralized localization all measurements are transmitted to 
a central processor which computes the locations of each node in the network. This is an 
inefficient method as it introduces bottlenecks in the communication channels from the 
nodes to the central processor and an undesirable power drain on the nodes one hop from 
it. In contrast, with collaborative localization the nodes in the network operate in a peer-
to-peer manner to build up a map of the network. 

Here we present an extension of the RIPS-based localization method described in 
the earlier report that is suitable for collaborative localization in a network where the 
surveillance region is larger than the communication range. In order to do this, we require 
that a small number of nodes, in known locations, are available. We will term such nodes 
beacons. Note, this requirement is not needed in other RIPS-based methods such as that 
of [Maroti2005]. However, use of beacons reduces the required number of RIPS 
measurements to a number that is linear in the number of nodes to be localized. This is a 
critical cost saving. 

Collaborative Localization Algorithm 
Consider the case when there is a sparse network of GPS-equipped nodes, i.e. 

beacons, spread across a surveillance region, whose size is significantly larger than the 
communication range of the nodes. In addition to the GPS nodes, there are many 
standard, non-GPS equipped nodes spread randomly through the area. The section of the 
entire surveillance region within the range of a GPS node will be referred to as its region. 
These GPS beacons are placed so that their regions intersect, so that some standard nodes 
may be in the region of more than one beacon.  

In addition, we assume that an ad hoc network has been formed between all the 
nodes, so that each node knows the identity, but not necessarily the location, of its 
neighbors. That is, each node knows which other nodes are within one hop of itself.  

Finally, we will assume that within the region of one beacon there are two other 
nodes in known locations. This is required to initialize the algorithm. An initialization 
method that does not have this requirement, but instead uses standard nodes in the 
intersection of three beacons, was discussed briefly in the previous report. 
Implementation of this method is currently being studied. 
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The localization algorithm is outlined below. Details of the Select Anchors step 
are discussed in detail below. The Find Nodes step uses the efficient localization 
algorithm described in the previous report. A successful localization attempt is one where 
a unique location for the node could be computed. 

1) While there are unused GPS nodes (i.e. beacons) do 
a) Select Beacon: From the list of unused beacons, select the beacon, b, with the 

largest number of nodes in its region that are already localized. Create a list L of 
nodes whose locations are known and are in the region of b. Generate another list 
A of all possible pairs in L that are in range of each other and b. 

b) Select Anchors: Given the beacon b and the list A select the best pair of nodes to 
use as anchors along with b. 

c) Find Nodes: Given the anchor set, for each node n that is in range of all three 
anchors do 
i) Attempt to localize n, if the number of previous successful attempts to localize 

it is less than the allowed maximum. 
ii) If an unambiguous location is found (i.e. the localization attempt was 

successful) then 
(1) Update the estimated location of n by averaging the estimated position 

with the previous estimate. 
(2) If node n was not previously localized, add it to the list L. For every other 

node, m, that is in the list L and is in range of both the beacon and node n, 
add the pair (m, n) to the list A. 

d) Remove the current pair of nodes that were used as anchors from the list A. 
e) If the length of the list A is non-zero, return to the Select Anchors step. 
f) Remove the beacon from the list of unused beacons. 

The indicative performance of this algorithm is examined using simulations and the 
results are discussed below. 

Ideal Anchor Geometry 
To localize standard nodes in the region about each beacon, two additional nodes, 

whose locations are already known, are chosen to be anchors. This pair is such that all 
three nodes are all in range of each other. From all such possible pairs, the pair that is 
chosen is such that the probability that an unknown node’s position can be 
unambiguously calculated is maximized. That is, there is a valid solution to the closed-
form RIPS measurement equation and this solution is unique. 

The proportion of a region that can be uniquely localized with any given set of 
anchors cannot be computed exactly. However, numerical approximations indicate that 
the ideal choice of anchors is a pair that is equidistant from the beacon, at a range of 5% 
of the communication range of the nodes. The ideal angle between the anchors and the 
beacon is approximately 87o. This results in just over 50% of the region being uniquely 
localizable. This geometry is illustrated in Figure 18. 
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Figure 18: Ideal anchor geometry. The anchor nodes are shown by black squares, green 
circles indicate locations were the node location is unique, red asterisks indicate an 
ambiguous solution and black dots indicate no solution is possible. 

Results of the numerical approximations for equidistant anchors are shown in 
Figures 19 and 20. The results shown in these figures were calculated assuming the two 
anchors were equidistant from the beacon and the range is given relative to the 
communication range of the nodes. The possible angle between these two anchors at the 
beacon was in the range (0, π). Figure 19 shows the results as a three dimensional surface 
plot, while Figure 20 is the corresponding contour plot. 

 
Figure 19: Proportion of a beacon’s region that can be uniquely localized as a function of 
relative range and the angle between the two anchors. 

The Select Anchors step in the algorithm uses linear interpolation over a pre-
computed table of possible anchor locations to estimate the proportion of the region that 
is uniquely localizable. The pair with the highest proportion is selected to be the anchors, 
along with the beacon. 
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Figure 20: Proportion of a beacon’s region that can be uniquely localized as a function of 
relative range and the angle between the two anchors. The maximum is indicated by the 
red asterisk. 

Simulation Results 
The indicative performance of the previously described algorithm described has 

been tested using simulations. The simulation scenario consisted of a surveillance region 
that was 300m square. There were 25 GPS-equipped nodes and 50 standard nodes in the 
region. The communication range of all nodes was 80m. The RIPS measurements were 
assumed to be corrupted by zero mean, white, Gaussian noise with a standard deviation 
of 0.04m. This is the accuracy that Maroti et al. state they were able to achieve in their 
field trials of the RIPS technique in [Maroti2005]. Ten Monte Carlo runs were 
performed. At most 5 attempts were made to localize a node during each run. An 
example of the output of the algorithm on a single run is shown in Figure 21. 

 
Figure 21: Example of a single run of the collaborative localization algorithm. Beacons 
are indicated by black squares, black circles show the true location of the standard nodes, 
while green asterisks show their estimated locations. When an unambiguous estimate 
could not be found, this is indicated by a red asterisk.  
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The average position accuracy was 42cm, while the median accuracy was 23cm. 
This pronounced difference is due to a number of outliers. A histogram of the average 
position errors for each standard node is shown in Figure 22 which illustrates this clearly. 
After excluding the outliers, the mean position accuracy was 28cm and the median was 
21cm. 

 
Figure 22: Histogram of the average position errors for each standard node. 

The average number of successful localizations for a node was 4.5 and the 
average number of attempts per Monte Carlo run was 7.3. Thus, on average 
approximately 14 RIPS measurements were used to localize a node on each run. 
However, mote 15 was never successfully localized due to the geometry of the scenario. 
Figure 23 shows that location of mote 15 and also the four nodes that generated all the 
outliers in the position estimates. 

 
Figure 23: Simulation scenario layout. The location of the node that could not be 
localized, node 15, is shown by the blue asterisk in the lower part of the figure. The red 
asterisks indicate nodes whose estimated locations had significant errors. 

Future Work 
Missed Nodes: The current algorithm discards results when there is an ambiguous 
solution for the location of a node. This means useful information is lost and it is possible 
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that the node may never be localized. A simple extension that avoids this problem is to 
retain both possible locations for the node and seek to resolve the ambiguity when 
measurements become available from an alternative set of anchors. 

Estimation Accuracy and Anchor Choice: The selection of nodes to use as anchors 
described in Section 1.3 aims to maximize the probability of finding an unambiguous 
solution. An alternative criterion is considered in [Savvides2003] when localization is 
performed using trilateration methods. There the ideal geometry is considered to be that 
which minimizes the Cramer-Rao bound on the estimation error. Calculation of the 
Cramer-Rao bound for this problem and the corresponding ideal anchor geometry is part 
of ongoing work. 

Multi-Hop Error Propagation: The algorithm described here uses previously localized 
nodes as anchors to determine the location of new nodes. Errors in the estimated anchor 
locations will propagate and may potentially increase the location errors for neighboring 
nodes. The effect of this propagation of errors over multiple hops is being studied. The 
simulation results suggest that this effect can be significant at the perimeter of the 
surveillance region. Methods for detecting and, ideally, eliminating this are being 
investigated. 

Self-Localization Using Noisy Measurements 
The problem of self localization of motes using noisy RIPS measurements is 

posed as a Bayesian estimation problem. The problem is formulated as follows. Assume 
that there are K GPS nodes with the kth node having position yk. The number of motes to 
be located is denoted as M and the unknown position of the mth such motes is xm. The 
positions x1,…,xM are to be estimated using the efficient RIPS method proposed 
previously by Barbara La Scala and Xuezhi Wang. This involves selecting four motes 
which are all within Denote the collection of T RIPS measurements as d1,…,dT. In a 
Bayesian framework, the problem is defined by the prior distribution of the unknown 
positions and the distribution of the measurements conditional on the unknown positions, 
i.e., the likelihood of x1,…,xM. The MMSE estimate of the unknown positions is the 
posterior expectation which can be computed from the posterior density: 

( )xx)ψ)ψ|l(dd)|π(x ∝  

where x=(x1,…,xM), d=(d1,…,dT), l is the pdf of the measurements conditional on the 
positions and ψ is the prior pdf of the positions. An intuitively reasonable prior pdf is to 
assume that the unknown motes are independent uniform random variables. The region 
over which a particular node is distributed can be limited by its proximity to the known 
locations of the GPS-equipped motes. We then have: 

( ) ( )m

M

=m
mR xU=xψ ∏

1

 

The RIPS measurements are assumed to be subject to Gaussian noise which is 
independent for each measurement. This leads to a likelihood of the form: 

( ) ( )( )∏
T

=t
tt Σ,xh;dN=x|dl

1
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where the nonlinear function ht is determined by the distances between the motes used to 
generate the tth RIPS measurement. The posterior density is then: 

( ) ( )( ) ( )m

M

=m
mR

T

=t
tt xUΣ,xh;dNc=d|xπ ∏∏ ×

11

 

where c is a normalizing constant. A closed-form expression for the posterior pdf π is 
unavailable due to the non-linearity of the RIPS measurements. At present we are 
pursuing a numerical solution based on important sampling. This works as follows. A 
collection of N samples is drawn from the prior distribution. These are denoted as x1,…, 
xN. The posterior pdf is then approximated as: 

( ) ( )∑ −
N

=n

nn xxδw=d|xπ
1

ˆ  

where the weights w1,…,wN are computed as: 

( ) ( )∑
N

=r

rnn x|dlx|dl=w
1

/  

The posterior expectation is then approximated as: 

( ) ∑∫
N

=n

nn xw=dxd|xπx=x
1

ˆˆ  

The basic estimator described above will be close to optimal provided the sample 
size N is sufficiently large. In practice, the size of N is limited by the need for 
computational tractability. This is particularly the case if the measurement noise has 
small variance in which case the prior samples are distributed over a much larger area 
than the area of interest. To overcome this problem a kind of progressive correction is 
used. This involves a number of weighting steps in which the sample are initially 
weighted by a likelihood with a much larger spread than the actual likelihood, and then 
weighted using progressively tighter likelihoods in succeeding steps. The procedure can 
be summarized as follows:  

1. Draw sample x1,…,xN from the prior distribution. 
2. For S steps define the covariance matrices ΣΣ>ΣΣ−1> >Σ1=Σ. 
3. For s=S:-1:1, 

a. For n=1,…,N, compute weights: ( )( )∏
T

=t
stt

n Σ,xh;dNc=w
1

1  [c1 is 

normalizing constant]. 
b. Draw indices j1,…,jN such that P(jn=a) = wa. 
c. For n=1,…,N, draw xn from the distribution with pdf ( )njxxk −  where k is 

a suitably chosen kernel density. 

The method is demonstrated using an example with eight motes arranged on a regular 
50m x 50m grid. The scenario, showing the known and unknown motes, is depicted in 
Figure 24. Three sets of RIPS measurements are used: one between motes A, B, C, and F, 
one between motes F, C, D and G and one between motes G, D, E and H. The aim of this 
quite simple example is to demonstrate the performance of the proposed approach and to 
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examine the effect of measurement noise on error propagation. It is expected that the 
estimates of the location of mote F should be more accurate than those of mote H. 

 
Figure 24: Self-localization scenario. The positions of GPS-equipped motes are indicated 
by circles. The positions of unknown motes are indicated by crosses. 

The measurement noise covariance matrix is Σ = σ2Ι, where I is the identity 
matrix. 100 Monte Carlo realizations are performed for several values of the variance σ2 
between 0.01 and 0.1. The bias and standard deviations of the x-location estimators for 
each unknown mote location are plotted against σ2 in Figures 25 and 26. Error 
propagation is clearly evident in the standard deviations which are much greater for mote 
G than mote F, and slightly higher for mote H as compared to mote G. Interestingly, the 
ratio between these standard deviations seems to be unchanged by the variance of the 
measurement noise. 

 
Figure 25: Estimator bias plotted against measurement noise variance for motes F (solid), 
G (dashed) and H (dotted). 
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Figure 26: Estimator standard deviation plotted against measurement noise variance for 
motes F (solid), G (dashed) and H (dotted). 

Mote tracking – the effect of mote density 
In previous reports it was described how the unscented Kalman filter (UKF) can 

be used to track a target moving through a field of motes. It is of interest to examine how 
the density of the motes affects the accuracy and robustness of the tracking algorithm. 
This has been examined using simulations for the case of single target moving with a 
velocity subject to small random perturbations. The surveillance area is 150m x 150m 
and the the motes are arranged within this area in a regular grid. The half-energy sensing 
range of the motes is 12.5m, i.e., the signal from a target at this distance from the sensor 
is received with half the energy. Simulations are performed for m x m grids of motes with 
m= 6, …, 20. Two measurement models are considered: a non-thresholded model in 
which the intensities measured by the mote sensors are transmitted to the central 
processor and a thresholded model in which the intensities are thresholded and binary 
measurements are sent to the central processor. The sensor measurements are subject to a 
noise.  

This noise will be varied to give signal-to-noise ratios (SNRs) of 15 dB, 10 dB 
and 5 dB. The results from 1000 Monte Carlo realizations are shown in Figures 27-29 for 
SNRs of 15, 10 and 5 dB respectively. As expected, the performance decreases as the 
number of motes decreases although this is considerably less so when the received 
intensities are available to the tracker. In this case accurate and reliable tracking can still 
be performed with rather sparse sensor configurations and a large amount of 
measurement noise. If the tracking algorithm is presented with binary measurements, 
even very dense sensor configurations do not result in reliable tracking if the 
measurement noise is large. However, reliable tracking with binary measurements in 
sparse sensor configurations is still possible provided there is not much measurement 
noise. 
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Figure 27: RMS position error for the UKF (dashed) plotted against the mote grid size for 
(a) the non-thresholded measurement model and (b) the thresholded measurement model. 
The solid line is the posterior CRB. The SNR is 15 dB. 

 
Figure 28: RMS position error for the UKF (dashed) plotted against the mote grid size for 
(a) the non-thresholded measurement model and (b) the thresholded measurement model. 
The solid line is the posterior CRB. The SNR is 10 dB. 

 
Figure 29: RMS position error for the UKF (dashed) plotted against the mote grid size for 
(a) the non-thresholded measurement model and (b) the thresholded measurement model. 
The solid line is the posterior CRB. The SNR is 5 dB. 
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2.A.4.c Generalized Frequency Modulated Waveform Libraries for Radar Tracking 
Introduction 

For radars capable of waveform agility the design of optimal waveform libraries 
comes into question. This piece of work considers the design of such waveform libraries 
for radar tracking applications from a generalized frequency modulated family of 
waveforms. Waveform libraries depend on the specific applications in which the systems 
are used. In designing or improving a waveform library certain questions arise. Firstly it 
is important to establish the measure of effectiveness for individual waveforms (cost 
function) and then to extend this to a measure of effectiveness (utility) for the library. 

For the moment, we represent the measurement obtained using the waveformφ  as 
a Gaussian measurement with covariance φR . The current state of the system is 
represented by the state covariance matrix P. The expected information obtained from a 
measurement with such a waveform, given the current state of knowledge of the target, is 

( ) ( ).detlog; 1PRIYXI −−= φ         (1) 

This is the mutual information between the target state variable X and the radar return Y, 
resulting from the use of the waveformφ , I is the identity matrix. This cost function 
represents the immediate (one step ahead) gain of information with waveformφ . When 
we want to optimize the information gain, and to do this the dynamics of the target has to 
be taken into account.  

Assuming two dimensional target state vector x (i.e., range and velocity), we write 

,QFxx kk +=           (2) 

where 







=

10
1 δ

F ,δ is time between the measurements and Q is dynamic noise 

covariance matrix, we write the mutual information between the state and the 
measurement, obtained with a waveformφas 

( ) ( ) ( )( )TFRPFQPYXI 111detlogdetlog; −−− ++−= φ     (3) 

Minimizing this over some family of waveforms gives the optimum library of 
waveforms.  

Suppose we know all the possible state covariances, P , generated by the tracking 
system. Next suppose this knowledge is statistical and is represented by a fixed 
probability distribution ( )PF over the space of all positive definite matrices. The utility 
function of a library ℑ of waveforms is given by 

The utility function of a library ℑ of waveforms is given by 

( )[ ] ( )∫
>

−+
ℑ∈

=
0

1detlog
max

P
F PdFPRIG φφ

      (4) 

for one step ahead waveform scheduling and by 
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( )( )[ ] ( )∫
>

−−− ++
ℑ∈

=
0

111detlog
min

P

T
F PdFFRPFQG φφ

    (5) 

for long term scheduling. 

In this work we assume that P belongs to a Wishart distribution, with the following 
definition and pdf. Suppose 1X is a p column-vector-valued random variable that follows 
a p-variate normal distribution, with mean zero, and covariance nonnegative definite 
matrix V. Further suppose nXX K,1 are independent and identically distributed (i.i.d.). 
Then the Wishart distribution is the probability distribution of the pp × random matrix 

.'
1

i

m

i
i XXS ∑

=

=           (6) 

The positive integer m is the number of degrees of freedom. The Wishart distribution is 
characterized by its probability density function. Random positive definite matrix P has a 
Wishart distribution with m degrees of freedom has a probability density function 

The positive integer m is the number of degrees of freedom. The Wishart distribution is 
characterized by its probability density function. Random positive definite matrix P has a 
Wishart distribution with m degrees of freedom has a probability density function 

      (7) 

where ( )⋅Γ p is the multivariate gamma function defined as 

      (8) 

Generalized Frequency Modulated Waveform Library 
In high SNR the waveform covariance matrix can be approximated by the CRLB 

on the estimation of delay and Doppler, which is obtained by inverting the Hessian of the 
Ambiguity Function, evaluated at the true target delay and Doppler [VanTrees71]. 
Computations (VanTrees71, loc.cit.) yield that within a constant factor the Fisher 
information matrix u can be calculated as, 

      (9) 

Each waveform in generalized frequency modulated library can be represented as 

       (10) 
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where a(t) is a real valued even magnitude window function, b is a sweep constant and 
f(t) is a real valued frequency function. We shall assume that the window function has 
compact support, so that where integrals are over the whole real line, they are in fact only 
over a finite interval. Consider a library generated from a single window a(t) which 
satisfies the following conditions 

       (11) 

and f(t) which satisfies the following conditions 

    (12) 

These conditions give a convex compact set C of functions for the sup norm on the space 
of continuous functions with support a given interval. The Fisher information matrix for 
this type of waveforms is 

    (13) 
where A(ω) is the Fourier transform of the window function. 

In short notation we write 

        (14) 
where 
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Note, that ωρ and 2t are identical for all waveforms in the library. 

In this section we design library of waveforms which maximized instantaneous gain of 
information, when tracking with Kalman Filter. Given the frequency modulated 
waveform library, described above, we use the methods of calculus of variation to 
calculate the following expression 

       (15) 
for some positive definite matrix 0P . Since TUTR SS

11 1 −− = η , we can rewrite this 
expression as 

        (16) 

where








== −

2221

1211
0

11
pp
pp

TPTP η
 is also positive definite. We interchange max and log and obtain 

the functional in frequency function f(t) which we want to maximize 

  (17) 
We have 

        (18) 
where ( )

( ) 11
2

2
2211
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+++= ωω is a constant, ( )
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det pPt
p

+
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Denoting 

        (19) 
we write 

    (20) 
This is a quadratic functional in ( )tF ' with gateaux second derivative positive. It is 

therefore a convex functional so that it achieves the maximum on the boundary C∂ , 
which is non-empty, since the set is compact and convex. One can show that the extreme 
points are functions which are all combinations of segments of the four straight lines: 
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       (21) 
The local minimum is given by the solution of the Euler-Lagrange equation. We have 

     (22) 
The solution to this equation is 

         (23) 

Initial conditions give us
t
fC

∆
∆≤ . This result is remarkable, as it tells us that linear 

frequency modulated waveforms (chirps) are the minima of the short term cost. 

If we impose the further constraint that
M

ft ∆=∆ , the boundary is comprised of continuous 

piecewise linear functions constructed from up-sweep and down-sweep linear FMs.  

Further constraining the waveforms to have a maximum number of linear pieces not 
exceeding two, gives a parametrized family of waveforms with one parameter 

{ } txx ∆−∈ ;1,1  representing the point of connection between pieces. 
The cost function in this case is 6th degree polynomial in x 

 
The zeros of the derivative of f with respect to the parameter x gives us at most three 
local maxima of f(x) in [−11], two of which are the end points x = −1 and x = 1, and the 
third point depends on P, i.e 

 (25) 
For example if p12 = 0 the local maxima is in x = 0 and it is greatest of the three 

local maxima when 222
3
t

p > . 

 
We evaluated the utility function (using Monte-Carlo integration) for Wishart 
Distribution of P with several degrees of freedom. The results are represented below. In 
these experiments we are looking at two Wishart distributions with 3 and 10 degrees of 

freedom, respectively, and with the same mean covariance 







=

100
01

V . The state vector 

is [range velocity]T and the units in the state vector are m in range and m/s in velocity. 
We compare the utilities of three waveform libraries: L consisting of down-sweep chirp, 
an up-sweep chirp, and a piecewise linear frequency waveform with connection point in 
the center of the time window, and four more piecewise linear frequency waveforms with 
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connection points not in the center of the time window; L1 consisting of down-sweep 
chirp, up-sweep chirp, a piecewise linear frequency waveform with connection point in 
the center of the time window and L2 consisting of down-sweep chirp and up-sweep chirp 
only. Of course, all pieces have maximum sweep rate M. For these experiments the 
window function is a truncated Gaussian window with duration ∆t = 100 µs and 
frequency sweep ∆f  = 14 GHz. We give the actual value of utility function as well as the 
SNR improvement between the libraries. SNR improvement is given by the reduction in 
volume of expected posterior pdfs between the baseline library L2 and each of L and L1. 
The SNR gain in both cases is not null but it does not seem significant. For comparison 
the SNR gain between chirp library (2 waveforms) and chirp-rotation library (4 
waveforms ) for the same parameters as above is 5.2243 dB. 

Table 2: Utility Function for Piecewise Linear Waveform Library for various Covariance 
Distributions 

 
2.A.5. Georgia Tech Technical Progress 

Currently, the CADSP Imager IC testing is in progress utilizing newly developed 
custom PCB boards. These boards move towards a stable standalone system with on-
board instrumentation needed to move the imager operation off the test bench. With the 
new boards, programming of floating gate transistors in the A and B matrices, which hold 
the coefficients, has now been performed. The imager pixel plane has be verified in a low 
resolution mode and nearly digital circuitry has now been tested. Still required is a full 
resolution test to verify and characterize the pixel level computation. Also remaining is 
an issue regarding the programming of a floating gate transistor on a trans-impedance 
amplifier which connects the pixel plane to the B matrix. A control line was mis-wired on 
chip, but possible workaround's have been developed and are being tested now. This will 
conclude basic level programming of all transistors on the IC. Following progressions 
will include optimizations for speed and accuracy. The last remaining subsystem testing 
is the verification of a final current-to-voltage conversion. Movement to full system-level 
operation will follow. 

Work on the optical flow algorithms has been in two directions. First, we have 
been developing a system to generate synthetic image sequences that can then be 
projected onto the imager IC. These rendered sequences will have associated ground-
truth motion vector information so that we can evaluate the performance of the system in 
a meaningful way. Second, we have been refining an RLS-based algorithm for efficiently 
and accurately extracting the motion vectors in the presence of imager noise. 

2. B. Publications  
There were no refereed publications that occurred during the current PoP. 

1. Craig O. Savage and Bill Moran, “Waveform Selection For Maneuvering Targets 
Within An IMM Framework,” IEEE Trans AES, accepted for publication.  
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2. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, “Non-myopic sensor 
scheduling and its efficient implementation for target tracking applications,” 
accepted for publication at EURASIP Journal on Applied Signal Processing, 
2006. 

3. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, “On the use of binary 
programming for sensor scheduling,'' under second review for IEEE Transactions 
on Signal Processing, (submitted February 2006). 

4. Amit Chhetri, “Sensor Scheduling and Efficient Algorithm Implementation for 
Target Tracking,” PhD Dissertation, Arizona State University, May 2006. 

5. A. Chhetri, D. Morrell and A. Papandreou-Suppappola, “Sensor resource 
allocation for tracking using outer approximation,” accepted for publication in 
IEEE Signal Processing Letters, 2006. 

6. I. Kyriakides, D. Morrell and A. Papandreou-Suppappola, “Sequential Monte 
Carlo Methods for Tracking Multiple Targets with Deterministic and Stochastic 
Constraints,” submitted to IEEE Transactions on Signal Processing, July 2006. 

2. C. Conference Proceedings 
[1] C. Savage, B. La Scala and B. Moran, “Optimal Scheduling for State Estimation 
Using a Terminal Cost Function,” 9th International Conference on Information Fusion, 
Florence, Italy, July, 2006  

[2] R. Cramer, S. Bellofiore, T. Stevens, H. A. Schmitt and D. Waagen “Localization, 
Detection and Tracking for Wireless Sensor Networks,” MSS Specialty Group on 
Battlespace Acoustic and Seismic Sensing, Magnetic and Electric Field Sensors, 
JHU/APL, Baltimore, MD, August, 2006. 

[3] V. Berisha, “Landmark Selection for Manifold Learning,” in preparation. 

[4] N. Patwari and A. O. Hero III, “Indirect Radio Interferometric Localization via 
Pairwise Distance,” in Proceedings of the 3rd Workshop on Embedded Networked Sensors 
(EmNets 2006), pp. 26-30, May 30, 2006, Cambridge, MA. 

[5] A. Chhetri, D. Morrell and A. Papandreou-Suppappola, “Sensor scheduling using 0-1 
mixed integer programming framework,” IEEE Workshop on Sensor Array and Multi-
channel Processing, July 2006. 

[6] I. Kyriakides, A. Papandreou-Suppappola and D. Morrell, “Adapting Matching 
Pursuits Dictionaries to Signal Structure Using Particle Filtering,”  IEEE Workshop on 
Sensor Array and Multi-channel Processing, July 2006. 

2. D. Consultative and Advisor Functions 
The consultative or advisory functions that occurred during the current PoP have 

remained unchanged. The first relates to a Raytheon Shooter Localization demonstration 
using the MICA-2/Z sensor nodes. This work is being funded under the DARPA IXO 
NEST Phase II program. The Raytheon NEST program has identified a critical need for 
the development of an accurate sensor localization algorithm that is scalable to hundreds 
or thousands of nodes. We continue our investigation of several promising mathematical 
approaches to sensor localization; these will be made available to the Raytheon NEST 
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program if they are successful. Technical progress in these areas is conveyed to NEST 
regularly, more generally, the two programs have developed a strong working relation.  

The second function relates to optical flow test facility at Eglin, Air Force Base. 
Raytheon and Georgia Tech have had preliminary discussion with Dr. T.J. Klausutis of 
Eglin AFB about the possibility of using their facility to evaluate the Georgia Tech 
CADSP imager being investigated on our ISP Phase II program. Dr. Klausutis has 
offered to make available a GPS-equipped truck capable of collecting ground-truth 
optical flow imagery should a “packaged” CADSP imager be ready in late fall 2006. 

2. E. New Discoveries, Inventions or Patent Disclosures 
There were no patent disclosures filed during the current PoP. 

2. F. Honors/Awards  
There were no honors or awards received during the current PoP. 

2. G. Transitions.  
MATLAB simulation code for cooperative control of UAVs for passive geolocation was 
released to Professor Daniel Pack of the US Air Force Academy. 
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2. I. Acronyms 
ADTS   Advanced Detection Technology Sensor 
JHU/APL  Johns Hopkins University/Applied Physics Laboratory 
ASU   Arizona State University 
ATA   Automatic Target Acquisition  
AVU    Algorithms Verification Units  
CADSP   Cooperative Analog Digital Signal Processor 
CCDR   Classification Constrained Dimensionality Reduction 
CRB   Cramér–Rao Bound 
CROPS  Classification Reduction Optimal Policy Search 
DARPA  Defense Advanced Research Projects Agency 
DS   Danzig Selector 
DSA   Distinct Sensing Area 
dwMDS   Distributed, weighted, multi-dimensional scaling 
FH   Frequency Hopping 
FPA   Focal Plane Array 
FMAH   Fast Mathematical Algorithms and Hardware  
GEM   Geometric Entropy Maps 
Georgia Tech   Georgia Institute of Technology  
GPS   Global Positioning System 
IASG   Independently Activated Sensor Group 
ISP    Integrated Sensing and Processing 
IXO   Information Exploitation Office 
kNN   k-Nearest Neighbor  
LEAN   Laplacian Eigenmap Adaptive Neighbor 
LIP    Linear Integer Programming 
M2M    Multipoint-to-multipoint  
MC   Monte-Carlo 
MSS   Military Sensing Symposia 
MTT   Multi-target tracking 
NEST   Networked Embedded System Technology 
NDA   Non-disclosure Agreement 
NICTA  National Information and Communication Technology of Australia 
NLIP   Nonlinear Integer Programming 
NLOS    NetFires Non-Line of Sight  
NUC   Non-Uniformity Compensation 
ONR    Office of Naval Research 
OSE   Out-of-sample extension 
PAM    Precision Attack Munition 
PDA   Probabilistic Data Association  
PWF   Polarization Whitening Filter 
PoP    Period of Performance 
RIM   Radio Interferometric Measurements 
RIPS   Radio Interferometric Positioning 
RISCO   Raytheon International Support Company  
RSS   Received Signal Strength 
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TAA    Technical Assistance Agreement 
TDOA   Time Difference of Arrival 
TIM    Technical Interchange Meeting 
UAV    Unmanned Aerial Vehicle 
UCIR    Uncooled infrared imaging 
UKF   Unscented Kalman filter 
UM   University of Michigan 
UniMelb   Melbourne University 
VM   Virtual Measurement 
VU   Vanderbilt University 

 


