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Abstract 
We summarize the accomplishments of Information Extraction & Transport, Inc. (IET) in 
the performance of Government Contract Number FA8750-05-C-0092 to the Air Force 
Research Laboratory (AFRL).  The purpose of IET’s contract is to develop and deliver 
for Government use further capabilities in the performance evaluation laboratory (PE 
Lab) that IET developed earlier under the Air Force’s Evidence Assessment, Grouping, 
Linking, and Evaluation (EAGLE) program.   

IET has scaled up its pre-existing PE Lab to generate and score hypotheses from datasets 
that are ten times larger, delivered the scaled-up PE Lab with comprehensive 
documentation (including about 100 pages of new documentation), generated and 
delivered scaled-up datasets, participated in program-level activities to help define 
follow-on research, and developed detailed recommendations for future PE Lab 
development and PE Lab-based research. 
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1 SUMMARY 
We summarize the accomplishments of Information Extraction & Transport, Inc. (IET) in 
the performance of Government Contract Number FA8750-05-C-0092 to the Air Force 
Research Laboratory (AFRL).  The purpose of IET’s contract is to develop and deliver 
for Government use further capabilities in the performance evaluation laboratory (PE lab) 
that IET developed earlier under the Evidence Assessment, Grouping, Linking, and 
Evaluation (EAGLE) program.   

IET has scaled up its pre-existing PE Lab to generate and score hypotheses from datasets 
that are ten times larger, delivered the scaled-up PE Lab with comprehensive 
documentation (including about 100 pages of new documentation), generated and 
delivered scaled-up datasets, participated in program-level activities to help define 
follow-on research, and developed detailed recommendations for future PE Lab 
development and PE Lab-based research. 

We summarize our main conclusions as follows: 

• PE Lab can naturally and productively support a Tangram Concept of Operations 
where threat hypothesis generation is based on the blackboard model (as it has 
been during EAGLE’s technology integration experiments—TIEs). 

• A next-generation PE Lab should include the following capabilities, for which we 
have developed initial designs: 

o Dynamic social networks 

o Explicit intelligence collection models 

o Temporal representation and reasoning foundations for evidence and 
ground truth 

These conclusions are covered in greater detail in Section 6. 

2 INTRODUCTION 
The PE Lab consists of a synthetic dataset generator, a post-processor to load generated 
data into relational databases (DBs), and a hypothesis scorer.  Included in the system 
concept, but not in the PE Lab proper, is a given threat detection component under 
evaluation.  Such a component is presumed to employ link discovery (LD) technology—
and is referred to herein as an LD component.   

The PE Lab includes key components summarized in Figure 1, where the following 
graphical conventions hold: 

• Square-cornered boxes represent artifacts.   

• Round-cornered boxes represent components.  The LD component is rendered 
three-dimensionally to highlight its status outside of the PE Lab proper. 

• Solid arrows represent flow of artifacts.  
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• Dotted arrows represent the flow of control information. 

Reference
Threat Cases

Hypothesized
Threat Cases

LD (Threat
Detection)

Evidence

Dataset
Generation

&
DB Loading

Hypothesis
Scoring

Scores

Generation SettingsGeneration Settings

 
Figure 1: PE Lab Schematic 

Dataset specifications (generator parameter settings) control creation of reference 
(ground-truth) threat cases for scoring and mixed threat and non-threat evidence for 
processing by threat detection. Detection examines evidence to detect threat phenomena, 
returning hypotheses for scoring.  Scoring compares LD hypotheses to ground truth to 
yield scores.   

IET initially developed the PE Lab under an earlier contract in the EAGLE program.  
Among its major accomplishments under the present contract, IET: 

• Scaled up the EAGLE Year 3 (Y3) PE Lab that existed prior to contract start to 
support previously planned EAGLE Year 4 (Y4) levels for dataset size, 
population size, and signal-to-noise ratio (Section 3.1).  This included updates for 
both dataset generation and hypothesis scoring. 

• Delivered the scaled-up PE Lab, with comprehensive documentation (Section 
3.2). 

• Specified (Section 3.3), generated, validated, and delivered 41 Y4-compliant 
datasets. 

• Participated in Tangram seedling activities, particularly by generating datasets to 
support experimentation and by analyzing experimental results. 

• Developed detailed recommendations for: 

o PE Lab use in a Tangram concept of operations (Section 6.1). 

o Design of a next-generation PE Lab (Section 6.2) with: 

 Dynamic social networks. 

 Explicit intelligence collection models. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
Subsections provide additional information on the following topics: 

• PE Lab documentation (Section 3.2) 

• Specification of delivered datasets (Section 3.3) 

3.1 Scaling up to Meet Y4 Requirements 
IET optimized execution of the PE Lab’s dataset generator in order to meet requirements 
for larger datasets.  The generator is now 88% faster on datasets of “Y3-compliant” size 
(the largest size used in the most recent “Year 3” evaluation), generating the comma-
separated value (CSV) flat files for a dataset with 100,000 individuals and 1,000,000 
observable transactions in about 12 minutes on a new 32-bit Windows platform with 2 
gigabytes running Franz Allegro Common Lisp 7.0.  A dataset with 200,000 individuals 
and 2,000,000 observable transactions now takes about 30 minutes. 

To generate datasets of Y4-compliant size, we procured a 64-bit Windows platform with 
12 gigabytes of memory running 64-bit Franz Allegro Common Lisp.  In this 
configuration, a dataset with 1,000,000 individuals and 10,000,000 observable 
transactions now takes about 4 hours to generate. 

3.2 PE Lab Documentation 
IET has developed and delivered the following comprehensive documentation for the Y4 
PE Lab: 

• Software Users Manual 
• Software Product Specification 
• Dataset Generator Guide 
• Database Loader Guide 
• Scoring Concepts Guide 
• Scoring Software Guide 
• Database Schema Specification 

Much of this documentation—covering about 100 pages—is new with the Y4 PE Lab.  
The rest has been updated to reflect Y4 PE Lab capabilities.   

Prior to the present contract, versions of the dataset generator and scoring documents 
were the main documentation released to participants.  The new Dataset Generator Guide 
reflects Y4 capabilities (e.g., cross-parameter constraints) and deletes material that is no 
longer relevant (e.g., the tell model).  We separated the old scoring document into the 
new Scoring Concepts and Scoring Software Guides.  The Scoring Concepts Guide 
completely reorganizes and reformulates hypothesis scoring concepts to introduce them 
progressively and make them clear.  The Scoring Software Guide has been updated to use 
terminology and notation consistent with the Scoring Concepts Guide and to reflect new 
scoring capabilities (e.g., sparse matrix representation).   
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The new Database Schema Specification integrates conceptual material that earlier was 
available only in a slide presentation. 

The Database Loader Guide is new.   

The new Software Users Manual provides a CONOPS-level view of datasets’ primary 
and secondary evidence and explains the contributions of the dataset generator and the 
database loader in establishing the time-dependent primary evidence database context.  
The Software Users Manual also includes a guide for the first-time user of the MySQL 
databases that we distribute with each dataset.  The Software Users Manual also serves as 
a conceptual binder over all the other PE Lab documents (so that little material is 
repeated between documents).  Virtually every aspect of the PE Lab software is now 
covered by the Software Users Manual and the other documents it binds. 

3.3 Specification of Delivered Datasets 
IET has used the following approach to develop a dataset mix (set of specifications) for 
the challenge problem datasets delivered under the contract:   

1. Use “Y4-compliant”1 settings established earlier in the program for noise/clutter, 
dataset size, and population size parameters. 

2. Identify cross-parameter constraints concerning the Y4-compliant settings. 

3. Specify, for each parameter, a probability distribution over its settings. 

4. Determine the number N of datasets feasible to generate. 

5. Generate a feasible dataset mix as follows: 

a. Generate a random dataset specification according to the probability 
distributions. 

b. Discard the specification if it does not satisfy the constraints, otherwise 
collect it. 

c. Repeat until N satisfactory specifications have been collected. 

6. Diversify specifications in the developed feasible mix by swapping datasets’ 
settings for a given parameter when constraints permit and this operation reduces 
the numbers of parameter-setting combinations shared across datasets. 

                                                 

 
1 Y4-compliant settings were established earlier in the EAGLE program to reflect Y4 performance goals. 
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Figure 2 depicts the Y4-compliant parameter settings, giving other program years’ 
parameter settings for context. 

Population Size Y1 Y2.5 Y3 Y4
Number of individuals ~1,000 ~10,000 ~100,000 ~1000000
Mean threat group membership 20 80 80 80
Dev. threat group membership 5 20 20 20
Number of capabilities 50 100 150 200
Number of resources 50 100 150 200

Dataset Size Y1 Y2.5 Y3 Y4
Number of observable transactions ~20000 ~100,000 ~1,000,000 ~10000000

Noise, Clutter Y1 Y2.5 Y3 Y4
Threat-to-clutter event ratio 0.08 0.008 0.0008 0.00008
Structured event SNR 0.08 0.008 0.0008 0.00008
Transaction event SNR 0.08 0.008 0.0008 0.00008
Individual SNR 0.4 0.08 0.008 0.0008
Group SNR 0.8 0.16 0.016 0.0016  

Figure 2: Y4-compliant parameter settings 

Figure 3 depicts the identified cross-parameter constraints. 
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Y3 Y4
Y2.5 Y4
Y1 Y4

Y2.5 Y3
Y1 Y3
Y1 Y2.5

Y4 Y3
Y4 Y2.5
Y4 Y1
Y3 Y2.5
Y3 Y1

Y2.5 Y1
Y4 Y4 Fat
Y3 Y3 Fat

Y2.5 Y2.5 Fat
Y4 Y3 Fat Easy
Y4 Y2.5 Fat Easy
Y4 Y1 Fat Easy
Y3 Y2.5 Fat Easy
Y3 Y1 Fat Easy

Y2.5 Y1 Fat Easy
Y4 Y3 Fat Fair
Y4 Y2.5 Fat Fair
Y4 Y1 Fat Fair
Y3 Y2.5 Fat Fair
Y3 Y1 Fat Fair

Y2.5 Y1 Fat Fair
Y2.5 Fair

Covert Fair
Y2.5 Hard

Covert Hard
Y3 Y4 Easy
Y3 Y4 Fair
Y3 Y4 Hard

Y2.5 Y4 Easy
Y2.5 Y4 Fair
Y2.5 Y4 Hard
Y1 Y4 Easy
Y1 Y4 Fair
Y1 Y4 Hard
Y1 Y3 Easy
Y1 Y3 Fair
Y1 Y3 Hard
Y1 Y4 None Too many threat phenomena to score 

People doing too few things during a simulation

Too many individual equivalence classes to score 

Too many time ticks for incremental threat 
detection to be viable (currently)

Do not adhere to consistent observability modeling

Too few threat events (maybe none)

 
Figure 3: Cross-parameter constraints 

Figure 4 illustrates weights used in the probability distribution for each parameter. 
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None Y1 Y1 Y1 Thin Perfect 0.875 None None Easy Easy Easy
Easy Y2.5 Y2.5 Y2.5 Fat Easy 0.75 None None Easy Fair Fair
Fair Y3 Y2.5 Y3 Fair 0.5 None None Easy Hard Hard
Hard Y4 Y3 Y4 Fair None None Easy

Y3 Y4 Hard Fair None Fair
Y3 Y4 Hard Fair None Fair
Y3 Y2.5 Fair None Hard
Y4 Covert Hard None
Y4 Hard None
Y4 None
Y4 None
Y4 None
Y4 None
Y4 None
Y4 None
Y4 None
Y4 Easy
Y4 Easy
Y4 Easy
Y4 Easy
Y4 Fair
Y4 Fair
Y4 Hard  

Figure 4: Settings weights 

In Figure 4, the number of settings tokens appearing under a dataset dimension indicates 
that setting’s weight in a probability distribution used for setting selection. 

Figure 5 represents 41 datasets resulting from the overall specification procedure 
(including the final diversification step). 
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EAGLE_Y4_3969 None Y1 Y2.5 Y2.5 Thin Fair Fair Easy Easy Easy Easy
EAGLE_Y4_3971 None Y4 Y4 Y2.5 Thin Hard None None Easy Fair Hard
EAGLE_Y4_3972 Fair Y2.5 Y3 Y1 Thin Hard None None Easy Hard Fair
EAGLE_Y4_3973 Hard Y3 Y4 Y4 Thin Fair None None Easy Hard Fair
EAGLE_Y4_3974 Fair Y2.5 Y4 Y2.5 Thin Covert 0.875 None None Easy Easy Easy
EAGLE_Y4_3975 Hard Y3 Y4 Y4 Fat Hard Hard None Hard Fair Hard
EAGLE_Y4_3976 Fair Y3 Y4 Y4 Thin Hard Fair None Easy Easy Hard
EAGLE_Y4_3977 Easy Y3 Y4 Y2.5 Thin Hard None Fair Easy Hard Easy
EAGLE_Y4_3979 Hard Y2.5 Y4 Y2.5 Thin Easy Fair None Easy Hard Hard
EAGLE_Y4_3980 Hard Y2.5 Y3 Y2.5 Thin Fair None Easy Easy Fair Hard
EAGLE_Y4_3981 Hard Y3 Y4 Y2.5 Fat Fair None None Easy Easy Hard
EAGLE_Y4_3982 Fair Y2.5 Y4 Y4 Fat Perfect None None Easy Fair Fair
EAGLE_Y4_3983 None Y2.5 Y4 Y2.5 Thin Fair None None Hard Hard Fair
EAGLE_Y4_3984 Hard Y2.5 Y3 Y3 Fat Fair Hard None Easy Hard Easy
EAGLE_Y4_3985 Easy Y3 Y4 Y4 Fat Hard Fair None Fair Easy Fair
EAGLE_Y4_3986 Easy Y2.5 Y4 Y2.5 Fat Y2.5 0.875 None None Fair Hard Hard
EAGLE_Y4_3988 Easy Y3 Y4 Y4 Thin Fair Hard None Hard Easy Easy
EAGLE_Y4_3989 None Y3 Y4 Y4 Fat Covert 0.75 None None Easy Hard Hard
EAGLE_Y4_3993 None Y4 Y4 Y4 Thin Easy None None Fair Hard Easy
EAGLE_Y4_3994 Fair Y1 Y3 Y2.5 Thin Fair None Easy Easy Hard Easy
EAGLE_Y4_3995 None Y2.5 Y4 Y4 Fat Hard None None Fair Easy Easy
EAGLE_Y4_3996 Easy Y3 Y4 Y3 Thin Covert 0.5 None None Fair Fair Easy
EAGLE_Y4_3997 None Y2.5 Y4 Y4 Fat Hard None None Fair Hard Hard
EAGLE_Y4_3999 Hard Y1 Y2.5 Y2.5 Fat Hard Hard None Easy Fair Hard
EAGLE_Y4_4000 None Y2.5 Y4 Y3 Thin Fair None None Easy Easy Easy
EAGLE_Y4_4001 Easy Y3 Y4 Y4 Thin Fair None None Easy Fair Hard
EAGLE_Y4_4002 Hard Y4 Y4 Y4 Thin Covert 0.875 None None Hard Easy Easy
EAGLE_Y4_4003 Hard Y2.5 Y4 Y4 Fat Fair None None Hard Fair Easy
EAGLE_Y4_4004 Hard Y2.5 Y4 Y4 Thin Y2.5 0.75 None None Easy Fair Hard
EAGLE_Y4_4005 Hard Y3 Y4 Y4 Thin Fair Hard None Easy Easy Fair
EAGLE_Y4_4006 None Y4 Y4 Y1 Thin Hard Fair Fair Easy Hard Hard
EAGLE_Y4_4007 Fair Y3 Y3 Y3 Thin Fair Hard None Easy Easy Easy
EAGLE_Y4_4008 Fair Y3 Y4 Y2.5 Thin Hard Hard Hard Easy Fair Easy
EAGLE_Y4_4009 Hard Y4 Y4 Y3 Thin Hard None None Easy Fair Fair
EAGLE_Y4_4010 Hard Y3 Y4 Y4 Fat Fair Fair None Easy Hard Hard
EAGLE_Y4_4012 Easy Y4 Y4 Y1 Thin Hard Hard Fair Fair Hard Easy
EAGLE_Y4_4013 Easy Y3 Y4 Y4 Thin Perfect None None Easy Fair Hard
EAGLE_Y4_4015 Fair Y2.5 Y4 Y4 Fat Fair None None Hard Easy Easy
EAGLE_Y4_4016 None Y4 Y4 Y4 Thin Hard None None Fair Fair Fair
EAGLE_Y4_4017 Fair Y2.5 Y3 Y2.5 Fat Easy None None Hard Hard Hard
EAGLE_Y4_4018 Easy Y3 Y4 Y3 Fat Hard None None Fair Fair Hard  

Figure 5: Candidate dataset mix 

4 RESULTS AND DISCUSSION 
The contract’s main results are the scaled-up PE Lab software, comprehensive 
documentation, and scaled-up datasets that we have delivered (as summarized in Section 
3.3).  We also have developed detailed recommendations (presented in Section 6) for use 
of the PE Lab in a Tangram Concept of Operations and for design of a next-generation 
PE Lab to support future unclassified threat detection research. 
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5 CONCLUSIONS 
We summarize our main conclusions as follows: 

• PE Lab can naturally and productively support a Tangram Concept of Operations 
where threat hypothesis generation is based on the blackboard model (as it has 
been during EAGLE’s technology integration experiments—TIEs). 

• A next-generation PE Lab should include the following capabilities, for which we 
have developed initial designs: 

o Dynamic social networks 

o Explicit intelligence collection models 

o Temporal representation and reasoning foundations for evidence and 
ground truth 

These conclusions are covered in greater detail in Section 6. 

6 RECOMMENDATIONS 
IET has developed recommendations in the following two main categories: 

• Use of the PE Lab in a Tangram Concept of Operations (Section 6.1) 

• Design of a next-generation PE Lab to support future unclassified threat detection 
research (Section 6.2) 

6.1 Use of the PE Lab in a Tangram Concept of Operations (CONOPS) 
Figure 6 depicts IET’s Tangram vision of PE Lab-based dataset generation and scoring.   

Generation parameter settings control creation of ground truth regarding the artificial 
world’s resident entities, including threat individuals and groups.  Evidence generation 
imposes partial observability and corruption (according to parameter settings) to create 
evidence from ground truth.  Detection uses published and/or learned patterns and 
evidence to hypothesize ground truth phenomena not explicit in evidence.  Hypothesis 
scoring compares hypothesized phenomena to ground truth cases to yield hypothesis 
quality metrics.  In Tangram, CONOPS objectives will determine the kind(s) of 
hypotheses sought, the weights and costs to be used in scoring attributes of these 
hypotheses, and the overall objective function to apply to the various performance 
metrics, including those for hypothesis quality and for workflow execution (Figure 7).   

We expect different operational circumstances to lead to different requirements regarding 
hypothesis quality (e.g., completeness, accuracy, or certainty) and detection processing 
(e.g., timeliness).  Tangram challenge problem datasets should include plausible 
CONOPS objectives.   

Figure 8 fleshes out metrics to be associated with PE Lab-generated datasets and their 
processing by Tangram threat detection components. 
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Phenomena Detection
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Hypothesis Quality
Metrics

Ground Truth
Generation Ground Truth

Ground Truth
Phenomena
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Figure 6: PE Lab-based dataset generation and scoring, in the Tangram context 
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Metrics
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CONOPS
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Metrics

Figure 7: CONOPS-based scoring 
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Figure 8: Tangram-relevant metrics, in the PE Lab context 

Ground truth metrics, while not tenable in an operational context (where no ground truth 
is available), nonetheless may afford diagnostic value and are easily computed (via 
evidence characterization) because the PE Lab’s evidence and ground truth follow the 
same schema.   

In the workflow developed in response to a given top-level Tangram processing 
requirement, the “detection” process denoted in Figure 6 and Figure 8 may be unpacked 
into individual lower-level processing requirements that may be handled by different 
components.  The key challenge for a Tangram system is to develop an effective 
workflow by selecting appropriate processing components, input/output relationships, 
and component parameter settings at appropriate times.  We expect this selection to be 
based (at least in part) on historical performance information collected over many trials 
that pit different workflows against different, diverse datasets.   

Figure 9 exhibits different kinds of historical information we expect to be recorded for 
these trials. 
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Figure 9: Historical performance evaluation information 

Two kinds of elements to be stored in the performance evaluation DB make their first 
appearance in Figure 9:2   

• Version information must be recorded for all PE Lab and Tangram system 
components, for each trial. 

• “Other” detection output metrics result from processes (not shown in Figure 8) to 
characterize detection outputs other than hypotheses.  These might cover numbers 
of matches to given patterns, as was explored during Tangram seedling 
experiments.   

IET tenders that workflow processes producing evaluable hypothesis will have greater 
overall intelligence relevance and psychological validity to analysts than finer 
decompositions addressing pattern matching mechanics (where workflow processing 
reduces essentially to relational database query processing).  The “blackboard” 

                                                 

 
2 Like ground truth, generation parameters, while not tenable in operational contexts, may afford valuable 
diagnostic information in the development context. 
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architectural framework, schematized in Figure 10 to present the BAH SEA team’s 
Tangram perspective, conceptualizes dynamic, hypothesis-oriented workflow.   

ThreatThreat NonNon--threatthreatUnknownUnknown
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IndividualsIndividuals

GroupsGroups

EventsEvents Evidence & Hypotheses

Evidence & Hypotheses

BlackboardBlackboard

Alias KS

KnowledgeKnowledge
sourcessources

Individual KS

Group KS

Event KS

OtherOther Other KS

 
Figure 10: Blackboard perspective on Tangram workflow 

The blackboard is a working repository of hypotheses.3  Knowledge sources (KSs) 
process evidence and blackboard-resident hypotheses to develop further hypotheses.4  
Control knowledge (not shown in Figure 10) determines: 

• Which hypotheses to retain and which to prune. 

                                                 

 
3 Evidence is included here to render it accessible (schematically) to knowledge sources. 
4 EAGLE technology integration experiment (TIE) confederations participating in annual performance 
evaluations self-organized along lines of the top four KSs depicted in Figure 10—corresponding to the 
EAGLE PE Lab’s scored hypothesis types.  Different TIEs realized different degrees of KS cooperation in 
hypothesis production.  In X-TIE, during the 2004 evaluation, USC/ISI delivered threat group hypotheses 
to Metron, who were then able to develop prospectively tendered threat hypotheses (AKA “alerts”) much 
more effectively. 
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• When to invoke which KS, with what hypothesis, evidence, and other KS 
parameter inputs, to develop a workflow that is effective in addressing 
operational intelligence requirements.   

• When to deliver extant blackboard-resident hypotheses for user consumption. 

Fundamental to each of these decisions is the predictive assessment of hypothesis quality 
that PE Lab-based experimentation can inform.5   

Figure 11 distinguishes among run-time and compile-time inputs available for each KS 
invocation, dynamic workflow development decision. 

Figure 11 shows how the historical information covered in Figure 9 is compiled (using a 
generalization algorithm) to yield an induced performance model that complements 
another model that may be engineered directly from knowledge about the KSs’ 
algorithms.  The induced model may be used to check the engineered model’s 
assumptions, or the induced model may actually replace the engineered one.  The KS 
selection process applies its consensus model to the run-time inputs to select a KS for 
execution. 

Figure 12 makes the Tangram blackboard’s dynamic workflow explicit.  The blackboard 
progresses through successive states as successive KS selections are made and KSs 
invoked.   

This CONOPS can easily address the following variations on the dynamic workflow style 
we have presented: 

• Static (compile-time) workflows 

• End-to-end or piecemeal workflows 

• Macro workflows that compose several individual workflow steps (as in a series 
of KS executions) 

 

                                                 

 
5 Tangram systems also can employ the PE Lab to validate assumptions about the performance of a KS 
downstream, workflow-wise, from that of an upstream one.  Suppose, e.g., that a group KS depends on an 
alias KS to deliver sufficiently de-aliased evidence about individuals.  If the alias KS is not yet performing 
at a goal level meeting the group KS’s input specs, we can still ascertain validity of performance claims for 
the latter by stubbing the former with a direct feed of evidence having per-spec de-aliasing.  This can help 
to pinpoint performance gaps among functional components early during development. 
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Figure 11: Dynamic workflow selection in the blackboard perspective (compile-time) 
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Figure 12: Dynamic workflow selection in the blackboard perspective (run-time) 
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6.2 Design of a Next-generation PE Lab 
IET presents its recommendations for the design of a next-generation PE Lab to support 
future threat detection research and development.  Subsections cover the following major 
topics: 

• Next-generation PE Lab requirements (Section 6.2.1) 

• Next-generation PE Lab design elements (Section 6.2.2) 

6.2.1 Next-generation PE Lab Requirements 
The next-generation PE Lab design uses dynamic social networks and explicit 
intelligence collection models to address requirements6 summarized below: 

• Provide a new synthetic data generator to produce unclassified datasets with the 
known characteristics of classified data sources. 

• Reflect the social networks that existing intelligence data sources portray. 

• Address groups that can add or lose members over time. 

• Address both the systematic characteristics of the intelligence collection process 
and the consequences of spotty collection and reporting of intelligence. 

• Address threat detection system feedback about existing information gaps in 
data collection 

• Explore the systematic characteristics of the intelligence collection process and 
our terrorist opponents to identify methods that will assuredly fail and methods 
that will produce the highest possible detection outcomes. 

Synthetic datasets are essential for evaluation of threat detection technologies because 
they: 

• Provide ground truth against which threat detectors’ hypotheses can be scored. 

• Can be configured via key generation parameters to explore a wide range of 
detection challenges concerning factors like the following. 

o Observability in evidence of threat actors and their interactions 
o Masking in evidence of threat data by non-threat data 
o Similarity between threat and non-threat actors and interaction patterns 
o Temporal density of events 

                                                 

 
6 These requirements are taken from the Tangram Proposer’s Information Packet (PIP). 
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o Overall volume and quality of evidence 

• Enable focus on key detection challenges by abstracting away less relevant detail. 

• Streamline access to information by directly generating structured data and 
employing a uniform ontology and associated database schema(s). 

• Incur few issues of privacy or security classification associated with 
corresponding real-world datasets—thus are appropriate for experimentation by a 
wide research community. 

The datasets generated using IET’s EAGLE PE Lab have been used to: 

• Assess detection technologies’ progress against annual program performance 
goals. 

• Identify characteristics of the detection problem that most influence a 
technology’s performance. 

• Predict which among available technologies will perform best on a given 
detection task. 

IET’s next-generation PE Lab design confers all the benefits listed above and meets 
requirements through use of dynamic social networks and explicit intelligence collection 
models.  Specifically, the next-generation PE Lab design includes innovative capabilities 
to: 

• Focus on dynamic social networks to maximize generality and ensure the harvest 
of low-hanging fruit. 

• Develop social networks that reflect plausible states and interactions by: 

o Modeling growth and interaction patterns for threat and non-threat groups. 

o Developing networks from the ground up (starting from an empty world). 

• Develop intelligence (for presentation as evidence to detection technologies) that 
is similar in character to real-world intelligence by: 

o Modeling intelligence collection processes explicitly. 

o Collecting intelligence throughout dynamic social network evolution. 

• Support quantitative distinctions between threat and non-threat groups and their 
behaviors using parameters that may be varied continuously to determine 
detection technologies’ relevant performance boundaries. 

• Support (dynamic social network) objects and attributes that change over time by 
furnishing appropriate: 

o Evidence and ground truth temporal database semantics. 

o Temporal hypothesis scoring methods. 
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A synthetic data generator that can be used effectively across a wide variety of threat 
detection application contexts—with the only customization required per installation 
being to select among the available settings for some perspicuous, user-level 
parameters—must: 

• Address detection objectives that are ubiquitous across the applications.  

• Employ an ontology of entity types and relationships that is abstract enough to be 
universal across the applications while still affording an adequate basis of 
discrimination among threat and non-threat phenomena.7  

In our performance evaluations for the EAGLE program, IET has used the PE Lab to 
pose challenges and the EAGLE Technology Integration Experiments (TIEs) have 
developed technology to address four different threat detection objectives—events, 
groups, individuals, and individual aliases.  The EAGLE technologies pertaining to 
detection of threat actors (groups and individuals) have resulted in the greatest interest 
among and transition to analyst users in the Intelligence Community.  Given this apparent 
leverage, IET has focused the next-generation PE Lab’s design on the actor detection 
problem.   

In the next-generation PE Lab design, social networks are developed starting with an 
empty set, using different timescales and different start times for expressing and 
generating the behaviors of individuals and groups, as illustrated in Figure 13. 

This pervasively dynamic style ensures that social network evolution during the phase of 
evidence generation will be at least as realistic as that which generated the network in the 
first place.  As such, the design meets the requirement to address groups that can add or 
lose members [or subgroups] over time.   
By specifying values (that might reflect either selected mappings from real-world 
datasets into the social network ontology or direct analyst intuitions) for the next-
generation PE Lab’s dataset generation parameters, the design meets the requirement that 
a user can produce unclassified datasets that reflect as closely as possible the known 
characteristics of classified data sources.   
Regarding the requirement to reflect the social networks that existing intelligence data 
sources portray, IET believes that the “holes” apparent in social networks from existing 
intelligence sources result from gaps inherent in the systematic intelligence collection 
process.   

 
                                                 

 
7 Our initial ontology is described in Section 6.2.2.3.1. 
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Figure 13: Time-phased introduction of simulation entities 

The dataset generator in IET’s EAGLE PE Lab develops evidence by uniformly 
applying—for each type of ground truth phenomenon that may be reported in evidence—
a binomial distribution with a specified likelihood parameter.  The next-generation PE 
Lab design meets the requirement to address both the systematic characteristics of the 
intelligence collection process and the consequences of spotty collection and reporting 
of intelligence by applying explicit intelligence collection models to ground truth 
phenomena to generate evidence.  The next-generation PE Lab design models collection 
assets that are limited with respect to observed entities and (usually because of the way 
they are tasked) with respect to collection time intervals, yielding evidence that (while 
focused) can be sporadic and patchy.  Modeled collection assets might collect the 
following. 

• Communication transactions involving a specified individual or population sector 
• Membership lists of cells or groups 
• Transaction databases of communication providers 

Note that the opportunities for collection focus don’t necessarily mean that evidence will 
have a high signal-to-noise ratio (be rich in threat—vice non-threat—content)—it 
depends on what the asset observes.  A collection asset has opportunities only randomly, 
according to probabilities associated with the asset and with evidence types.  It also can 
exhibit corruption (resulting from collection error) and partial observability (resulting 
from collection incompleteness). 

Figure 14 depicts a next-generation PE Lab architecture with taskable intelligence 
collection assets. 
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Figure 14: Evidence generation using tasked collection assets 

In Figure 14, square-cornered boxes represent products/artifacts.  Round-cornered boxes 
represent processes.  The Detector or Link Discovery (LD) process (realized separately 
by each detection technology developer) is rendered 3-dimensionally to highlight its 
status outside of the PE Lab proper.  Solid arrows represent flow of products/artifacts.  
Dotted arrows represent the flow of control information.  Collection asset control is 
mixed.  The Detector tasks an asset’s attention, but the asset’s success in representing 
extant phenomena accurately or completely will also depend on parameter settings that 
have been supplied for the dataset. 
To maintain the unclassified status of resulting synthetic datasets, the design bases 
intelligence collection models on unclassified and open-source descriptions. 

A next-generation PE Lab user (e.g., an LD component) will be able to replay (using 
original dataset specifications and random seed) the generation of a given dataset and to 
invoke, from a simulation time point of interest going forward, an augmented collection 
model (that the user may modify at any succeeding time point) pertaining to specifically 
reserved user-taskable intelligence collection assets.  We thus address the requirement to 
allow a detection system to provide feedback about existing information gaps in data 
collection.  In simulation, all behaviors that pertain to collection will be independent of 
behaviors that do not, so that collection will have no effect on the ground truth.8  (E.g., 
                                                 

 
8 The converse may not hold (i.e., future collection targets may depend on past collection efforts.) 
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threat individuals will not be tipped off to collection methods so that they modify their 
behaviors; suspected planned attacks will not be prevented; suspected or known threat 
individuals will not be incarcerated and removed from the sphere of social interaction.)  
This approach is compatible with either incremental or batch processing of challenge 
datasets and enables performance comparisons across alternative technologies and/or 
collection policies for a given dataset.9,10,11 

Some of the critical technology barriers faced by the next-generation PE Lab are familiar 
from the EAGLE context. 

• Scale: EAGLE ultimately required datasets with 1,000,000 individuals 
conducting 10,000,000 observable transactions.  To meet this requirement, IET 
has: 

o Streamlined PE Lab software to run much faster with much less memory. 
o Acquired faster hardware with more memory. 

• Variety: The need for flexibility in experimentation drives synthetic dataset 
generation.  It’s not adequate to generate just one or a few datasets over an 
extended time period (say, months).  Custom-generated datasets with a wide 
range of characteristics help developers to isolate and address weaknesses in their 
threat detection technologies.  The tighter this loop is, the more quickly progress 
can be achieved.  “Blind” datasets (for which answer keys and ground truth are 
withheld) used in one evaluation can’t be used again for the next (after results 
have been published).12 

                                                 

 
9 It would not be technically difficult to provide an API by which threat detection systems could affect the 
course of an ongoing simulation.  Such a style (if preferable) might support—in addition to active 
collection—the actions of a larger “enforcement” (vice only detection) system empowered to arrest and 
incarcerate suspected threat individuals.  This style would be possible only with incremental threat 
detection and would not as readily support comparisons (since the ground truth, though starting from 
identical initial conditions, would develop differently across the different simulation runs). 
10 Intelligence collection must be consistently managed across any integration of components in a threat 
detection system or workflow.  E.g., separate batch processes for threat event and group detection that task 
collection assets independently cannot be consistently combined in a streams-and-pipes workflow (such as 
was used by X-TIE during the 2004 EAGLE evaluation).  Some consistent coordination of active collection 
over the workflow is called for. 
11 During a “blind” evaluation in which LD should not have access to ground truth, LD should be allowed 
to employ no more than one discretionary collection policy over any challenge dataset.  (Different 
collection policies are likely to collect different information, which we do not want LD to accrete.)  This 
may be best controlled by administering such evaluations via an independent test harness. 
12 “Open” sample datasets can be reused indefinitely. 
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• Realism: The critical issue is how to meet the above requirements and still 
deliver datasets with high experimental value.  To mitigate complexity, we: 

o Use abstractions that strip away inessential detail from the detection 
problem. 

o Use in simulation only extremely lightweight agents (individual actors) 
without: 

 Explicit situational awareness  
 Intentions, plans, or schedules/calendars 
 Inter-agent activity coordination 

o Conduct multi-actor activities via scripts that are richly parameterized and 
randomized over the behavior patterns of interest. 

In EAGLE, we established the effectiveness of the above overall strategy and also 
learned some lessons to carry forward into the next generation PE Lab’s design: 

• Threat events (i.e., attacks) are difficult to develop good abstractions for (in large 
part because the specifics of real-world attacks—e.g., target, method, and date—
tend to have few good indicators in real-world evidence).  The next-generation PE 
Lab design includes a limited notion of attack intended primarily to reveal the 
threat status of implicated actors. 

• Artificial social networks used in simulation must exhibit (e.g., power-law, scale-
free, small-worlds) properties like those in the real world.  We adopt the 
evolutionary and dynamic approach. 

Given these observations, we see the following technical challenges as critical to the 
next-generation PE Lab’s success: 

• Manage different timescales for introduction of simulation entities to 
streamline social network evolution while maintaining quality of evolved 
networks.   
We believe simulation entities of different kinds should be introduced at different 
rates (as illustrated in Figure 13) so that social networks will evolve naturally.  
We might streamline evolution by limiting the amount of fine-timescale (e.g., 
person-to-person interaction) behavior that takes place in a dataset’s “pre-history” 
that precedes its portion that is presented as “contemporary” for threat detection.  
We don’t want fine-timescale behavior completely shut down in the pre-history, 
because we rely on personal interactions to connect people socially and as 
opportunities for intelligence collection.  Partial shut-down might require 
corresponding adjustments (to be rolled back upon commencement of the 
contemporary period) to the rates of connection and collection per interaction to 
maintain desired levels.   

• Manage parameters of social network evolution to realize desired evolved 
social network properties (emergently). 
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Social network properties in the EAGLE PE Lab were largely realized directly via 
specified input parameter settings pertaining to (e.g.) the following: 

o Number of individual actors 
o Ratio of threat to non-threat individuals 
o Sizes of threat and non-threat groups 
o Ratio between numbers of threat and non-threat groups 
o Numbers of groups that individuals belong to 

In the next-generation PE Lab’s evolutionary style, organizations13 will acquire 
members via preferential attachment, and organization sizes will follow a power-
law distribution.  We can control the threat:non-threat ratio for organizations and 
for individuals by creating threat and non-threat organizations at different rates 
and by introducing individuals into them different rates.  The number of 
organizations an individual belongs to should be consistent with the number 
organizations existing at a given stage of the network’s evolution,14 so should 
tend (on average) to grow as the network does.  As noted above, we want 
individuals sometimes to join organizations following natural interactions with 
their members.  We can limit the number of such joining events or wait for 
individuals to drop membership in some organizations before picking up others 
that might put them over their (individually) assigned limits.   

• Manage parameters of (intelligence and open-source) evidence collection to 
realize desired evolved evidence properties (emergently). 
As noted above, the EAGLE PE Lab made individual ground truth phenomena 
observable according to probabilities that were uniform by phenomenon type.  
Evidence generation took place once, dataset-wide.  In the next-generation PE 
Lab, where we model natural open-source and intelligence collection processes, 
simulated sources will (serially over time) issue reports about phenomena extant 
near their reporting times, and overall (i.e., dataset-wide) observability at a given 
point in simulation time will depend on the following: 

                                                 

 
13 EAGLE PE Lab “groups” lacked explicit subgroup structure.  Next-generation PE Lab “organizations” 
will be composed of groups with (recursively) nested subgroups. 
14 It would be unnatural (e.g.) for every individual to belong to every group early in the simulation’s pre-
history.  It would similarly be unnatural for an individual introduced in the simulation’s contemporary 
period to join several organizations simultaneously. 
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o The number of collection assets active at any given (earlier or present) 
simulation time15 

o The frequency with which each source reports 

o The coverage of each source in each report and the method by which it 
moves from one reporting topic to the next16 

o The rate at which ground truth phenomena (e.g., the members of each 
threat group, the set of all threat groups) change17 

o Any intrinsic observability properties associated with phenomena (e.g, 
actors’ propensities to employ covert communication methods) 

Given the above rich set of influences, we might achieve specified evidence 
observability (for a given type of phenomenon) in one of the following ways: 

o Develop a closed-form analytical model that allows us to back into 
parameter settings so that sources can run as autonomous processes from 
simulation’s outset to finish.  This seems unnecessarily challenging and 
perhaps (given complex non-linear system dynamics) infeasible. 

o Monitor evidence observability levels during simulation and adjust 
parameter settings to increase or decrease collection to meet observability 
targets.  This entails the same requirement for analytical modeling—it 
remains difficult to predict the future effects of present asset introduction. 

o Develop initial, candidate evidence using somewhat liberal parameter 
settings.  Prune back excess evidence by cutting sources, reports, or per-
report coverage (in ways consistent with the explicit collection models) 
proportional to their density at a given simulation time.  If we could figure 
out how not to overshoot desired evidence levels by too much (again, 
potentially difficult), this method might be the most practical. 

                                                 

 
15 It seems natural to introduce additional collection assets as social networks (and their underlying 
populations) grow. 
16 This will be different for different kinds of sources.  A non-threat (e.g., Government group) may publish 
only its own membership list.  A COMINT wiretap specialist may move from one individual of interest to 
another following a chain of contacts. 
17 Descriptions collected in simulation pre-history might be obsolete during the era contemporary for LD’s 
processing.  In computing a dataset’s observability at a given point in simulation time, we will consider 
only phenomena that have remained stable since their latest evidence was issued.   
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o Introduce sources in separate passes over the same (either stored or 
regenerated) simulation ground truth, collecting evidence incrementally 
until the overall dataset observability specified has been achieved.  
Multiple simulation runs might be prohibitively expensive if many were 
needed. 

o Develop, for each observed phenomenon type, a regression model 
regarding overall dataset observability as a function of intelligence 
collection and other relevant dataset generation parameters.  This method 
might practically be used (as a surrogate for analysis) in combination with 
one of the two preceding methods. 

We feel that explicitly modeled intelligence collection assets will yield benefits to 
offset any potential difficulties with controlling the observability of threat 
phenomena in evidence—because it will afford the experimental basis to address 
the requirement to explore the systematic characteristics of the intelligence 
collection process and our terrorist opponents to identify methods that will 
assuredly fail and methods that will produce the highest possible detection 
outcomes. 

6.2.2 Next-generation PE Lab Design Elements 
Subsections cover the following key design foci: 

• Dynamic social networks (Section 6.2.2.1) 

• Explicitly modeled intelligence collection (Section 6.2.2.2) 

• Supporting foundations (Section 6.2.2.3) 

6.2.2.1 Dynamic Social Networks 
Real-world social networks tend to exhibit scale-free, power-law phenomena, as depicted 
in Figure 15. 

Figure 15 pertains to an artificial network of 800 persons generated18 using the procedure 
listed below. 

For the number of individuals desired: 

1. Introduce a new individual I. 

                                                 

 
18 IET’s experiments to generate this data were inspired by the body results of summarized in Barabási, 
Albert-László.  Linked: How Everything Is Connected to Everything Else and What It Means for Business, 
Science, and Everyday Life, Plume, 2003. 
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2. Preferential attachment: Connect I (as an acquaintance) to a different, existing 
individual D, whose choice is weighted by current degree. 

3. For the number of triangulations desired per new individual:  

a. Select an existing individual A at random. 

b. Triangulation: Connect (as acquaintances of each other) two existing 
acquaintances B and C (randomly chosen) of A. 
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Figure 15: Properties of a scale-free network—degree distribution (left) and clustering coefficient19 

by degree (right) 

Preferential attachment and triangulation lead to the power-law distributions in Figure 15.  
People who know more people tend to get introduced to more people in more remote 
groups.20  Through experimentation, IET has learned that both preferential attachment 
and triangulation are needed for the best fits to power-law equations.  Of the two, 
triangulation appears to have the greatest influence. 

We want to exploit these phenomena in the next-generation PE Lab’s dynamic social 
networks, but we must move beyond the above simple model to address structured 

                                                 

 
19 The clustering coefficient of a node N is defined as a(N) / p(N), where a(N) is the number of 
acquaintances of N who are acquainted with each other and p(N) is the maximum possible value for a(N). 
20 Also (not shown in Figure 15, but true of its network), shortest path lengths between any two people tend 
to be small.   
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organizations.  As a point of departure, consider the hierarchical, cell-based threat 
organization depicted in Figure 16. 

The organization includes seven groups (the cells), each of which (notionally) includes 
five members.  The top cell is the leadership cell, and the top member in each cell is the 
cell leader.  Only one member in any cell is acquainted with any member in any other 
cell, so the leaders of subordinate cells must be different from the cell leader.  
Interactions within each cell are highly connected.21   

 

 
Figure 16: A hierarchical, cell-based organization 

Such a cell-based organization is anomalous compared to the typical sort of social 
network profiled in Figure 15 in that individuals’ degrees and clustering coefficients vary 
little over the network.  Shortest path lengths also tend to be longer than in a normal 
network.  The purely cell-based organization also presents the following difficulties: 

• Cells (and subcells) once disconnected because of the loss of a leader or his 
controlling outside contact cannot easily reconnect to the organization. 

• Cells can never split or merge to form new cells. 

• Presuming limits on numbers of members in a cell and on numbers of subcells an 
individual can control, most organization growth must occur around leaf cells.  
Unless candidates connect here directly, they may not succeed in joining. 

                                                 

 
21 We have refrained from showing the fully connected group interaction graphs. 
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Cell-based organizations can (and typically do) overcome these difficulties by relaxing 
the pure cell doctrine.  Some potential relaxations are show in Figure 17. 

Figure 17 uses light gray background shading to depict some interactions and connections 
among (shading-surrounded) individuals that breach the pure cell doctrine.  The more the 
cell doctrine is relaxed, the more a threat organization resembles (in character) a non-
threat organization.   

The next-generation PE Lab design parameterizes a general notion of hierarchy to realize 
dynamic organizations covering a variety of styles.  Table 1 suggests how parameters 
affecting organization structure, growth, and interaction can be set to realize some 
different styles of interest. 

 

 
Figure 17: Relaxing the cell doctrine 
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Purely cell-
based

Loosely cell-
based

Normal 
hierarchical Loosely flat Purely 

flat
Members per group [2, 12] [2, 12] [2, 24] [2, ∞] [2, ∞]
Task forces per group 1 1 [1, ∞] [1, ∞] [1, ∞]
Primary task initiator Manager Either Either Member Member
Multi-group task forces Never Rarely Occasionally Frequently n / a
Subgroups per group [0, 10] [0, 10] [0, 10] [0, 2] n / a
Managers per group [0, 10] [0, 10] [0, 10] [0, 2] 0
Subgroups per manager [1, 5] [1, 5] [1, 5] [0, 2] n / a
Subgroup growth control Low Low High High ∞
Task force reviews Frequently Frequently Frequently Rarely n / a
Cross-echelon reviews Never Rarely Occasionally Rarely n / a
Group mergers Never Rarely Occasionally Rarely n / a
Group splits Never Rarely Occasionally Rarely n / a  

Table 1: Parameters conferring different styles on generated organizations 

Note the following regarding the concepts included in Table 1: 

• Groups (of individuals) are structural elements of organizations.  Groups in threat 
organizations are cells. 

• The normal hierarchical22 style is typical of business organizations.  We expect 
power-law social network phenomena in these organizations because members at 
higher echelons tend to have more contacts with individuals outside their 
immediate working groups.  Managers meet with subordinates in their own 
organizations.  Higher-echelon managers have (presumably shorter) more 
frequent meetings.  Lower-echelon members gain access to higher-echelon ones 
at different rates.  Triangulation is at work here, as managers refer high-value 
messengers up the management chain.  Managers also meet with peers in other 
organizations and perhaps develop organization-wide relationships.   

• Task forces are collections of individuals cooperating to perform particular 
tasks.23  Task forces may be permanent or temporary.  Subsets of their members 
may interact frequently or infrequently towards the task’s performance.  Task 
force members usually all belong to the same group but also may be taken from 

                                                 

 
22 The normal matrix style (not shown in Table 1) differs from the normal hierarchical style only in its 
greater frequency of multi-group task forces. 
23 Our initial challenge problem ontology in Section 6.2.2.3.1 includes no notion of task, as we focus on 
task force interactions. 
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different groups (as in multi-group task forces)—typically one nearby in the 
same organizational hierarchy but possibly from a different organization.   

• Task forces may periodically meet with their managers for task force reviews 
that may subsequently be escalated to cross-echelon reviews with higher 
management levels.   

• Individuals generally will belong to multiple organizations.  For simplicity, an 
individual will belong to only a single group of a given organization.  Individuals 
will join their first organization via preferential attachment, subsequent 
organizations via triangulation.   

• The loosely flat style is typical of a socially (vice economically) oriented 
organization (for, e.g., recreational sports, community service, or religion) with 
relatively little structure.  (The purely flat style, reflecting an “organization” with 
no structure, is included for sake of comparison, not necessarily to be realized in 
simulation.)   

• Tasks in social organizations are typically initiated by members.  Tasks in 
economic or threat groups are typically initiated by either members or managers.   

• In economic or threat organizations with small group sizes, we assume that all 
group members are acquainted with each other and may serve together on any 
task force.  In social organizations with large group sizes, the members of new 
task forces are linked by existing acquaintance relationships (in current task 
forces).24 

• A group’s subgroup growth control refers to: 

o The number of members it must have before it may spawn subgroups. 

o The number of subgroups it must have before its subgroups may spawn 
subgroups. 

6.2.2.2 Explicitly Modeled Intelligence Collection 
Different sources collect different types of intelligence at different rates.  Figure 18 
describes coverage of phenomena of interest by collection type. 

                                                 

 
24 We can’t practically store all the individuals another has ever interacted with.  We may also need to limit 
the number of task forces an individual may belong to. 
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Figure 18: Coverage of phenomena of interest by collection type 

We note the following regarding Figure 18: 

• Broad surveillance (always COMINT) does not cover in-person interactions.  It 
may cover limited geographical regions, and it may cover different regions at 
different times. 

• Focused surveillance (which may be via either HUMINT or COMINT) usually 
covers a more specific target than broad surveillance. 

• Connectivity providers may serve limited population segments. 

• The evidence available regarding remote interactions won’t necessarily identify 
the interactors unambiguously.  Communication termini such as phones, 
addresses, and user IDs can be shared by multiple individuals (some of whom act 
deliberately to deceive threat detection systems). 

• Attacks may serve to reveal the existence of threat groups/organizations and some 
of their membership. 
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• The next-generation PE Lab design models HUMINT and COMINT sources with 
different coverage and accuracy rates regarding different phenomena of interest.25   

• The next-generation PE Lab design routinely initiates some focused intelligence 
collection against individuals observed to interact with or connected by forensics 
to other, suspected threat individuals. 

• Non-threat organizations may publish some of their top-level membership and 
organizational structure on a regular basis.  Informants may provide more 
complete information (e.g., a company or division phone directory). 

6.2.2.3 Supporting Foundations 
Subsections introduce the following supporting foundations for dynamic social networks 
with explicit intelligence collection models: 

• Initial challenge problem ontology (Section 6.2.2.3.1) 

• Scored hypothesis types (Section 6.2.2.3.2) 

• Representation requirements for the database schemas supporting ground truth 
and evidence (Section 6.2.2.3.3) 

• Temporal representation and reasoning for scoring (Section 6.2.2.3.4) 
6.2.2.3.1 Initial Challenge Problem Ontology 

Below is the initial challenge problem ontology to be used in evidence.  (Internal and/or 
ground truth versions may have additional content for simulation support.)  A Class 
appears (perhaps multiple times) with indentation to indicate its position in the class 
lattice.  A classAttribute falls directly under its defining Class and is followed by the 
(Class) of its single value or (Class*) of its multiple values.  For example: 

  Actor 
    Individual 
    location (Location) 
    aliases (Individual *) 
    communicationTermini (CommunicationTerminus*) 
      ThreatIndividual 
      NonThreatIndividual 
    Group 

                                                 

 
25 Rates will generally be under parameter control.  Realistic rates (key to assessing a technology’s 
effectiveness, but not required in all experiments) will be elicited from an experienced counter-terrorism 
intelligence analyst. 
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    leader (Individual) 
    directSubGroups (Group*) 
    directSuperGroup (Group) 
    directMembers (Individual*) 
    organization (Organization) 
      ThreatGroup 
        ThreatOrganization 
      NonThreatGroup 
        NonThreatOrganization 
      Organization 
        ThreatOrganization 
        NonThreatOrganization 
    Source26 
  Event 
  startDate (Date) 
  endDate (Date) 
    Interaction27 
    participants (Individual*) 
    Attack 
    participants (Individual*) 
    perpetrator (Group) 
  Location (Integer) 
  CommunicationTerminus28 
  communicationProvider (CommunicationProvider) 
  CommunicationProvider (Integer) 
  Date (Integer) 

6.2.2.3.2 Scored Hypothesis Types 

The next-generation PE Lab design scores the following LD-output hypothesis types, 
using methods developed in the EAGLE PE Lab: 

• Threat individuals and their aliases and communication termini 

• Threat cells29 and their member individuals 

                                                 

 
26 See Figure 18 for potential refinements of this class. 
27 See Figure 18 for potential refinements of this class. 
28 See Figure 18 for potential refinements of this class. 
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• Threat organizations and their (indirectly) constituent cells 
6.2.2.3.3 Representation Requirements for the Database Schemas Supporting Ground 

Truth and Evidence 

Dynamic social networks require temporal representation and reasoning.  Evidence may 
be supported by explicit probabilities regarding a source’s general credibility on certain 
kinds of evidence or may include explicit probabilities regarding a source’s professed 
certainty about particular asserted propositions.  We describe feasible temporal and 
uncertainty representations and associated schema requirements for a shredded (third-
normal-form) relational database.30   

More expressive representations—supporting more kinds of ambiguity and/or uncertainty 
regarding world states—require more complex reasoning by LD.  IET’s bias is towards 
an expressive schema that will support evidence reasoning challenges across a range of 
difficulty (making the complexity of evidence another potential dimension of the LD 
problem space).   

Subsections address these topics: 

• Temporal requirements (Section 6.2.2.3.3.1) 

• Uncertainty requirements (Section 6.2.2.3.3.2) 
6.2.2.3.3.1 Temporal Representation Requirements for Ground Truth and Evidence 

Ground truth, being unambiguous, affords a point of departure regarding temporal 
representation requirements.31  We need to note the points in simulation time at which 
propositions pertaining to objects’ existence and to their attributes’ values begin to be in 
effect and the points at which they cease to be in effect.  Consider a group (with UID) Gr-
123 that is formed on simulation Day 12, is (from the outset) part of organization Or-246, 

                                                                                                                                                 

 

 

 
29 We include no hypotheses for task forces because (per Table 1) each threat group cell corresponds 
identically to a task force. 
30 See Raghu Ramakrishnan’s (U. Wisc.) October, 2006 “EDB 2” Tangram working group presentation, to 
which IET contributed. 
31 Depending on the economics of generating a given dataset, it may even be advantageous to materialize 
elements of ground truth (whose volume may be much greater than that of evidence) only on demand via 
dataset regeneration (from a stored random seed) rather than actually to store ground truth.  We would 
nonetheless materialize and store the “answer key” portion of ground truth pertaining to threat phenomena. 
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and has (for a time) among its members individual In-456.  In-456 moves from location 
Lo-2 to location Lo-7.  Our ground truth schema would include records in tables with 
fields32 as shown in Figure 19. 

Group table fields: groupUID observationTime
Group record values: Gr-123 (Day 12)

Group_organization table fields: groupUID observationTime organizationUID
Group_organization record values: Gr-123 (Day 12) Or-246

Group_memberAgents table fields: groupUID observationTime personUID
Group_memberAgents record values: Gr-123 (Day 14) In-456

Group_notMemberAgents table fields: groupUID observationTime personUID
Group_notMemberAgents record values: Gr-123 (Day 17) In-456

Person table fields: personUID observationTime
Person record values: In-456 (Day 12)  

Figure 19: Ground truth schema example 

Note the following: 

• Separate tables pertain to an object’s existence and to the values of its attributes. 

• Each attribute table covers just one attribute, so that records for different 
attributes can cover different time intervals.  Such tables also conveniently handle 
multiple contemporaneous values of the same attribute (like multiple members of 
a given group). 

• Each table includes a field (here, groupUID) to designate the subject object and a 
field (observationTime) to designate the simulation time at which the object is 
observed.  In a ground truth database, the latter is always a simulation time at 
which the subject object acquires the subject property. 

• The kind of table used to record an object’s state changes differs depending  on 
the semantics of the property.   

                                                 

 
32 Only fields relevant to the example are shown. 
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o For single-valued attributes (e.g., Person_location) for which an object 
always must have some value, we simply record the later value with onset 
time in a separate record.   

o For other single-valued attributes (e.g., Group_organization) and for 
multi-valued attributes, (e.g., Group_memberAgents), we must assert the 
explicit negation of the attribute value.  We use explicitly negating tables 
(e.g., not_Group_memberAgents) with the same fields used in the non-
negating tables. 

The observations reflected in evidence—unlike those in ground truth—do not constitute a 
comprehensive description of the world across simulation time.  Rather than a single, 
omniscient source, we may have multiple, imperfect sources that may report different 
versions of the same object’s state at a given simulation time.33  If we suppose each 
source observes (aspects of) an object at a point in time, we can accommodate reports 
pertaining to these “observation intervals” by augmenting the tables of the ground truth 
schema above34 with “report” fields, as illustrated in Figure 20. 

Person_location table fields: personUID observationTime locationUID reportUID
Person_location record values: In-456 (Day 15) Lo-2 Re-7890

Report table fields: reportUID reportTime sourceUID
Report record values: Re-7890 (Day 15) So-2  

Figure 20: Evidence schema example 

The report time is the simulation date of the report’s issue by the source and the date at 
which an LD component, processing evidence incrementally as it steps through 
simulation time, may examine the report’s evidence.35   

                                                 

 
33 The EAGLE evaluation DB schema eschews the notion of report (multiple or otherwise), with the 
primary intents of streamlining the schema and reducing overall data volume.  While that approach remains 
an option going forward, it would not (realistically) challenge LD to reason about contradictory reports, 
including those that may arrive at different simulation times but pertain to the same simulation time. 
34 Note that we continue to use definite time points for observations.  Indefinite observation points—e.g., 
bounded by the constraint (contains [(Day 911) (Day 999)] ?startDate)—require additional tables for the 
(abstract) time points that are indefinite and for constraints on these.  Modeling some kinds of real-world 
evidence may require such indefiniteness. 
35 LD must request reports issued since its similar request at a prior incremental time step before it may 
examine the evidence records designated as being contained in each such report. 
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Suppose evidence contains the observation that individual In-456 was a member of group 
Gr-123 on simulation Day 23.36  What may a consumer of evidence (such as an LD 
component) believe about In-456’s membership before or after that time?  In temporal 
logic terms, should the assertion of his membership be assumed to “persist” backward (or 
forward) in simulation time from the observation point, absent an earlier (or later) 
contradictory report?  Our ground truth schema relies on forward persistence.  Backward 
persistence also is needed in evidence, where we can’t assume that a first time of 
observation corresponds to an object’s time of state change.  If it happens so to 
correspond, the report can include an explicitly negating observation at the immediately 
preceding simulation time point—if it does not already include a contradiction of some 
other kind pertaining to that time.  Potential varieties of contradiction include: 

• A functional dependency declared in the domain ontology (e.g., “He can’t be in 
locations Lo-2 and Lo-7 at the same time.”) 

• The limited temporal extent of an object’s existence (e.g., “He died on Day 38.”) 

While we can provide an adequate representation, an assumption of persistence (like any 
evidence) is really left to the consumer to tender belief in or not.  A consumer may wish 
to consider the following issues:  

• It may be appropriate to limit belief (or degree of belief) as a function of temporal 
distance from the observation point. 

• Any gap in time between two contradictory observations (absent other relevant, 
intervening assertions) leads to ambiguity regarding where during the gap the 
observed object changes state. 

• A later contradictory report (that may pertain to a relatively early simulation time) 
may present a requirement for belief maintenance.  The consumer should be 
prepared to withdraw belief in the assumed proposition (and perhaps in any 
assumption-based conclusions it has derived).   

• Uncertainty of the following varieties may impinge on the persistence 
assumption:   

o A report’s source may have imperfect credibility. 

o A report’s source may specify uncertainty regarding the propositional 
content of its observation.   

                                                 

 
36 The actual time granularity of simulation may be finer or coarser than daily. 
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o The persistence may emanate from an indefinite observation time point.  
(A report’s source may specify uncertainty regarding the temporal content 
of its observation.) 

6.2.2.3.3.2 Uncertainty Representation Requirements for Evidence 

Evidence may be supported by (supplied) models including explicit probabilities 
regarding a source’s general credibility on certain kinds of evidence.  Evidence from a 
given source may include explicit probabilities regarding its professed certainty about 
particular asserted propositions.  To support credibility reasoning, a (non-temporal) table 
pertaining to sources may report (or may not report, depending on the observability of a 
given source’s credibility model) the probability that the source will corrupt a specified 
field of a given record in an object existence or object attribute value table (e.g., in the 
table Group_memberAgents, groupUID, observationTime, or even professed proposition 
certainty).37  To support professed assertion certainty, we add a probability-valued 
“certainty” field to the object existence and object attribute value tables of the evidence 
schema, as illustrated in Figure 21.   

Group table fields: groupUID observationTime certainty
Group record values: Gr-123 (Day 12) 0.95  

Figure 21: Example evidence schema with propositional uncertainty 

We prefer to keep the temporal and uncertainty aspects of representation separate, where 
possible—so that we can vary their expressiveness and the complexity of LD’s reasoning 
challenges independently, if desired.  We also prefer (initially) not to clutter the evidence 
schema described so far by supporting arbitrary expressivity for uncertainty.  Therefore, 
we avoid explicit (source-professed) conditional dependencies among the assertions for a 
given object (or even across objects) at a given time (or even across times) in a given 
report (or even across reports).  We have the following conditional dependencies 
implicitly: 

• Actual object existence probability depends on professed object existence 
probability and on source credibility pertaining to the latter. 

• Actual object attribute value probability depends on professed object attribute 
value probability and on source credibility regarding pertaining to the latter. 

                                                 

 
37 We generally can arrange for these probabilities to be independent without compromising realism too 
much. 
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• By convention, any two contradictory observations that are contained in the same 
report and have adjacent simulation times also will have the same professed 
probability, which may be interpreted as applying to their conjunction. 

6.2.2.3.4 Temporal Representation and Reasoning for Scoring 

Dynamic social networks also present temporal representation and reasoning 
requirements to support scoring of LD-output hypotheses.  Subsections address the 
following topics: 

• Requirements for answer keys (Section 6.2.2.3.4.1) 

• Requirements for evidence summaries (supporting relative scoring—Section 
6.2.2.3.4.2) 

6.2.2.3.4.1 Temporal Representation and Reasoning for Answer Keys 

The next-generation PE Lab dynamic social networks require a temporal representation 
for answer keys, so that hypotheses submitted at any simulation time can be scored with 
respect to the ground truth at that time.  The required information is contained, for each 
scored hypothesis type, in the corresponding class’ ground truth scored attribute tables.  
The ground truth state of a given scored class instance at a given simulation time is 
determined by the forward-persistent semantics of the ground truth representation.38   

Presuming LD returns its hypotheses in a like format, we can develop both ground truth’s 
and LD-output hypotheses’ versions of the set of all scored objects at any given point in 
simulation time, then score these using existing EAGLE methods that apply to static 
situations.39  This reuse of the ground truth schema for LD-output hypotheses presumes 
(as in EAGLE) unambiguous hypotheses.  We would need to develop a separate 
hypothesis schema with associated reasoning methods should we desire to accommodate 
in scoring ambiguous hypotheses employing indefinite time points or specifying non-unit 
probabilities for the properties of scored objects.  As noted in Section 6.2.2.3.4.2, we 
need a capability along these lines for datasets with similarly ambiguous evidence to 
support EAGLE’s relative scoring methods. 
6.2.2.3.4.2 Temporal Representation and Reasoning for Evidence Summaries 

Intelligence analysis regarding standing types of threats is a continuous process.  
Analysts routinely consume raw intelligence (and open-source) reports and produce 
                                                 

 
38 Take the latest value at or before the time of interest for any property of any object. 
39 Depending on the number of objects to be scored for a given dataset, we may be able practically to score 
hypotheses only at selected simulation time points.  We need not, however, inform participants prior to 
hypothesis submission in a “blind” evaluation what the scoring time points for a given dataset will be. 
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summaries.  While many such summaries are text reports intended primarily for decision 
makers, some are computer-manipulable models, such as counter-terrorism databases or 
link analysis diagrams, which can also serve as analytical resources.  In the EAGLE PE 
Lab, LD is presented with a summary40 of known evidence regarding threat actors and 
events, along with unprocessed evidence.  LD’s challenge is to update the summary (the 
way an analyst would maintain a model), given the unprocessed evidence, so that the 
summary reflects (current41) ground truth as accurately as possible. 

The summary schema is like the hypothesis schema in that it lacks reports and describes 
each threat phenomenon at any given simulation time only once.  It also has the following 
fields to support computation:   

• Explicit probabilities (that may be taken to reflect the combination source 
credibility and professed assertion certainty)  

• Explicit, independent backward and forward persistence assumptions (that may, 
for a given proposition, be dropped during computation of the summary)42 

In the next-generation PE Lab, where (in contrast to EAGLE) different raw reports can 
describe the same or different threat actors at the same or different simulation times, we 
must compute such a summary from the reports.  This summary, computed at the outset 
of the dataset’s contemporary simulation era, provides important seed data43 for threat 
detection algorithms.   How we compute the input summary depends on what evidence 
about threat actors we consider to be “obvious.”   The following evidence representation 
capabilities pose issues for summarization: 

• Source’s credibility and reports’ professed assertion certainties 

• Temporally overlapping contradictory reports, including those arising from 
opposing persistence assumptions and those from indefinite time points 

In general, we desire a summary whose contents all meet or exceed some threshold 
probability.  We must investigate inexpensive ways to improve the soundness and 
completeness properties of the following, approximate method. 
                                                 

 
40 In EAGLE, this summary includes the threat phenomena reported in “primary” evidence. 
41 A given real-world model might also include relevant historical (i.e., non-current) information.  We 
might augment our evidence summary schema to accommodate historical information.  This would require 
corresponding augmentation of scoring methods. 
42 We have omitted these from the evidence schema for the sake of compactness. 
43 Only some of a dataset’s threat phenomena are covered by seed data.  The remainder technologies must 
detect without benefit of seeds. 
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1. Develop a probability-thresholded representation. 

a. Begin with a (potentially inconsistent) temporal representation reflecting the 
contents of all reports in evidence. 

b. Discard any contradictory assertions that have the same observation timepoint. 

c. Discard all assertions not meeting the threshold probability. 

d. Discard all assertions with indefinite observation timepoints. 

e. Treat all remaining assertions as if they were certain. 

f. Drop any opposing persistence assumptions for contradictory assertions. 

2. Compute implied properties of threat object instances at the timepoint of interest. 

a. Compute threat groups/organizations. 

• Those explicitly mentioned as threat groups/organizations 

• Groups whose stated organization is a known threat organization 

• Groups for which a direct or indirect subgroup or supergroup 
relationship to a known threat group/organization can be determined 
from directSubgroup or directSupergroup assertions and/or from 
organization assertions 

• Groups stated to be perpetrators of threat events 

b. Compute threat individuals. 

• Members of threat groups/organizations 

• Participants in threat events 

Another summary, computed at the end of the dataset’s contemporary simulation era (or 
at any simulation time where scoring is desired), serves (in relative scoring44) as a basis 
for evaluating threat detection algorithms’ updated, product summaries.  Note that 
intelligence collection asset tasking by LD will result in a different (presumably richer) 
product summary than that provided for evidence routinely collected.  Thus, in the next-
generation PE Lab, the following varieties of relative scoring may be of interest. 

• LD’s hypotheses relative to routinely collected evidence summary—What 
fraction did LD attain of the difference between a perfect score and that of the 

                                                 

 
44 Relative scoring compares the quality of LD’s output summary to that of its input summary. 
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summary for evidence routinely collected?  (Or, what benefit did LD’s hypotheses 
confer relative to a straightforward summary of routinely collected evidence?) 

• LD’s hypotheses relative to routinely collected plus LD-collected evidence 
summary—What fraction did LD attain of the difference between a perfect score 
and that of the summary for evidence routinely and/or actively collected?  (Or, 
what benefit did LD’s hypotheses confer relative to a straightforward summary of 
all collected evidence?) 

• Routinely collected plus LD-collected evidence summary relative to routinely 
collected evidence summary—What benefit did LD’s active collection confer 
relative to routine collection? 
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8 LIST OF SYMBOLS, ABBREVIATIONS, AND 
ACRONYMS 
Table 2 serves as a reference for all symbols, acronyms, and abbreviations, along with 
their expansions, that are used and contained throughout this document. 

Acronym, 
Symbols, or 
Abbreviation 

Expansion 

AFRL Air Force Research Laboratory 

AI Artificial Intelligence 

AKA Also Known As 

API Application Programming Interface 

BAH Booz Allen & Hamilton 

BN Bayesian Network 

COMINT COMmunications INTelligence 

CONOPS Concept of Operations 
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CSV Comma Separated Value 

DARPA Defense Advanced Research Projects Agency 

DB DataBase 

DoD Department of Defense 

EAGLE Evidence Assessment, Grouping, Linking, and 
Evaluation 

HUMINT HUMan INTelligence 

IC Intelligence Community 

ID IDentification 

IET Information Extraction & Transport, Inc. 



 44  

 

 

ISI Information Sciences Institute 

KS Knowledge Sources 

LD Link Discovery 

PE Lab Performance Evaluation Laboratory 

PIP Proposer’s Information Packet 

POC Point of Contact 

SEA System Evaluation and Architecture 

SPS Software Product Specification 

SUM Software User’s Manual 

TIE Technology Integration Experiment 

UID Unique Identifier 

USAF United States Air Force 

USC University of Southern California 

Y3 Year 3 

Y4 Year 4 

Table 2: Acronyms / Expansions 


