
AFRL-IF-RS-TR-2006-189
Final Technical Report
May 2006

WEB-BASED OPEN TOOL INTEGRATION
FRAMEWORK

Vanderbilt University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. N892/00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2006-189 has been reviewed and is approved for publication

APPROVED: /s/

 ROGER J. DZIEGIEL, Jr.
 Project Engineer

 FOR THE DIRECTOR: /s/

 JOSEPH CAMERA, Chief
 Information & Intelligence Exploitation Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAY 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Aug 02 – Dec 05
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-02-2-0202

4. TITLE AND SUBTITLE

WEB-BASED OPEN TOOL INTEGRATION FRAMEWORK

5c. PROGRAM ELEMENT NUMBER
62302E

5d. PROJECT NUMBER
MOBI

5e. TASK NUMBER
00

6. AUTHOR(S)

G. Karsai

5f. WORK UNIT NUMBER
04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Vanderbilt University
Div. Spons. Research, Station B#357749
Nashville TN 37235

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFED
3701 N. Fairfax Dr 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-189

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; distribution unlimited. PA# 06-375

13. SUPPLEMENTARY NOTES

AFRL Project Engineer: Roger J. Dziegiel, Jr., IFED, Roger.Dziegiel@rl.af.mil
14. ABSTRACT
The OTIF project described in this report addressed the problem of building integrated design tool chains for embedded system
development. The project has developed, implemented, and applied an open tool integration framework that provides a software
infrastructure for building specific tool integration solutions. The framework is based on reusable components and industry-standard
protocols, and uses metamodeling and model transformation technology to facilitate the tool integration task. The report summarizes
the technological contributions of the project, and the actual prototype tool chains constructed.

15. SUBJECT TERMS

Design tool integration, embedded system design tool chains

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Roger J. Dziegiel, Jr.

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

48
19b. TELEPONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI-Std Z39-18

 i

Table of Contents

Table of Contents.. i
List of Figures.. ii
Glossary.. iii
1. Introduction ... 1
2. Project Overview ... 2
3. Results ... 4

3.1 Core Technology Results: OTIF.. 4
3.2 Application Domain Results: Toolchains .. 7
3.3 Further extensions.. 11

4. Summary.. 14
Publications ... 14
Appendix: Major papers .. 15

 ii

List of Figures

Figure 1: The Open Tool Integration Framework Architecture... 3
Figure 2: MCP Toolchain .. 8
Figure 3: The VCP Toolchain.. 9
Figure 4: The SPP Toolchain... 10
Figure 5: Tool Integration for the BioComp toolchains .. 11

 iii

Glossary

AIF Analysis Interchange Format. An XML file format used to represent models of real-time

embedded systems in a manner suitable for architectural analysis.\

AIRES Real-time system analysis tool developed by Prof. Kang Shin at University of Michigan.

API Application Programming Interface.

DESERT Design-Space Exploration Tool. A metaprogrammable software tool that supports the constraint-

based exploration of design variants.

ECSL Embedded Control System Language. A modeling language for constructing embedded controllers

for automotive applications.

ECSL/GME The instance of the GME editor that supports the ECSL.

ESML Embedded System Modeling Language. A modeling language designed for modeling mission

computing applications built using the Bold Stroke framework of Boeing.

ESML/GME The instance of the GME editor that supports the ESML.

Giotto A time-triggered coordination language developed by Prof. T. Henzinger of UC Berkeley for

implementing time-triggered systems on conventional real-time operating systems.

GReAT Graph Rewriting and Transformations. A language and toolsuite for constructing model

transformation programs.

GME Generic Modeling Environment. A metaprogrammable visual model editor.

MCP Mission Computing Platform. A prototype toolchain built using OTIF.

NCA Network Connectivity Analysis tool that processes information captured in gene/transcription

factor maps. Used in systems biology.

OEP Open Experimental Platform. A software infrastructure that implements parts of the Bold Stroke

framework of Boeing, used in the “Model-based Integration of Embedded Systems” program of
DARPA

OSEK OSEK is an abbreviation for the German term "Offene Systeme und deren Schnittstellen für die

Elektronik im Kraftfahrzeug" (English: Open Systems and the Corresponding Interfaces for
Automotive Electronics). It is a standards body that has produced specifications for an embedded
operating system, a communications stack, and a network management protocol for automotive
embedded systems

OSEK/OIL A configuration language for OSEK software applications.

OTIF Open Tool Integration Framework.

PAINT A clustering analysis tool that produces gene/transcription factor maps. Used in systems biology.

Ptolemy A modeling and simulation environment developed by Prof. Ed Lee of UC Berkeley for studying

models of computations for embedded system design.

 iv

SBML Systems Biology Markup Language. An XML-based markup language for systems biology

modeling.

SPML Signal Processing Modeling Language. A modeling language for constructing high-performance,

embedded signal processing applications.

SPP Signal Processing Platform. A prototype toolchain built using OTIF.

SPML/GME The instance of the GME editor that supports the SPML.

TNA Task Network Architecture. A format for representing complex task structures for use in

sequencing operations in a complex mission computing application.

UDM Unified Data Model. A software package that generates C++ and Java API-s from UML

metamodels, that could be used to access models stored in GME, in XML files, or as CORBA
structures.

UML Unified Modeling Language. A modeling language for modeling in object-oriented analysis and

software design.

VCP Vehicle Control Platform. A prototype toolchain built using OTIF.

XML Extensible Markup Language.

XSLT XML Stylesheet Language for Translations. XML-based scripting language for describing simple

transformations on XML data.

 1

1. Introduction
The objective of this project was to investigate how a Web-based Open Tool Integration
Framework (OTIF) can be constructed, to design and construct a prototype framework, and to
demonstrate how it can be used in various software development tasks, with emphasis on
embedded software systems. The need for an OTIF is motivated by the fact the complex software
development processes necessitate customized toolchains where design tools interoperate in a
seamless manner. This is especially true for embedded software, where requirement capture,
design modeling, design analysis, code generation, testing and debugging, etc. are often done
with different tools, provided by different vendors. The use of different tools requires an open
approach to tool integration: one that does not limit the integration of new tools. Commercial
vendors are not motivated to build such toolchains rather they are interested in “locking-in”
customer into their own tool infrastructures.

The project has created an architecture-based solution, called OTIF (to be discussed in the
chapters below), which relies on industry standards and technology developed under a related
project titled “Model-Based Synthesis of Generators for Embedded Systems”.

The specific industry standard OTIF relies on is CORBA and its basic services for remote object
invocation, the Naming service. These are well-defined and documented standards, with multiple
commercial and open source implementations. However, in the high-level design of OTIF there
are no CORBA-specific choices, and all CORBA-specific components are well isolated in the
implementation. Specifically, porting OTIF to another middleware standard, like .NET, is quite
feasible.

The specific technology OTIF uses from the related project is the UDM (Universal Data Model)
tool for model representation and access, and the GReAT (Graph Rewriting And
Transformations) tool for implementing complex model transformations. Similarly to CORBA,
the GReAT/UDM specific components are well-isolated, and, if necessary, can be replaced with
other model transformation technology, while keeping the rest of the architecture intact.

During the course of the project, we have designed and implemented a prototype for OTIF, and
used that prototype for building toolchains for the MoBIES program. These toolchains have been
used in actual MoBIES tool evaluations, and later has been transition to the ESCHER effort.
Both OTIF and the toolchains are available via the ESCHER1 website at www.escherinsitute.org.
In the later phase of the project we have built extensions to OTIF (including a Java
implementation of UDM and support for XML namespaces), that were tested and used in
building toolchains for the BioCOMP DARPA effort.

1 ESCHER is an independent, non-profit research institute dedicated to the transition of government-sponsored
information-technology out of the research environment and into practical use by industrial and government end
users.

 2

2. Project Overview
Tool integration, as it is understood here, is the process of coupling different types of design
tools: modeling tools, analysis tools, synthesis tools, verification tools, simulators, etc., in
support of a large-scale design process. It is expected that integrated tools working together
contribute to the success of development processes more, than individually applying non-
integrated tools to different portions of the design process. We call a particular instance of tool
integration as “tool integration solution”.

Our solution, OTIF, is a framework for building tool integration solutions. It contains generic
software components, but it also defines protocols for component interactions and an engineering
process for creating a particular instance of the framework –a tool integration solution that
integrates a specific set of tools.

OTIF addresses a number of requirements that have been identified as relevant. Below we list
these requirements, and “it” refers to the tool integration framework.
• It shall clearly separate syntactic, semantic, and control issues in tool integration.
When different tools are integrated, there are at least three different aspects to be considered:
syntax, i.e. how to handle the syntactical differences among tools, semantics, i.e. how to handle
semantic differences among tools, and control, i.e. how to handle the differences in the control
and interactions among tools. The framework should provide mechanisms for solving all these
issues in a non-interfering manner (to the extent possible).
• It shall be able to integrate tools without modifying them, if that is not feasible.
Tools have typically three interfaces that can be used for integration purposes: persistence
interface (e.g. file import, export), API (e.g. direct COM-based API to access the tool’s
internals), and the GUI (e.g. an interceptor mechanism that “taps into” the event stream and
drawing commands between the main tool component and its visual front-end). The framework
should be able to work with any of these.
• It shall support integration of tools that are deployed as web-services.
As a new trend in software deployment, expensive tools are often provided as a service
accessible and usable via the web (and not as a directly downloadable and installable package).
The framework should be able to naturally integrate these tools.
• It shall support transforming the product of one tool into the input of another tool.
Pipelining data from tool to tool does the simplest kind of tool integration. Because of syntactical
and semantic differences, the pipeline frequently involves transformations. However,
transformations could also incorporate other operations than strict “rewriting”: for example,
merging. For instance, data produced by tool A and tool B must be merged to serve as an input to
tool C. The framework should allow the organization of arbitrary transformations (1-to-1 and
many-to-1).
• It shall support simple techniques for simple translation needs.
Frequently, translations are trivial textual rewriting the input data into the output data. A number
of techniques are available to solve these translation problems, e.g. search and replace using
regular expressions; transformation of XML files using XSLT scripts, etc. The framework should
allow the implementation of simple transformations using the available tools.
• It shall support batch, transaction-oriented, and notification-based integration.

There are number of different strategies for managing the control across different tools. In a
batch-based approach, a producer tool produces a dataset, which is then passed along to the next
tool in the chain. In a transaction-oriented approach, a producer tool executes a “write”
transaction on a shared database, which will result in changes on that database, and a consumer
tool should execute a “read” transaction on that database to retrieve the data. In a notification-
based approach, fine-grain changes are performed by a producer tool, which then sends
notification messages to consumer tools (who subscribe to these notifications), which then
perform appropriate incremental changes on their own. The framework should be able to support
any and all of these techniques.

Based on these requirements, the following architecture was developed for OTIF (see Figure 1
below).

BACKPLANE
REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC
TRANSLATOR

SEMANTIC
TRANSLATOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR MANAGER

Standard interface/
Protocol

METADATA WORKFLOW

Figure 1: The Open Tool Integration Framework Architecture

The architecture consists of the following components (in addition to the design tools to be
integrated):

• Tool Adaptor: This component is responsible for realizing the interface with the tool (any
of the methods mentioned above) and performing syntactical transformations on the
tool’s data. The tool adaptor should convert all data coming from the tool into a canonical
form, and pass it along to the backplane. Similarly, data coming from the backplane
should be converted by the tool adaptor into tool-specific physical data. In the case of
notification-based integration, the same applies to events generated and consumed by the
tools: the tool adaptor performs the syntactic conversion on the events. Tool adaptors may
have state for to support stateful interactions between tools.

• Semantic translator: This component is responsible for performing the semantic
translation on data (or events) among different tools. In the simplest case, it performs a
mere data rewriting, but in more complex cases the translations could quite sophisticated.

 3

 4

The translators relate producer tool(s) to consumer tool(s), although the most general,
many-to-many case is possibly very rare.

• Backplane: This component is the backbone of the integration framework. It provides
coordination services between the other components. The services include: registration
and identification of components, notification, and physical data transfer. The backplane
is typically distributed across multiple machines.

o Workflow: Workflow models are loaded into the backplane and are used to
facilitate the data transfer between tools and translators. Specifically, the
backplane uses these models how to route the data (i.e. the models) among the
different components.

o Metadata: The metadata comprises the metamodels of all the tools registered with
the backplane. These metamodels are loaded at initialization time and used for
consistent labeling of model elements across the tools.

• Manager: This is a utility component for administration and debugging purposes.
Administration involves enabling and disabling tools and users, etc., debugging
operations allow run-time monitoring and troubleshooting the backplane.

The most challenging component in the above schema is the semantic translator. The semantic
translator realizes the connection: the conceptual bridge between two (or many) tools. However,
all semantic translations should operate in a common framework. This common framework could
be grounded in the abstract syntax of the tools to be integrated. The abstract syntax defines what
concepts a tool works with, what association exists among those concepts, what attributes belong
to those concepts and associations, and what integrity constraints exist among the concepts and
associations. Tool data should always comply with the abstract syntax of the tool. We approach
the semantic translation problem by expressing it in terms rewriting between two (or many)
abstract syntax trees. On the “lowest level”, the translators are transforming data compliant with
one abstract syntax definition into data compliant with another abstract syntax. Another view of
semantic translation is that of transformations between type systems: the data is always typed and
the translation can be defined between –perhaps quite complex— mappings. For the actual
implementation of the semantic translators, we have utilized the results from another research
project: the GReAT tool and framework for implementing complex transformations.

3. Results
In this section we will summarize the project results. The Open Tool Integration Framework
developed is available for download from the ISIS website: http://escher.isis.vanderbilt.edu,
together with some of the prototype toolchains we have constructed. This website is also
accessible via the ESCHER website mentioned earlier.

3.1 Core Technology Results: OTIF
The architecture introduced above has been implemented, and it supports a specific tool
integration scenario outlined below. We call this “batch-oriented pipelining of tool data files”.
The user of a producer tool finishes the work that produces a new dataset. They then invoke a
tool adaptor and uses that to send the data to the backplane. The corresponding tool adaptor reads
the tool data in its physical form, and converts it into a canonical form, and then it sends it to the

 5

backplane. The backplane determines who are the consumers of this data, and invokes the
appropriate semantic translators for those consumers. The semantic translator receives the data in
canonical form through the standard interface, performs the translation and sends the resulting
data in canonical form back to the backplane through another standard interface. The backplane
then routes this data to the consumer tool adaptor(s) that will convert it into physical data for
their tools.

The architecture introduced above is generic, and it is to be customized for every tool integration
solution. This process is called the instantiation of the architecture. The instantiation involves the
following steps.
(1) Identification of the tools to be integrated.
(2) Identification of what tool-to-tool dependencies exists.
(3) Identifying the concrete and abstract syntax of the tool, and how a tool adaptor can interact

with the tool. This step is a crucial point as it builds a comprehensive meta-model of the tool,
which captures the abstract syntax and the tool adaptor/tool interaction protocol. The abstract
syntax is needed for implementing the semantic translators, as the semantic translation is
expressed in terms of a rewriting one abstract syntax tree into another abstract syntax tree.

(4) Identifying the semantic mapping and the control integration between tools that need to
interact.

(5) This is another crucial step, as it builds a meta-model for the semantic translation and the
control integration between the tools. It is expressed in terms of mapping between the
abstract syntaxes and the interaction protocols of the tools, identified above.

(6) Developing the tool adaptors for the tools.
(7) Developing the semantic translators. These two steps involve the physical implementation of

the adaptors and the semantic translators. Tool adaptor development may involve
development of sophisticated parsers and unparsers, as required by the tool.

(8) Integration and test.

The process described above gives a recipe for building a tool integration solution in terms of the
above architecture. However, the specific details of the steps and the tools to be used in those
steps are dependent on the specific design choices made.

The OTIF architecture is centered on a number of core protocols that govern the interactions
between the tool adaptors, the semantic translators, and the backplane. The protocols are defined
with the help of object interfaces and the sequencing of operations on those object interfaces. For
details, please see the OTIF documentation included in the software distribution.

The interfaces and protocols are divided into the following groups:
• UDM

o Structures for meta data
o Structures for instance data

• OTIF Management
o Register/unregister metadata
o Register/unregister translator
o Utility operations

• OTIF Tool adaptor

 6

o Logon/logoff to/from the backplane
o Browse backplane cache
o Subscribe to documents
o Publish document
o Get notifications of publishing events
o Handle user input requests from translators

• OTIF Translators
o Receive document
o Send document

The UDM group is not a full-fledged protocol, it merely defines a set of structures and interfaces
for representing metadata and instance data in the system. Meta-data is descriptive in the sense
that it captures the metamodel of a tool. Instance data is substantive, in the sense that it is the
vehicle for exchanging the actual model information. For both metadata and instance data generic
structures are used. However, in order to make sense of the instance data on the receiving end,
each element in the instance data has to be tagged that precisely define what metadata the
element belongs to (i.e. what its type is).

The OTIF Management group defines the interface between the backplane and the manager.
Here, the main operations include registering and unregistering of metadata, registering and
unregistering a translator, and various housekeeping functions. In general, registration means that
the backplane is informed about the existence and structure of an entity (metadata or translator).
In general, the backplane can be thought of as a server with persistence. When metadata is
registered with the backplane, that metadata is placed into the persistent store of the server, and
the backplane will “know about” that data, and is able validate instance data with respect to it.
The metadata is placed into the internal (persistent) data structures of the backplane, and it stays
there until an explicit removal. Only the manager component can register or unregister metadata
with the backplane.

Translators are registered with the backplane similarly. Translators are executable components
that perform transformations on the instance data. Specifically, they transform instance data
compliant with one meta-model into instance data compliant with another meta-model.
Translators are activated and controlled by the backplane. Translators can be implemented using
various technologies, and at registration time the backplane is informed about how the translator
can be activated. Only the manager component can register or unregister translators with the
backplane.

Housekeeping functions allow the manager to look at the current persistent configuration and the
dynamic state of the backplane, and to modify it if necessary. The backplane may have an
internal cache to store intermediate results, which the manager could observe, and modify if
necessary.

The OTIF Tool Adaptor group consists of the portion of the protocol, which deals with the
interaction between the Tool Adaptor (T/A) and the backplane. When a T/A is started, it must log
on to the backplane. During logon it has to identify the metamodel of the tool it connects to. The
backplane will verify that, and if the metamodel is unknown for the backplane, then the logon

 7

fails. If the logon is successful, the T/A can work together with the backplane. At the end of the
session the T/A should log off from the backplane.

After a T/A has entered into a session with the backplane it can publish documents, as well as it
can subscribe to published documents. In order to perform these activities the backplane provides
services for publishing and subscription. Subscription happens by informing the backplane that a
T/A is interested in receiving certain types of documents, and publishing happens by simply
submitting the document to the backplane.

When a T/A has subscribed to a specific type of document, it will receive notifications from the
backplane whenever a document is produced (typically by a translator). At this time, the T/A
may ask the backplane to supply the document to the T/A. The backplane may also maintain a
limited-length cache of published documents that a T/A can browse and fetch if needed.

The documents are sent to and received from the backplane in the form of UDM instance data
structures, where each data element is tagged with the corresponding metamodel elements
present in the backplane. As the backplane is the ultimate holder of the metamodels, these tags
are always unique, for all parties in the architecture.

The OTIF Translator group governs the interaction between the semantic translators and the
backplane. The translators are executables that are controlled by the backplane. The backplane
starts the executable, make the documents available to the translator, and then it receives the
results from it. After startup, the translator is responsible for pulling the document from the
backplane, and after translation, handing the result back to the backplane. The translator may be
implemented using different technologies, e.g. XSLT, UDM-based, etc. To treat all these
techniques uniformly, the translators are wrapped into code that handles all the backplane
interactions. Translators may have persistent state, but this is an implementation detail.

3.2 Application Domain Results: Toolchains
We have instantiated the OTIF architecture for a number of toolchains that were used in the
course of the MoBIES Program. Here, we briefly summarize the toolchains.

3.2.1 Mission Computing Platform (MCP) Toolchain

This toolchain was designed for assisting the development of large-scale (>1,000 components),
distributed (1-4 CPUs), (soft) real-time embedded system applications, like the ones built using
Boeing’s Bold Stroke framework. The toolchain is illustrated in the figure below.

Rational Rose
Component
modeling

ESML/GME
System modeling

Analysis
Interchange

Format

AIRES
Analysis

ESML2AIF
AIF2ESML

OEP
Build

scripts

OEP
Config
XML

ESML2OEPC
OEPC2ESML

TNA XML
ESML2TNA

PRISM2ESML

System category:
•Real-time distributed mission computing
systems running on a RT-CORBA Platform
•Components developed in C++
•Models describe system configurations
•Analysis checks timing, schedulablity

Figure 2: MCP Toolchain

The toolchain integrates Rational Rose with a GME-based modeling environment (ESML/GME),
an analysis tool (AIRES), and the build process tools (supplied by Boeing). In the MCP
development process, component design and modeling happens using the Rational Rose toolset.
These component models are then imported into the ESML/GME environment, where engineers
can perform the system-level modeling and architecting by specifying component interactions,
component deployment, and task networks representing specific operational scenarios.
Component assemblies augmented with deployment information can be converted into an
analysis format (AIF), which is consumed by the analysis tool AIRES. The tool performs
schedulability and other analysis on the models. In case of timing violations, it could generate
alternative deployment plans that satisfy the timing; these are sent back to the modeling tool.
From the system-level models two XML files could be generated (and subsequently used in the
automated build process): the OEP Configuration XML, and the TNA XML. The former is used
to generate all the code needed to instantiate and link the components in the system, while the
latter is used to configure the run-time task network engine. These XML files directly interface
with the Bold Stroke build process and tools.

3.2.2. Vehicle Control Platform (VCP) Toolchain

This toolchain was designed to assist in the development of code for embedded controllers in
automotive applications. The toolchain is illustrated in the figure below.

 8

Simulink/Stateflow
Functional modeling

ECSL-DP/GME
System modeling

MOML
Ptolemy
Simulation

M
D
L
2
D
S
M
L

Giotto
Verification
Compilation
Execution

Giotto

ECSL2AIRES
AIRES2ECSL

C

ECSL2OSEK

SSFLOW2ECSL ECSL2P2

ECSL2GIO

OSEK OIL
OSEK

Execution

AIRES
TEXT

AIRES
Analysis

DSML

DSML/GME
Design space

modeling

DESERT
Design
space

exploration

System category:
Vehicle motion control applications

Functional models of components
developed in Simulink/Stateflow

Models describe system
configurations

Analysis checks timing,
schedulability

Figure 3: The VCP Toolchain
In this toolchain, the process starts with functional modeling, performed using
Simulink/Stateflow. The designers can perform design space exploration on these models, using
the DESERT tool. Once the functional models are ready, they can be imported into a GME-based
environment (ECSL-DP/GME), which adds new modeling aspects to the ones available in
Simulink/Stateflow. These new modeling aspects allow component modeling (i.e. which
functional model blocks form a component), hardware platform modeling (i.e. what electronic
control units will host the components, what communication links are available, etc.), and
deployment modeling (i.e. how software components and links map to hardware components and
links). From the system level models, a number of artifacts can be generated, including (a)
simulation models (for simulating the system in Ptolemy), (b) Giotto code (for executing the
models as a Giotto program), (c) analysis models (for schedulability analysis using AIRES), and
(d) C code and OSEK OIL files (for compiling, linking, and deploying the controllers on actual
hardware). In the final, “production” version of the toolchain (c) and (d) are fully supported.

3.2.3. The Signal Processing Platform (SPP) Toolchain
The purpose of this toolchain was to assist in the design of high-performance embedded real-time
signal processing applications, typically found in video-driven missile guidance systems and
automatic target recognition systems. The toolchain is illustrated below.

 9

Simulink/Stateflow

Signal flow modeling

SPML/GME
System modeling

CONF COActive
Execution

VHDL

.M

SPML2ML

SSFLOW2SPML
SPML2COACT

SPML2VHDL

MATLAB
Execution

DESERT
Design space
exploration

System category:
•High-performance signal processing
applications
•Signal flow models of SP applications
developed in Simulink/Stateflow
•Models describe system configurations

Figure 4: The SPP Toolchain
In this toolchain, the engineering process starts with signal flow modeling, done in
Simulink/Stateflow. These signal flow models are then imported into a GME-based environment
(SPML/GME), where they could be annotated and extended with system-level and deployment-
specific information. The SPML modeling environment can also be used in conjunction with the
DESERT design space exploration tool. From the SPML environment, one can generate
configuration, C source code, and VHDL source code files for deployment (execution on the
COActive execution platform), and Matlab script files for simulated execution.
3.2.4 Toolchains for the BioComp Program
Per request from the sponsoring agency, we have created tool integration prototype toolchains for
supporting the BioComp program. We have created three, proof-of-concept prototypes using the
OTIF and the translator technology that have been delivered and demonstrated. The prototypes
are shown on the figure below.

The first integration solution — (a) on the figure — involved the PAINT tool (from T Jefferson
University) and the NCA tool from UCLA. We have created a translator that connected the two
tools, to form a simple toolchain. The PAINT tool generates its gene transcription factor
association data as an SBML document, while the NCA tool expects the association information
as a MathML document. Utilized the SBML, and MathML meta-models listed above, we have
developed a model transformer using our graph-rewriting tool GReAT. This transformer has
been packaged as an XML wrapped analyzer for the Dashboard platform.

 10

Dashboard

OTIF
Bridge
OTIF

Bridge

OTIF Backplane

SB
M

L

SBML2GSP

DB Workflow

GML

 11

Workflow Model

(c) Integration w/Dashboard

(a) PAINT (TJU) – NCA (UCLA) Integration

(b) NYU(Cluster) – PAINT (TJU) Integration

Gene-list

µ-array

FEASnet
builder xml

xml xmlNCA/sel NCASel-data

ISIS/TR

NYU
Clusters

Clone
Updater

xmlISIS/TR

Figure 5: Tool Integration for the BioComp toolchains

The second integration solution — (b) on the figure— included a gene clustering tool from New
York University and the PAINT tool from TJU. Similarly to the previous one, we have built a
semantics translator using the same technology as the one used in OTIF. For the (a) and (b) cases
we have used the Dashboard infrastructure for deploying the toolchain for the reason that
researchers on the program were already experienced with it (although the OTIF backplane, etc.
could have been used as well).

As a third example — (c) on the figure— we have implemented a bridge between OTIF and
Dashboard, using the SBML (Systems Biology Modeling Language); the accepted common
language for model interchange on the BioComp program.

Within a short period of starting transition activities to the BioCOMP program, we have been
able to facilitate integration between two major tools (NCA tool from UCLA, and PAINT tool
from TJU) in the program. The results have been a major value addition in terms of the ability of
the NCA tool to process much larger data sets being generated by biologists in the program

3.3 Further extensions
After the first prototype of OTIF has been built, and the project has started using it in developing
toolchains, a number of shortcomings were identified and extensions were introduced that
allowed better tool integration. These extensions are summarized below.
3.3.1 Binary Large Objects
In many tool integration scenarios, models include binary data which does not lend itself to the
structured representation and storage imposed by the UDM approach used in OTIF. For the

 12

efficient exchange of data of such type we have made provisions in the protocols (more precisely:
in the instance data formats of UDM), such that binary data can be incorporated into the message
sent to and received from the backplane. However, care has to be exercised as the framework
does not interpret and does not manipulate such binary data, it simply passes it through.
Specifically, if the byte order of the sending and receiving parties is different, the appropriate by
swapping must be performed by one of the parties.

3.3.2 Workflow modeling and engine
In the first implementation of OTIF the association between the senders and recipients was based
on the type of the tool (i.e. the metadata). However, this approach is not efficient and is incorrect
where tools consume and produce data of the same kind. Hence, we have introduced a workflow
engine into the backplane of the architecture.

The workflow engine operates on a workflow model. The workflow model is created by a GME-
based modeling tool that allows capturing the possible workflows among the tools in a flow-
diagram. These GME models are compiled into an XML which is then loaded into the backplane
using the manager tool.

The backplane’s workflow engine works as follows. Whenever a document is received from tool,
the engine looks up in the workflow model which translators could be applied to this document,
and sends it to those translators. The result of the translation is similarly compared to the
workflow model, which is now used to determine the destination tool (adaptor) for the document.

The workflow extension left most of the protocols unchanged; only the manager protocol group
had to be extended.

3.3.3 Multi-input translators
In some tool integration problems we have identified the need for semantic translators that
receive input from multiple sources. One such example was in a version of the MCP toolchain
(described in the MoBIES final report), where the AIF files need to be updated with information
collected from the execution environment. This required a translator that consumed one AIF file
and one XML log file, and produced a new AIF file. To support this, we have extended the
protocols, such that a (fixed-size) group of documents could be sent to and received from a
semantic translator.

3.3.4 Change propagation and stateful translators
Again, in some applications we have recognized the need for translators that perform incremental
translations on documents (i.e. models). Incremental translation means that the result of the
translation depends on the result of a previous translation plus some new information. This
means that the translators must be “stateful”, i.e. must store results of previous translation
activities as needed.

 13

We support this behavior by allowing versioning the documents. When a tool adaptor uploads a
document, it can designate the document as a new version of an existing one, such that a
(stateful) translator can identify the previous version, etc. and perform the incremental translator.
This solution was chose because the exact semantics of “versions” and “changes” is highly tool
dependent, and a generic framework must remain neutral with respect to these details.

3.3.5 Web-based interface to the framework
We have built a C++ library for constructing tool adaptors, and we have also constructed a
“Generic Tool Adaptor” that can generate tool data files that follow the UDM data representation
techniques (i.e. XML files and GME project files). We have also created a version of the Generic
Tool Adaptor (GTA) that integrates with the Eclipse framework, such that an Eclipse tool is
available for uploading and downloading documents to and from the backplane.

To make the technology more generic and widely usable, we have created a web-based, generic
tool adaptor. This was implemented as follows. The machine hosting the backplane runs a simple
web-server that runs the generic tool adaptor code. The web server provides an interface to the
GTA using standard HTTP. Any web browser can interact with the web server, allowing the
upload and download of documents into the framework running under the control of the
backplane. We created a prototype web-page as the interface, but it could be easily customized to
support arbitrary user interface concepts.

3.3.6 Namespace support for UDM
In the course the project, when we created tool chains for the BioComp research activities, we
were asked to introduce support for namespaces in XML files. Many BioComp tools rely on the
use of XML namespaces, and thus the UDM libraries that read and write XML files had to
support them. These extensions were incorporated into the UDM design, such that XML files
produced by other BioComp researchers could be used directly as documents in the toolchains.
Minimal extensions were made to the OTIF protocols in order to support these.

3.3.7 Java interface to UDM
Also in the course of the developing BioComp toolchains, we realized the need for Java access to
UDM data. For this reason, we have created a Java interface as part of the UDM package. The
Java interface consists of the following elements:

• UDM compiler/Java generator. The UDM compiler can be instructed now to generate
Java source code for accessing the UDM objects. The generated code consists of class
definitions for all the classes described in the UML models, similarly to the generated
code in C++.

• UDM/Java interface libraries. These libraries provide the generic, Java implementation of
core UDM classes, and link to the C++ implementation libraries. The linkage to the C++
implementation code was accomplished via the Java Native Interface libraries and tools.

The implementation is a mixture of generated Java code, handwritten Java code, and generated
Java/C++ interface code. This approach reuses the core UDM libraries (hence only one version

 14

should be maintained), and also provides high performance (that could be better than a pure Java-
based approach). The Java interface has been successfully used in a number of BioComp tools.

4. Summary
The Open Tool Integration Framework described above has been fully implemented and used in
constructing actual toolchains. These results were disseminated using the ESCHER
organizational framework and its website. Starting from the original architecture, we have
incrementally improved the framework, and used it in a number of toolchains of increasing
sophistication.

There were two approaches for transitioning the technology developed in this project. One was
the ESCHER organization, which directly resulted in toolchains used by Boeing (MCP),
Raytheon (SPP), and GM (VCP). The other was the Model-Integrated Computing (MIC)
Platform Special Interest Group (PSIG) of the Object-Management Group (OMG). The MIC
PSIG has met several times in the past three years, and created a Request for Proposals document
that invites standard proposals for an OTIF-like framework. This RFP is currently being
discussed within OMG and is expected to be formally issued soon. For details on the PSIG,
please see: http://mic.omg.org/. When that happens, our research team and industrial partners will
submit a proposal based on our experience and results with OTIF.

Publications
1. Karsai G., Lang A., Neema S.: Tool Integration Patterns, Workshop on Tool Integration

in System Development, ESEC/FSE, pp 33-38., Helsinki, Finland, September, 2003.
2. Karsai, G., Lang, A., Neema, S.: Design Patterns for Open Tool Integration, Vol 4. No1,

DOI: 10.1007/s10270-004-0073-y, Journal of Software and System Modeling, 2004.
3. Karsai, G., Agrawal, A : Graph Transformations in OMG's Model-Driven Architecture:

AGTIVE 2003, LNCS 2062. pp. 243-259.
4. Gabor Karsai: Tool Integration Aspects in the Model-Driven Architecture, presented at

the 2004 Monterey Workshop on Software Engineering Tools: Compatibility and
Integration, to appear in Lecture Notes on Computer Science, Springer.

5. Open Tool Integration Framework - Draft RFP, http://www.omg.org/cgi-
bin/doc?mic/2004-08-01

 15

Appendix: Major papers

Softw Syst Model (2005) 4: 157–170 / Digital Object Identifier (DOI) 10.1007/s10270-004-0073-y

Design patterns for open tool integration

Gabor Karsai, Andras Lang, Sandeep Neema

Institute for Software-Integrated Systems, Vanderbilt University, PO Box 1829B, Nashville, TN 37235, USA
e-mail: gabor.karsai@vanderbilt.edu

Published online: 10 November 2004 – Springer-Verlag 2004

Abstract. Design tool integration is a highly relevant
area of software engineering that can greatly improve the
efficiency of development processes. Design patterns have
been widely recognized as important contributors to the
success of software systems. This paper describes and
compares two large-grain, architectural design patterns
that solve specific design tool integration problems. Both
patterns have been implemented and used in real-life en-
gineering processes.

Keywords: Design patterns – Software architecture –
Tool integration framework – Metamodels – Generative
programming

Introduction

The development of complex engineering artifacts re-
quires a number of computer-based design tools. This is
especially true for embedded system development, where
both hardware and software aspects of the design have to
be handled, as well as design analysis and synthesis, not
to mention the ultimate system integration. It has been
estimated (personal communication from the telecommu-
nication industry) that in order to develop a new cell
phone, about 50 design tools are needed.
Typically these design tools are not integrated, and

there is a definite need for being able to share engineering
artifacts across multiple tools. Occasionally, tool vendors
create tool suites, like Rational Rose [33], but if a devel-
opment process includes ingredients not supported by the
elements of the tool suite, one faces the tool integration
problem again.
Even today, there are a large number of development

tools available: requirement capture tools, design mod-
eling tools, analysis tools, and tools that assist directly
in the software development process: syntax directed edi-

tors, compilers, and debuggers. Still, these tools are often
not integrated. State-of-the-art Integrated Development
Environments (IDE) offer some integration, but the inte-
gration is so tight with a particular IDE that developers
are forced to run multiple IDE-s open simultaneously, in
order to utilize the individual tools [2]. Arguably, an open
tool integration approach would remedy this situation.
By open tool integration we mean an approach that

separates the tools to be integrated from the framework
used to facilitate the integration. The framework, in fact,
becomesaplatformfor integration,whichprovides generic,
reusable machinery for building tool integration solutions:
specific tool chains that support specific engineering pro-
cess. The framework must be open and extensible, such
that a wide variety of tools can be integrated. We believe
that this approach offers a superior alternative to today’s
closed tool suites, typically provided by tool vendors.
In this paperwe describe two architectural approaches:

design patterns for design tool integration that have
been tried out in experimental systems. These patterns
have been employed in two, different frameworks, both of
which have been used in building many, specific tool in-
tegration solutions. Both approaches used a metamodel-
based technique: the actual integration solutions were
created through building metamodels of (1) the tools and
(2) the transformations among models. The first, based
on an integrated model showed the viability of the ap-
proach for engineering processes where the key issue was
sharing, while the second, which was based on a process
model showed good results for processes where the focus
was on engineering process flows.

Backgrounds

Tool integration has been recognized as a key issue in com-
plex, computer-supported engineering processes [5, 13],

16

158 G. Karsai et al. : Design patterns for open tool integration

yet there are very few tangible results or products that
could help end-users who need solutions for these prob-
lems. Integration of complex tools is difficult, labor inten-
sive, and not always an intellectually rewarding activity.
Tool integration is especially relevant for the model-

based development of embedded systems [13]. In a model-
based development process, engineers work on and ma-
nipulate various kinds of models: requirement models,
design models, analysis models, executable models, etc.
which have to seamlessly “work” together. More pre-
cisely, changes made in one model should be “propagat-
ed” to other models, and the overall conceptual integrity
of the models must be maintained.
A recent effort in the industry: the Eclipse frame-

work [5] introduced the concept of open tool integration
to the desktop development environments. Eclipse is
a platform for integrating software development tools,
and it provides APIs for tool/platform coordination.
However, there are three cases where it comes up short:
(1) tools must share data through files (i.e. tools must be
able to import/export files as needed), (2) tools must be
under the control of the same desktop environment (i.e.
there is no support for web-based, cooperative work), and
(3) a tool must be adapted to the specific file formats used
by other tools (i.e. there is no generic support for solving
the data translation problem). However, Eclipse clearly
indicates that (1) tool integration is a valid problem, and
(2) generic, architectural solutions are viable.
Arguably, design patterns [13] and software architec-

tures [5] are the key ingredients to solve tool integra-
tion problems. In fact, many previous proposals and ef-
forts [5, 13, 15, 18] have been advocating an architecture-
based approach. The two solutions described in this pa-
per are based on two architectural design patterns (in
the style of [5]), but they derived from slightly different
requirements.

Patterns for tool integration

In the following section, we describe two architectural
patterns for tool integration. Both solutions provide
a reusable framework for implementing tool integration
solutions, so they are similar to other previous efforts, like
Toolbus [3], ToolNet [2], and many others. The primary
motivation for both approaches is the same: to facilitate
tool data interchange. The secondary motivation was to
provide a software infrastructure and (meta-level) tools
to configure it in order to support a wide range of specific
tool integration problems.
Specifically, the envisioned mode of operation for the

tool integration is as follows. Individual engineers use
their tools to create and/ormodify “models”: some of sort
of design artifacts, and the primary repository for models
is the internal database of the tools. However,models pro-
duced in one tool can be made available for use in other
tools: the user of a “source” tool can publish the models

for some “destination” tools. A tool integration solution
(built from a generic framework) should provide all the
support services to facilitate this sharing activity.

Common framework:
Metamodel-based integration

Before discussing the architectural patterns, the com-
mon foundation for them should be introduced. Both ap-
proaches follow a metamodel-based technique. There are
many different approaches for using metamodels in sys-
tem development; we have used the method described
in [13], which we summarize briefly here.
In this approach, every design artifact (requirement,

design model, test, dataset, etc.) produced and used in
the design process is expressed using the constructs of
some Domain-Specific Modeling Language (DSML). We
assume that each DSML is precisely and formally defined.
Specifically, a DSML is a five-tuple of concrete syntax
(C), abstract syntax (A), semantic domain (S) and se-
mantic and syntactic mappings (MS , andMC) [9]:

L=<C,A, S,MS ,MC >

The concrete syntax (C) defines the specific (textual
or graphical) notation used to express models, which may
be graphical, textual or a mixture of the two. The ab-
stract syntax (A) defines the entities (E), relationships
(R), and integrity constraints (O) available in the lan-
guage (i.e. A is a tuple (E,R,O)). Thus, the abstract syn-
tax determines all the (syntactically) correct “sentences”
(in our case: models) that can be built. (It is import-
ant to note that the abstract syntax includes semantic
elements as well. The integrity constraints, which define
well-formedness rules for the models, are frequently called
“static semantics”.) The semantic domain (S) is usu-
ally defined by means of some mathematical formalism in
terms of which the meaning of the models is explained.
The mappingMC : A→C assigns concrete syntactic con-
structs (graphical, textual or both) to the elements of the
abstract syntax (i.e. it defines how an element of the ab-
stract syntax is to be expressed in the concrete syntax).
The semantic mappingMS : A→ S relates syntactic con-
structs to those of the semantic domain. The definition of
the (DSM) language proceeds by constructing metamod-
els of the language (to cover A and C), and by construct-
ing a metamodel for the semantics (to coverMC andMS).
Using the above definition, we say that the formally

specified DSML is a metamodel of all the models that
could be legally built in the language, and we solve the
tool integration problem in the context of the metamodels .
Note that the definition for metamodels here is slightly
different from the usual definition for metamodels used in
the MDA context [29]. In here, by metamodel we mean
the definition of a modeling language, expressed in the
form of UML class diagrams, while in MDA UML class
diagrams are typically called models. This difference is

17

G. Karsai et al. : Design patterns for open tool integration 159

Fig. 1. Metamodel-based model transformations

a consequence of the fact that we have domain-specific
modeling languages for creating the models, and not only
UML is used. It is merely a convenience that we use UML
to define the languages. However, in all cases the lan-
guage to describe the language to define metamodels (i.e.
the meta-meta model) is MOF, the Meta-Object Facility
(MOF) [30].
In both architectural patterns described below there

is a common notion of model transformations. In order
to support semantic interoperability we must be able to
interchange models across tools, which requires model
transformations. In both approacheswe have used ameta-
model-based technique to describe the model transform-
ations, not unlike the style advocated by OMG’s Model-
Driven Architecture [29]. The transformations are for-
mally specified, in terms of the metamodels of the inputs
and the outputs of the transformations, as illustrated on
Fig. 1.
Wherever model transformations are needed, we for-

mally specify the DSML for the input and the output
by creating a metamodel for the input and the out-
put models. Metamodels capture the abstract syntax
and well-formedness rules of models. In addition, we cre-
ate a model for the semantic mapping that establishes
the connection between the input and output domains.
From these metamodels we synthesize (generate) a se-
mantic translator that implements the model transform-
ation. We believe it is correct to call this translator
a “semantic” one, as its goal is to facilitate semantic
equivalence between the input and the output models.
More precisely: if L (L′) is the input (output) DSML,
and m (m′) is an input (output) of the translator, then
MS(m) andM

′
S(m

′) must be equivalent. This equivalence
is defined in terms of the respective semantic domains,
one example being behavioral refinement, as discussed
in [5].
There are many implementations of this metamodel-

basedmodel transformation scheme, mostly distinguished
by the methods and tools used for specifying the meta-
models and the semantic mapping. We have used one [21]
based on specifying the transformations with the help of

the visitor pattern, and another one [34] based on graph
transformation techniques.

Integration based on integrated models

Themotivating application for developing this framework
came from an application domain: designing Prognos-
tics and Health Management Systems (PHM) for aircraft.
The PHM domain requires the use of many, widely dif-
ferent engineering tools: fault-modeling tools, diagnos-
tics engines, FMECA1 databases, and others. Each tool
has a different function (design analysis, run-time diag-
nostics, data storage, etc.), but they are all related to
a common physical artifact: the aircraft and its compo-
nents, their functions and failure modes, etc. The exis-
tence of the common physical artifact has a profound
implication: there is significant overlap among the con-
cepts used in the multitude of tools. This overlap moti-
vated the creation of a tool integration solution, whose
architecture has been reported in [21]. Here, we briefly
review its salient features. The architecture is shown in
Fig. 3.
The architecture is based on the concept of an inte-

grated data model (IDM). Concepts used in the tools are
represented by (one or more) metamodel elements, thus
that overlap can be facilitated (1) by creating an addi-
tional metamodel: the IDM, and (2) by defining the map-
ping between elements of the metamodels of the tools and
the IDM. Note that the IDM should be “rich enough” to
represent models coming from any tools, and thus it is
custom-made for a particular set of tools that are inte-
grated. Conceptually, IDM is a set of metamodel elements
that are related to the elements of the metamodels of
tools through a mapping (Fig. 2). Note that elements in
the IDM have a corresponding element in at least one
of the metamodels of the constituent tools, there can be

1 FMECA: Failure Mode Effect and Criticality Analysis, a stan-
dard engineering technique used in complex, high-consequence
engineering systems, like aircraft, space systems, nuclear power
stations, etc.

18

160 G. Karsai et al. : Design patterns for open tool integration

Fig. 2. The concept of the integrated data model

elements in the IDM that do not have an equivalent in
some of the tools.
Formally, the IDM can be described using a DSML:

LIDM, which is constructed by composing the DSML-s
Li of the individual tools. We make the assumption here
that the concrete syntax is irrelevant with respect to tool
integration (e.g. there is no need for the visualization of
models of IDM). AIDM is constructed as the distinguished
union of Ai-s, with respect to an equivalence operator≈.

AIDM = (EIDM, RIDM, OIDM), where

EIDM =
⋃
≈
Ei

= {epIDM |∃1i, q : (e
p
IDM ≈ e

q
i , e
q
i ∈Ei) ∨∃i, j, q, r :

(epIDM ≈ e
q
i ∧e

q
i ≈ e

r
j ∧ i �= j, e

q
i ∈Ei, e

r
j ∈Ej)

}
,

and RIDM and OIDM are similarly defined. The definition
means that the entities of the IDM are formed from the
entities of the individual tools (Ei) by taking the union of
those under a special equivalence operator ≈. The equiv-
alence operator≈ returns true if two entities (or relations
or integrity constraints) are considered equivalent in some
common semantic framework. An entity epIDM is either

Fig. 3. Tool integration architecture based on an integrated model

equivalent to a single entity eqi from a single tool’s Ei, or
it is equivalent to an entity eqi from one tool’s Ei which,
in turn, is also equivalent to another entity erj from an-
other tool’s Ej . Note that for OIDM we require that the
individual integrity constraints oIDM do not conflict with
each other.
Note that the IDM, as a DSML, has an abstract syn-

tax, which is defined using UML class diagrams. In other
words, the IDM has a metamodel, just like any DSML of
a tool participating in the integration. The metamodels
are “comparable”, as they are all defined with UML class
diagrams that share a common meta-metamodel: MOF.
The architecture contains two kinds of major compo-

nents: the Integrated Model Server (IMS), and the Tool
Adaptors (TA). The communication mechanism between
the major components is implemented in CORBA (al-
though any middleware package is suitable here).
The IMS is responsible for (1) hosting semantic trans-

lation (ST) services for the constituent tools, and (2) pro-
vidingmodel storage services (according to the IDM). By
semantic translation we mean a transformation of data
from one data model into another one, with preserving
the meaning of the data, while observing the constraints
of the input data model and enforcing the constraints of
the output data model. The IMS also provides a short-
term repository for storing the result of the translation,
and the schema used in the repository is that of the IDM.
Note that translators may create a completely new data
set as the result of the translation, or update one that al-
ready exists in the repository.
The TA-s are responsible for interfacing the tool with

the IMS. Their purpose is to read and write tool data, di-
rectly in the form the tool generates and/or expects that
data. The adaptors (1) ship the data from the tool to the
IMS and (2) receive data from the IMS that they send
to the tool. The TA accesses the tool’s data in whatever
way it is possible and suitable: through a data file, a pro-
grammatic interface, or something else. Note that the TA

19

G. Karsai et al. : Design patterns for open tool integration 161

performs a syntactic translation on the data from the na-
tive data format of the tool to that of the protocol used to
communicate with the IMS.
The Common Model Interface (CMI) protocol is used

to communicate and transfer data between the adaptors
and the IMS. This protocol is not dependent on the meta-
models of the data: all data shipped in this protocol is in
a canonical, “network” form. This is achieved the follow-
ing way: The protocol includes low-level data structures
that are able to express objects (with attributes) and
links among objects (including containment). Each ob-
ject and link is tagged with a unique tag that is derived
from the corresponding meta-object of the object or link:
a class or association. The abstract syntax component of
the metamodel of the DSML of a particular tool consists
of classes and associations, and these exist in the form of
explicit objects stored present in the IMS, and these ob-
jects may provide the unique tags.
The “network” form for shipping tool data can be

implemented using different techniques. One straight-
forward choice is to use XMI [29], but other encoding
schemes can be used as well. In a practical implementa-
tion we have designed data structures using data types
supported by CORBA IDL, and were able to achieve ac-
ceptable performance when transferring large models.
When a data set is constructed in a TA, the TA will

access the meta-objects in the IMS, retrieves the unique
tags for classes and associations, and these tags are added
to the (generic) objects and links that are constructed

Fig. 4. Typing of model data objects

from the tool’s data. This process is illustrated on Fig. 4.
When a semantic translator receives this data set, it is
able to look up the “type” of each object and link in the
data based on the tag, and thus determine how the ob-
jects should be transformed. A similar process works in
reverse when a data set is shipped from the IMS to a TA.
In the general sense, the architecture is used as fol-

lows. When a tool wants to make its data available for
other tools, its TA is activated. The TA fetches the data
from the tool and converts it into the “network” format
and ships it to the IMS. The IMS receives it, performs
a semantic translation on it, and places the result into
its repository. At this point the data is available in an
IDM-compliant form.When another tool wants to use the
data just translated, it accesses the IMS. The IMS per-
forms a semantic translation on the data from the IDM-
compliant data model into the tool-specific data model,
and ships the result to the tool’s TA. The TA will take the
data in network form and convert it into the physical data
format of the tool.
Note that the architecture separates the concerns

of syntactic and semantic transformations, and assigns
them to two different components: the TA-s and the IMS.
This distinction decouples syntactical issues from seman-
tic issues such that they can be addressed independently.
The binding between the major components is the mid-
dleware, implementing a protocol for data interchange.
The definition of the architectural design pattern is as

follows.

20

162 G. Karsai et al. : Design patterns for open tool integration

Name: Tool Integration via Integrated Data
Model.

Intent: Provide a generic architectural solution
for Open Tool Integration when there is a significant over-
lap among the data present in the tools to be integrated.

Motivation: Design tools that have overlapping data
must be integrated to support a development process.
The integration solution must facilitate the interchange
of data among tools: data produced in one tool should be
usable in another tool. The architecture should not de-
pend on the physical representation of the data used in
the tools, and it should support a “post/fetch” style of
operation.
Applicability: Use this pattern if: (1) there is signifi-
cant overlap among data elements in the various tools, (2)
well-defined metamodels can be developed for the indi-
vidual tools, (3) the publish/fetch style of operation fits
the needs of the engineering process supported.

Structure: See Fig. 5 and discussion above.

Participants:
Tool Adaptor: Responsible for converting tool
data between the physical form and the canonical
form used to interchange data with the Integrated
Model Server.
Integrated Model Server: Responsible for host-
ing the Integrated Model Database (for short-term
storage of the tool data) and the various semantic
translators that map tool-specific data into data in
the Integrated Model Server.
Tool: Some engineering tool, whose data must be
shared with other design tools.

Collaborations:
• The tool adaptor interacts with the tool by reading
and writing the tool’s data.

Fig. 5. Design pattern structure for “Integration based on integrated data model”

• The tool adaptor and IMS interact by exchanging
data sets.

• Within the IMS the semantic translators map be-
tween the tool-specific data sets (in canonical form)
and the content of the Integrated Model Database.

Consequences: The architectural pattern has the fol-
lowing benefits and liabilities.

• It isolates the syntactical transformation on the
data from the semantic transformation on the data.
The former is done in the TA, the latter is done in
the IMS.

• The core components within the architecture are
reusable: they are not dependent on the particu-
lar tools used, as the tools are represented through
their metamodels. The same reusability applies to
the core protocols.

• The IMS operates with a schema that is derived
using the procedure described above. For a large
number of tools, it could be difficult to derive and
maintain this integrated data model.

Implementation: The approach can be implemented
using any middleware facility (e.g. CORBA, COM, etc.)
that supports remote object invocation and the trans-
fer of complex data structures. For large datasets it may
be necessary to design a separate high-performance data
management layer, which ships data in canonical form be-
tween the components.

Integration based on process flows

The motivating application for this tool integration solu-
tion came from a different domain: development of em-
bedded software, in particular vehicle management ap-
plications that are part of an avionics software suite.

21

G. Karsai et al. : Design patterns for open tool integration 163

The engineering process identifies several contributors in
the engineering process: (1) the component developer,
who builds software components using standard CASE
tools, like Rational Rose, (2) the system developer, who
builds system configurations from predefined components
using a domain-specific visual modeling language, (3) the
analysis engineer who performs analyses on the design
and verifies, for instance, schedulability using verification
tools, and (4) the integrator and test engineer who actu-
ally builds the applications, runs them on the platform,
and gathers test data. Similarly to the previous case, this
process also had a profound implication on the solution
architecture. Note that although there is a shared goal
(producing an application), the individual players use
different models: component models, system models, an-
alysis models, executable models, etc. Therefore, in this
architecture we did not use the integrated model concept,
but realized a point-to-point integration instead. The re-
sulting, notional architecture is shown on Fig. 6.
This architecture retains the concepts of TA-s and

ST-s from the previous one, but the individual tools share
data using a message-based approach: via a backplane
component, and the ST-s are not part of a single architec-
tural element anymore. The backplane provides routing
services for shipping models from one tool to another,
involving a semantic translation step if needed. The in-
terface between the TA-s and ST-s is implemented using
a middleware technology, but the backplane does not pro-
vide any kind of persistence services, as opposed to the
previous case.
In this architectural pattern, we have a more sophis-

ticated model of the workflow than in the previous one.
There, the workflow is somewhat ad-hoc, defined through
the “publish/fetch” activities of the individual tool adap-
tors. If a TA published a data set that got translated and
deposited into the IMS, then any other tool adaptor TA’
that had a semantic translator that could translate from
the IMS into the DSML of the TA’ was able to fetch it.

Fig. 6. Tool integration based on process flows

Here, the workflow among the tools is more restricted,
explicitly represented in and enforced by the backplane.
A workflow is represented as a flow-graph connecting spe-
cific tools. An example workflowmodel is shown in Fig. 7.
In the example, ESCM_UDM_UPDATER, ESCM_
UDM_PUBLISHER,ESML_RECEIVER_PUBLISHER,
CONFIG_RECEIVER_PUBLISHER,AIF_RECEIVER,
and AIF_UPDATER are tool adaptor types (interfacing
specific tools to the backplane), and all the other inter-
mediate elements (RR2ESML_ESML, ESML2CONFIG,
CONFIG2ESML, ESML2AIF, IIF2AIF) are semantic
translators.A translator is alwaysplaced between two tool
adaptors, and its placement indicates that the transla-
tor will receive the data published by a “producer” tool
adaptor, and then sends the results to a “consumer” tool
adaptor. Tool adaptors and translators can have multiple
inputs and outputs. In our implementation of the architec-
tural pattern, we have used aDSML for representingwork-
flows, and the backplane component included a workflow
engine that was configured through the workflowmodels.
The architecture operates as follows. The backplane is

initialized, and all the metamodels, translators and work-
flows are instantiated. This step is required, as we as-
sume that the backplane component is generic, and all
configuration of it is done at run-time. A manager tool
is available to configure the backplane and monitor its
operation. Workflows represent which tools are publish-
ers of and subscribers to what type of models, and how
these tools are sequenced. Tool adaptors, when started
have to register themselves with the backplane. When-
ever a tool wishes to make a model available to others, it
invokes its tool adaptor, which then sends the model to
the backplane. The TA in this stage performs the syntac-
tic transformation on the data, just like in the previous
architecture. The backplane receives the tool’s data in the
canonical, “network” form, which has each data object
tagged (and thus typed) with the corresponding meta-
object. Based on the workflow specification, the back-

22

164 G. Karsai et al. : Design patterns for open tool integration

Fig. 7. Example workflow

plane determines if there are registered consumer tools
and what translation steps need to be executed to ship
the (transformed) models to the consumer(s). It then in-
vokes the appropriate translator(s) and feeds the data
set (still in canonical form) to the translator. The se-
mantic translator performs the translation step, gener-
ates a data set in canonical, “network” form, compliant
with the metamodel of its output, and sends this data
set to the backplane. When this data set arrives at the
backplane, the backplane routes the set to the consumer
tool, which first gets a notification, and then, if the user
chooses, can download the data. The consumer tool adap-
tor performs the translation from the canonical form into
the tool’s physical data format (as in the previous case).
The definition of the architectural design pattern is as

follows.

Name: Tool Integration via Process Flows (or
Workflows).

Intent: Provide a generic architectural solution
for Open Tool Integration where there is a clearly defined
workflow among tools to be integrated.

Motivation: Design tools that have overlapping data
and precisely defined workflows must be integrated to
support a development process. The integration solu-
tion must facilitate the interchange of data among tools:
data produced in one tool should be usable in another
tool. The architecture should not depend on the phys-
ical representation of the data used in the tools, and
it should support a “publish/fetch” style of operation,
where the “publish/fetch” happens always between two
specific tools.
Applicability: Use this pattern if: (1) there is a well-
defined workflow among tools used in the process, (2)
well-defined metamodels are available for the individual
tools, (3) the workflow style of operation fits the needs of
the engineering process supported.

Structure: See Fig. 8 and discussion above.

Participants:
Tool Adaptor: Responsible for converting tool
data between the physical form and the canonical
form used to interchange data with the Backplane.
Backplane: Responsible for facilitating the work-
flow among tools and receiving and routing data
sets between to/from tool adaptors and semantic
translators.
Semantic Translator: Responsible for translat-
ing data sets in canonical form. The input data set
is compliant with the metamodel of a “publisher”
tool, and the output data set is compliant with the
metamodel of a “consumer” tool.
Tool: Some design tool, whose datamust be shared
with other design tools.

Collaborations:
• The tool adaptor interacts with the tool by reading
and writing its data.

• The tool adaptor and backplane interact by ex-
changing data sets.

• The backplane feeds data to and receives data from
specific translators. The exact routing depends on
the type of the data set and the workflow.

• The semantic translator collaborates with the
backplane by receiving the data sets and feed-
ing the results of the translation back to the
backplane.

Consequences: The architectural pattern has the fol-
lowing benefits and liabilities.

• It isolates the syntactical transformation on the
data from the semantic transformation on the data.
The former is done in the TA, the latter is done in
the semantic translator(s).

• The core components within the architecture are
reusable: they are not dependent on the particu-
lar tools used, as the tools are represented through
their metamodels. The same reusability applies to
the core protocols.

23

G. Karsai et al. : Design patterns for open tool integration 165

Fig. 8. Design pattern structure for “Integration based on process flows”

• Depending on the structure of a workflow, a large
number of translators may be necessary to build all
the possible paths among tools.

Implementation: The approach can be implemented
using any middleware facility (e.g. CORBA, COM, etc.)
that supports remote object invocation and the trans-
fer of complex data structures. For large datasets it may
be necessary to design a separate high-performance data
management layer, which ships data in canonical form be-
tween the components.

Illustrative example for integration based on
process flows

Here we describe a tool integration solution: a particular
tool chain that we built to support an engineering process
to develop avionics software. The process includes various
participants:

– The component developer, who builds software com-
ponents
– The system developer, who configures and integrates
components to build full systems
– The system analysis engineer, who analyzes the sys-
tem configurations for, e.g. schedulability
– The test engineer, who compiles and runs executables
and gathers data from the execution.

Note that occasionally a person can do more than one of
these tasks.
We have created a tool integration solution, which

supports a process that connects these participants into
a coherent workflow. The schematic representation of the
solution is shown in Fig. 9. Because a central compon-
ent in the tool chain is a design modeling language called
ESML [23], we call it the “ESML Toolchain”.
In the tool chain, the component developer is using

Rational Rose to model the application components and
to generate the API-s of components. The behavioral
code for the components is hand-written. Component
models are exported from Rational Rose in standard-
ized form, called ESCM (Embedded System Component
Model), which can be easily generated from the XMI rep-
resentation of models. For system level modeling, the sys-
tem developer is using the ESML language (supported
by a visual modeling environment, called ESML/GME).
ESML allows defining the components of a system, spec-
ifying the potential interactions among components, de-
scribing the hardware configuration of the system, and al-
locating the software components to hardware elements.
The analysis engineer is using various tools for schedula-
bility analysis. For being able to interface a number of dif-
ferent analysis tools to ESML, we have defined a common
Analysis Interchange Format (AIF), which is supported
by many, different analysis tools. The test engineer uses

24

166 G. Karsai et al. : Design patterns for open tool integration

Fig. 9. Tool integration solution for the ESML tools

XML-based configuration files, and generates executa-
bles based on the content of those files using some build
scripts. The executables are run on the embedded plat-
form, which is equipped with some software instrumenta-
tion tools that gather (for instance, timing-related) data
from the running system. There exists a version of the
run-time platform (which supports the component execu-
tion) that allows specification of Quality of Service (QoS)
properties, and dynamically adapts the scheduling poli-
cies used in order to satisfy the QoS requirements. This
variant of the run-time system is configured with a special
file, called the FCL file. The performance data gathered
during execution is made available using a standard inter-
change format call Instrumentation Interchange Format
(IIF). The data can be used to update the AIF format of
the system models, to add information like Worst-Case
Execution Time for the components.
The above process is supported by a tool integra-

tion solution, which includes a number of tool adaptors
and translators. The tool adaptors read or write ESCM,
ESML, CONF, AIF, FCL, and IIF data, while the trans-
lator translate between the various formats as required
(shown below the backplane on the figure). This tool
chain has been tried and evaluated by embedded soft-
ware engineers of a major aerospace manufacturer, and
was found extremely useful to address typical problems in
development.

Common extensions

Both of the abovepatterns allow further extensions and re-
finements.We discuss two issues in this section: incremen-
tal change propagation and traceability between tools.
As described above, the primary mode of operation is

to share “models” across tools through a publish/fetch

process, with semantic translations automatically in-
serted as needed. It is implicit that we share entire
models, however in many situations the propagation of
incremental changes is much more practical. Both of the
architectures are suitable to implement a tool integration
solution that supports this. The necessary refinements
are as follows:

1. The source TA has to be able to detect changes in the
subject model, and express these changes in appropri-
ate operations of the interaction protocol.

2. The semantic translator has to be able to translate the
changes in its input domain to changes in its output
domain. This is perhaps the most difficult operation,
and it may require access to the output data. For-
mally, the translator should not be a single-argument
“function”: y = f(x), rather a two-argument function:
∆y = f(∆x, yold).

3. The destination TA has to be able to update the out-
put data with the “delta” received from the translator.

The approach based on the integrated data model is less
suitable for supporting this change propagation (as it
involves two translations), while the process flow based
approach seems simpler. Recent proposals for XMI [31]
introduce extensions to XMI to handle delta-interchange,
which could be used support change propagation. At this
time, the creation of the incremental translator seems to
be the most problematic: deltas can often be understood
only with respect to a previous “state” (i.e. a previous
version of a model), thus the translators may need to
cache models that they have translated.
Both frameworks are metamodel-based: they are con-

figured through the use of metamodels. One has to cre-
ate a metamodel for each tool to be integrated (plus the
integrated data model for the first). When the trans-
formations are also specified using a metamodel, one

25

G. Karsai et al. : Design patterns for open tool integration 167

has an explicit representation of dependencies among
the data elements in the various tools. The key here is
that the transformations should be represented explicitly,
and thus allowing traceability. By traceability we mean
the ability to trace relationships among model elements
across multiple tools. Traceability allows, for instance,
what elements depend on what other elements, etc. One
technique that allows this is based on graph transform-
ations [34]. The model transformations can be expressed
in the form of graph transformation rules (which match
typed subgraphs on the input and construct typed sub-
graphs for the output), while the strict type system en-
forces that only syntactically correct models could be
produced. Writing translators using these high-level rules
not only enhances productivity but also allows reason-
ing about the transformations, including reasoning about
traceability. As the transformation rules explicitly relate
elements of the input to elements of the output, the infor-
mation needed for tracing is available. We have designed
a language: GReAT (for Graph Rewriting And Trans-
formations) and a set of associated tools (visual program-
ming environment, transformation rule interpreter, code
generator, debugger) [25] that support building tool inte-
gration solutions, through constructing the metamodels
of tools and models of the translation between tools.

Comparison and evaluation

The IDM approach assumes a significant overlap among
the metamodels (i.e. the data models) of the individual
tools, such that an IDM can be constructed and the map-
ping established. By “significant overlap” we mean that
a high percentage of the classes and associations in the
IDM have a direct correspondence with classes and as-
sociations in the metamodels of the tools. The approach
implements a full integration across N tools, using N (bi-
directional) translators. The IDM is effectively a com-
mon, “universal language” that is used to interchange
models. The shortcoming of this tool integration pattern
is apparent if one tries to integrate tools with widely dif-
ferent metamodels: if the coupling among the elements
of the metamodels of the tools is weak (but nevertheless
present) than it becomes difficult to determine the correct
mapping. One major problem is that of the “reasonable
defaults”: if concepts CA and CB are present in tools TA
and TB, respectively, and there is a partially defined map-
ping between CA and CB , then it is difficult to come up
with an algorithm that maps the instances of CA into in-
stances of CB, as it is not known what default values to
choose for properties that CBhas but CA does not. These
kinds of translations may require user input to make the
target models complete.
The process-based approach does not assume any

overlap and implements a pairwise integration among
tools. This tool composition works well if the tools oper-
ate on different models, and tools distant in the tool chain

are only very indirectly related. Although there is corre-
lation between the models used in the tools, the cohesion
is typically less than in the previous case. If there are N
tools, typically there are� N, unidirectional translators.
Practical experience with the IDM approach showed

that it becomes very complicated if the number of tools
grows beyond three or four. To understand and main-
tain the mapping, where a change could have very serious
consequences in four-five other places (translators, tool
adaptors, etc.), is becoming an insurmountable task for
an engineer.
Both of the design patterns have been tried out in

experimental systems: they formed the underlying archi-
tecture of two, independent tool integration frameworks.
These frameworks then have been used to build several,
specific integration solutions.
In one practical experiment, we have created an inte-

gration solution using the IDM-based approach for four
tools that were used in building the health management
system of an aircraft. The metamodels of the tools were
typically simple (∼ 10–20 model elements). The IDM
for this particular application was of similar complex-
ity (with ∼ 30 model elements). The typical average ef-
fort taken by integrating one tool was about 2 engineer-
months, evenly divided between developing a tool adap-
tor and developing a translator. However, by the time in-
tegrated the fourth tool we noticed that the time required
increased, and significant effort was spent in tracing the
mapping relationships from tool metamodel to IDM to
tool metamodels. Note that this is an indication that the
IDM approach, although conceptually simple, may not be
feasible to integrate a large number of design tools. De-
velopers who create tool integration solutions need some
sort of tool support to manage the complexity of multi-
ple, overlapping, complementary, or contradictory data
models. While in the prototype application there was
a common artifact (the aircraft), it was not sufficient in
itself to make the problem manageable.
The process-based approach does not have these

shortcomings, as the changes are always localized. Chang-
ing a metamodel for a tool impacts only the translators
that read and write models of that tool, but not others.
This locality allows scaling to larger tool chains, and
our experience with six tools shows that the approach is
highly feasible. Interestingly, the process-based approach
does not preclude the use of the IDM approach in a so-
lution: one “merely” has to create a tool that acts as the
integrated model server (IMS) – together with the appro-
priate translator(s).
In a separate experiment, the process-based approach

fared much better: while adding a new tool took about the
same effort as in the IDM-based case, it did not get worse
by the increasing number of tools. In this domain the
metamodels were more complex (∼40 model elements),
accordingly the translator and tool adaptor implemen-
tation became more complex. However, we were able to
take advantage of the graph transformation technology

26

168 G. Karsai et al. : Design patterns for open tool integration

described above, which increased productivity. While it
is hard to give a single number for the effort required to
add a new tool, the 1+1 engineer/month effort seems like
a good average.
Using a metamodel-based integration strategy en-

abled us the rapid construction of tool integration solu-
tions by instantiating the framework from metamodels
and using generative techniques [10]. We have devised
a process for this instantiation that consists of the follow-
ing steps: (1) identifying the tool chain elements and the
workflow among these elements, (2) metamodeling of the
tools, (3) modeling the semantic translations among the
tools, and (4) developing the tool adaptors, and generat-
ing the semantic translators. This process enabled us to
build and update instances of the framework with a rea-
sonable effort.
There are a number of other, relevant aspects of pat-

terns that could be used in deciding which one to use.
Regarding the traceability of model elements across tools,
the IDM-based solution fares better as it is easier to rec-
ognize the links through the single IDM, than in the
case of the process-based solution. Regarding the bi-
directionality of transformations, the IDM-based solution
requires it more often than the process-based solution, as
processes are often of the “feed-forward” type. Incremen-
tal transformations are more problematic in the IDM-
based solution, as the incremental change may affect mul-
tiple tools, than in the process-based solution. Regarding
scale-up to a large number of tools, the IDM-based solu-
tion is clearly inferior to the process-based solution, as it
was observed in the experimental systems.

Related work

The need for integrating (software) design tools has
been recognized since the appearance of CAD systems,
and many, architecture-based approaches have been de-
veloped. Below we summarize and compare a few of them
to the approaches described here.
Electronic Design Automation (EDA) [34] is an elec-

tronics industry standardization effort that provides
a framework for integration of electronic design tools. It
uses VHDL as common format for representing tool data.
The basic tool integration is achieved by transferring de-
sign data between tools using VHDL as the intermediate
format and using tool specific translators convert to and
from VHDL. Conceptually the approach is similar to the
IDM, but with a fixed, common interchange language:
VHDL, which limits its applicability to the domain of
VLSI design tools.
UniForM Workbench [18]is a universal environment

for formal methods, which follows the ECMA Refer-
ence Model [13] that outlines the abstract functionality
required to support the various dimensions of a tool in-
tegration process. It encapsulates existing development
tools, and uses Haskell as the integration language (i.e.

“glueware”) to integrate the tools. It provides a num-
ber of common services like Repository Manager (for
data integration), Subsystem Interaction Manager (for
control integration), and User Interaction Manager (for
presentation integration). The interaction model em-
ployed is similar to the BackPlane concept of the process
flow based integration. However, integration requires pro-
gramming in a complex, high-level language, and the inte-
gration is not standards-based (like CORBA, or MOF).
The work described in [35] introduces an integration

framework that supports traceability across software en-
gineering tools, and the “linking” to facilitate this is
implemented using CORBA services. In a sense, this is
yet another architectural pattern for tool integration.
An event-based integration approach is discussed in [18],
where the publish-subscribe pattern is used to support
low-level, fine-grain, event-driven integration. The tech-
nique discussed in [2] is similar to the design patterns
presented here (“tool adapters” and “information back-
bone”) however it is more service-oriented and does not
rely on metamodels. The platform-based approach de-
scribed in [26] provides an integration approach based
on fine-grain coordination across tools, and uses a tool
description language, similar (in spirit, if not in details)
to the metamodels described here. The use of explicit
metamodels and model transformations to facilitate in-
terchange is discussed in [5], however architectural de-
tails for the implementation are not described. Another
metamodel-based integration approach is described in [7],
where the (data) integration is explicitly modeled. This
is an alternative approach to the IDM described above,
and, possibly, it can be used to compute the specific IDM.
A model integration approach described in [35] solves the
run-time integration of (active) models using a message
(CORBA)-based framework, and it presents another ar-
chitectural pattern. The work presented in [18] describes
techniques that could be used to generate (at least part
of) the code for the translators in the IDM-based pat-
tern. The “homogenizer wrappers” implement precisely
the kind of operations the translators must perform in
order to (re-)express tool models in the integrated data
model.
In contrast, the approaches presented here provide

architectural solutions combined with the use of meta-
models and semantic translators, in a common, reusable
framework. The framework supports large-grain model
integration, where the integration relies on the use of
metamodels and mappings among them (that are used to
implement model transformations). Elements of the pat-
terns can be recognized in other solutions (notably [2,
3, 5, 26]), and, arguably, the pattern can be used to ex-
tend those solutions as well. For instance, the second pat-
tern can be used in the implementation of [5], while the
metamodel-based techniques can be used to enhance [2].
The application of the patterns described benefits the

software engineer who is responsible for building a tool
integration solution. The patterns give a generic solution

27

G. Karsai et al. : Design patterns for open tool integration 169

for a recurring design problem: how to integrate a set of
design tools, and some elements (e.g. architectural com-
ponents and protocols) of the patterns can be made fully
reusable across multiple domains. The patterns, with
reusable implementation of elements can be packaged as
a library that can be used to instantiate the patterns for
specific cases. We have instantiated the second pattern
in three different cases, for three different toolchains (of
comparable complexity as described above), and experi-
ence showed that new tool chains can be integrated with
1+1 engineer month’s effort, on the average.

Summary and future work

We have shown two architectural patterns that can be
used to build frameworks for tool integration solutions.
Both architectures are based on the principles of separat-
ing the syntactic and semantic transformations, and the
use of metamodel-based techniques. The first architec-
ture is based on an integrated model, but exhibits short-
comings with respect to scalability to larger tool chains.
The second architecture is based on a messaging system,
which routes data according to a workflow specification,
and implements a pairwise integration among tools.
The described solutions provide architectures that

solvemainly the data integrationproblem.The implemen-
tation of the control integration among tools is subject
to future work. The TA-s are currently hand-coded, and
using metamodels and generative techniques for imple-
menting them is another area of further work. As it was
pointed out above, the architectures allow incremental
propagation of changes in the models, but we have not
built the supporting infrastructure for that yet. Finally,
in geographically distributed tool integration scenarios,
there is a need for a web-based backbone for integrating
(localized) tool integration framework.Weplan to address
the issues of web-based frameworks in the future as well.

Acknowledgements. The Boeing Company, and the NSF ITR on
”Foundations of Hybrid and Embedded Software Systems” have
supported, in part, the activities described in this paper. The
effort was also sponsored by DARPA, Air Force Research Labo-
ratory, USAF, under agreement number F30602-00-1-0580.The US
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright thereon.
The views and conclusions contained therein are those of authors
and should not be interpreted as necessarily representing the offi-
cial policies and endorsements, either expressed or implied, of the
DARPA, the AFRL or the US Government.

References

1. Personal communication with engineers from a world-leader
telecommunication company

2. Altheide F, Dörfel S, Doerr H, Kanzleiter J (2003) An Ar-
chitecture for a Sustainable Tool Integration Framework. In:
ESEC/FSEWorkshop on Tool-Integration in System Develop-
ment, Helsinki, Finland, pp 29–32. Available from:
http://www.es.tu-darmstadt.de/english/events/tis/
documentation/Proceedings.pdf

3. Bergstra J, Klint P (1998) The discrete time ToolBus: A soft-
ware coordination architecture. Science of Computer Pro-
gramming 31(2–3):205–229, July

4. Boekhudt C (2003) The Big Bang Theory of IDE-s. ACM
Queue 1(7):74–83

5. Braun P (2003) Metamodel-Based Integration of Tools. In:
ESEC/FSE Workshop on Tool-Integration in System Develop-
ment, Helsinki, Finland, pp 45–30. See [2]

6. Broy M, Dederichs F, Dendorfer C, Fuchs M, Gritzner TF,
Weber R (1993) The design of distributed systems – an intro-
duction to FOCUS. Technical Report TUM-19202-2, Institut
für Informatik, Technische Universität, München, January

7. Burmester S, Giese H, Niere J, Tichy M, Wadsack JP, Wagner
R, Wendehals L (2003) Tool Integration at the Meta-Model
Level within the Fujaba Tool Suite. In: ESEC/FSE Work-
shop on Tool-Integration in System Development, Helsinki,
Finland, pp 51–56. See [2]

8. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M
(1996) Pattern-oriented Software Architecture: A System of
Patterns. John Wiley & Sons

9. Clark T, Evans A, Kent S, Sammut P (2001) The MMF Ap-
proach to Engineering Object-Oriented Design Languages. In:
Workshop on Language Descriptions, Tools and Applications
(LDTA2001), April

10. Czarnecki K, Eisenecker U (2000) Generative Programming –
Methods, Tools, and Applications. Addison-Wesley

11. Eclipse Framework (2004) www.eclipse.org
12. ECMA TR/55 (1993) Reference Model for Software Engineer-
ing Environments. NIST Spec. Pub 500-211

13. ECMA (1994) Portable Common Tool Environment (PCTE)
– Abstract Specification. European Computer Manufacturers
Association, 3rd edition, Standard ECMA-149

14. EDA (1995)
http://members.tripod.com/∼encapsulate/thesis.html

15. Braun V, Margaria T, Steffen B (2003) The Electronic Tool
Integration Platform (ETI) and the Petri Net Technology.
Petri Net Technology for Communication-Based Systems
2003:363–382

16. Gabriel RP (1996) Patterns of Software: tales from the soft-
ware community. Oxford University Press

17. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Pat-
terns. Addison-Wesley

18. Haase T (2003) Semi-Automatic Wrapper Generation for
a-posteriori Integration. ESEC/FSE Workshop on Tool-
Integration in System Development, Helsinki, Finland,
pp 84–88. See [2]

19. Hansen KM (2003) Activity-Centred Tool Integration. Using
Type-Based Publish/Subscribe for Peer-to-Peer Tool Integra-
tion. ESEC/FSE Workshop on Tool-Integration in System
Development, Helsinki, Finland, pp 11–16. See [2]

20. Karlsen E (1998) The UniForM WorkBench – a higher order
tool integration framework. In: International Workshop on
Current Trends in Applied Formal Methods, October

21. Karsai G (1999) Structured Specification of Model Inter-
preters. In: Proc. of International Conference on Engineering
of Computer-Based Systems, Nashville, TN

22. Karsai G, Gray J (2000) Design Tool Integration: An Exer-
cise in Semantic Interoperability. In: Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh, UK,
March

23. Karsai G, Neema S, Abbott B, Sharp D (2002) A Modeling
Language and its Supporting Tools for Avionics Systems. 21st
Digital Avionics Systems Conference, August

24. Karsai G, Sztipanovits J, Ledeczi A, Bapty T (2003) Model-
Integrated Development of Embedded Software. In: Proceed-
ings of the IEEE, vol 91, no 1, pp 145–164, January

25. Karsai G, Agrawal A (2004) Graph Transformations in
OMG’s Model-Driven. In: Applications of Graph Transform-
ations with Industrial Relevance, Charlottesville, Virginia,
September. Lecture Notes of Computer Science, vol 3062.
Springer, pp 243–259

26. Karsai G, Agarwal A, Shi F, Sprinkle J (2003) On the
Use of Graph Transformation in the Formal Specification of
Model Interpreters. Journal of Universal Computer Science
9(11):1296–1321

28

170 G. Karsai et al. : Design patterns for open tool integration

27. Margaria T, Wübben M (2003) Tool Integration in the ETI
Platform – Review and Perspectives. In: ESEC/FSE Work-
shop on Tool-Integration in System Development, Helsinki,
Finland, pp 39–44. See [2]

28. MOBIES Project (2004) http://www.isis.vanderbilt.edu/
Projects/mobies/default.html

29. OMG MDA (2004) http://www.omg.org/mda
30. OMG MOF (2004) http://www.omg.org/mof
31. OMG XMI FTF (2004) http://www.omg.org/techprocess/
meetings/schedule/MOF_2.0_XMI_FTF.html

32. PCTE Standard (1998) ISO/IEC 13719
33. Rational Corporation (2004) http://www.rational.com
34. Schettler O (1995) Encapsulating design tools in the EDA.
http://members.tripod.com/∼encapsulate/thesis.html

35. Schopfer G, Yang A, Marquardt W (2003) Tool-Integration
in Chemical Process Modeling. In: ESEC/FSE Workshop on
Tool-Integration in System Development, Helsinki, Finland,
pp 79–83. See [2]

36. Wilcox P, Weiss D, Russell C, Smith MJ, Smith AD, Pooley
RJ, MacKinnon LM, Dewar RG (2003) A CORBA-Oriented
Approach To Heterogeneous Tool Integration; OPHELIA. In:
ESEC/FSE Workshop on Tool-Integration in System Develop-
ment, Helsinki, Finland, pp 1–5. See [2]

Gabor Karsai isAssociatePro-
fessor of Electrical and Computer
Engineering at Vanderbilt Uni-
versity and Senior Research Sci-
entist at the Institute for Soft-
ware-Integrated Systems at Van-
derbilt. He got his BSc, MSc and
TechnicalDoctorate degrees from
the Technical University of Bu-
dapest, Hungary, in 1982, 1984,
and 1988, and the PhD degree
from Vanderbilt University, in

1988. He conducts research in model-integrated computing
(MIC), in open tool integration frameworks, automatic pro-
gram synthesis and the application of MIC in various govern-

ment and industrial projects.He is a seniormember of the IEEE
Computer Society and the TC on Computer-Based Systems.

Andras Lang is currently
a project leader with a small soft-
ware company in Hungary. He
was a Staff Engineer at the Insti-
tute for Software-Integrated Sys-
tems at Vanderbilt University for
the last two and a half years.
His research interests includes:
design tool-integration frame-
works, infrastructures for imple-
menting domain-specific model-
ing languages and model-based

design of embedded systems. He received his master’s degree
from Budapest University of Technology and Economics in
2001.

Sandeep Neema is a Research
Assistant Professor of Electrical
Engineering and Computer Sci-

ence at Vanderbilt University.
His research interests include: de-
sign tool-integration frameworks,
dynamic adaptation for QoS as-
surance in distributed real-time
embedded systems, model-based
design of embedded systems,
aspect-oriented program compo-
sition techniques, design space

exploration and constraint based synthesis of embedded sys-
tems, and fault-tolerance in large-scale computing clusters. He
received his PhD fromVanderbilt University in 2001.

29

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

Tool Integration Aspects in the Model-Driven Architecture

Gabor Karsai

gabor.karsai@vanderbilt.edu
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN 37235, USA

Abstract

Proponents of the MDA vision seem to agree that it will become reality only if we have the proper tools
to practice it. Using models in software development poses interesting challenges for the tool developers:
tools are needed (1) for modeling on varying levels of abstraction, (2) for transforming models between
modeling paradigms (and code), and (3) for analyzing and verifying properties of models (to ensure we
build the right system correctly). In addition to the need for usable tools (to avoid becoming “shelfware”),
tools must talk to each other and work together as a seamlessly integrated ensemble. This paper outlines the
various aspects of the model-driven development process, the specific tool categories needed, and
highlights the integration problems arising in tool suites.

Introduction

The Model-Driven Architecture (MDA) [1] is a recent conceptual framework for software engineering
and development practices, mostly promoted by the Object Management Group (OMG). The key aspect of
MDA is the overwhelming use of models in the software development process: models for capturing
requirements, models for describing the design, models for analyzing the system before it is built, and
models for generating (at least parts of) the final product. Similar approaches, like Software Factories from
Microsoft [2], IBM’s Rational Rose tools [3], and Borland’s Enterprise Studio [4] promote familiar
concepts and techniques.

Tool-supported software development is not new and has been tried before under the name Computer-
Aided Software Engineering (CASE) [5], with varying success. Arguably, the CASE movement made two
lasting impacts: (1) the introduction of the automatic code (“application”) generators for specific domains
(like controller design, see, e.g. Matrix-X [6] and Matlab [7]), and (2) the introduction of Interactive
Development Environments (IDE-s) (that integrate the most commonly used software development tools,
like editors, compilers, debuggers, etc. in an interactive framework).

In this paper we analyze how and why MDA is different, what kind of tool integration approaches are
available, and how an MDA process can be equipped with specific software tools. As illustration, we
discuss our experiences with two tool integration projects.

MDA and Tool Integration

MDA proscribes a development process that relies on models of the software, the system and its
environment to build the software product, and thus it is necessary to have tools that create, manipulate,
and transform these models. It is hard to envision a single, all-encompassing tool that can do everything.
Rather, separate tools that support specific activities in the process are envisioned, which form tool chains.
One can recognize an orderly progression from the simple code generators towards domain-specific tools,
as outlined below. Below, we look at three approaches and highlight the fundamental research questions
related to tool integration in each.

30

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

Single-stage generation

As mentioned above, one very useful outcome of the CASE activities was the introduction of
Application Generators [8] for restricted domains. The two main examples are Mathworks’
Matlab/Simulink/Stateflow tool and National Instruments’ Matrix-X tool, both of which support software
development for embedded controllers. Early visual modeling tools (e.g. Software-Through-Pictures [9])

and first-generation UML modeling tools (e.g. early
versions of Together by Borland [10]) have also had
similar capabilities. These tools followed a single
pattern, as shown on Figure 1 that emphasized one
stage: generating code from models. We call this the
“single-stage generation” approach to distinguish it
from the more sophisticated techniques discussed
later.

Here, the existence of a run-time platform is
assumed, such that (1) the generated code is
executed on that platform, and (2) the platform
provides some OS-like services. For example, for
Matrix-X the platform was an Ada run-time system
(possibly running on top of a real-time operating

systems, like VxWorks [11]). The generator was to map the modeling concepts (e.g. dataflow blocks,
finite-state machine diagrams) into platform-specific concepts (e.g. tasks or code fragments). In a sense, the
main conceptual problem here was the integration of the model-level concepts with the platform-level
details. In other words, the question was how the model semantics was implemented using the capabilities
of the platform. Arguably, the problem was solved (as numerous auto-coders have been implemented),
however the exact mapping was not or (often) poorly documented.

(UML) Models

Generated
Code

(CORBA) Platform

Generation Round-trip

Figure 1: Single-stage generation

Yet another, typical service of these single-stage generator tools was a round-tripping service. Generated
code is considered just another artifact in a development process, but it could also be hand-modified by the
developer. This means that changes introduced on the code had to be reflected back to changes on the
model and vice versa. This requirement necessitated the development of sophisticated algorithms that
detected changes in the code, and reflected those changes on the models such the models and the code were
always kept synchronized. Naturally, the mapping between code and models is not bijective, making this
step difficult.

Arguably, the need for synchronization is a perceived requirement that is derived from the underlying
code-based development process: the ultimate product is the source code that can be modified by the
programmer. However, the usefulness of round-tripping is questionable. If one accepts that some parts of
the system are implemented in (programming language) code, but other parts are implemented in models,
then there is not much need for round-trips. However, another problem arises: namely, how to interface
(high-level) models with (hand-written) code? We strongly believe that this model/code interface problem
is crucial for MDA and tools are needed that assist developers.

To summarize, some of the research problems related to tool integration that arise in single-stage
generation approach are as follows:
• How to describe and implement the code generation process?
• How to ensure and/or verify the correctness the generation process?
• How to maintain synchronization between code and models?
• What is the “conceptual interface” between models and code?

Two-stage generation

In the MDA conceptual framework, as outlined by OMG [1], the single-stage generation is replaced by a
two-stage generation process, as shown on Figure 2.

31

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

Here, first platform-independent models (PIMs) are created, which are then transformed into platform-
specific models (PSMs) that are then used in generating (platform-specific) code. Arguably, the approach
was designed to address the need for multi-platform applications that are required to run on different
platforms (e.g. CORBA[12], or J2EE[13], or .NET[14]).

Platform Independent
Models

Generated
Code

Platform1 PlatformN

Generated
Code

Platform
Specific
Models

Platform
Specific
Models

Generation

Model Transformation

……………

……………

……………

Generation

Figure 2: Two-stage generation in MDA

Note that two, rather different stages exist here: one for the model transformation (PIM to PSM), and
another one for code generation. The developer is supposed to work (primarily) with PIMs, but manual
modification of PSMs (and possible the generated code) is still possible. The first stage transformation

maps the higher-level, more abstract models into
platform-specific models, from which it is easier
to generate code. In this model transformation
step the (generic) transformation tool may rely on
explicit platform models that capture platform
specific details in a form understood by the
transformer.

Some research problems specific to the two-
stage approach are as follows:
• How to describe and implement the model-

to-model transformation process?
• How to ensure/verify the correctness of the

transformation?
• How to capture platform models and how

these models are to be used in the
transformation?

• How do we maintain consistency across
PIMs and PSMs?

• How do typical development activities map into this framework? When do we transform models in
development? How do we use the transformed models?

Domain-Specific MDA: Model-Integrated Computing

One often unstated assumption in MDA is that UML is the modeling language and all models are
expressed as UML models. Any extensibility (or domain-specificity) is to be handled through the use of the
extension features in UML, namely stereotypes and profiles.

Model-Integrated Computing (MIC) [15] goes one step beyond MDA through relaxing this assumption
and advocates the use of domain-specific modeling languages and tools in the development process. MIC is
similar to MDA in its advocacy for the ubiquitous use of models, but refines that through allowing and
emphasizing the domain-specificity of models. It extends the concepts of domain-specific languages -
which, arguably, enhance the programmer’s productivity into the model-driven development process. One
notional view of MIC is shown on Figure 3.

In MIC, developers use domain-specific model languages for creating models of the application. Often,
multiple, yet related modeling languages are used. These domain specific models are then transformed into
other, intermediate models or directly used in generation. The intermediate models are used for generation
(and thus they subsume the role of PSM-s), and for analysis.

Mathworks’ Matlab/Simulink/Stateflow provides an example for an MIC development process.
Engineers with expertise in signal processing and controls develop complex applications using the
Simulink and Stateflow visual and the Matlab textual languages — both of which are domain-specific.
Mathworks’ code generator tool creates executable code from the models that can run a platform (e.g. an
embedded controller). Third party analysis tools (e.g. SAL [16]) could be used to analyze, for instance,
safety properties of the controllers.

32

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

Domain-Specific
Models - 1

Domain-Specific
Models - N

(Intermediate)
Models - A Intermediate

Models - Z

Generated Code (s)

Platform(s)

Generation Generation
Generation

Model Transformation
Model Transformation Model Transformation

Model Integration

Analysis Tool

Figure 3: Domain-specific models in MIC

The MIC development process can be generalized to arbitrary domains by introducing a higher-level
layer for metamodeling [17]. Metamodels provide the formal and computer-readable definition of modeling
languages, which are then used in configuring generic tools to support the development process.

Metamodeling and the use of metamodels in defining MIC environments have been discussed earlier [15].
MIC highlights two main categories of research problems for tool integration. On one hand, the

multitude of the domain-specific modeling languages to be used in developing complex applications
necessitates “model integration”: the integration across the modeling languages. On the “meta” (language
definition) level, modeling (sub-) languages for specific domains should have clearly defined interfaces that
one can use to compose them. On the operational (implementation) level one has to solve the “single data
entry” problem: i.e. information should be entered only once, and data shared across the different modeling
paradigms must be kept synchronized.

On the other hand, the domain-specific MIC development environments often require tool integration
across the different functional tools: model building tools, simulators, model analysis tools, generator tools,
etc. To instantiate a generic MIC process for a specific domain one needs model transformation technology
that helps building —affordably— sophisticated tool chains. One needs translators to connect the elements
of these toolchains (where the elements are often specialized, custom tools with their own language).

In summary, MIC promotes the use of domain-specific approaches (tools, techniques, languages) in the
development process. This is made feasible by the use of metamodels and highly configurable, meta-
programmable tools. When tools are also domain-specific, one needs to integrate them into the
development process, such that the developers do not have to deal with tool-specific details (e.g. the details
of the input language of an analysis tool).

Integration Patterns

As pointed out above, tool integration is essential to a model-driven development process, especially if
domain-specific tools are used. Methods and architectural approaches for tool integration have been
developed in the past, and in this section we briefly review a few of the major techniques. For a more
detailed analysis, see the paper [18].

“Star”

In this approach tools effectively share models with each other through a common database, as shown on
Figure 4. The database has a schema that is capable of representing all the data that need to be shared

33

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

across the tools. Producer tools publish their data and consumer tools fetch that data via the common
database. Tools interact with the database using adaptors and translators that address the syntactic and
semantic details of integration, respectively.

The “star” approach works
well for a small number of tools
with significant overlap across the
data models of the individual
tools [19]. In these situations, the
shared (common) data model is
easy to design. However, the
approach does not scale well for a
larger number of tools. Keeping
track of related schema elements
across more than five tools have
been found very difficult in
practice. Additionally, the
approach does not have a well-
defined workflow, as the
publishing and fetching of data is
completely opportunistic.

TOOL
ADAPTOR

COMMON
DATABASE

TRANSLATOR

TOOL
ADAPTORTRANSLATOR

TRANSLATOR

TOOL
ADAPTOR

Figure 4: “Star” tool integration pattern example

Flows

The limitations of the “star” integration pattern led to the development of a different pattern that follows
the logical workflow in a toolchain. Instead of a single, centralized database that all tools use to share data,
integration happens here in a pairwise manner: the tools interact with each other only as the workflow
dictates. For an example see Figure 5.

The individual tools are
interacting with a messaging
framework, hosted in the
“Integration Backplane” that
also includes a workflow
engine. This component
ships data published by
tools to the appropriate
translators and then to
subscriber tools as the
workflow proscribes it. Note
that the logical workflow
(dashed lines on the figure)
is different from the
physical dataflow (thin
lines), as the data to be
interchanged still travels via
a central entity: the

backplane.

TOOL
ADAPTOR

TRANSLATOR

TOOL
ADAPTOR

TOOL
ADAPTOR

INTEGRATION BACKPLANE
WORKFLOW ENGINE

TRANSLATOR

Workflow:

Dataflow:

Figure 5: “Flows” tool integration example

The “flows” approach works well for larger number of tools and it imposes regularity on the operation
of tools. However, in itself it is not suitable for keeping a history of operations, and external, repository-like
tools are needed for that.

Links

The previous two integration patterns are based on the requirement that data (“models” in MDA) needs
to be shared across multiple tools in an engineering process. Often there is a different requirement for tool

34

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

integration: namely data sets that are dependent each other must be kept synchronized. This problem can be
solved using a third pattern, shown on Figure 6.

In this approach the tool
integration does not share data
across tools, rather, it shares
changes to the data [20]. There
is a centralized database here
as well, but it merely
maintains the links that link
existing data elements existing
in the tools. When changes to
data elements are made, the
tool adaptor of the source uses
the database to determine the
dependent and effected data
elements, and notifies their

tool adaptors, which, in turn, can make the necessary changes in the dependent tools.

Tool-A

Tool-B

Tool-C

Tool Adaptor

Tool Adaptor

Tool Adaptor

“Link”
database

Figure 6: “Links” tool integration example

All of the tool integration patterns discussed above have been tried and used in a number of toolchains,
many of which were not related to only software development [19]. These three patterns provide a
conceptual framework for building tool integration solutions that are necessitated by MDA and its MIC
variant. They are all patterns, in the sense that they have to instantiated for specific tools and specific
problems. This instantiation process can be supported by tools (actually, meta-tools) as discussed below.

GReAT: A tool for model transformations

The “Star” and “Flows” integration patterns necessitate a component called the translator, which
translates data from tool to tool. Naturally, the cost of integrating tools depends on the cost of creating such
translators, thus a technology is needed for the efficient construction of these translators. Note we mean
“programmer’s efficiency” here, and not necessarily the efficiency of the translator itself. Note also that
translators for tool integration will also implement the model transformation functions needed in MDA and
MIC.

In our view, the model transformation problem is best approached by providing a technology that
developers can use for the rapid development of model transformation tools. In the XML world, documents
are often translated using scripts written in XSLT: the transformation language for XML documents.
However this transformation technology does not scale up to large and semantically complex documents or
models that are expected in MDA. Motivated by this requirement, during the past few years our research
group has built a technology and toolsuite for building model transformation tools, which we summarize
here. The technology is called “Graph Rewriting And Transformations” (GReAT), as it uses graph
transformation techniques [21]. For more details please see the paper [22].

GReAT is based on a language that supports the high-level specification of model transformation
programs. The language is graphical (though it allows textual specifications in selected places), and its
programs describe model transformations in terms of sequenced graph rewriting rules. The features of the
language are summarized on Figure 7.

35

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

A model transformation in
GReAT is broken down into
elementary graph rewriting steps
that (1) recognize a subgraph in
the input graph, and (2) create a
portion of the output graph. As it
is expected, both the inputs and
the outputs of the transformation
are considered graphs; more
precisely, typed and attributed
hypergraphs, where the node and
edge types correspond to classes
and associations of a UML class
diagram capturing the
metamodel of the input (or
output). An individual rewriting
rule is shown in the box at the
bottom of Figure 7 that includes
a graph pattern to be recognized,
and the action to be taken.
Another rule can be seen in the
top box of the figure. On the left
and the right side of the rule one
can recognize small icons
labeled “In” and “Out”: these
denote ports that are bound to
specific nodes in the input (or
output) graph before and after
the rewriting rule is executed,

respectively. These local binding allows very efficient searches for subgraphs, as the rule execution engine
will look for a match only in a limited context. The rewriting rules are sequenced, as shown in the middle
of Figure 7, and this sequencing supports a small but powerful set of control structures. The sequencing
happens by connecting the input and output ports of the rules. Sequences can be encapsulated into higher-
level rules, and features like recursion, branching, and non-deterministic choice are supported.

Figure 7: Summary of the GReAT language

GReAT is equipped with a full suite of tools that support modeling, execution, compilation, and
debugging. The graphical model construction is supported through a visual modeling environment based on
the Generic Modeling Environment (GME): a metaprogrammable modeling tool [33]. Execution is
supported through a Graph Rewriting Engine (GRE) that interprets GReAT programs directly. Compilation
is supported by a code generator that performs a partial evaluation on the transformation programs and
generates executable C++ code from them. Debugging is supported by an add-on component of GRE that
allows interactive control of execution of GReAT programs.

GReAT and its tools have been used to develop a number of model transformation tools model-based
development toolchains that were reported elsewhere [32].

Two examples

The real results of tool integration in model-driven software development can be assessed only through
specific examples. In this section we review two specific toolchains that we have worked on and report on
our experiences.

36

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

An MIC toolchain and its impact

The development of mission computing applications for high-performance aircraft is a central topic for
distributed, real-time, embedded (DRE) systems [30]. Mission computing systems perform navigation
functions, manage other flight systems (e.g. fuel system), run the pilot’s interface, and, in general, belong to
the classes of soft real-time systems. A typical mission computing application runs on 1-4 processors, and
consists of a few hundred to a few thousand software components, each component having about 1,000
lines of source code in a high-level language (C++). The most difficult activity in development is the
configuration and integration of the final application.

We have developed a toolchain and a few domain-specific languages for supporting the model-based
configuration and integration of mission computing applications. The toolchain is illustrated on Figure 8.
The main, system-level domain-specific modeling language is called Embedded System Modeling
Language (ESML), and it has been reported elsewhere [23]. The toolchain is named after the modeling
language.

The ESML toolchain focuses on the model-based integration of large-scale DRE systems for mission
computing applications. Component design and development is done using conventional tools (IBM
Rational Rose for design an modeling, and C++ IDE for coding). The subsequent steps in the process rely

on the component models.

AIF
XML

CONFIG
XML

Rational
Rose

ESML/GME ESCM2ESML

Analysis
Tool(s) ESML2AIF

AIF2ESML

ESML2CONF

CONF2ESML

Execution
Platform

Instrumentation

IIF2AIF

Build Tool

Component
Development

System
Development

System
Analysis

System
Generation

Legacy
Reverse

Engineering

Analysis
feedback

Model update
from

instrumentation

Figure 8: ESML toolchain for developing mission computing applications

Component models are imported into the system-level modeling tool that supports the construction of
ESML models. The import service is facilitated by a translator (ESCM2ESML). The translator can also be
operated in “update” mode, when ESML models are to be refreshed (but not replaced) with new models
from the component modeling tool. The ESML modeling tool supports the visual construction of system
configurations from components. The tool also has built-in “design checkers” that warn the developers
about semantically incorrect constructs. The constructed system models can be compiled into analysis
models (compliant with the Analysis Interchange Format (AIF) XML schema), and then handed over to
analysis tools. A typical analysis session of the models includes event dependency analysis, component
allocation analysis, and schedulability analysis. For the allocation analysis, the tool can generate new,
recommended component allocation models that, in turn, can be imported back into the ESML modeling
tool. From the system level model one can generate a Configuration XML file that is used to generate all
the initialization code and auxiliary information (e.g. makefiles) for a build tool that compiles and links the
final application. The application is executed on a computational platform (typically, an RTOS with real-
time CORBA), which could be instrumented to gather run-time data. The data gathered can be incorporated
into the AIF files (with the help of a translator: IIF2AIF), such that the analysis tool can take advantage of

37

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

actual, measured running times for components. One can also reverse engineer ESML models from existing
Configuration XML files that are available for legacy systems.

The above tool chain has been implemented by a number of researchers participating in the project, and
has been evaluated by a major aircraft manufacturer and system integrator [24]. Historical data (from two
past projects) from the integrator indicated that major projects typically spend over half (51% and 59%) of
their efforts in system integration, hence the motivation for building the toolchain for that purpose. The
data also indicated that about 25% of defects were related to component interfaces and system
configuration. On a medium size example (about 800 components), the model-based approach to
integration took about 18 person/hours (as opposed to 62 hours without the tools). For finding integration
errors, the model-based approach worked also better: it produced a 12-fold time saving in locating and
fixing errors.

The HSIF Experience

The development of embedded computing systems often necessitates a thorough analysis of the software
system in the context of its environment. In an embedded application (like an automatic flight control
system) physics and computation are interlinked, and the overall dynamic system behavior is determined by
both the programmed behaviors and the responses of the environment to the computer’s actions. Recently,
a new class of analysis techniques has been developed that integrate the continuous-time dynamics of
physical systems with the more discrete behavior of computational systems. These techniques and tools are
commonly called as “hybrid systems” or “hybrid automata” [25].

In spite of the underlying conceptual similarity, there are a number of hybrid system modeling
approaches and corresponding analysis algorithms and tools. For the developer it is very hard to compare
the various approaches and tools, especially because various tools excel at verifying various properties. For
instance some tools are good at simulating a hybrid system, other tools are good at verifying reachability
properties, and yet another tool is good at verifying stability properties. Clearly, there is a need for
integrating the various tools and approaches.

In the context of a DARPA-sponsored research project, we have participated in a tool integration effort
that aimed at producing a common interchange format for representing hybrid system models. The result of
this project was a Hybrid System Interchange Format (HSIF) [26]. Note that this effort was different from
typical software design tool integration projects: here, a single interchange format was to be developed and

all tools were
expected to
communicate via
this format.

Figure 9 shows
the envisioned

interoperability
between various
hybrid system
analysis tools via
HSIF. Translators to
and from HSIF have
been built as
indicated on the
figure. The tools
were: Charon (a
hybrid system
simulation and

analysis toolkit from University of Pennsylvania [27]), SAL (a hybrid system analysis tool from SRI [16]),
Ptolemy (a hybrid system simulation tool from UC Berkeley[28]), Matlab/Simulink (a product of
Mathworks [7]), Checkmate (a hybrid system simulation and analysis tool from CMU[29]), RMPL/MOF (a
hybrid system modeling language from MIT [31]), GME/HSIF (a hybrid system visual modeling
environment from Vanderbilt [33], and Teja (a hybrid system modeling and simulation tool from Teja
Technologies [34]).

CHARON

HSIF

SAL Ptolemy ML/Simulink Checkmate

GME/HSIF

TTrraannssll TTrraannssll TTrraannssll TTrraannssll TTrraannssll

TTrraannssll

Teja

TTrraannssll

RMPL/MOF

TTrraannssll

Figure 9: HSIF tool integration example

38

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

The main benefit of a tool integration solution via HSIF is the ability of verifying controller designs.
Industrial participants in the project have pointed out that current model-based tools often lack the formal
verification capabilities, and the only applicable approach is testing - often not feasible because the size of
the state-space of the systems.

The participants of this project have learned a number of lessons, some of which are listed below:
1. It was surprisingly difficult to arrive at a common and accepted semantics for the interchange format.

While the concepts of hybrid automata have been defined many times in the past, the extended version that
forms networks of these had no formal definition at the beginning of the project. As the precise semantics is
essential in any kind of interchange language, significant effort was spent on defining this shared
semantics.

2. The final semantics was more denotational than operational, and thus multiple operational
interpretations and implementations were possible. The elegance and precision of denotational semantics is
not sufficient for an operational definition. Many tools have been simulators, and when they were
implemented they produced slightly different behaviors —even when the implementors worked from the
same denotational semantics specification. Implementation details (like floating-point accuracy, treatment
of zero-time transitions, etc.) had a significant impact and forced the researchers to re-think the precise
semantics, this time from a more operational point of view.

3. In some cases the complexity of the translation was a serious issue. Some of the tools, notably
Matlab/Simulink/Stateflow, are widely used in the industry, but do not have direct support for hybrid
automata. The translation of models from these tools into HSIF was especially difficult as certain model
elements of HSIF could not be determined automatically from the models (e.g. reset functions).

4. For realistic examples, translators often produced un-analyzable models. Straightforward translation
of some constructs (e.g. arbitrary C++-style assignments on transitions) into HSIF resulted in models of
enormous size that analysis tools were incapable of handling. We learned that translators may need to
perform on-the-fly abstraction to simplify models such that the analysis tools could cope with the results.

In summary, the HSIF tool integration project was an extremely valuable exercise in building support for
model-based development. It had partial success, but, more importantly, it allowed us to learn about the
difficulties of semantics and translation.

Conclusions

Experience shows that model-driven development necessitates tool support, and the tools must work
together in a seamlessly integrated manner. In this paper we reviewed the thinking behind the conceptual
framework called Model-Driven Architecture (MDA) and a practical extension of it: Model-Integrated
Computing. The three, large-scale architectural tool integration patterns provide a starting point from which
actual tool integration solutions can be built. All three patterns have been implemented, in many, different
systems, and their properties are well established. Experience with tool integration projects for model-
driven development indicates the benefits but also highlights the potential problems.

In summary, tool integration is perhaps the most challenging problem facing software engineering, tool
developers, and tool users today. However, the model-driven approaches (including the model-
transformation technology) provide a first step towards building up a toolbox of solution patterns — with
the caveat that much more research is ahead of us.

Acknowledgements

The DARPA/IXO MOBIES program and USAF/AFRL under contract F30602-00-1-0580, and the NSF
ITR on "Foundations of Hybrid and Embedded Software Systems" have supported in part, the activities
described in this paper. The author also would like to thank Ben Abbott, Aditya Agarwal, John Bay, Alex
Egyed, Anouck Girard, Zsolt Kalmar, Bruce Krogh, Andras Lang, Eward Lee, Insup Lee, Sandeeo Neema,
Wendy Roll, Mark Schulte, Dave Sharp, Feng Shi, Kang Shin, Oleg Sokolsky, Jon Sprinkle, Greg Sullivan,
Janos Sztipanovits, Ashish Tiwari, Attila Vizhanyo, and Brian Williams for their support.

39

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

References

[1] Model-Driven Architecture http://www.omg.org/mda/
[2] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent: Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools, Addison-Wesley, 2004.
[3] IBM Rational Software http://www-306.ibm.com/software/rational/
[4] Borland Enterprise Studio http://www.borland.com/estudiojava/index.html
[5] Hausi A. Muller, Ronald J. Norman, Jacob Slonim: Computer Aided Software Engineering, Kluwer

Academic, 1996.
[6] Matrix-X tools http://www.ni.com/matrixx/
[7] Matlab, Simulink and Stateflow tools http://www.mathworks.com
[8] Yannis Smaragdakis and Don Batory: Application Generators preprint from Encyclopedia of Electrical

and Electronics Engineering, (John Wiley and Sons), available from
http://www.cc.gatech.edu/%7Eyannis/generators.pdf

[9] Software Through Pictures product http://www.aonix.com/stp.html
[10] Borland’s Together tools http://www.borland.com/together/
[11] VxWorks Real-time Operating System,

http://www.windriver.com/products/device_technologies/os/vxworks5/
[12] OMG’s CORBA http://www.corba.org/
[13] Java 2 Platform Enterprise Edition http://java.sun.com/j2ee/
[14] Microsoft .NET http://www.microsoft.com/net/
[15] Karsai, G.; Sztipanovits, J.; Ledeczi, A.; Bapty, T.: Model-integrated development of embedded

software, Proceedings of the IEEE, Volume: 91, Issue:1, Jan. 2003 Pages:145 – 164
[16] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, N. Shankar, Maria Sorea, and Ashish

Tiwari: SAL-2, Tool description presented at CAV 2004. Appears in Springer Verlag LNCS 3114, pp.
496-500.

[17] Karsai, G., Maroti, M., Lédeczi, A., Gray, J. and Sztipanovits, J., “Composition and Cloning in
Modeling and Meta-Modeling,” IEEE Transactions on Control System Technology (special issue on
Computer Automated Multi-Paradigm Modeling), Dec 2003

[18] Karsai, G., Lang, A., Neema, S.: Design Patterns for Open Tool Integration, Vol 4. No1, DOI:
10.1007/s10270-004-0073-y, Journal of Software and System Modeling, 2004.

[19] Karsai G.: Design Tool Integration: An Exercise in Semantic Interoperability, Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh, UK, March, 2000.

[20] Tod Hagan, John Walker: Conceptual Data Model Evolution in Joint Strike Fighter Autonomic
Logistics Information System of Systems Engineerin, White Paper, available from
http://www.modusoperandi.com/Enterprise_Info_Integration/white-papers.htm

[21] Grzegorz Rozenberg, “Handbook of Graph Grammars and Computing by Graph Transformation”,
World Scientific Publishing Co. Pte. Ltd., 1997.

[22] Karsai, G., Agarwal, A., Shi, F., Sprinkle, J. On the Use of Graph Transformation in the Formal
Specification of Model Interpreters, Journal of Universal Computer Science, Volume 9, Issue 11, 2003.

[23] Karsai, G, Sandeep Neema, Ben Abbott, David Sharp, “A Modeling Language and its supporting
Toolset for Avionics Systems,” Proceedings of the IEEE Digital Avionics Systems Conference, 2002.

[24] Personal communication from engineers of a major aircraft manufacturer. Evaluation results on record
with USAF/AFRL and DARPA.

[25] Henzinger, T.A.: The Theory of Hybrid Automata. In Proc. of IEEE Symposium on Logic in Computer
Science (LICS'96), pages 278--292. IEEE Press, 1996.

[26] The Hybrid System Interchange Format, available from:
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp

[27] Alur, R., T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra, G. Pappas,
and O. Sokolsky, "Hierarchical Hybrid Modeling of Embedded Systems." Proceedings of
EMSOFT'01: First Workshop on Embedded Software, October 8-10, 2001

[28] Christopher Hylands, Edward A. Lee, Jiu Liu, Xiaojun Liu, Stephen Neuendorffer, Haiyang Zheng,
"HyVisual: A Hybrid System Visual Modeler," Technical Memorandum UCB/ERL M03/1, University
of California, Berkeley, CA 94720, January 28, 2003.

40

To appear in LNCS Vol ????, Proceedings of the 2004 Monterey Workshop.

[29] E.M. Clarke, A Fehnker, Zhi Han, B. Krogh, O. Stursberg, M. Theobald. Verification of Hybrid
Systems Based on Counterexample-Guided Abstraction Refinement. Proc. TACAS'2003.

[30] David Corman, Jeanna Gossett, Dennis Noll: Experiences in a Distributed, Real-Time Avionics
Domain-Weapons System Open Architecture, IEEE IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, pp 307- 315, 2002.

[31] Brian C. Williams, Michel Ingham, Seung H. Chung, and Paul H. Elliott. January 2003. “Model-based
Programming of Intelligent Embedded Systems and Robotic Space Explorers," Proceedings of the
IEEE: Special Issue on Modeling and Design of Embedded Software, vol. 9, no. 1, pp. 212-237.

[32] Agrawal A., Karsai G., Ledeczi A.: An End-to-End Domain-Driven Software Development
Framework, 18th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Domain-Driven Development Track, Anaheim, CA,
October, 2003.

[33] Ledeczi, A.; Bakay, A.; Maroti, M.; Volgyesi, P.; Nordstrom, G.; Sprinkle, J.; Karsai, G.: Composing
domain-specific design environments, IEEE Computer, Nov. 2001, Page(s): 44 –51.

[34] Teja product http://www.teja.com

41

