
AFRL-SN-WP-TR-2005-1108

DARPA INTEGRATED SENSING AND
PROCESSING (ISP) PROGRAM
Approximation Methods for Markov Decision
Problems in Sensor Management

Michael K. Schneider, Ph.D.
Angelia Nedich, Ph.D.
Prof. David Castanon
Bob Washburn, Ph.D.

BAE Systems
Advanced Information Technology
6 New England Executive Park
Burlington, MA 01803

JUNE 2006

Final Report for 01 July 2002 – 30 June 2006

Approved for public release; distribution is limited.

STINFO COPY

Appendices 2 through 4, resulting from Air Force contract number F33615-02-C-1197, have
been submitted for publication in various conference proceedings. If published, the United
States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive,
irrevocable, worldwide license. Any other form of use is subject to copyright restrictions.

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB, OH 45433-7320

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
(AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical
Information Service (NTIS). It will be available to the general public, including foreign
nationals.

PAO Case Number: AFRL/WS-06-0157, 19 Jan 2006

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

//Signature// //Signature//
______________________________________ __________________________________
Alan D. Kerrick, Project Engineer Keith W. Loree, Branch Chief
RF Systems and Analysis Branch RF Systems and Analysis Branch
RF Technology Division RF Technology Division

//Signature//

Timothy R. Poth, Major, USAF
Deputy Division Chief
RF Sensor Technology Division

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if
it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

June 2006 Final 07/01/2002 – 06/30/2006
5a. CONTRACT NUMBER

 F33615-02-C-1197
5b. GRANT NUMBER

4. TITLE AND SUBTITLE
DARPA INTEGRATED SENSING AND PROCESSING (ISP) PROGRAM
Approximation Methods for Markov Decision Problems in Sensor Management

5c. PROGRAM ELEMENT NUMBER
69199F

5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

NR

6. AUTHOR(S)

Michael K. Schneider, Ph.D.
Angelia Nedich, Ph.D.
Prof. David Castanon
Bob Washburn, Ph.D. 5f. WORK UNIT NUMBER

 0U
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

BAE Systems
8. PERFORMING ORGANIZATION

 REPORT NUMBER

Advanced Information Technology
6 New England Executive Park
Burlington, MA 01803

 TR-1620

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
 ACRONYM(S)

AFRL-SN-WP Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7320

DARPA/DSO
3701 N. Fairfax Dr.
Arlington, VA 22203 11. SPONSORING/MONITORING AGENCY

REPORT NUMBER(S)
 AFRL-SN-WP-TR-2005-1108

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

Report contains color. PAO Case Number: AFRL/WS-06-0157, 19 Jan 2006.
Appendices 2 through 4, resulting from Air Force contract number F33615-02-C-1197, have been submitted for publication
in various conference proceedings. If published, the United States has for itself and others acting on its behalf an unlimited,
paid-up, nonexclusive, irrevocable, worldwide license. Any other form of use is subject to copyright restrictions.

14. ABSTRACT
This work addresses problems of sensor resource management (SRM) in which one or more sensors obtain measurements
of the state of one or more targets. For example, an airborne radar may be attempting to track several ground targets, which
are sometimes stationary (requiring a synthetic aperture radar mode) and sometimes moving (requiring a ground moving
target indication radar mode). The challenge is to schedule the radar modes as the scenario evolves. Such problems can
generally be formulated as partially observable Markov decision processes (POMDPs), which can express essential
characteristics of the SRM problem such as uncertainty and dynamics. This work emphasizes a farsighted approach; the
highest long-term payoff may not be generated by the action providing the highest immediate payoff. Accomplishments of
this effort include the establishment of a boundary on optimal SRM performance, analysis of farsighted SRM strategies for
controlling a multimode sensor, and the derivation of a novel set of sufficient conditions for optimality in Markov decision
processes.

15. SUBJECT TERMS
integrated sensing and processing, sensor resource management, partially observable Markov decision processes, farsighted
sensor management, radar

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 120

 Alan D. Kerrick
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6427, ext. 4343
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

 iii

TABLE OF CONTENTS

1 LIST OF FIGURES ..iv

2 LIST OF TABLES ..v

3 EXECUTIVE SUMMARY ...1
3.1 PROGRAM OVERVIEW ..1
3.2 ACCOMPLISHMENTS...5

4 FARSIGHTED ALGORITHMS FOR CONTROLLING SENSOR MODES ...7
4.1 INTRODUCTION...7
4.2 BASIC PRINCIPLES OF ROLLOUT ALGORITHMS ...7
4.3 SRM ALGORITHMS FOR MOVE-STOP TRACKING...9
4.4 SIMULATION RESULTS ...23
4.5 CONCLUSIONS...45

5 COMPUTABLE OPTIMAL STRATEGIES...46
5.1 SUFFICIENT CONDITION ..47
5.2 APPLICATIONS TO SRM PROBLEMS ...52
5.3 BIRTH-DEATH MDPS..56
5.4 BINARY CLASSIFICATION PROBLEM..58
5.5 SEARCH PROBLEM..63

6 REFERENCES...71

iv

1 LIST OF FIGURES

Figure 1: BAE AIT's ISP project focus on problems of SRM, in which sensors are dynamically
managed in closed loop to improve the quality of the data provided to the fusion system....2

Figure 2: A rollout approach to evaluate near and far future benefits of an action taken at the
current state... 8

Figure 3: SRM Architecture .. 11
Figure 4: Discrete-time Markov chain modeling target motion .. 24
Figure 5: The plots show results for the precision maximizing SRM when 10 targets are stopped

on average. The top plot shows the true target motion. ... 28
Figure 6: The plots show results for the precision maximizing SRM when 20 targets are stopped

on average. The top plot shows the true target motion. .. 29
Figure 7: The plots show results for the precision maximizing SRM when 30 targets are stopped

on average. The top plot shows the true target motion. .. 30
Figure 8: The plots show results for the precision maximizing SRM when 40 targets are stopped

on average. The top plot shows the true target motion. .. 31
Figure 9: The plots show results for the error minimizing SRM when 10 targets are stopped on

average. The top plot shows the true target motion. ... 33
Figure 10: The plots show results for the error minimizing SRM when 20 targets are stopped on

average. The top plot shows the true target motion. ... 34
Figure 11: The plots show results for the error minimizing SRM when 30 targets are stopped on

average. The top plot shows the true target motion. ... 35
Figure 12: The plots show results for the error minimizing SRM when 40 targets are stopped on

average. The top plot shows the true target motion.. 36
Figure 13: The plots show results for the myopic entropy-based SRM when 10 targets are

stopped on average. The top plot shows the true target motion. ..38
Figure 14: The plots show results for the myopic entropy-based SRM when 20 targets are

stopped on average. The top plot shows the true target motion. .. 39
Figure 15: The plots show results for the myopic entropy-based SRM when 30 targets are

stopped on average. The top plot shows the true target motion ... 40
Figure 16: The plots show results for the myopic entropy-based SRM when 40 targets are

stopped on average. The top plot shows the true target motion. .. 41
Figure 17: The results for the time averaged mean-square error obtained for the four target-

motion scenarios and for the three SRM algorithms. ... 43
Figure 18: The results for the average fraction of time the target error goals are met obtained for

the four target-motion scenarios and for the three SRM algorithms. 44
Figure 19: In example 1, the state of the target remains unchanged if it is not observed, but the

state may change, as indicated in the illustration, if the target is observed.......................... 58

 v

2 LIST OF TABLES

Table 1: Tracker model parameter values used in our simulations .. 26
Table 2: Sensor model parameter values used in our simulations... 26
Table 3: Dynamic programming parameter values used in our simulations 26
Table 4: The relation for the transition probabilities Psm and Pms as the average number of targets

stopped (in the steady state) takes values 10, 20, 30, and 40 ... 27

3 EXECUTIVE SUMMARY

3.1 PROGRAM OVERVIEW

The BAE SYSTEMS Advanced Information Technology (BAE AIT) Integrated Sensing and
Processing (ISP) project was analyzing and developing algorithms to solve the problem of
closed-loop sensor resource management (SRM), as illustrated in Figure 1. These problems
consist of managing one or more sensors to obtain measurements of the state of one or more
targets. The measurements are then fused to estimate the states of the targets. The process of
fusing the measurements reduces the uncertainty in the measurements and combines
measurements to provide complementary information. The measurement collection can be
managed at several levels, but it is natural to group these into three categories: collection
management, sensor management, and dwell management. A collection manager controls from
what locations measurements are made by placing the sensors in those locations. A sensor
manager controls what is measured by determining which sensors to use and by adjusting coarse
control parameters such as pointing angle and operating mode on an individual sensor. A dwell
manager controls how a measurement is made by adjusting sensor characteristics such as
transmitted power on an active sensor. The focus of the BAE AIT project was on sensor
management.
The potential applications of sensor management are numerous and include ones in the fields of
computer network security; environmental monitoring, and air-to-ground intelligence,
surveillance, and reconnaissance (ISR).

• In computer network security applications [1], the objective is to monitor the state of a
machine to determine if it is being attacked or has been accessed by an intruder. Multiple
processes are operating on the computer simultaneously, and software sensors can
monitor the activity of each of these processes as well as the aggregate state of the
machine. The potential exists to apply sensor management algorithms to dynamically
control where and how measurements are made in the system to optimize the detection
process.

• In environmental monitoring applications, one is sensing the environment to determine
the distribution of one or more environmental resources or pollutants. Potential sensor
locations may be predetermined, and then the sensor management problem is one of
determining which sensor sites to use or how many to use. An example would be
selecting among candidate well sites, determining the ones to use for characterizing the
spread of a pollutant underground.

• In air-to-ground ISR applications, the objective is to find, track the position of, and
classify ground targets with airborne sensors. The sensors can be steered to look at
different areas on the ground. For a fixed sensor platform route, the SRM problem is
then one of determining where to collect measurements on the ground.

1

SENSORS FUSIONmeasurements

SRM
requests

truth

external
commands

measurement
errors

fused
estimates

SENSORS FUSIONmeasurements

SRM
requests

truth

external
commands

measurement
errors

fused
estimates

Figure 1: BAE AIT's ISP project focus on problems of SRM, in which sensors are
dynamically managed in closed loop to improve the quality of the data provided to the

fusion system

Our objective in analyzing the SRM problem is to develop insights applicable to a broad class of
applications by developing formulations in a general mathematical framework. In particular,
SRM problems can generally be formulated as partially observable Markov decision processes
(POMDPs). This is a suitable framework because it can express essential characteristics of the
SRM problem, such as uncertainty and dynamics. Uncertainty is present in the SRM problems
because the data being collected is noisy. Thus, the estimates of targets’ true states are always
uncertain, and, consequently, the predictions of measurements that would result from future
sensor tasks are uncertain. Dynamics are present in SRM problems because one's estimates of
true target states are constantly changing. This occurs for two reasons. One is that the true
states of the targets are changing. The other is that new data is being collected over time and
fused to form new estimates of target states. The uncertainty and dynamics can be modeled in
the POMDP framework as a function of the sensor control policy. It dictates what sensor control
actions are taken in response to different estimates of target states. The POMDP framework is
rich enough to model uncertainties, dynamics and control options in a broad class of SRM
problems.
Given a POMDP formulation of a SRM problem including the objective criteria as a function of
the data collected, dynamic programming can be used to compute an optimal sensor policy. The
dynamic programming algorithm essentially enumerates all possible control actions and
outcomes starting from a given collection of historical data and selects the sequence of controls
that optimizes the expected outcome as measured by the objective criterion. Dynamic
programming is generally difficult to implement when the size of the problem is large. In SRM,
the size of the problem is dictated by the set of control options, the set of measurement outcomes
resulting from a sensor control, and the set of possible probability distributions of target states.
The sets are generally large and, when they are discrete, scale exponentially with the number of
targets. As a result, computing the optimal sensor control policy with dynamic programming is
difficult and beyond resources of current and foreseeable computers.

2

Our problem was to analyze a class of SRM problems and develop algorithms for computing
control policies which are computationally efficient and near optimal. Although POMDPs
arising in SRM problems are large enough that a standard dynamic programming algorithm will
be too computationally intensive, the SRM problems have considerable structure that can be
exploited to compute good sensor control policies. In particular, the targets in SRM problems
have states xi, i=1,…,n that are generally independent. Thus, one would expect that the
computation of a sensor policy could be decomposed into a set of computations performed
independently on each individual target. However, the sensor control at a particular time is not a
function of the target states but of the collection of information on each target Ij(t)={yj(ty):ty<t}
for j=1,…,n where yj(ty) is a measurement made of target j at time ty. Moreover, the information
collections Ij(t) at a particular time are not independent even if the individual measurements yj of
the different targets are independent. This is a consequence of the measurements in each of the
collections Ij(t) being selected by the sensor control policy. The dependence among the
information collections complicates the structure of the problem. Our challenge is to exploit the
structure that is present to find computable, near-optimal sensor control policies.
Many past approaches to developing computable sensor control policies have focused on myopic
approaches. Myopic approaches select sensor control actions based on their immediate expected
benefits evaluated over the duration of a single sensor action. These policies are generally
computationally efficient. However, they do not account for some key aspects of the problem.
In particular, they do not account for dynamics in the problem other than the immediate state
changes resulting from the next control action. Thus, myopic policies may take an action at a
point in time that has immediate benefits but would be better to postpone to a more opportunistic
time in the future given the dynamics of the problem. Moreover, myopic policies will generally
only be effective if the reward resulting from an action is immediate. If the rewards are not
realized until the future, then myopic policies will not work.
In contrast, our approaches to developing sensor control policies are farsighted. In other words,
the policy accounts for dynamics over a time horizon that is longer than it takes to complete the
next control action. Two reasons why this is beneficial are that it will appropriately value the
placement of a control in time and it will appropriately value actions that do not have immediate
benefits. An example of the first case is a scenario in which the target states are changing in
time so that the value of different control actions is changing in time. A farsighted policy will
account for this and postpone certain sensor actions to opportunistic times in the future even if
there are some immediate benefits. Such a policy is especially beneficial if alternative control
actions require different amounts of time to complete. In this case, the evolution of the target
states over the period required for the control action to complete will be significantly different
for the alternate controls. Selecting the best sequence of controls requires accounting for these
dynamics. An example of the second benefit often occurs when rewards reflect threshold
objectives. For example, one may want to achieve a particular level of accuracy in the state
estimate. The reward function may then be modeled as taking the value 0 if the objective is not
met and 1 if it is met. As a result, there may be no immediate benefits to taking a particular
sensor action. A farsighted policy, however, would value a particular sensor action accounting
for the potential for achieving one's objective in the future.
Our approach to developing farsighted policies that are computable was to decompose the
problem into subproblems. As mentioned previously, the individual target states are often
modeled as independent. Thus, a natural approach to decomposing the computation of the policy
is across targets. The problem of computing the sensor control policy is thus split into n distinct

3

subproblems where n is the number of targets. Each of these subproblems is formulated in terms
of the information particular to an individual target. This approach to decomposing the problem
has the potential to increase the efficiency of computing the sensor control policy by solving the
n simpler subproblems rather than performing the computation on the single aggregate problem
that includes the collection of information across all of the targets. This structure will not always
be optimal. However, algorithms having this structure may be optimal in some situations and
near-optimal in others. Moreover, some algorithms having the structure may not yield a feasible
sequence of sensor controls but may be used to generate a bound on the optimal value of a sensor
management problem. We have specifically investigated approaches to computing the following
three quantities: lower bounds on the optimal sensor management performance; good,
suboptimal strategies for sensor management; and optimal sensor management strategies.
1. Lower bounds on optimal sensor management performance. We were interested in

deriving bounds for the problem of dynamic adaptive scheduling of multi-mode sensor
resources when classifying multiple unknown objects. Sensor schedules are adapted based on
the observed data, and the objective is specified in terms of a terminal cost. We were
interested in comparing the performance of farsighted and myopic strategies on such
problems. Lower bounds on performance allow us to determine how close to optimal
candidate strategies may be. We were particularly interested in deriving bounds based on
relaxations for which the optimal policy can be expressed as a mixture of farsighted sensor
policies, each of which is local in the sense that it only depends on the information
concerning an individual target.

2. Good, suboptimal strategies for sensor management. We were also investigating
techniques for developing good, computable, suboptimal strategies for sensor management
problems with no known computable, optimal strategies. A particular focus had been on
developing farsighted strategies and determining the benefits such strategies may have over
myopic strategies. We have been specifically interested in farsighted strategies whose
computation involves a decomposition into single sensor problems.

3. Optimal sensor management strategies. Another topic of study was the development of
techniques for deriving optimal sensor management strategies. As mentioned previously,
computing optimal sensor management strategies in general is often intractable. For special
cases, there exist techniques for deriving an optimal solution that can be computed
efficiently, often as a result of a decomposition of the problem into a set of single target
problems. Being able to compute optimal solutions is useful for many reasons including the
following two. First, the quality of performance bounds or suboptimal strategies can be
evaluated by comparing the performance predicted by the bounds or resulting from the
suboptimal strategies on a special sensor management problem for which one can compute
the optimal solution. Second, the optimal solution to a special sensor management problem
can be incorporated as a component of a suboptimal solution to a more general sensor
management problem. Various techniques exist currently for deriving optimal solutions to
sensor management problems. For example, a particular class of problems for which
techniques exist is the class of multi-armed bandit problems. However, existing techniques
do not apply to the sensor management problems of interest in this program. We were
investigating novel techniques for computing optimal sensor management strategies that
could be used to verify the quality of bounds or of suboptimal sensor management strategies
developed for this program.

4

We analyzed these approaches in the context of ISR scenarios with air-to-ground sensors.
Sensors in such a scenario are being used to detect, track, and classify ground targets. The
sensors include agile airborne radars, which have a constrained field of view but can be
instantaneously steered to observe a specific area on the ground within a wide field of regard. In
addition, the sensors may be able to operate in different modes. Each mode may have distinct
characteristics and be suitable for observing specific activities.

3.2 ACCOMPLISHMENTS

Our accomplishments during the program have included those in the following list. Details on
each of these are provided in the subsequent sections and appendices.

• Developed a bound on optimal sensor management performance. The bound is
derived by relaxing the problem. In particular, almost sure constraints in the problem are
relaxed to expected-use constraints. For the relaxed problem, we have proved that the
optimal sensor control policy can be expressed as a mixture of local sensor policies. In
this setting, a local sensor policy is one which is only a function of a single target's state.
The value of the optimal control can thus be computed by solving sub problems
associated with each target. We have verified that the bound is tight for a special case for
which we derived the optimal strategy. The bound has been used to evaluate the
performance of farsighted and myopic strategies to manage a sensor to classify targets.

• Developed and analyzed farsighted sensor management strategies for controlling a
multimode sensor. In particular, we developed two types of farsighted algorithms for
managing a sensor. The algorithms control where the sensor points as well as the mode
to use. The sensor modes are assumed to require different amounts of time and be
suitable for observing targets in particular states. We also identified a myopic strategy
for controlling this type of sensor. All three techniques were evaluated in a simulation of
an ISR scenario in which a multimode radar is used to track targets as they start and stop.
The results indicate that the farsighted algorithms perform better than the myopic
approach.

• Derived a novel set of sufficient conditions for optimality in Markov decision
problems. The conditions apply to finite-horizon Markov decision problems with a
terminal reward. We applied the conditions to verify the optimality of strategies we
developed for two different sensor management problems. The first is a class of
symmetric binary classification problems. Specifically, a single sensor is being managed
to collect discriminatory data to classify targets being one of two types. The second is a
class of search problems. The first type of problem is also one for which the performance
bounds apply. Thus, the conditions derived for optimality enabled us to investigate the
quality of performance bounds by comparing the bound to the optimal performance for a
special case.

• Presented an overview paper on sensor management at the IEEE Automatic
Control Conference. The paper provides an overview of the problem of managing
sensor resources in a closed-loop sensor fusion system. We formulated the problem in a
stochastic dynamic programming framework. In so doing, we exposed structure in the
problem resulting from target dynamics being independent and discussed how this can be
exploited in solution strategies. We illustrated situations in which we believe such sensor

5

management techniques are especially beneficial with two examples. The focus of both
examples was on air-to-ground tracking.

• Submitted a paper on farsighted sensor management strategies for move/stop
tracking to the International Conference on Information Fusion. We considered the
sensor management problem arising in using a multi-mode sensor to track moving and
stopped targets. The sensor management problem is to determine what measurements to
take in time so as to optimize the utility of the collected data. Finding the best sequence
of measurements is a hard combinatorial problem due to many factors, including the
large number of possible sensor actions and the complexity of the dynamics. The
complexity of the dynamics is due in part to the sensor dwell-time depending on the
sensor mode, targets randomly starting and stopping, and the uncertainty in the sensor
detection process. For such a sensor management problem, we proposed a novel,
computationally efficient, farsighted algorithm based on an approximate dynamic
programming methodology. The algorithm’s complexity is polynomial in the number of
targets. We evaluated this algorithm against a myopic algorithm optimizing an
information-theoretic scoring criterion. Our simulation results indicate that the farsighted
algorithm performs better with respect to the average time the track error is below a
specified goal value.

• Submitted a paper on bounding optimal sensor management performance to the
IEEE Conference on Decision and Control. We considered a network of sensors, each
of which has limited sensing resources, which is tasked with collecting noisy
classification information on a group of unknown objects. The amount of resources
required a given sensor to measure an object depends on the specific sensor-object
geometry. Sensors exchange collected information to estimate object identities and
coordinate which measurements to collect next. This paper describes a computable lower
bound on the classification error that can be achieved by a causal adaptive sensing
schedule. This bound is based on a formulation of the adaptive sensing problem as a
partially observed stochastic control problem. Expanding the admissible control space of
this problem leads to a relaxed problem with simpler decision structure for which the
bounds can be computed. The bound computations are illustrated for several examples
involving 100 unknown objects, and compared with the Monte Carlo performance of
specific adaptive sensor scheduling algorithms. Comparisons with optimal scheduling
algorithms for special cases illustrate the tightness of the bounds.

What follows in the next few sections and appendices are details on the accomplishments
summarized in Section 3.2. Each of the sections provides a self-contained presentation on one of
the accomplishments.

6

4 FARSIGHTED ALGORITHMS FOR CONTROLLING SENSOR MODES

4.1 INTRODUCTION

Here, we focus on investigating the advantages of applying farsighted policies to sensor resource
management (SRM) problems. In particular, we are interested in determining if there are SRM
problems where using farsighted policies is beneficial. We want to explore and characterize
such problems, as well as find out what kind of benefits we may expect.
An SRM problem is typically characterized by a set of targets of interest, a specific mission
objective, and a set of available sensors. The goal of the sensor manager is to allocate the sensor
resources among the targets in time to support the mission success. The sensor resources have to
be allocated in the presence of uncertainty associated with obtaining a measurement (e.g., those
uncertainties resulting from the sensor detection process).
Our conjecture is that a farsighted approach is better than a myopic approach for the SRM
problem where the sensor dwell-time required to complete a sensor task is different for different
tasks. A myopic approach selects a sensor action based on the current information only. Thus,
this approach is oblivious to the time required to complete the selected action and of future
benefits resulting from the action. On the other hand, a farsighted approach accounts for the
action’s benefits as well as the time it takes to receive benefits. We believe that a farsighted
approach having the ability to anticipate future consequences resulting from the actions taken
now will yield sensor schedules that manage the resources better and support the mission success
better than a myopic approach.
To support our conjecture, we consider analyzing a sensor management problem arising in
move/stop tracking with multimode radar. In particular, we are interested in tracking ground
targets through their motion state transitions with a radar sensor having two modes: an MTI
mode for detecting moving targets only and an FTI mode for detecting stopped targets only.
These modes have dwell durations that differ by an order of the magnitude; an FTI dwell is about
100 times longer than an MTI dwell, which adds to the problem complexity. The goal is to
manage sensor resources to provide continuous tracking of the targets.
For this problem, we compare a myopic entropy-based SRM algorithm to farsighted SRM
algorithms. The farsighted SRM algorithms generate sensor actions by evaluating an objective
function parameterized by predictions of target state. The objective function is constructed to
value the future benefits of a measurement obtained now. The algorithms also estimate the
probability of a target sitting or moving from past reports so as to evaluate the expected benefits
of MTI and FTI sensor modes. The expected benefit evaluation accounts for the dwell-time of
each mode. The algorithms address the combinatorial complexity of the problem through the use
of a rollout approach, which is described in the next section.

4.2 BASIC PRINCIPLES OF ROLLOUT ALGORITHMS

A rollout algorithm is a dynamic programming approach that evaluates an action by estimating
near and far-future benefits resulting from the current state and the action choice. The near-

7

future benefits are computed by predicting the action’s consequences over the look-ahead
planning stages. The far-future benefits are the benefits accumulated after the look-ahead
period. In the rollout approach, the far-future benefits are computed as the benefits resulting
from applying a fixed policy. Figure 2 illustrates the rollout approach.

Figure 2: A rollout approach to evaluate near and far future benefits of an action taken at
the current state

Now we introduce some notation and formally describe the rollout approach, starting with the
optimality principle of the dynamic programming theory. In particular, for a discrete time
system, the optimality principle states that every optimal policy π* satisfies the following
relation:

{ }* *

()
() arg max (,) ((, ,)) , for all states ,

wu U S
S R S u E J f S u w Sπ α

∈
⎡ ⎤= + ⎣ ⎦ (1)

where
- S is state of the system
- U(S) is the set of controls available in state S

-),(uSR is the instantaneous reward received at state S for selecting control u

- α is a discount factor satisfying α∈(0,1)
- w is a random outcome of control u

- J* is the optimal reward (the reward collected under policy π*)
- f(S,u,w) is the function specifying the new state to which the system transitions from
state S under control u and the control outcome w.

+ J π

Look-ahead benefits
Benefits of a fixed

policy π

Near-future benefits Far-future benefits

Current State

8

The rollout approach generates a policy π~ by replacing the term)),,((* wuSfJ in Equation (1)
with a reward Jπ collected from state),,(wuSf under some policy π. The resulting policy π~ is
a one-step look-ahead policy satisfying the following relation

[]{ }
()

() arg max (,) ((, ,)) , for all states ,
wu U S

S R S u E J f S u w Sππ α
∈

= +% (2)

where π is some policy whose reward Jπ can be efficiently computed. This relation defines a
rollout approach that we use to solve our SRM problem. We consider two different
implementations, one maximizing precision and one minimizing error as discussed in the
following section.

4.3 SRM ALGORITHMS FOR MOVE-STOP TRACKING

4.3.1 Precision Maximizing Algorithm

Here we formulate the SRM problem for move-stop tracking as a dynamic programming
problem, and we present a farsighted SRM algorithm for solving it. Initial development of this
algorithm was performed under a SBIR program [4]. That work assumes the dwell times of all
modes are the same duration. The extension considered here addresses issues associated with
the modes having different durations.

4.3.1.1 Formulation

We model the SRM problem for move-stop tracking as an infinite-horizon, continuous-time
stochastic dynamic programming problem. The system to be controlled is the tracker. The state
in the dynamic program consists of the target track states. Here, a control choice is specified by
a target at which to look and the sensor mode to use. At any time and any state, the available
control options are to look at any of the targets currently in track and to use one of the two sensor
modes. A sensor measurement is a random outcome of the control choice and affects the future
evolution of the tracker state.
For a reward, we chose a function that rewards states with sufficiently high precision (i.e., small
error). In particular, the total expected reward accumulated has the following form

10

(()) ,
n

t
i i i

i
E e V R S t dtγ

∞
− ⋅

=

⎡ ⎤
⋅⎢ ⎥

⎣ ⎦
∑∫ (3)

where

• γ is a discount factor specifying the rate at which the future controls contribute to the
total reward,

• n is the number of tracks currently in the tracker
• Vi is a priority value of target i
• Ri(·) is the instantaneous reward (discussed below)

9

• Si(t) is the state of track i (the estimated error variance of track i at time t)
• u(t) is the control selected at tracker state (S1(t),…,Sn(t)).

The reward Ri is given by

1 if ,
()

0 if ,
i i

i i
i i

S G
R S

S G
≤⎧

= ⎨ >⎩
 (4)

where Gi is the goal state for track i (desired error variance for track i).

4.3.1.2 Precision Maximizing SRM

The sensor management problem is to find a sequence of controls maximizing the total expected
reward shown in Equation (3). In what follows, we describe an SRM algorithm that generates an
approximate solution. The algorithm relies on two different approximations, model
approximation and optimal-policy approximation. The first of type of approximation involves
using a prediction model to approximate the track states. The second type of approximation
involves use of a near-optimal policy instead of the optimal scheduling policy for the
approximate model of the tracking system. We subsequently discuss these two approximations in
detail.

Prediction Model
The architecture of the SRM system is illustrated in Figure 3. The SRM evaluates the sensor
actions, in terms of the objective function, Equation (3), by measuring current and future benefits
resulting from an action selected at the current time. The future benefits of an action are
computed using the SRM prediction model, which predicts the future target behavior.

10

SRM

Prediction
Model

Tracks

Target-Mode
Evaluation
Procedure

Sensor
Parameters

Target-Mode
Selection

Sensor Action

Figure 3: SRM Architecture

From the SRM point of view, a target is characterized by a collection of attributes including
target mode probability distribution, and target kinematic state, consisting of position error
covariance. To accommodate efficient computation of the expected policy-reward, our sensor
resource manager uses a tracker predictive model approximating the tracker. This model is based
on the following:

Assumption:
1. Each target is either moving or is stopped, but the target motion state is unknown.

2. A target track is dropped if the target is not detected.

Assumption 1 is realistic for cases where the changes in target motion take longer than planning
and executing a sensor action. Assumption 2 is more conservative than necessary (a target track
may continue even with one or more missed detections). However, the resulting model is useful
for planning purposes. Furthermore, these assumptions restrict the branching of the control-
outcome space of any policy. This allows us to evaluate our farsighted policy without using
costly Monte Carlo simulations.

Under this assumption, the probability distribution of the outcomes of any finite sequence of
control actions can be computed. We exploit this in our subsequent algorithm development.

11

The outcome of a single sensor action is either a detection or a missed detection, which results in
updating the target states either with or without a measurement. For each of these outcomes, we
give the target mode and kinematic state update equations.
Update with a Measurement
In this case, the target state is predicted to the next update time and updated with a measurement.
The state prediction equation is

()1 1 2 2() () () () ,i i i i i iS t T S t T p t Q p t Q+ = + ⋅ + ⋅ (5)

where
- T is the time increment,
- Si(t) is the kinematic state of target i at the current time t,
- Si(t+T) is the predicted state of target i (into the future time t+T),
- (pi1(t),pi2(t)) is the current probability distribution for the mode of target i, with pi1 and pi2

being the probability of moving and stopped respectively,
- (Qi1,Qi2) is the process noise covariance vector of the IMM filter, with Qi1 and Qi2 being

the process covariances of the filters modeling respectively moving and stopped modes
for target i.

The target is detected at time t+T using sensor mode j and the target state is updated as follows:

()
() ,

()
i ij

i
i ij

S t T r
S t T

S t T r
+

+ =
+ +

 (6)

where rij is the measurement noise covariance for target i and sensor mode j.
The target mode probability distribution at the update time is

pij(t+T) = 1, and pim(t+T) = 0 for modes m≠j. (7)
Update without a Measurement
In this case, the target state is predicted to the next update time according to Equation (5). Since
the target is unobserved, the target mode probability distribution does not change according to
Assumption 1.

Algorithm
As a first step toward maximizing the objective function in Equation (3), we replace the
continuous-time optimization problem with a discrete-time approximation. In particular, we
discretize the time by letting

tk = kδ for δ > 0 and k = 0,1, 2,… . (8)
We then approximate the continuous-time objective function in Equation (3) with a piece-wise
constant function resulting in the following discrete-time objective function

0 1
((), ()),

n
k

i i k k
k i

R S t u tα
∞

= =
∑ ∑

 (9)

12

where α∈(0,1) is a discount factor given by .γδα −= e For this objective function, we develop a
near-optimal policy π~ based on the rollout approach. In particular, for our SRM problem with
variable duration dwell times, the rollout relation in Equation (2) takes the following form

{ }()

,
() arg max (, , ,) ((, , , ,)) , for all states ,K m

m m jmwj m
S R S j m E J f S j m w Sππ α ⎡ ⎤= Δ + Δ⎣ ⎦% (10)

where maximization takes place over all target tracks j and sensor modes m, and
- ∆m is the dwell time for sensor mode m
-),,,(mmjSR Δ is the reward collected from state S under control u=(i,m) during time

interval ∆m
- K(m) is the dwell time in units of δ for mode m
- Jπ is the expected reward accumulated under some policy π
- (, , , ,)m jmf S j m wΔ is the state of the tracker at the end of the time interval ∆m when the

measurement is made,
- jmw is a random variable taking values 1 or 0 that indicate detecting and correctly

associating the detection of target j for sensor mode m.
Since the MTI dwell time is typically less than the FTI dwell time, one can use the MTI dwell
time as a unit of time and express the FTI dwell time as a multiple τMTI of it. By viewing ∆MTI as
the time unit measure δ, we have the following values for the dwell times K(m) in Equation (10).

K(MTI) = 1 and K(FTI) = τMTI. (11)

The mode rewards),,,(mmjSR Δ for target j have the following form:

1
(, , ,) ()

n

MTI i i
i

R S j MTI R S
=

Δ =∑ , (12)

() 1

0 1
(, , ,) (())

K FTI n
t

FTI i i
t i

R S j FTI R S tα
−

= =

Δ = ∑ ∑ , (13)

where S=(S1,…,Sn) is the current tracker state and S(t) is its state t units later [S(0) = S], Si is the
current state of track i and Si(t) is its state t units later, while the reward Ri is given by Equation
(4).
We next describe the evaluation of the term

((, , , ,))m ijw

E J f S j m wπ⎡ ⎤Δ⎣ ⎦ (14)

in the right hand side of the rollout Equation (10). The expectation is with respect to the two
possible outcomes wjm=1 and wjm=0 indicating a detection of target j with sensor mode m. Hence,
we have

((, , , ,)) ((, , , ,1)) { 1}

((, , , ,0)) { 0},

m jm m jmw

m jm

E J f S j m w J f S j m Prob w

J f S j m Prob w

π π

π

⎡ ⎤Δ = Δ =⎣ ⎦

+ Δ = (15)

The probability of outcomes wjm=1 and wjm=0 are given by

13

{ 1}jm im imProb w p β= = , { 0} 1 ,jm im imProb w p β= = − (16)

where
- pjm is the probability that the target mode is m (matching the sensor mode)
- βjm is the detection probability of sensor mode m for target j.

The target mode probabilities pjm are computed using the mode likelihoods generated by the
IMM filter.

We now discuss the choice of policy π. Motivated by the desire to have a good policy whose
expected reward can be computed for any initial state, we consider a policy π having the
following properties:
1. A target is observed with either MTI or FTI mode at all times.

2. Initially, the targets are sorted in a list according to some criterion. Then, these targets are
observed according to the list as follows: each target is observed until either its track error
decreases below the desired value or its track is dropped. If the track error is decreased below
the desired value, the target is revisited at the rate that keeps its track error below the desired
value.

We assume that the sensor can revisit the targets with the rates that keep the track errors below
the desired values.

Under the policy π, it is assumed that the sensor uses one and the same mode when observing a
target. The sensor mode m(i) to be used for observing target i is determined as the most likely
target mode in the current target mode probability distribution pi = (pi1, pi2), i.e.,

{ }1 2() arg max , .i im i p p= (17)

Given the current tracker state 1(,...,)nS S S= , policy π sorts the tracks according to their vicinity

to the goal state, i.e., the tracks are sorted according to the values { }/ | 1, 2,...,i iS G i n= . The
order is motivated by that generated according to an index rule policy such as that discussed in
[4]. The targets are then considered in that order, and to each target track the following rule is
applied:

If the target track state iS is outside the track accuracy goal region {s | s ≤ Gi}, the target is
consecutively observed, with the sensor mode matching the target mode, until the time its state

)(tSi enters the track accuracy goal region. After that time, the target is periodically revisited
with the smallest revisit rate that guarantees the state will remain within the goal region.

It is computationally prohibitive to exactly evaluate the policy reward Jπ due to unpredictable
target mode changes in the future and due to the explosion of possibilities of observation
outcomes over a long period of time. We approximately evaluate the policy reward Jπ using the
predictive model for the evolution of the target mode probability distribution and kinematic state,
as described earlier.

The policy reward Jπ has the following form

14

1
() ()

n

i
i

J S J Sπ
=

=∑ . (18)

For notational convenience assume that the order of the targets is 1, 2,…,n when the targets are
sorted according to values { }/ | 1, 2,...,i iS G i n= . Then, for each target, we determine the target
mode and the associated mode probability. The mode probabilities are derived from the mode
likelihoods generated by the IMM filter, and the target mode is defined as the most likely of the
modes.
Suppose that the states of the first ι targets are within their goal region, i.e.,

Si ≤ Gi for i = 1, 2,…, ι . (19)

For these targets, we have

() ,i i iJ S L= i = 1, 2,…, ι . (20)

where Li is the long-term reward accumulated during revisits (to be discussed shortly).
Consider now the targets ι +1,…,n, which are outside their corresponding goal regions. Suppose
that T1 is the observation time required for state 1Sι + to enter the goal region { }1|s s Gι +≤ . We
then have

() 1

11 1 1, (1)() .
T

mJ S L
ιι ι ι ια β
++ + + += ⋅ (21)

where m(ι +1) is the sensor mode that is used for observing target ι +1. While observing target
ι +1, the states of the remaining targets ι +2,…,n have evolved to 2 1 1(),..., ().nS T S Tι + Suppose
now that T2 is the observation time required for state 2 1()S Tι + to enter the goal region

{ }2|s s Gι +≤ . Then, we have

() 1 2

2 1, (2) 2() .
T T

mJ S Lι ι ι ια β
+

+ + + += ⋅ (22)

Continuing in this manner, we can see that

() 1 2 ...

1, ()() , for 1,..., ,jT T T

j m j jJ S L j nι ι ι ια β ι
+ + +

+ + + += ⋅ = − (23)

where Tj is the time for variance 1 1(...)j jS T Tι + −+ + to enter the goal region { | }js s Gι +≤ .

We now discuss the long-term rewards Li accumulated during periodic revisits of the targets. As
we mentioned earlier, once the states of all targets enter their corresponding goal regions, the
targets are revisited at a constant rate. Under the assumption that the target-mode probability
distribution does not change, once a stopped target state is within its corresponding goal region,
it remains there for the rest of the time. Therefore, the stopped targets are not revisited, and the
long-term reward Li associated with a stopped target i is computed as follows

.
10 α

α
−

== ∑
∞

=

i

t
i

t
i

V
VL (24)

We next discuss the long-term reward Li associated with a moving target i. Let M be the length
of the revisit interval required for keeping the state of target i within the goal region. Without

15

loss of generality we may assume that the sensor revisits the target i at times t=jM, j=0,1…. Note
that, in view of our assumptions, the revisit process continues for as long as the target is
detected, and the process stops when the target is lost as a result of a missed detection.
Furthermore, the reward Vi is collected while the target is still tracked, and the reward ceases
when the target is lost.
During the revisit stage, the target lifetime is a random variable taking value jM with
probability ()1 1

, () , ()1j j
i m i i m iβ β− −− for j=1,2,… . Let ρ be the reward accumulated between any two

consecutive revisits. When the lifetime takes value jM, the lifetime reward Rew(jM) is given by

(1) 1()
1

jM
M j M

MRew jM αρ α ρ α ρ ρ
α

− −
= + + + =

−
 (25)

The long-term reward Li is equal to the expected lifetime reward during the revisit period, and it
can be seen that

, ()1i M
i m i

L ρ
α β

=
−

. (26)

Since ρ is the reward accumulated during the subsequent revisits, we have

()1 11
1

M
M

i iV V αρ α α
α

− −
= + + + =

− (27)

By substituting this ρ in Equation 26, we see that the long-term reward for a moving target i is
given by

()(), ()

1 .
1 1

M

i i M
i m i

L V α
α α β

−
=

− −
 (28)

We note, here, that the preceding precision maximizing SRM algorithm extends to the
multidimensional case by replacing the variance Si with the trace Tr(Si) of the covariance Si.

4.3.2 Error Minimizing Algorithm

Here we present an error minimizing SRM algorithm as applied to move-stop tracking. In the
dynamic programming formulation of the SRM problem for move-stop tracking (Section
4.3.1.1), we use an instantaneous cost instead of a reward. In particular, a target incurs a nonzero
cost if the target error variance exceeds a specified error variance goal. The target cost is
instantaneous, and it is proportional to the difference between the target error and the error goal.
Formally, the instantaneous cost at time t for target i is given by

Ci(Si(t)) = Vi · max{Si(t)-Gi, 0}, (29)
where Si(t) is the target error variance, Vi is the target priority, and Gi is the error goal for target i.
The cost of the composite target state S(t)=(S1(t),…,Sn(t)) is additive over the targets, i.e.,

() ()
1

() () .
n

i i
i

C S t C S t
=

=∑ (30)

16

4.3.2.1 Error Minimizing SRM

For a continuous-time system the rollout relation in Equation (2) takes the following form

() []
() 0

() arg min () (((), ,)) , for all states ,
u

u

t
t

uwu U S
S C S e d e E J f S t u w Sγγτ

ππ τ τ −−

∈

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫% (31)

where
- S is the state of targets at the current time t=0, i.e., S=S(0)
- π is some fixed policy
- U(S) is the set of controls available in state S
- tu is the latency time associated with control u (for a sensor, tu is the dwell-time)
- γ is an exponential decay factor satisfying γ>0
- w is a random outcome of the control u
- f(S,u,w) is the function specifying the new state to which the system transitions from state

S under control u and the control outcome w.
We assume that the control options are target-mode pairs, with the set of candidate modes being
MTI, FTI, and “idle” (no target selected). We also assume that the “idle mode” has infinite
dwell time, so that once the idle mode is selected no other mode can ever be used in the future.
We consider a rollout where π is the “idle”-policy, i.e., the policy selects the “idle” mode at any
state. For such a policy π and the additive cost, the minimization on the right-hand side of
Equation (31) reduces to:

()
() 1 0 0

future costtransitional cost

target cost

min (()) ((), ,) ,
u

u

tn
tt t

i i i i uu U S wi
C S t e dt e E C f S t u w e dtγγ γ

∞
−− −

∈
=

⎧ ⎫
⎪ ⎪⎪ ⎪+ ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∫ ∫
1442443 144444424444443
14444444444244444444443

 (32)

where the set of controls U(S) is the same for all states S, i.e., U(S)=U for all S with

{ }(,) | {1,..., }, { , , } .U i m i n m MTI FTI idle= ∈ ∈ (33)

The transitional cost is incurred from the current time until the execution time tu of control u.
The future cost is incurred for the rest of the time, starting from the time immediately after the
control u is executed. Computing each of these costs requires predicting the evolution of target
states. We approximate the state evolution of the IMM tracker by using the predictive model
described in Section 4.3.1.2. This simple model estimates the target behavior well and simplifies
the integral computations in Equation 32.

Algorithm
We now focus on the minimization problem given in Equation (32). At first, we evaluate the
target costs in Equation (32) for a given control u=(j,μ) with { , }MTI FTIμ ∈ . For target j, we
consider the cost for the cases when the target is observed and is unobserved. Without lost of
generality, we may assume that the current time is t=0, so that the current target state is Sj(0).

17

Cost for Observed Target
During the observation, the target state evolves as follows:

()1 1 2 2() (0) , for [0,),j j j j j j uS t S t p Q p Q t t= + ⋅ + ∈ (34)

where pj,1 and pj,2 are the probabilities for target motion modes with 1 corresponding to moving
target and 2 corresponding to stopped target. From the preceding relation and the definition of
the cost [cf. Equation (29)], it follows that

() (){ }1 1 2 2() max (0) , 0 , for [0,).j j j j j j j j j uC S t V S G t p Q p Q t t= ⋅ − + ⋅ + ∈ (35)

Define

1 1 2 2

(0)
max , 0 ,j j

j
j j j j

G S
T

p Q p Q
⎧ ⎫−⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

 (36)

and note that Tj is the time the target variance Sj(t) exceeds the specified variance bound Gj. We
refer to Tj as crossing time from state Sj(0). We note that this time depends on the initial variance
Sj(0), i.e., Tj = Tj(Sj(0)), and it may be infinite.
It can be seen that the transitional cost has the following form

{ } ()
() () ()1 1 2 2

2

((0)) max (0) , 0 1

1 1 ,

u

u

j t
j j j j

j j j j j t
u

V
TranCost S S G e

V p Q p Q
e t e

γ

γγθ

γ

γθ γ
γ

−

−−

= − ⋅ −

⋅ +
⎡ ⎤+ ⋅ + − +⎣ ⎦

 (37)

where

{ }min , .u jt Tθ =

We now focus on the expected future cost. Let Sj(tu,w) denote the target state immediately after
the observation time tu, where w=0 or w=1 indicates that the state Sj(tu,w) results from the update
with or without a measurement, respectively. Since the target-mode probability distribution does
not change when the target is unobserved (cf. Assumption 1), the future cost from state Sj(tu,w)
for w=0 is given by:

(){ }1 1 2 2((,0)) max (,0) , 0 .
u

t
j j u j j u j j j j j

t

FutureCost S t V S t G t p Q p Q e dtγ
∞

−= ⋅ − + +∫ (38)

However, we have pjμ =1 for the observed target. Therefore, the future cost from state Sj(tu,w) for
w=1 is given by:

{ }((,1)) max (,0) , 0 .
u

t
j j u j j u j j j

t

FutureCost S t V S t G tp Q e dtγ
μ μ

∞
−= ⋅ − +∫ (39)

Let Tj(w) be the crossing time for target j starting from state Sj(tu,w), i.e.,

18

1 1 2 2

(,0)
(0) max , 0 ,j j j

j
j j j j

G S t
T

p Q p Q
⎧ ⎫−⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

 (40)

(,0)
(1) max , 0 .j j j

j
j j

G S t
T

p Qμ μ

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (41)

Then, it can be seen that the future cost accumulated from state Sj(tu,w) is given by

{ } ()2

()
((,)) max (,) , 0 () 1 ,uj j jt

j j u j u j

V V Q w
FutureCost S t w S t w G e w eγ γτγ τ

γ γ
− −⋅

= − + ⋅ + (42)

where

1 1 2 2 for 0,
()

for 1,
j j j j

j
j j

p Q p Q w
Q w

p Q wμ μ

+ =⎧
= ⎨ =⎩

 (43)

{ }() max , () for 0,1.u jw t T w wτ = = (44)

The expected future cost is a weighted sum of the future costs corresponding to outcomes w=1
and w=0. Specifically, it is given by

()(()) ((,1)) 1 ((,0)),j j u j j j j u j j j j jExpFutureCost S t p FutureCost S t p FutureCost S tμ μ μ μβ β= + − (45)

where βjμ is the probability of detecting target j with sensor mode μ.
Then, the total cost for target j is

((0)) ((0)) ((,0))

((,1)) ((,0)) .
j j j j j j u

j j j j u j j u

TotalCost S TranCost S FutureCost S t

p FutureCost S t FutureCost S tμ μβ

= +

⎡ ⎤+ −⎣ ⎦
 (46)

The first two terms represent the cost associated with the event of not observing the target. The
last term represents the expected cost reduction resulting from target detection. Note that the last
term is non-positive, i.e.,

((,1)) ((,0)) 0.j j j j u j j up FutureCost S t FutureCost S tμ μβ ⎡ ⎤− ≤⎣ ⎦ (47)

Cost for Unobserved Target
For a target i with i j≠ , there is no uncertainty in the future cost, so that the total cost is given
by

((0)) ((0)) ((,0)),i i i i i i uTotalCost S TranCost S FutureCost S t= + (48)

where transient cost ((0))i iTranCost S and future cost ((,0))i i uFutureCost S t are given by
Equation (37) and Equation (38), respectively.
By summing the total costs of all targets, we obtain the cost associated with the state S(0) and the
control choice u=(j,μ) for { , }MTI FTIμ ∈ . In particular, we have

19

[]
1

((0), ,) ((0)) ((,0))

((,1)) ((,0)) .

n

i i i i u
i

j j j j j j j j

Cost S j TranCost S FutureCost S t

p FutureCost S t FutureCost S tμ μ

μ

β
=

= +

⎡ ⎤+ −⎣ ⎦

∑
 (49)

The cost associated with the control option u =(j,idle) is

[]
1

((0), ,) ((0)) ((,0)) .
n

i i i i u
i

Cost S j idle TranCost S FutureCost S t
=

= +∑ (50)

In view of Equation (47), the cost of control u=(j,μ) for { , }MTI FTIμ ∈ is smaller than the cost
of control u =(j,idle) a fixed target j, i.e.,

[]

[]

1

1

((0), ,) ((0)) ((,0))

((,1)) ((,0))

((0)) ((,0))

((0), ,).

n

i i i i u
i

j j j j j j j j

n

i i i i u
i

Cost S j TranCost S FutureCost S t

p FutureCost S t FutureCost S t

TranCost S FutureCost S t

Cost S j idle

μ μ

μ

β
=

=

= +

⎡ ⎤+ −⎣ ⎦

≤ +

=

∑

∑
 (51)

Hence, the minimization in Equation (32) reduces to

{1,..., }
{ , }

min ((0), ,),
j n

MTI FTI

Cost S j
μ

μ
∈

∈

 (52)

with the control cost Cost(S(0),j,μ) as given in Equation (49).
The preceding error minimizing SRM algorithm extends to the multidimensional case by
replacing the variance Si with the trace Tr(Si) of the covariance Si.

4.3.2.2 Myopic Entropy-Based SRM Algorithm

Here, we present a myopic sensor management algorithm that serves as a baseline for evaluating
the performance of the farsighted algorithms discussed in the preceding sections. We do not
consider a myopic approach optimizing the dynamic programming formulation. This is because
the myopic property is not well defined for the SRM problems where different control actions
have significantly different execution time. In particular, this is the case with the SRM problem
for move/stop tracking, where the system state transition time is significantly different for
different controls (specifically, for different sensor modes). Thus to anticipate benefits at the
possible future states, we have to predict into the future over significantly different time
intervals, which is not a property of a myopic approach.

We consider an algorithm that evaluates sensor actions based on the expected decrease in the
entropy of the target-track errors per unit of time. The algorithm is myopic since the changes in
the entropy are computed only for a single sensor action. Specifically, let the current time be t=0
and let the current system state be S=(S1,…,Sn). The entropy hi for target i with variance Si and
the mode probabilities (pi1, pi2) is given by

20

[] []

[] ()

1 2 1 1 2 2

1 1 2 2

1 1() log 2 log 2 log log
2 2

log 2 log log log ,
2 2

i i i i c i i c i i i i i

i i
c i i i i i i

h S V p eS p eS p p p p

V Ve S V p p p p

π π

π

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

= + − +

 (53)

where Vi is the priority of target i and πc≈3.14 (see [5], Chapter 9). As seen from this relation, the
target entropy is measured by the target-track error in log-scale. The entropy H of the system the
current time is defined as the sum of the current target entropies hi:

1
1

() () where (,...,).
n

i i n
i

H S h S S S S
=

= =∑ (54)

An entropy-based score is associated with each control u=(j,μ). The score is equal to the
expected decrease in the entropy per unit of time:

[](()) ()
(,) ,

uw

u

E H S t H S
D S u

t

−
= (55)

where S(tu) is the state to which the system transitions under the control u.
At any decision time, the entropy-based SRM algorithm selects a control having the minimum
score i.e., the sensor manager solves the following problem

min (,)
u U

D S u
∈

{ }(,) | {1,..., }, { , }U j j n MTI FTIμ μ= ∈ ∈ . (56)

We now derive the explicit form for D(S,u). Under any control, the predicted target variances at
time tu are

1 1 2 2() ().i u i u i i i iS t S t p Q p Q+ = + ⋅ + (57)

Thus, the entropy at time tu for unobserved target i is given by

[] ()1 1 2 2(()) log 2 log () log log .
2 2

i i
i i u c i u i i i i i

V Vh S t e S t V p p p pπ+ += + − + (58)

Under a control u=(j,μ) and outcome w=1 (corresponding to target detection), the updated
variance of target j is

,

,

()ˆ () .
()

j u j
j u

j u j

S t r
S t

S t r
μ

μ

+

+

⋅
=

+
 (59)

We have pjμ=1 in this case, so that the entropy at time tu for observed target j is given by

[]ˆ ˆ(()) log 2 log ().
2 2

j j
j j u c j u

V V
h S t e S tπ= + (60)

21

For a given control u=(j,μ), the variances Si of targets i with i≠j do not depend on the control
outcome w, the following holds for the expected entropy at time tu:

[] ()

()

, , , ,
1

, ,
1

ˆ(()) (()) (()) 1 (())

ˆ(()) (()) (()) .

n

u i i u j j j j u j j j j uw i
i j

n

i i u j j j j u j j u
i

E H S t h S t p h S t p h S t

h S t p h S t h S t

μ μ μ μ

μ μ

β β

β

+ +

=
≠

+ +

=

= + + −

= + −

∑

∑
 (61)

By substituting the expression for the target entropies hi [cf. Equations (25) and (60)], we obtain

[] [] ()1 1 2 2
1 1 1

, , 1 1 2 2

1 1(()) log 2 log () log log
2 2

1 1ˆlog () log () log log .
2 2

n n n

u c i i i u i i i i iw i i i

j j j j u j u j j j j

E H S t e V V S t V p p p p

p V S t S t p p p pμ μ

π

β

+

= = =

+

= + − +

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

∑ ∑ ∑
 (62)

The expected entropy change is given by

[] [] ()

[] ()

1 1 2 2
1 1 1

, , 1 1 2 2

1 1 2 2
1 1 1

1 1(()) () log 2 log () log log
2 2

1 1ˆlog () log () log log
2 2

1 1log 2 log log log
2 2

n n n

u c i i i u i i i i iw i i i

j j j j u j u j j j j

n n n

c i i i i i i i i
i i i

E H S t H S e V V S t V p p p p

p V S t S t p p p p

e V V S V p p p p

μ μ

π

β

π

+

= = =

+

= = =

− = + − +

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

− − + +

∑ ∑ ∑

∑ ∑ ∑ ,

(63)

which reduces to

[]
1 1

, , 1 1 2 2

, , 1 1 2 2
1

1 1(()) () log () log
2 2

1 1ˆlog () log () log log
2 2

ˆ ()()1 1log log log log .
2 2 ()

n n

u i i u i iw i i

j j j j u j u j j j j

n
j ui u

i j j j j j j j
i i j u

E H S t H S V S t V S

p V S t S t p p p p

S tS tV p V p p p p
S S t

μ μ

μ μ

β

β

+

= =

+

+

+
=

− = −

⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑

(64)

Thus, the myopic entropy-based SRM selects a control u that minimizes the time averaged
changes in the entropy:

[]
, ,

1 1 2 2
1

ˆ(()) () ()()1 1log log log log ,
2 2 ()

nu j j j j uw i u
i j j j j

iu u i u j u

E H S t H S p V S tS tV p p p p
t t S t S t

μ μβ+

+
=

− ⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ (65)

over all u U∈ , where { }(,) | {1,..., }, { , }U j j n MTI FTIμ μ= ∈ ∈ .

For the multidimensional case, the entropy of a target i is given by

[] ()1 1 2 2() log 2 log log log ,
2 2

i i
i i c i i i i i i

NV NVh S e S V p p p pπ= + − + (66)

22

where Si is the covariance matrix, N is the size of the matrix Si, and |Si| is the determinant of Si.
In this case, the myopic SRM selects a control u that minimizes (over all u U∈) the time
averaged changes in the entropy:

[]
1

, ,
1 1 2 2

(()) () ()1 log
2

ˆ ()
log log log .

2 ()

nu i uw
i

iu u i

j uj j j
j j j j

u j u

E H S t H S S t
NV

t t S

S tp V N p p p p
t S t

μ μβ

+

=

+

−
=

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟
⎝ ⎠

∑
 (67)

.

4.4 SIMULATION RESULTS

Here, we present our simulation model and the test results obtained for the precision maximizing
algorithm, the error minimizing algorithm, and the myopic entropy-based algorithm.

4.4.1 Model Parameters

We start with a detailed discussion of the tracker and sensor parameters, and values identified to
be reflective of realistic scenarios.

Tracker Model Parameters
In the tracker, the target dynamics are modeled by an interacting multiple model (IMM) filter
(see [6]) consisting of two filters: one modeling the kinematics of a “moving” target and the
other modeling the kinematics of a “stopped” target. It is assumed that, when moving, targets
move along a road (i.e., along a line) with a random velocity normally distributed with specified
root mean square value. The target kinematic state consists of the target location estimate and
the estimate of error variance. These states are estimated from position reports generated by a
single sensor.
Perfect report association is assumed, so that each report is associated with a single target. The
tracker model drops the track if the target position error variance exceeds a specified maximum
value. A new track is immediately initialized based on the target truth.
The target motion mode, moving or stopped, is modeled according to a discrete-time Markov
chain with state dependent transition probabilities, as illustrated in Figure 4.

23

stopped

Pmm Pss

Pms

Psm

moving

Figure 4: Discrete-time Markov chain modeling target motion

At any time, a target can be in one of the two motion states: moving or stopped. The target state
transitions occur at times tk= kδ, k = 1, 2, …., where δ is the time increment. The transition
probabilities Pij are state dependent, in
particular },{,for} is statecurrent | is statenext { smjiijProbPij ∈= , where m and s denote
moving and stopped respectively.

By specifying the average number of the targets stopped in the steady state in a scenario, we
derive the transition probabilities for the Markov chain model that are appropriate for the
scenario. In particular, the average number of stopped targets in the steady state is given by

average number of targets stopped ,ms

ms sm

nP
P P

=
+

 (68)

where

- n is the number of targets in the scenario,
- Pms is the probability that a target will stop given that it is moving,
- Psm is the probability that a target will start moving given that it is stopped.

We select the desired average number of targets stopped by setting

,sm msP aP= (69)

for appropriate value of the scalar a.
The transition probability Pms satisfies

(70)
1 ,ms mmP P= −

24

where Pmm is the probability that the target will be moving given that it is currently moving. This
probability is computed using the expected time a target will be moving given that it is moving,
i.e.,

{time target will spend moving | target is currently moving}= .
1

mm

mm

PExpectedTimeMoving
P

δ=
−

where δ is the time interval between two successive transitions of Markov chain modeling target
motion mode. Using this relation, we can see that the transition probability Pmm is given by

.mm
ExpectedTimeMovingP

ExpectedTimeMoving δ
=

+
 (71)

To summarize, the tracker parameters characterizing the target kinematic and motion models are
as follows:
1. Root mean square target velocity. This velocity is used to compute the process noise

covariance for the filter corresponding to the “move” mode over the time increment ∆Time,
as follows:

2() .ProcessNoiseVariance RootMeanSquareVelocity Time= ⋅Δ (72)

The process noise variance for the filter corresponding to the “stop” mode is zero (which
follows from the preceding formula with zero root mean square velocity).

2. Maximum variance. This is the maximum error variance allowed before a target track is
modeled as being dropped.

3. Expected time moving. This is the expected time a target will be moving given that the target
is currently moving. It is used for estimating the probability of the target of transitioning
from the “move” to the “move” state as given in Equation (71).

Sensor Model Parameters
We have modeled two sensor modes, MTI and FTI. The MTI sensor mode can detect moving
targets only, while the FTI sensor mode can detect stationary targets only. Both sensor modes
are characterized by the following parameters:
1. Detection probability. For each sensor mode, the detection probabilities are currently fixed to

a constant for all targets; however, the test setting allows one to model the scenarios where
these probabilities are target dependent. The FTI detection probability depends on clutter and
the number of successive looks. We use values (see Error! Reference source not found.)
corresponding to moderate clutter and coarse image processing (a single look).

2. Measurement error variance. For each sensor mode, the sensor measurement errors are
assumed to be Gaussian random variables with zero mean and unit standard deviation.

3. Dwell-time. This is the time a sensor takes to collect data in a particular mode.

Dynamic Programming Parameters
The parameters used in the dynamic programming formulation of the move-stop tracking
problem are the following:

25

1. Target priority values.
2. Discount factors. There are two discount factors, one used in the reward-based formulation,

and the other used in the cost-based formulation.
3. Desired target error value. For each target I, a desired position error variance Gi is specified,

which is used to define the goal region for the kinematic state of target i. The goal region is
{Si | Si ≤Gi }.

4.4.2 Simulation Results

Our simulations are generated using the tracker and sensor parameter values given in Table 1
and Table 2, respectively. The parameter values used in the dynamic programming formulation
of the SRM problem are listed in Table 3.

Table 1: Tracker model parameter values used in our simulations

 Root mean square target velocity 10 meters per second

 Maximum variance 2500 square meters

 Expected time moving 1 minute

Table 2: Sensor model parameter values used in our simulations

 MTI mode FTI mode

 Detection probability 0.9 0.9

 Standard deviation of
measurement error

1 meter 1 meter

 Dwell-time 0.1 second 10 seconds

Table 3: Dynamic programming parameter values used in our simulations

Target priority value 1 (for all targets)

Target goal state 5 meters (for all targets)

Precision maximizing SRM discount factor,
α

0.65

Error minimizing SRM discount factor, γ 1

We next present the simulation results obtained for the problem of tracking 50 targets with a
single sensor. We have four truth scenarios for the target motion that differ in the average
number of targets stopped in the steady state. In particular, the average number of targets
stopped is varying across the values 10, 20, 30, and 40. For each of these values, the transition

26

probabilities Psm and Pss for Markov chain modeling target motion are computed according to
Equations (68) and (69) with n=50. Table 4 shows the relations between Pms and Psm for the four
truth-scenarios.

Table 4: The relation for the transition probabilities Psm and Pms as the average number of
targets stopped (in the steady state) takes values 10, 20, 30, and 40

Average number of
targets stopped

Psm relation with Pms
(c.f. Eq. 68)

 10 4sm msP P=

 20 3
2sm msP P=

 30 2
3sm msP P=

 40 1
4sm msP P=

In all scenarios, the targets have the same priority value (see Table 3), and the tracking time is 10
minutes.

4.4.2.1 Target Truth and SRM Control Plots

In this section, we present the plots of the control decisions for the precision maximizing SRM,
the error minimizing SRM, and the entropy-based SRM. The SRM decisions are given for the
target motion scenarios where the average number of stopped targets is 10, 20, 30, and 40.

Control Decisions for the Precision Maximizing SRM
The following Figure 5, Figure 6, Figure 7, and Figure 8 show the true target motion and the
control decisions of the precision maximizing SRM algorithm for the scenarios with 10, 20, 30,
and 40 targets stopped on average, respectively. The control decisions correspond to a typical
sample path generated by the algorithm.

27

Figure 5: The plots show results for the precision maximizing SRM when 10 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark

shade) indicates that a target is moving and the red color (light shade) indicates that a
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is
moving and target 2 is stopped. The bottom plot shows the control decisions corresponding
to the precision maximizing SRM for the scenario with 10 targets stopped on average. The
bars indicate which target is observed at which sensor dwell, and the bar color indicates
the sensor mode used for the observation. The blue and the red colors correspond to the
MTI and FTI sensor modes, respectively. For example, target 46 is observed at sensor
dwell 1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute

tracking, and the MTI mode is used in each dwell.

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

28

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 6: The plots show results for the precision maximizing SRM when 20 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark
shade) indicates that a target is moving and the red color (light shade) indicates that a

target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is
moving and target 2 is stopped. The bottom plot shows the control decisions corresponding
to the precision maximizing SRM for the scenario with 20 targets stopped on average. The
bars indicate which target is observed at which sensor dwell, and the bar color indicates
the sensor mode used for the observation. The blue and the red colors correspond to the
MTI and FTI sensor modes, respectively. For example, target 42 is observed at sensor
dwell 1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute

tracking, and the MTI mode is used in each dwell.

29

Time (in sensor dwells

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 7: The plots show results for the precision maximizing SRM when 30 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving
and target 2 is stopped. The bottom plot shows the the control decisions corresponding to
the precision maximizing SRM for the scenario with 30 targets stopped on average. The
bars indicate which target is observed at which sensor dwell, and the bar color indicates
the sensor mode used for the observation. The blue and the red colors correspond to the
MTI and FTI sensor modes, respectively. For example, target 37 is observed at sensor
dwell 1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute

tracking, and the MTI mode is used in each dwell.

30

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 8: The plots show results for the precision maximizing SRM when 40 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark

shade) indicates that a target is moving and the red color (light shade) indicates that a
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is

moving and target 2 is stopped. The bottom plot shows the control decisions corresponding
to the precision maximizing SRM for the scenario with 40 targets stopped on average. The
bars indicate which target is observed at which sensor dwell, and the bar color indicates
the sensor mode used for the observation. The blue and the red colors correspond to the
MTI and FTI sensor modes, respectively. For example, target 41 is observed at sensor
dwell 1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute

tracking, and the MTI mode is used in each dwell.

31

As indicated by the preceding plots, the precision maximizing SRM uses MTI mode exclusively.
This is to be expected, since long FTI dwells are not beneficial for this SRM. More specifically,
this SRM is maximizing the overall time the target errors are below the desired error goals.
During the long FTI dwell, the errors of moving targets increase well above the desired error.
Therefore, the time the target error goals are attained during a single FTI mode is shorter than the
time the error goals are attained during a sequence of 100 MTI dwells. Being farsighted, the
precision maximizing SRM captures the trade-off between the benefits resulting, respectively,
from one long FTI dwell and a sequence of 100 short MTI dwells.
Note that the algorithm uses the MTI mode on stopped targets to check whether the target is still
stopped or it has started moving.

Control Decisions for the Error Minimizing SRM
The following Figure 9, Figure 10, Figure 11, and Figure 13 show the true target motion and the
control decisions of the error minimizing SRM algorithm for the scenarios with 10, 20, 30, and
40 targets stopped on average, respectively. The control decisions correspond to a typical sample
path generated by this SRM algorithm.

32

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 9: The plots show results for the error minimizing SRM when 10 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving
and target 2 is stopped. The bottom plot shows the control decisions corresponding to the

error minimizing SRM for the scenario with 10 targets stopped on average. The bars
indicate which target is observed at which sensor dwell, and the bar color indicates the

sensor mode used for the observation. The blue and the red colors correspond to the MTI
and FTI sensor modes, respectively. For example, target 14 is observed at sensor dwell

1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute tracking,
and the MTI mode is used in each dwell.

33

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 10: The plots show results for the error minimizing SRM when 20 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving
and target 2 is stopped. The bottom plot shows the control decisions corresponding to the

error minimizing SRM for the scenario with 20 targets stopped on average. The bars
indicate which target is observed at which sensor dwell, and the bar color indicates the

sensor mode used for the observation. The blue and the red colors correspond to the MTI
and FTI sensor modes, respectively. For example, target 7 is observed at sensor dwell 1,000
in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute tracking, and the

MTI mode is used in each dwell.

34

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 11: The plots show results for the error minimizing SRM when 30 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving
and target 2 is stopped. The bottom plot shows the control decisions corresponding to the

error minimizing SRM for the scenario with 30 targets stopped on average. The bars
indicate which target is observed at which sensor dwell, and the bar color indicates the

sensor mode used for the observation. The blue and the red colors correspond to the MTI
and FTI sensor modes, respectively. For example, target 41 is observed at sensor dwell

1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute tracking,
and the MTI mode is used in each dwell.

35

Figure 12: The plots show results for the error minimizing SRM when 40 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving
and target 2 is stopped. The bottom plot shows the control decisions corresponding to the

error minimizing SRM for the scenario with 40 targets stopped on average.The bars
indicate which target is observed at which sensor dwell, and the bar color indicates the

sensor mode used for the observation. The blue and the red colors correspond to the MTI
and FTI sensor modes, respectively. For example, target 49 is observed at sensor dwell

1,000 in MTI mode. There are 6,000 sensor dwells scheduled during 10 minute tracking,
and the MTI mode is used in each dwell.

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

36

Similar to the precision maximizing SRM, the error minimizing SRM uses MTI mode
exclusively as indicated in the preceding plots. Again, this is to be expected, since this SRM is
minimizing the discounted sum of the target errors above the level of the desired error goal
accumulated over the tracking time. The total target error accumulated during a long FTI dwell is
larger than the target error accumulated during a sequence of 100 MTI dwells. Therefore, the
FTI mode is less beneficial for the cost-rollout algorithm than the MTI mode. Being farsighted,
the error minimizing SRM can anticipate the benefits resulting from a long FTI dwell and a
sequence of 100 short MTI dwells, and can select a control that is more beneficial in a long run.
Note that, similar to the precision maximizing algorithm, the error minimizing uses the MTI
mode for stopped targets to check whether the target is still stopped or it has started moving.

Control Decisions for the Entropy-Based SRM
The following Figure 13, Figure 14, Figure 15, and Figure 16 show the true target motion and
the control decisions of the myopic entropy-based SRM for the scenarios with 10, 20, 30, and 40
targets stopped on average, respectively. The control decisions correspond to a typical sample
path generated by this algorithm.

37

Sensor Dwell

Ta
rg

et
 N

um
be

r

Target State (Blue = Moving, Red = Stopped)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

1000 2000 3000 4000 5000 6000

5

10

15

20

25

30

35

40

45

50

Figure 13: The plots show results for the myopic entropy-based SRM when 10 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark

shade) indicates that a target is moving and the red color (light shade) indicates that a
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is

moving and target 2 is stopped. The bottom plot shows the control decisions corresponding
to the entropy-based SRM for the scenario with 10 targets stopped on average. The bars
indicate which target is observed at which sensor dwell, and the bar color indicates the

sensor mode used for the observation. The blue and the red colors correspond to the MTI
and FTI sensor modes, respectively. For example, target 37 is observed at sensor dwell

1,000 in MTI mode. During 10 minute tracking, 6,000 sensor dwells are scheduled and the
MTI mode is used in each dwell.

38

Figure 14: The plots show results for the myopic entropy-based SRM when 20 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 500, target 1 is stopped

and target 4 is moving. The bottom plot shows the control decisions corresponding to the
entropy-based SRM for the scenario with 20 targets stopped on average.The bars indicate

which target is observed at which sensor dwell, and the bar color indicates the sensor mode
used for the observation. The blue and the red colors correspond to the MTI and FTI

sensor modes, respectively. For example, target 45 is observed at sensor dwell 500 in MTI
mode and target 49 is observed at sensor dwell 2,052 in FTI mode. During 10 minute

tracking, 3,546 sensor dwells are scheduled and the long FTI mode is used in 25 dwells.

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

500 1000 1500 2000 2500 3000 3500

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

500 1000 1500 2000 2500 3000 3500

5

10

15

20

25

30

35

40

45

50

39

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

200 400 600 800 1000 1200 1400 1600

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

200 400 600 800 1000 1200 1400 1600

5

10

15

20

25

30

35

40

45

50

Figure 15: The plots show results for the myopic entropy-based SRM when 30 targets are
stopped on average. The top plot shows the true target motion The blue color (dark shade)

indicates that a target is moving and the red color (light shade) indicates that a target is
stopped. For example, at the time corresponding to sensor dwell 200, target 1 is stopped

and target 3 is moving. The bottom plot shows the control decisions corresponding to the
entropy-based SRM for the scenario with 30 targets stopped on average. The bars indicate
which target is observed at which sensor dwell, and the bar color indicates the sensor mode

used for the observation. The blue and the red colors correspond to the MTI and FTI
sensor modes, respectively. For example, target 29 is observed at sensor dwell 200 in MTI

mode and target 40 is observed at sensor dwell 110 in FTI mode. During 10 minute
tracking, 1,633 sensor dwells are scheduled and the long FTI mode is used in 45 dwells.

40

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

45

50

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

45

50

Figure 16: The plots show results for the myopic entropy-based SRM when 40 targets are
stopped on average. The top plot shows the true target motion. The blue color (dark

shade) indicates that a target is moving and the red color (light shade) indicates that a
target is stopped. For example, at the time corresponding to sensor dwell 50, target 1 is

stopped and target 30 is moving. The bottom plot shows the control decisions
corresponding to the entropy-based SRM for the scenario with 40 targets stopped on

average. The bars indicate which target is observed at which sensor dwell, and the bar
color indicates the sensor mode used for the observation. The blue and the red colors
correspond to the MTI and FTI sensor modes, respectively. For example, target 44 is

observed at sensor dwell 50 in MTI mode and target 48 is observed at sensor dwell 42 in
FTI mode. During 10 minute tracking, 504 sensor dwells are scheduled and the long FTI

mode is used in 56 dwells.

41

As seen from the preceding plots Figure 13 through Figure 16, the entropy-based SRM algorithm
schedules the longer FTI mode more frequently to observe the stopped targets, as the number of
stopped targets increases. In particular:

1. When 10 targets are stopped on average, the FTI mode is not used in any dwell.
2. When 20 targets are stopped on average, the FTI mode is used in 25 dwells out of the

total of 3546 dwells scheduled during the 10 minute tracking.
3. When 30 targets are stopped on average, the FTI mode is used in 45 dwells out of the

total of 1633 dwells scheduled during the 10 minute tracking.
4. When 40 targets are stopped on average, the FTI mode is used in 56 dwells out of the

total of 504 dwells scheduled during the 10 minute tracking.
The entropy-based SRM algorithm, being myopic, does not anticipate long term benefits
resulting from current control decisions. In particular, this algorithm selects control decisions
based on the benefits of a single dwell plan. For such a short planning horizon, the FTI mode
may seem more beneficial than the MTI mode, which results in scheduling dwells with the FTI
mode.

4.4.3 Time Averaged Mean-Square Error and Fraction of Time the Error Goals are Met

Here, we present our simulation results for the farsighted precision maximizing SRM and the
error minimizing SRM algorithms, and the myopic entropy-based SRM algorithm obtained for
the four target-motion scenarios. We have 4 Monte Carlo simulations for each target-motion
scenario and each SRM algorithm. Note that the number of Monte Carlo simulations needed to
achieve reasonably small 95 percent confidence intervals is small because there is not much
variability in the simulation results. In particular, all the variability in the simulation results (for
a fixed scenario and a selected SRM algorithm) comes from the uncertainty in the sensor
detections and the sensor detection probability is 0.9 for both modes (see Table 2).
We present our simulation results in terms of two measures of performance:

1. Time averaged mean-square error.
2. Average fraction of time the target error goals are met.

The time averaged mean-square error is computed by averaging the sum of target errors in time
over the number of targets, over the tracking time, and over the number of runs. Similarly, the
average fraction of time the target error goals are met is computed by averaging the sum of the
fractions of time the target error goal is met over the number of targets and over the number of
runs. The fraction of time the target error goal is met is the total time (during the tracking) the
target error is below the desired error goal divided by the total tracking time. The simulation
results for the time averaged mean-square error are presented in Figure 17, and the results for the
average fraction of time the error goals are met are shown in Figure 18. The bars in the figure
mark the intervals for the variability in the data with 95 percent confidence.

42

5 10 15 20 25 30 35 40 45
0.5

1

1.5

2

2.5

3

3.5

4
Time Averaged Mean-Square Error

Average number of targets stopped

Farsighted Precision Maximizing SRM
Farsighted Error Minimizing SRM
Myopic Entropy-Based SRM

Figure 17: The results for the time averaged mean-square error obtained for the four
target-motion scenarios and for the three SRM algorithms.

The four target-motion scenarios correspond to the average number of targets stopped taking
values 10, 20, 30, and 40, respectively. The three SRM algorithms are the farsighted precision
maximizing and error minimizing SRM algorithms, and the myopic entropy-based SRM
algorithm.

The simulation results in Figure 17 indicate that the farsighted error minimizing SRM algorithm
maintains better quality target tracks than the farsighted precision maximizing and the myopic
algorithms. In particular, the difference in the time averaged mean-square error for the precision
maximizing SRM and for the error minimizing SRM is largest when most of the targets are
moving (see the results in Figure 17 for 10 and 20 targets stopped on average). When most of the
targets are moving, the entropy-based algorithm also has smaller error than the precision
maximizing algorithm. However, as more targets are stopped (see the results for 30 targets
stopped on average), the entropy-based algorithm accumulates more error than the precision
maximizing algorithm. When most of the targets are stopped, the tracking is easier because there

43

are fewer constraints on the sensor resources. In this case, all three algorithms perform similarly
(see the results for 40 targets stopped on average).

5 10 15 20 25 30 35 40 45

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Fraction of Time the Target Error Goals are Attained

Average number of targets stopped in steady state

Fr
ac

tio
n

of
 ti

m
e

Farsighted Precision Maximizing SRM
Farsighted Error Minimizing SRM
Myopic Entropy-Based SRM

Figure 18: The results for the average fraction of time the target error goals are met
obtained for the four target-motion scenarios and for the three SRM algorithms.

The four target-motion scenarios correspond to the average number of targets stopped taking
values 10, 20, 30, and 40, respectively. The three SRM algorithms are the farsighted precision
maximizing and error minimizing SRM algorithms, and the myopic entropy-based SRM
algorithm.

The simulation results in Figure 18 indicate that the farsighted precision maximizing SRM
algorithm has the best performance and the myopic entropy-based has the worst performance for
the fraction of time the target error goals are met. The difference in the fraction of time the error
goals are met between the precision maximizing SRM and the error minimizing SRM is the
largest when most of the targets are moving (see the results in Figure 17 for 20 targets stopped
on average). The difference in the fraction of time the error goals are met between the precision

44

maximizing and the entropy-based algorithm is the largest when most of the targets are stopped
(see the results in Figure 18 for 30 targets stopped on average).

Considering the results for the precision maximizing algorithm in both Figure 17 and Figure 18,
and the fact that this algorithm has scheduled the MTI mode for each dwell, it seems that the
precision maximizing algorithm keeps the target error below the desired error goal for as many
targets as possible, resulting in a very small error for some targets and very large error on the
other targets. Consequently, the average target error is large, but the overall time the error goals
are met is also large.

Considering the results for the error minimizing algorithm in both Figure 17 and Figure 18, we
see that this algorithm maintains overall small errors on all targets, but does not necessarily
maintain the errors smaller than their corresponding error goals. Consequently, this algorithm
has small average target error, but the overall time the error goals are met is not always the best.

The performance of the myopic entropy-based algorithm is not satisfactory in either of the two
measures. This algorithm schedules the longer FTI mode more frequently to observe the stopped
targets as the number of stopped targets increases (see Figure 16). This results in substantially
less time spent observing moving targets, and the corresponding track errors far exceed the
goals. Consequently, the overall target error is large and the time target error goals are met is
short.

4.5 CONCLUSIONS

We have developed novel, computable, farsighted SRM algorithms for move/stop tracking with
a multi-mode sensor. This particular sensor management problem is challenging because of the
complex target dynamics and the variable duration of sensor actions. We have evaluated the
farsighted algorithms against a myopic, entropy-based SRM algorithm. Our simulation results
indicate that the farsighted algorithms have promising behavior. For example, the farsighted
precision maximizing SRM results in a policy that adaptively adjusts the frequency with which
moving and stopped targets are observed in a manner that results in better tracks than the myopic
entropy-based sensor manager. We attribute this to the capability of the farsighted algorithm to
adapt the target revisit rates appropriately.
We believe that our simulation results are important indicators that the farsighted algorithms are
better than myopic ones, especially, for SRM problems with complex dynamics (e.g., when
targets are randomly starting and stopping and/or sensor actions have significantly different
durations).

45

5 COMPUTABLE OPTIMAL STRATEGIES

In this section, we investigate computable optimal strategies for sensor resource management
(SRM) problems. SRM problems can be formulated as Markov decision processes (MDPs)
which in turn can be solved optimally, at least in principle, by numerical dynamic programming
algorithms. Since the processing time and memory required to solve the dynamic program
associated with the MDP in SRM is exponential in the number n of targets being sensed,
optimal numerical solutions of the general SRM problem are intractable for large n of interest
(e.g., for hundreds of targets). However, there are classes of problems such as multi-armed
bandit problems which have optimal strategies in terms of maximizing a priority index rule
computed independently for each target. These strategies are computationally tractable, and can
be used as subroutines in computing approximate optimal strategies of more realistic problems.
Sometimes priority index solutions can be obtained for problems which aren't multi-armed
bandit problems. For example, it is shown in [7] that a priority index solution based on the
conditional probabilities of each target being a threat is optimal for a finite horizon classification
problem.

This report describes a sufficient condition to use for checking whether a given strategy, such as
one given by a priority index rule, is optimal. The sufficient condition applies to finite horizon
MDPs with terminal reward, and can be used to show the optimality of the search strategy in [7]
and in some other examples that we will describe. The report is organized as follows:

• Section 5.1 formulates the sufficient condition for a general MDP in terms of strategy
sets. This section defines strategy set, terminal optimality of a strategy set, deferrable
decisions, and commutative transition probabilities. If a strategy set is terminally optimal,
has deferrable decisions, and the MDP has commutative transition probabilities, then the
strategy set is optimal. The section specializes the general result to symmetric MDP
problems, which are given in some of the examples later in the section.

• Section 5.2 describes a subclass of MDP that corresponds to many SM problems, namely
the class of MDP corresponding to one sensor observing n non-interacting targets one at
a time. This section specializes the definitions and results of Section 5.1 to this subclass
of SM MDP problems.

• Section 5.3 applies the sufficient condition to show the optimality of a strategy for a class
of MDP (which is a subclass of the SM MDP problems of Section 5.2). This class of
MDP is characterized by n non-interacting Markov chains which have an ordered state
space. In particular, the chains can only transition at most one step in one direction and
include birth-death processes as a special case.

• Section 5.4 applies the sufficient condition to show the optimal strategy for a class of
symmetric binary classification problems.

• Section 5.5 applies the sufficient condition to show the optimal strategy for a class of
search problems. This strategy was developed previously in [7].

46

5.1 SUFFICIENT CONDITION

We will denote a MDP with terminal reward by the tuple ()TRpu ,,,, UX where X denotes the
state space of the Markov chain, U denotes the set of possible decisions, { }U∈upu : is the
collection of transition probabilities parameterized by the decision u , R is the terminal reward
function RX →:R , and the integer T is the terminal time. We will assume that X is discrete
and U is finite.

If () TttX ≤≤0, is the Markov process with decisions () 10, −≤≤ TttU , and terminal reward
()()TXR , the MDP problem is to select U to maximize the expected value ()(){ }TXRE of the

terminal reward. We assume that the decision ()tU depends only on () ()tXX ,...,0 and that

() () (){ } ().|,|1Pr xputUxtXtX u ξξ ====+ (72)

The dynamic programming equations for the optimal reward function for the MDP
()TRpu ,,,, UX are given as follows. The terminal condition is

() ()., xRTxV = (73)

The recursion is

() (){ }txVtxV uu
,max, = (74)

for times 10 −≤≤ Tt , where we define

() () ().|1,:, xptVtxV uu ξξ
ξ

+= ∑ (75)

Definition 1. Suppose that the MDP ()TRpu ,,,, UX has the probability transition functions
()xpu |ξ for X∈ξ,x , U∈u , and terminal reward ()xR for X∈x . If () U⊂Φ tx, for each
X∈x and 10 −≤≤ Tt , we say that Φ is a strategy set for the MDP.

Definition 2. If Φ is a strategy set for the MDP ()TRpu ,,,, UX , and if for each X∈x and each
()1, −Φ∈ Txu ,

() () () (),|max| xypyRxypyR v
yvu

y
∑∑ = (76)

47

we say that the strategy set Φ is terminally optimal for the MDP.

Definition 3. If Φ is a strategy set for the MDP ()TRpu ,,,, UX , and if for each t such that
10 −≤≤ Tt , each X∈x , and for all , ,u v y

() () () () (), , , , , and | 0 imply that , 1 ,v u vu x t V x t V x t p y x u y t∈Φ > > ∈Φ + (77)

then we say that decisions are deferrable in the strategy set Φ .

Remark 1. Definition 3 gives conditions under which if u is in the decision set at the current
time but a different decision v is made, then u is still in the decision set at the next time. This
condition allows using an interchange argument to prove the optimality of the decision set
(Theorem 1). Unfortunately, Definition 3 is too hard to check in practice. However, it is implied
by various stronger conditions that are easier to check. For example, if for each t such that

10 −≤≤ Tt , and each X∈x ,

() () (), , , and | 0 imply that , 1 ,vu x t v u p y x u y t∈Φ ≠ > ∈Φ + (78)

then decisions are deferrable in the strategy set Φ . This condition is stronger than the definition,
since () ()txVtxV uv ,, > obviously implies that uv ≠ . At the end of this section we prove another
stronger condition for problems with symmetry.

Definition 4. We say that the probability transition functions ()xpu |ξ are commutative if for
all U∈vu, ,

() () () ()xppxpp uvvu |||| ηηξηηξ
ηη
∑∑ = (79)

for all X∈ξ,x .

Theorem 1. Suppose that Φ is a strategy set for an MDP ()TRpu ,,,, UX with commutative
transition probability functions up , such that Φ is terminally optimal and decisions in Φ are
deferrable. Then the strategy set Φ is optimal in the sense that any decision () ()()ttXtU ,Φ∈ for

10 −≤≤ Tt , is an optimal decision for ()TRpu ,,,, UX .

Proof. Define ()tx,∗Φ to be the set

() () (){ }.,max,:, txVtxVutx wwu ==Φ∗ (80)

48

Thus, ()tx,∗Φ is the set of optimal strategies. We want to prove that

() ().,, txtx ∗Φ⊂Φ (81)

The terminal optimality condition is equivalent to

() ().1,1, −Φ⊂−Φ ∗ TxTx (82)

Thus, assume that () ()1,1, +Φ⊂+Φ ∗ txtx is true for Φ and prove (81) from it. Suppose that
(,)u x t∈Φ and ()txu ,∗Φ∉ . Clearly () ∅≠Φ∗ tx, and there is ()txv ,∗Φ∈ such that

() ()txVtxV uv ,, > . The condition that decisions in Φ are deferrable implies that
()()1,1 ++Φ∈ ttXu where ()1+tX results from using () vtU = . The induction hypothesis

implies that

()() ()(),1,11,1 ++Φ⊂++Φ ∗ ttXttX (83)

so that *((1), 1)u X t t∈Φ + + and () , (1)U t v U t u= + = are optimal decisions. We now can use
the commutativity of the transitions wp to show that the decisions () () vtUutU =+= 1, have the
same expected value and must be optimal too. Thus, u is optimal, contrary to assumption and
we must have ()txu ,∗Φ∈ .

To complete the proof, we note that starting from ()tX , if ()2+tX is the state resulting from
() () utUvtU =+= 1, and ()2~ +tX is the state resulting from () () vtUutU =+= 1, , then

commutativity implies that ()2+tX and ()2~ +tX have the same distribution. By assumption
(induction) the decisions () () utUvtU =+= 1, are optimal and the value

()() ()() (){ }.|2,2E, tXttXVttXV ++= (84)

Commutativity implies that

()() (){ } ()() (){ },|2,2~E|2,2E tXttXVtXttXV ++=++ (85)

which implies that () () vtUutU =+= 1, must also be optimal decisions. Q. E. D.

Remark 2. If ()tx,∗Φ is the optimal strategy set for ()TRpu ,,,, UX as defined in (80), then ∗Φ
is necessarily terminal optimal. It also necessarily satisfies the condition for deferrable decisions,
simply because the hypothesis of the condition,

49

() () (),,,, txVtxVtxu uv >Φ∈ ∗ , (86)

is always false. As we indicated in Remark 1, this condition is difficult to check in practice, but
we can replace it with stronger conditions which don't refer to the optimal reward function. With
these stronger conditions, it's important to have the third condition, commutativity of the
transition probabilities, to prove the optimality of a proposed strategy set.

To conclude this section we will prove another stronger condition for deferrable decisions in Φ
based on symmetric MDP problems.

Definition 5. The MDP ()TRpu ,,,, UX is symmetric if for some n

{ },,...,1
,

n

n

=
=

U
X X

 (87)

()() ()xypxyp ii || =πππ

and

() ()xRxR π= (88)

where π permutes the components of yx, , namely

() ()(),,...,1 nxxx πππ = (89)

for any permutation π of { }n,...,1 and all nx X∈ .

Lemma 1. Let ()txV , be the value function for MDP ()TRpu ,,,, UX which is symmetric. Then
()txV , is symmetric in ix for each Tt ≤≤0 . That is, if π is a permutation of n,...,1 and

() ()()nxxx πππ ,...,1= , then

() ().,, txVtxV π= (90)

In addition,

() () ().,, txVtxV ii ππ= (91)

50

Proof. Let x denote a vector in =nX X . The dynamic programming equations for the MDP are
given as follows. The terminal condition is

() ()., xRTxV = (92)

The recursion is

() (){ }txVtxV ii
,max, = (93)

for times 10 −≤≤ Tt , where

() () ().|1,:, xyptyVtxV i
y

i +=∑ (94)

Clearly,

() () () ().,,,, TxVTxRTxRTxV === ππ (95)

Assume that

() ()1,1, +=+ txVtxV π (96)

for all π,x and prove it for t . By definition,

() () ()xyptyVtxV i
y

i |1,, +=∑ (97)

and by symmetry assumptions,

() () () () ()

() () ().|1,

|1,|1,

xyptyV

xyptyVxyptyV

i
y

i
y

i
y

π

πππ

π

π

+=

+=+

∑

∑∑
 (98)

Thus, it follows that

() () ().,, txVtxV ii ππ= (99)

51

For any permutation φ and any y it is always true that

() () (){ }tyVtyV ii
,max, φ= . (100)

In particular, it is true for πφ = and xy π= . Thus,

() () (){ }
(){ }

().,

,max

,max,

txV

txV

txVtxV

ii

ii

=

=

= ππ π

 (101)

This completes the induction and the proof. Q. E. D.

Proposition 1. Suppose that the MDP ()TRpu ,,,,UX is symmetric. Then if

() () (), , and | 0 imply that , 1 ,v u vu x t x x p y x u y t∈Φ ≠ > ∈Φ + (102)

then decisions are deferrable in Φ .

Proof. Suppose that ()txu ,Φ∈ , () ()txVtxV uv ,, > and () 0| >xypv . Because of the symmetry
assumption

() () ()txVtxV vv ,, ππ= (103)

for all permutations π . Let π be the permutation that interchanges v and u . Then if uv xx = ,
() ()txVtxV uv ,, = . Thus, () ()txVtxV uv ,, > implies that uv xx ≠ . By the proposition's assumption, it

follows that ()1, +Φ∈ tyu , which proves the result. Q. E. D.

5.2 APPLICATIONS TO SRM PROBLEMS

Consider the SRM problem where there are n targets and we can only observe one target at a
time. In the simplest case, the decision ()tU to make at each time t is only which target

ni ,...,1= to observe. There is a Markov chain ()tX i corresponding to each target i , where
()tX i represents the information state of target i at time t . Typically, we assume that the chains
()tX i are independent and identically distributed, and that the selected (i.e., observed) chain

transitions using ()xp |ξ and the 1−n unobserved chains transition using ()xq |ξ . Moreover,
the reward is typically additive over the n targets, namely

52

() ()() ()().,...,
1

1 TXrTXTXR i

n

i
n ∑

=

= (104)

The resulting MDP ()TRpu ,,,,UX has special structure where

1

 and is the state space of one Markov chain
{1, , }

(|) (|) (|) for , ,

() () for .

n
i

n
i i i j j

j i

n
n

i
i

X
n

p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X X

X

X

K

X

U

 (105)

Remark 3. If Xs = is the number of states for each single Markov chain, then the

computational complexity of the dynamic programming solution is ()TnsO n2 . Thus, for fixed s
and T , the complexity is exponential in n . Furthermore, the memory requirements are
exponential, namely ()TsO n . In some cases we can find an optimal strategy of the form
() () ()()()ttXtXtU n ,,...,1Φ∈ where

() () (){ }.,max,:, txMtxMitx jjjii ==Φ (106)

This is what we call a priority index rule strategy. The ()txM ii , are indices that can be computed
for each target with complexity ()TsO 2 (i.e., equivalent to solving the dynamic program for one
target). Thus, the complexity of the n target strategy is ()TnsO 2 rather than ()TnsO n2 , linear in
n rather than exponential in n .

For the class of transition probabilities ()xpi |ξ with structure (105), commutativity is
equivalent to the commutativity of the transition functions p and q , as the following simple
result shows.

Proposition 2. If the transition probability functions ()xpi |ξ defined for , nxξ ∈ =X X and
{ }ni ,...,1∈ satisfy

() () (),||| jj
ij

iii xqxpxp ξξξ ∏
≠

= (107)

and if for all 1 1, xξ ∈X ,

53

() () () (),|||| 11111111
11

xqpxpq ηηξηηξ
ηη
∑∑ = (108)

then ()xpi |ξ are commutative transition probability functions for , nxξ ∈ =X X .

Proof. Note that for ji ≠ ,

() ()

() () () ()

() () () () () ().||||||

||||

||

,
kkkk

jik
iiiijjjj

kk
jk

jjkk
ik

ii

ji

xqqxqpxpq

xqxpqp

xpp

kij

ηηξηηξηηξ

ηηηξηξ

ηηξ

ηηη

η

η

∑∏∑∑

∏∏∑

∑

≠

≠≠

=

= (109)

By assumption

() () () ()jjjjjjjj xqpxpq
jj

|||| ηηξηηξ
ηη
∑∑ = (110)

and

() () () ().|||| iiiiiiii xqpxpq
ii

ηηξηηξ
ηη
∑∑ = (111)

Thus,

() () () () () ()

() () () () () ()

() (),||

||||||

||||||

,

,

xpp

xqqxpqxqp

xqqxqpxpq

ij

kkkk
jik

iiiijjjj

kkkk
jik

iiiijjjj

kij

kij

ηηξ

ηηξηηξηηξ

ηηξηηξηηξ

η

ηηη

ηηη

∑

∑∏∑∑

∑∏∑∑

=

=
≠

≠

 (112)

proving that

() () () ().|||| xppxpp ijji ηηξηηξ
ηη
∑∑ = (113)

Q. E. D.

54

Remark 4. Note that commutativity always holds if p or q is the identity transition
() 1| =ii xξδ for ii x=ξ and 0 otherwise. Note that δ=q is assumed true in (non-restless)

multi-armed bandit problems. Also, classification sensor management problems often satisfy
δ=q (i.e., the classification information state remains unchanged while the target is

unobserved). For this class of MDPs corresponding to SRM problems, the general result
(Theorem 1) reduces to the result of Corollary 1.

Remark 5. Transition probabilities of the form

() () ()jj
ij

iii xqxpxp ||| ξξξ ∏
≠

= (114)

and reward functions

() ()i

n

i

xrxR ∑
=

=
1

 (115)

are obviously symmetric.

Corollary 1. Suppose that the MDP ()TRpu ,,,,UX has special symmetric structure where

1

 and is the state space of one Markov chain
{1, , }

(|) (|) (|) for , ,

() () for .

n
i

n
i i i j j

j i

n
n

i
i

X
n

p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X X

X

X

K

X

U

 (116)

Suppose that ()tx,Φ is a strategy set for ()nxxx ,...,1= such that ()1, +Φ∈ Txi implies

() () () () () ()jjjj
y

iiii
y

xrxypyrxrxypyr
ii

−≥− ∑∑ || (117)

for all ij ≠ , and

() () 0|,,...,,...,,...,1 >≠Φ∈ jjjinji xypxxtxxxxi and , , (118)

implies that

55

()1,,...,,...,,...,1 +Φ∈ txyxxi nji (119)

Then the strategy set Φ is optimal.

Proof. The condition on ()xpi |ξ implies that it is commutative. The second condition implies
that Φ is terminally optimal for the terminal reward ()xR , and the third condition implies that
decisions in Φ are deferrable (Proposition 1). The result follows from Theorem 1. Q. E. D.

5.3 BIRTH-DEATH MDPS

One class of MDPs for which the sufficient conditions hold is analogous to a birth-death process
that evolves on an ordered set and can only transition one step at a time. Specifically, suppose
that each individual Markov chain ()tX i has states in the nonnegative integers ,...1,0 and can
transition down at most one unit at a time (but can transition up any number of units at a time).
Thus, () () 11 −≥+ tXtX ii . If the Markov chain ()tX i is in state 0 , it stays there (so that 0 is a
trapping state). The terminal reward gives reward 1 if the state is 0 and gives reward 0 for any
other state. The objective of the MDP is to control as many of the individual Markov chains into
state 0 by the terminal time T as possible. In this case, the sufficient condition shows that the
greedy solution is optimal--that is, select i next for the smallest nonzero state ()tX i .

Corollary 2. Suppose that the MDP ()TRpu ,,,,UX has the special structure

0 0

0

0
1

 and {0,1,2, }
{1, , }

(|) (|) (|) for , ,

() () for ,

n

n
i i i j j

j i

n
n

i
i

n
p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

= =
=

= ∈ ∈

= ∈

∏

∑

K

K

X N N

U

N

N

 (120)

where () 0| =xyp for 1−< xy , () 10|0 =p , () 0=ixr if 0≠ix , and () 10 =r . For any x and
time-to-go 0>τ , define

{ }0
() : min{ } if some 0,

j
i j jx

x i x x x
>

Φ = = > (121)

and

() {1, , } if 0 for all .jx n x jΦ = =K (122)

56

Then any control () ()()tXtU Φ∈ is optimal.

Proof. First check that ()xi Φ∈ maximizes the marginal reward

() ()[] () () .
00

1|0
10

|
⎪
⎩

⎪
⎨

⎧

=
=

>
=−∑

i

ii

i

ii
y x

xxp
x

xypxryr
 if

 if
 if

 (123)

Suppose 0>ix and ji xx ≤ . If 1=ix , then i has marginal reward ()ixp |0 and j has the same
marginal reward () ()ji xpxp |0|0 = if ji xx = , or smaller marginal reward 0 if ij xx > . If

2≥ix , then i and j both have marginal reward 0 . Likewise, if 0=jx for all j , then all j
have marginal reward 0 , so that any selection is optimal. Thus, Φ is terminally optimal.

Suppose that () 0| >jj xyp for ji xx ≠ . Then we will show that

1 1(, ,) implies (, , , ,).n j ni x x i x y x∈Φ ∈ΦK K K (124)

Suppose ()nxxi ,...,1Φ∈ . Note that 0>ix because ji xx ≠ and there is at least one non-zero kx .
Let () 0| >jj xyp . If 0=jx , then 0=jy and none of the kx change values, and therefore

() ().,...,,...,,...,,..., 11 njnj xxxxyxi Φ=Φ∈ (125)

If 0>jx , then ij xx > since ij xx ≠ . Thus, () 0| >jj xyp implies that 1−≥ jj xy and ij xy ≥ .
Although jy is non-zero, it is no smaller than ix , and ix is still the minimum of the non-zero
elements of nj xyx ,...,,...,1 . Therefore

().,...,,...,1 nj xyxi Φ∈ (126)

It follows that decisions in Φ are deferrable (Corollary 1), and the proof is complete. Q. E. D.

Example 1. As an example of the birth-death MDP we have defined, consider the four state
model of tracking quality given by the Markov chains shown the figure, showing the possible
transitions for the case in which target i is observed or not observed.

57

undetected

detected

tracked

handover

undetected

detected

tracked

handover

if target i is observed if target i is not observed

Figure 19: In example 1, the state of the target remains unchanged if it is not observed, but
the state may change, as indicated in the illustration, if the target is observed.

Here, there are states of tracking accuracy ranging from undetected, detected, tracked, and
handover (e.g., to a weapon system). The model requires that the state can transition at most one
step to the right at any time interval, but could transition to left all the way to undetected (i.e.,
drop track). If the track reaches the handover state, it stays there. The goal of the example is to
control as many targets into the handover state by time T . The transition probabilities reflect the
probability of track error increase or decrease, depending on the type of measurements taken.
The optimal strategy is to look at the target which is the state closest to but not equal to
handover.

5.4 BINARY CLASSIFICATION PROBLEM

This problem is to classify as many of n objects over a finite time horizon T given binary
measurements of the objects. The problem is interesting because it is a partially observed
Markov decision process (POMDP) which can be interpreted as an MDP with a countable state
space. Suppose there are n random variables iZ with values 0 , 1 and that { } pZi ==1Pr for all

ni ,...1= . Suppose that the ()tYi are 1,0 observations of iZ , and ()tYi are independent and
identically distributed conditioned on iZ with

(){ } () (),11|Pr ,, zyzyii zZytY δεδε −⋅+⋅−=== (127)

58

where we use the notation 1, =zyδ if zy = and 0 otherwise. We assume that 2
1<ε . Note that ε

is the probability of classification error for one measurement.

Define the conditional probability ()tX i as

() () (){ }.,...,1|1Pr tYYZtX iiii == (128)

The objective of the problem is to maximize the expected reward

()()
⎭
⎬
⎫

⎩
⎨
⎧∑

=

TXr i

n

i 1

E (129)

at the terminal time T , where ()ixr is the individual reward

() () ()(){ }iiiidi xdrxdrxr
i

−+=
=

10,1,max
1,0

 (130)

and ()zdr , are the rewards for the different types of outcomes (i.e., deciding id when the true
state of i is iz).

The processes ()tX i satisfy

() pX i =0 (131)

and for 0≥t ,

()

() ()
() () () ()

()
() () () ()

1
 with probability 1 2

1 2
1 .

 with probability 2 1 1 .
2 1 1

i
i

i
i

i
i

i

X t
X t

X t
X t

X t
X t

X t

ε
ε ε

ε ε

ε
ε ε

ε ε

−⎧
− +⎪ − +⎪+ = ⎨

⎪ − + −⎪ − + −⎩

 (132)

Note that although ()tX i take values in R , there are only a countable number of possible values
they can take. Thus, () R⊂∈XtX i where X is a countable set. Thus, we have an MDP
()TRpu ,,,,UX where

59

1

{1, , }

(|) (|) (|) for , ,

() () for .

n

n
i i i j j

j i

n
n

i
i

n
p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X

X

X

K

X

U

 (133)

where ()ii xp |ξ is defined by

()
() ()

() () εε
εε

ε

εε
εε

ε

−+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

112|
112

21|
21

1

ii
i

i

ii
i

i

xx
x
xp

xx
x
xp

 (134)

and ()ixr is defined by Equation (130). We will consider the special case for which
() () 10,01,1 == rr and () () 00,11,0 == rr so that

() ,2
1

2
1 −+= ii xxr (135)

and we will assume that the prior probability 2
1=p . Note that if 2

1=p , then

()
.,...2,1,0:

1
1

1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

±±=
+

=
−

mm
ε
ε

X (136)

Proposition 3. The strategy set Φ defined by

() { }2
1

2
1 min: −=−=Φ jji xxix (137)

is optimal for the binary classification problem with () () 10,01,1 == rr , () () ,00,11,0 == rr and
prior probability 2

1=p for each object i .

Proof. The transition probabilities ()xpi |ξ are obviously commutable and symmetric, and the
reward function ()xR is obviously symmetric. Note that

60

() ()[] ()

()
() ()()

() ()().112
112

21
21

1

|

2
1

2
1

2
1

2
1

2
1

2
1

εε
εε

ε

εε
εε

ε

−+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−+−
++

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+−
−

++

−−−=

−∑

i
i

i

i
i

i

i

iiii
y

x
x
x

x
x
x

x

xypxRyR
i

 (138)

This simplifies to

() ()[] () () ,1| 2
1

2
1

2
1 εε −−+−+−−=−∑ iiiiiii

y

xxxxypxRyR
i

 (139)

which is equivalent to

() () ()
1
2

1
2

0 for 0
 for

| .
1 for 1

0 for 1 1

i

i i
i i

y i i

i

x
x x

R y R x p y x
x x

x

ε
ε ε
ε ε

ε

≤ ≤⎧
⎪ − ≤ ≤⎪− =⎡ ⎤ ⎨⎣ ⎦ − − ≤ ≤ −⎪
⎪ − ≤ ≤⎩

∑ (140)

Note that because

()
,

1
1

1
mix

ε
ε
−+

= (141)

if 0<m , then

()
ε

ε
ε

=
+

≤ −
−

1
11
1

ix (142)

and if 0>m , then

() .1
1

1

1

ε
ε
ε

−=
+

≥
−

ix (143)

Thus,

61

() ()[] () .
0

|
2
1

2
1

2
1

⎩
⎨
⎧

=−
≠

=−∑
i

i
iiii

y x
x

xypxRyR
i

 for
 for

ε
 (144)

In particular,

() () ()
1
2

1 1
2 2

0 if all
max |

 if some
j

i
j j j jj

y i

x
R y R x p y x

xε

⎧ ⎫ ≠⎧⎪ ⎪⎡ ⎤− =⎨ ⎬ ⎨⎣ ⎦ − =⎩⎪ ⎪⎩ ⎭
∑ (145)

and if

,min 2
1

2
1 −=− jji xx (146)

then

() ()[] () () ()[] () .|max|
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=− ∑∑ jjjj
yjiiii

y

xypxRyRxypxRyR
ji

 (147)

This shows that Φ is terminally optimal.

To show that decisions in Φ can be deferred, suppose that ()xi Φ∈ so that

2
1

2
1 min −=− kki xx (148)

and suppose ij xx ≠ , () 0| >jj xyp . Thus,

()
() εε

ε
+−

−
=

j

j
j x

x
y

21
1

 (149)

or

() .
112 εε

ε
−+−

=
j

j
j x

x
y (150)

62

If 2
1

2
1 −>− ij xx , then it's easy to see that 2

1
2
1 −≥− ij xy and therefore ()nj xyxi ,...,,...,1Φ∈ .

However, it's possible that 2
1

2
1 −=− ij xx and ji xx ≠ . If 2

1≠ix , then the conclusion is not true,

because one of the two values of jy is closer to 2
1 than ix .

However, we can easily extend the proposition to cover this case. Note that if 2
1

2
1 −=− ij xx ,

then ij xx −=1 . The classification problem is invariant under the transformation ii xx −→1 , and
in particular,

() ().,...,1...,,...,..., ττ ii xVxV −= (151)

Furthermore, if () 0| >ii xyp , then () 01|1 >−− ii xyp . It follows that

() ().,...,1...,,...,..., ττ iiii xVxV −= (152)

As a consequence of this and the symmetry of V , we find that 2
1

2
1 −=− ij xx implies that

() ().,, ττ xVxV ji = (153)

Thus, ()xji Φ∈, implies that () ()ττ ,, xVxV ji = . This is sufficient to extend the proposition

because if () ()txVtxV ij ,, > , then both ji xx ≠ and 2
1

2
1 −≠− ij xx . Thus, we can apply the

earlier argument to show that ()nj xyxi ,...,,...,1Φ∈ . Consequently, decisions are deferrable in Φ .
From Theorem 1 it follows that Φ is optimal. Q. E. D.

5.5 SEARCH PROBLEM

Here, we investigate the applicability of the sufficient optimality condition to the search problem
considered in [7]. In particular, we consider the search problem where M locations are given and
each of them may contain an object of interest. We are given a finite-time to search locations and
at any time, we can search one location only. Initially, at time t=0, for every location i, we are
given a priori probability xi(0) that location i contains an object.

With each location i, we associate a hypothesis Hi, with Hi=1 denoting that there is an object at
location i. With each location i, we also associate a state xi(t) defined as the probability that
object is in location i, given the past measurement collection I(t). In other words, xi(t) is the
conditional probability that hypothesis Hi is true:

() { 1| ()}.i ix t P H I t= = (154)

63

We consider the independent hypothesis assumption, where the events that the hypotheses are
true are independent. Under this assumption, the search problem is multi-armed bandit problem.
The sufficient optimality condition given in Section 5.1 applies to a sub-class of multi-armed
bandit problems. Note, however, that this optimality condition does not apply to the search
problem considered in [7] with the exclusive hypothesis assumption. The reason is that, under
the exclusive hypothesis assumption, the states of all of the locations are changing after each
search, thus violating the basic property of multi-armed bandit problems.

Searching a location results in a measurement Z taking values 0 or 1. The value of the
measurement is generated independently at each stage as a random variable with the following
probability distribution

{ } { }
{ } { }

0 | 0 1| 1 1 ,

1| 0 0 | 1 .
i i

i i

P Z H P Z H

P Z H P Z H

ε

ε

= = = = = = −

= = = = = =
 (155)

Let x(t)=(x1(t),…,xM(t)) be the state of locations at time t, u(t) be the location searched at time t,
and Z(t+1)=zk be the measurement obtained. Then, the new state of locations is given by vector

()1(1) (),..., ((),),..., () with (),i i k Mx t x t f x t z x t i u t+ = = (156)

where ((),)i i kf x t z is a Bayesian update of xi(t) with new measurement zk:

()
() ()((),) ,

| , ()
i k

i i k
k

x t g zf x t z
p z i I t

= (157)

and

() { }| , () (1) | () , ()
() () [1 ()] ().

k k

i k i k

p z i I t P Z t z u t i I t
x t g z x t f z

= + = =

= + −
 (158)

The probability of transitioning from state x(t) to state ()1(),..., ((),),..., ()i i k Mx t f x t z x t is equal to

()| , ()kp z i I t , which does not depend on time.

Let X denote the set of all states reachable from the initial state x(0) during the given finite
horizon, i.e., the set of all x such that x results from the initial state and some information I that
can be collected within the given time horizon.

For the search problem considered in [7], all stage rewards are zero, except for the final-stage
reward, which is equal to the probability of the most likely location. In particular,

64

(,) 0 for all and 0.R x x Xτ τ= ∈ > (159)

(,0) max .kk
R x x= (160)

The goal is find a search strategy that maximizes the final probability of selecting a correct
hypothesis, i.e., a strategy γ maximizing the expected final-stage reward

max ().ii
E x T
γ

 (161)

The structure of the search problem is identical to the classification example considered in
Section 5.4. The only difference is that these two problems have different final-stage rewards. In
[7], it is shown that selecting one of the two most likely locations is an optimal search strategy.
We will here show this result by using the sufficient optimality condition of Section 5.1.

Let V(x,τ) be the optimal reward-to-go τ stages from state x, and define functions Vj, j=1,…,M as
follows (see Vu in Equation (75) of Section 5.1):

1

1

(,) (,..., (,),..., , 1)

(,..., (,)..., , 1) (| ,)
k

j j j MZ

j j k M k j
z

V x EV x f x Z x

V x f x z x p z x j

τ τ

τ

= −

= − ⋅∑
 (162)

for all x, τ>0, and all j.

For any state x and any stage τ, we define function (,)x τΦ to be the index set of the two most
likely locations. In particular, (,)x τΦ is given by

[] []{ }1 2
(,) | () or () for all and 0.i ix i x S x x S x xτ τΦ = = = ≥ , (163)

where S(·) is a nonlinear operator from RM to RM that maps vector x into a sorted vector x, i.e.,

()(1) () (1) ()() ,..., with ... ,s s M s s MS x x x x x= ≥ ≥ (164)

and [S(x)]j denotes the j-th component of vector S(x).

We next prove that Φ defines an optimal policy in the sense that for all x X∈ and τ >0,

(,) (, 1) for any (, 1).iV x V x i xτ τ τ= − ∈Φ − (165)

65

In particular, we show that Φ satisfies the sufficient optimality conditions given in Proposition 1
of Section 5.1.

Proposition: Assume that the initial state is x(0)=(1/2,…,1/2). Then, the function (,)x τΦ has the
following properties:

1. For all x X∈ , τ=0, and any (,0)i x∈Φ , we have

 (,0) max (,0),i jj
V x V x= (165)

 where Vj is as defined in (162).

2. For all ,x X∈ τ>0, (,),i x τ∈Φ and all j such that xi≠xj and p(zk|xj, u=j)>0, we have

1(,..., (,),..., , 1).j j k Mi x f x z x τ∈Φ − (166)

Proof: We start by showing that relation (165) holds. The proof is based on the same line of
argument as the proof of Proposition 4 in [7]. Note the symmetry assumption in [7] is satisfied
[cf. Equation (154)].

Let x X∈ be arbitrary, and let I be an information state such that x results from the initial state
x(0) and information I. By using the definition of Vj [cf. Equation (162)], we have

{ }

1

1

(,0) (,..., (,),..., ,0) (| ,)

max ,..., (,),..., (| ,).

k

k

j j j k M k
z

j j k M k
z

V x R x f x z x p z j I

x f x z x p z j I

=

=

∑

∑
 (167)

Since reward–to-go V(x,τ) is invariant under permutations of x, [i.e., V(Px,τ)=V(x,τ) for any
permutation matrix P], without loss of generality, we may assume that

1 2Mx x x≥ ≥ ≥ (168)

Then, we have

{ }1 1 1 2max ,..., (,),..., max{ (,), }, for 1 and all ,j j k M kx f x z x f x z x j k= = (169)

{ } { }1 1max ,..., (,),..., max , (,) , for 1 and all .j j k M j j kx f x z x x f x z j k= > (170)

Thus, for j=1,

66

{ }

{ }

1 1 1 2

1
2

1 2

(,0) max (,), (|1,)

()max , (|1,)
(|1,)

max (), (|1,) .

k

k

k

k k
z

k
k

z k

k k
z

V x f x z x p z I

x g z x p z I
p z I

x g z x p z I

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

∑

∑

∑

 (171)

By using the definition of p(zk|j,I) in Equation (158), we see that

{ }1 1 2 1 2 1(,0) max (), () (1) () .
k

k k k
z

V x x g z x x g z x x f z= + −∑ (172)

Similar to the preceding, for j ≥ 2, we obtain

{ }

{ }

{ }

1

1

1

1 1

(,0) max , (,) (| ,)

()
max , (| ,)

(| ,)

max (| ,), ()

max () (1) (), () .

k

k

k

k

j j j k k
z

j k
k

z k

k j k
z

j k j k j k
z

V x x f x z p z j I

x g z
x p z j I

p z j I

x p z j I x g z

x x g z x x f z x g z

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

= + −

∑

∑

∑

∑

 (173)

By taking the terms x1xjf(zk) into a separate summation, we have

{ }1 1 1 1(,0) max () (), () () (),
k k

j j k k j k j k j k
z z

V x x x g z x f z x g z x x f z x x f z= + + −∑ ∑ (174)

By using the relation

() 1 (),
k k

k k
z z

f z g z= =∑ ∑ (175)

we obtain

67

{ }

{ }

1 1 1 1

1 1 1

(,0) max () (), () () ()

max (), (1) () () .

k k

k

j j k k j k j k j k
z z

k j k j k
z

V x x x g z x f z x g z x x f z x x g z

x f z x x g z x x f z

= + + −

= − +

∑ ∑

∑
 (176)

Furthermore, since 2jx x≤ for all j≥2, we see that

2(,0) (,0) for all 2.jV x V x j≤ ≥ (177)

We now prove that V2(x,0)=V1(x,0). For j=2, relation (176) gives

{ }2 1 2 1 1 2(,0) max (), (1) () () .
k

k k k
z

V x x f z x x g z x x f z= − +∑ (178)

By changing the variables and by using the symmetry assumption on f and g, we obtain

{ }

{ }

2 1 2 1 1 2

1 2 1 1 2

(,0) max (), (1) () ()

max (), (1) () () .

k

k

k k k
z

k k k
z

V x x f b z x x g b z x x f b z

x g z x x f z x x g z

= − − − + −

= − +

∑

∑
 (179)

By comparing this with the expression for V1(x,0) [cf. Equation (172)], we see that

V2(x,0)=V1(x,0). (180)

Therefore,

1 2max (,0) (,0) (,0).jj
V x V x V x= = (181)

According to the definition of Φ, we have Φ(x,0)={1,2}, which together with the preceding
inequality show that condition shown in Equation (165) holds.

We now show that Φ satisfies relation in Equation (166). Again, without loss of generality, we
may assume that

1 2 ... ,Mx x x≥ ≥ ≥ so that Φ(x,τ) ={1,2}. Then, for i=1, any j such that xj≠x1, and
any zk with p(zk| j,I)>0, we have

either fj(xj,zk)≤x1 or fj(xj,zk)>x1. (182)

68

Hence, x1 is either the best or the second best, implying that

11 (,..., (,),..., , 1).j j k Mx f x z x τ∈Φ − (183)

Consider now the case where i=2 and j=1. Similar to the preceding, we have that

either f1(x1,zk)≤x2 or f1(x1,zk)>x2, (184)

implying that x2 is either the best or the second best. Hence, in this case, we have

12 (,..., (,),..., , 1),j j k Mx f x z x τ∈Φ − (185)

and we are done.

Consider now the case where i=2 and j>2. We will show that for all j>2 with xj≠x2 and any zk
with p(zk| j,I)>0, we have

2 (,).j j kx f x z≥ (186)

As shown in Section 5.4, the components of x have the following form:

1 for some {..., 2, 1,0,1,2,...},
1

1

j mx m
ε
ε

= ∈ − −
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

 (187)

where m is the difference between the number of measurements of object j with outcome 1 and
the number of measurements of object j with outcome 0. Thus, for some integers m2 and mj, we
have

22
1 1, .

1 1
1 1

jjm mx x
ε ε
ε ε

= =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (188)

Furthermore, since x2≥xj and xj≠x2, from the preceding relation it follows that 2 .jm m> If object j
is observed one more time and no measurement is obtained, then the state xj of the object does
not change so x2 is still the second best. If a measurement z is obtained, then the state of object j
is given by

69

1

1

1(,) for 0,
1

1
1(,) for 1.

1
1

j

j

j j m

j j m

f x z z

f x z z

ε
ε

ε
ε

−

+

= =
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

= =
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

 (189)

Since we have m2≥mj+1, it follows that

22 1

1 1 (,) for 0,1.
1 1

1 1

j j jm mx f x z z
ε ε
ε ε

+= ≥ ≥ =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (190)

showing that x2 is still the second best. Therefore, x2 remains the second best for any observation
outcome, implying that

12 (,..., (,),..., , 1),j j k Mx f x z x τ∈Φ − (191)

thus showing that Φ satisfies condition in Equation (166). Q. E. D.

70

6 REFERENCES

1. O. P. Kreidl and T. M. Frazier, “Feedback Control Applied to Survivability: A Host-Based
Autonomic Defense System”, IEEE Transactions on Reliability, 53(1):148-166, 2004.

2. P. Whittle, “Restless bandits: Activity allocation in a changing world”, Journal of Applied
Probability, 25, 1988.

3. P. Whittle, “Applied probability in Great Britain”, Operations Research, 50(1):227--239,
2002.

4. R. B. Washburn, M. K. Schneider, and J. J. Fox, “Stochastic dynamic programming based
approaches to sensor resource management”, In Proceedings of The National Symposium on
Sensor and Data Fusion, 2002.

5. T. M. Cover and J. A. Thomas, “Elements of information theory”, John Wiley & Sons, New
York, 1991.

6. Mazor E., Averbuch A., Bar-Shalom Y., and Dayan J, “Interacting multiple model methods
in target tracking: a survey”, IEEE Transactions on Aerospace and Electronic Systems, Vol.
34, No. 1, pp.103-123, 1998.

7. D. A. Castañón, “Optimal Search Strategies in Dynamic Hypothesis Testing”, IEEE
Transactions on Systems, Man, and Cybernetics, 25(7): 1130-1138, 1995.

8. K. Kastella and S. Musick. Comparison of Sensor Management Strategies for Detection and
Classification. Proceedings of the National Symposium on Sensor and Data Fusion, 1996.

9. R. B. Washburn, A. I. Chao, D. A. Castañón, D. P. Bertsekas, and R. Malhotra, “Stochastic
Dynamic Programming for Far-Sighted Sensor Management”, Proceedings of the National
Symposium on Sensor and Data Fusion, 1997.

10. D. A. Castañón, “Approximate Dynamic Programming for Sensor Management”,
Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA,
December 1997.

11. V. Krishnamurthy and R. J. Evans., “Hidden Markov Model Multiarmed Bandits: A
Methodology for Beam Scheduling in Multitarget Tracking”, IEEE Transactions on Signal
Processing, 49: 2893-2907, 2001.

71

12. R. B. Washburn, M. K. Schneider and J. J. Fox, “Stochastic Dynamic Programming Based
Approaches to Sensor Resource Management”, Proceedings of the 2002 National Symposium
and Sensor and Data Fusion, August 2002.

13. S. Mori, C.-Y. Chong, E. Tse, and R. P. Wishner, “Tracking and Classifying Multiple
Targets without A Priori Identification”, IEEE Transactions on Automatic Control, AC-
31(5): 401-409, 1986.

14. G. Yin and Q. Zhang, “Continuous-Time Markov Chains and Applications: A Singular
Perturbation Approach”, Springer, 1997.

15. Y. Kabanov and S. Pergamenshchikov, “Two-Scale Stochastic Systems: Asymptotic
Analysis and Control”, Springer, 2002.

72

A Lower Bound on Adaptive Sensor Management Performance for

Classification

David A. Castañon∗

Dept. Electrical & Computer Eng., Boston University
8 St. Mary’s St., Boston, MA 02215

email dac@bu.edu

draft

Abstract

This paper studies the problem of dynamic adaptive scheduling of multi-mode sensor resources for the
problem of classification of multiple unknown objects. Sensor schedules are adapted based on the observed
data. The resulting decision problem is formulated as a partially observed Markov decision problem with a
large state space. The paper describes a computable lower bound on the achievable performance by a causal
adaptive schedule, based on techniques of numerical stochastic control and combinatorial optimization. The
lower bound is based on an expansion of the admissible control space of the dynamic decision problem, leading
to a problem with simpler decision structure for which the bounds can be computed. The solution of the relaxed
problem may be infeasible, but can be used as an approximate scheduling technique in a model predictive control
framework. The bound computations are illustrated for several examples involving 100 unknown objects, and
compared with the Monte Carlo performance of several sensor scheduling algorithms.

1 Introduction

Many modern avionics systems include multiple sensors as well as individual sensors capable of focusing on different
objects with different modes. In order to achieve an accurate possible representation of all objects of interest, it is
important to coordinate the allocation and scheduling of the different sensors and sensor modes across the different
objects of interest. The various modes may be viewed as multiple resources to be managed, and the measurement of
different objects under specific modes may be viewed as tasks to be performed with these resources. The adaptive
sensor management problem consists of selecting and scheduling the sensor modes which are applied to objects of
interest, integrating the collected past information into the selection of future sensing actions.

This paper develops a model for a class of adaptive sensor management problems involving the goal of classifying
a known number of objects with unknown type, given a fixed number of sensor resources, where the sensor
performance parameters are time-invariant, so that the performance parameters associated with a sensor observing
an object with a given mode do not depend on the time that sensing activity occurs. This class of problems
arises in several applications, from object classification in surveillance platforms such as Joint STARS, dynamic
search, and fault inspection and isolation in manufacturing systems. In these applications, inaccuracies in sensor
measurements and variations in object characteristics and pose imply that individual measurements provide noisy
estimates of object type whose quality depends on the specific mode used by the sensor. In situations with multiple
objects and limited resources, this noisy information can be used to prioritize which objects to look at, and to
assign appropriate sensor modes to the objects.

Because of the uncertain nature of the underlying object types and the adaptive nature of the desired schedules,
dynamic sensor management problems can be formulated as partially observed Markov decision problems (POMDP)
[2, 1, 10, 11]. As such, this class of problems can be solved using stochastic dynamic programming [3]. However, for
large numbers of objects, the required state space is very high-dimensional, consisting of the conditional probability

∗

73

distributions of all of the objects. This leads to intractable computational problems, even with the fastest POMDP
algorithms.

Sensor management problems have been formulated previously as dynamic optimization problems with partial
information. The extensive literature in search theory [20] deals with sensor management problems involving
objects that can be of one of two types (hidden or found) with sensors that have only a single mode. The dynamic
hypothesis testing problems studied in [6] also have objects that can be of two types and a single sensor mode, but
generalize results in search theory to broader classes of measurements. More recently, there has been work [17]
using Markov decision problem techniques for sensor management, particularly techniques based on the solution of
multiarmed bandit problems. However, these formulations also restrict the sensors to a single sensor with a single
mode, and require an infinite horizon, time-invariant formulation.

Because of the complexity of general SM algorithms with multiple sensors and modes, most practical SM
algorithms are based on heuristic algorithms based on information-theoretic metrics [5]. To date, there has been
no effective approach that can characterize the achievable SM performance to determine whether such heuristic
algorithms are performing well.

In this paper, we consider sensor management (SM) problems involving multiple distributed sensors with multiple
modes per sensor. This model is an extension of the model discussed in [7]. We show that the resulting POMDP
models admit a lower bound based on modifying the constraint structure to expand the space of admissible
strategies. The resulting problem becomes a dynamic optimization problem subject to expected value constraints,
a class of problems recently studied by Chen and Blankenship in [24]. We develop a hierarchical algorithm that
exploits the structure of the resulting relaxed problem. This hierarchical algorithm is based on the solution of single
object POMDP problems, coupled with nondifferentiable optimization techniques based on Lagrangian relaxation
[16]. The single object problems are of small dimension, and can be readily solved using standard algorithms for
POMDPs [10, 11, 13]. The hierarchical algorithm avoids the exponential growth of the dimensions of the resulting
state space in the POMDP problem as a function of the number of objects.

The algorithm used to compute the bounds can also be used as a suboptimal algorithm for real-time sensor
management. Since the algorithm solves the SM problem with an expanded set of strategies, it is possible that
the resulting SM strategies are not feasible. This requires modification of the problem solution, typically using
a receding horizon technique similar to model-predictive control. We describe in the paper one such approach at
this SM algorithm. The paper includes several examples where the lower bound performance is computed, and
compared with the Monte Carlo performance achieved by suboptimal SM algorithms.

The remainder of this paper is organized as follows. Section II includes the mathematical statement of the
sensor management problem for a single sensor, and discusses the stochastic dynamic programming algorithm for
this problem. Section III describes the modified SM formulation and the derivation of the lower bound. Section
IV describes computation approaches for evaluating the lower bound. Section V discusses extensions of the earlier
results to multiple sensors. Section VI describes the numerical experiments and results. Section VII is a summary
of the results and discussion of open problems of interest.

2 Problem formulation

In this section, we develop a formulation of the adaptive SM problem as a partially observed Markov decision
problem (POMDP). Assume that there are N objects of interest in the problem. Each object can belong to
one and only one of K different classes, and the object identity does not change over time. Let the variable
xi ∈ X ≡ {1, . . . , K} denote the true class of object i. We define the complete (but unknown) system state as:

x =
(
x1 x2 · · · xN

)
(1)

Since the identities do not change over time, the complete system state is constant over time. We assume that
xi are independent random variables with values in the finite space X . Associated with each object i is a prior
probability vector πi(0) which describes the probability distribution of the random variable xi. That is,

πij(0) = Prob{xi = j} (2)

These probability distributions represent a priori knowledge collected on each object before the start of the SM
problem.

74

In order to obtain information about the state of each object, selected objects are examined with different modes
from different sensors. In order to simplify the notation in the exposition, we consider the case of a single sensor
with multiple modes m ∈ {1, . . . , M}. We will highlight later the extensions required to incorporate multiple
sensors. The action to use a sensor mode m on object i produces an observable ym in a finite set Ym, with a
conditional probability distribution that depends only on the object i, its type xi and the mode m, denoted by
p(ym|i, xi, m). We assume that the observation outcomes of these sensing actions are conditionally independent of
each other given the object types.

We assume that obtaining a measurement of object i with mode m requires sensor resources Rim > 0 (e.g.
duty cycle of a radar), which depend on the specific object and mode selected. For the SM problem of interest,
the sensor has a finite amount of sensor resources R that can be used for measuring objects. The objective is to
classify, with minimal error cost, the objects after the sensor resource R is exhausted. This formulation is stated
more rigorously below.

Without loss of generality, we restrict our attention to SM strategies that execute only one action at a time.
Such strategies are optimal in that they provide maximal information for adaptation, and will achieve minimal
error cost. Let u(k) = (i(k), m(k)) denote the k + 1-th action (starting at k = 0) taken by the sensor, consisting
of measuring object i(k) with mode m(k). Let U denote the set of possible sensor actions, and let ym(k)(k) denote
the measured value resulting from action u(k) ∈ U . The past information available to adaptively select u(k) is
I(k) = {u(0), ym(0)(0), . . . , u(k − 1), ym(k−1)(k − 1)}. The SM problem decisions are selected adaptively until a
final random stopping instance T , selected based on the information I(T). At the end of this stopping instance,
the information I(T) is available for estimating the object types. For each object i, there is a final decision vi ∈ X
based on I(T) that is selected to minimize the expected classification error.

An admissible adaptive SM policy is a set of measurable feedback strategies {γ(0), . . . , γ(T)} and stopping time
T such that

γ(k) : I(k) → U, k < T

T : I(T) → {stop, continue}
γ(T) : I(T) → XN (3)

Let Γ denote the set of all admissible SM policies. Since the observation space is finite and the decision space is
also finite, Γ is a countable space.

Denote by c(v, x) the cost of selecting classification decision v when the true object type is x. The SM problem
statement is to minimize the expected total classification cost

J(γ) = Eγ{
M∑
i=1

c(vi, xi)} (4)

over adaptive SM policies γ ∈ Γ satisfying the resource utilization constraint

T−1∑
k=0

R(u(k)) ≤ R (5)

with the notation R(u(k)) ≡ Ri(k)m(k). Note that the constraint in (5) is a sample path constraint; for every
realization of the information sets I(k), the adaptive policy γ must not exceed the total sensor resources available.
Note also that, given the finite state nature of the set of possible observation outcomes per mode Ym and possible
decisions um, the number of possible information sets after k− 1 actions I(k) is countable. This implies that there
is a finite number of possible admissible SM policies that satisfy the constraint (5).

The above problem is a class of finite-state, finite-observation partially observed Markov decision problems
studied in [2, 1, 11, 10, 3], with the special structure that the underlying state dynamics are trivial, and the
presence of the sample path constraints of (5). Such problem scan be transformed into fully-observed Markovian
decision problems in terms of a sufficient statistic: the conditional probability distribution of the state x given
information I(k), as follows: Let S ⊂ RK denote the space of probability distributions on X , and let SN denote
the space of probability distributions on XN . The conditional distribution vector for the composite state x given
the information I(k), P (x|I(k)) ∈ SN , can be viewed as an information state, a sufficient statistic summarizing the

75

past observations. The recursive evolution of this information state in response to an action u(k) = (i(k), m(k))
can be described by Bayes’ rule as

P (x|I(k + 1)) = P (x|I(k), u(k), ym(k)(k)) (6)

=
P (ym(k)(k)|x, I(k), u(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(7)

=
P (ym(k)(k)|xi(k) , m(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(8)

with the initial condition

P (x|I(0)) =
N∏

i=1

πi(0) (9)

Under the previous independence assumptions, the following lemma establishes a convenient representation:

Lemma 2.1 Under the SM problem assumptions, the conditional probability

P (x|I(k)) =
N∏

i=1

P (xi|I(k)) (10)

where the evolution of P (xi|I(k)) under sensing action u(k) = (i(k), m(k)) and observed value ym(k)(k) is given by

P (xi|I(k + 1)) =

{
P (xi|I(k)) if i(k) �= i

P (ym(k)(k)|xi(k),m(k))P (xi|I(k))∑ K
j=1 P (ym(k)(k)|xi=j,I(k))P (xi=j|I(k))

otherwise
(11)

The proof of this lemma is straightforward by induction, as the independence assumption of the object types xi

guarantees the Lemma is satisfied at k = 0, and (8) establishes the recursion. Note also that P (xi|I(k)) depends
only on measurements in I(k) corresponding to object i.

The importance of Lemma 2.1 is that we can characterize the information state as a product of marginal
distributions, in SN , as opposed to a joint distribution in SN . As notation, define πi(k) to be the conditional
probability distribution of xi given information I(k):

πi(k) = P (xi|I(k)) (12)

The vector πi(k) has components πij(k) = P (xi = j|I(k)). The results of Lemma 2.1 establish the following
representation for the conditional probability distribution of the entire state: P (x|I(k)) can be computed from
πi(k), i = 1, . . . , N . Define the information vector

�π =




π1

...
πN


 (13)

For a given observation ym using mode m on object index i, define the observation probability matrix as the K×K
diagonal matrix

Bi(ym) = diag{P (ym|xi = 1, m), P (ym|xi = 2, m), . . . , P (ym|xi = K, m)} (14)

With this notation, we can define the evolution of the information vector in response to a measurement ym obtained
from a sensing action (i, m) in terms of an evolution operator on (SN , U, Y) as

T (�π, u = (i, m), y) =




π1

...
πi−1

Bi(y)πi

eT Bi(y)πi

πi + 1
...

πN




(15)

76

where e is a K-dimensional vector of all ones.
Conceptually, the SM problem described above can be solved by stochastic dynamic programming [3]. The

resource constraint in (5) can be incorporated into the dynamics to obtain a dynamic programming recursion, as
follows. Define a value function V (�π, C) to be the optimal solution of SM in (3)-(5) when the initial information
is �π and the available sensor resource level is R = C. The value function V is thus defined on SN × R+. The SM
optimization problem is stated as a total cost problem with nonnegative costs, for which the optimal value function
satisfies Bellman’s equation [3], as described below. Let U(R) ⊂ U denote the set of sensor actions (i, m) such
that Rim ≤ R; this is the subset of sensor actions that are feasible when there are only R resources left. At each
decision stage, there is a choice of stopping and classifying the objects with the available information, or taking
additional measurements. The optimal value function therefore satisfies the Bellman equation

V (�π, R) = min
[N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij ,

min
u≡(i′,m′)∈U(R)

Ey{V (T (�π, u, y), R − Ri′m′)}] (16)

where

Ey{V (T (�π, u, y), R − Ri′m′)} =
∑

y∈Ym′

P (y|I(k), u)V (T (�π, u, y), R − Ri′m′) (17)

=
∑

y∈Ym′

eT Bi′(y)πiV (T (�π, u, y), R − Ri′m′) (18)

This recursion defines the optimal value function from a given information vector and a given resource level in
terms of the value function at other information vectors evaluated with strictly less resource levels. Furthermore,
we have boundary conditions for this recursion as follows: Let Rmin = mini,m Rim. Then, the set of admissible
modes U(R) is empty for R < Rmin. Thus,

V (�π, R) =
N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij if R < Rmin (19)

Eqs. (16)-(19) can be used recursively to compute the optimal value for all information states and nonnegative
resource levels.

Note that the initialization of the recursion decouples into N independent optimizations, as there are no coupling
constraints on the decisions vi, and the local decision costs c(vi, xi) depend only on the marginal probability
distributions of each object’s type. However, the recursion (16) does not preserve this decomposability. The
coupling arises primarily because of the resource use constraints in (5); the decision of which object to view
and which mode to use depends on the information vector of all the objects and the available resources. Thus,
the dynamic programming induction must be carried out for the entire state �π(t), which becomes a formidable
computation problem even for moderate numbers of objects.

3 Relaxed Formulation and Lower Bounds on Classification Perfor-

mance

A possible approach to overcoming the computational difficulty of the previous formulation is to relax the sample
path sensor resource use constraints (5) and use an averaged version of the same constraints, as

E{
T∑

k=1

R(u(k))} ≤ R (20)

This approach replaces a large set of constraints (one per sample path) by a single aggregate constraint. Note that
any SM strategies that satisfy (5) will also satisfy (20). Thus, this approach increases the set of admissible SM
strategies. Let J∗ denote the optimal classification cost of the original SM problem in (4)-(3) with constraints (5).
Let J∗

A denote the optimal classification cost of the SM problem in (4)-(3) with constraints (20). This leads to the
following lemma:

77

Lemma 3.1 J∗ ≥ J∗
A

The relaxed SM problem has a single coupling constraint relating the sensing actions on different objects. This
structure can be exploited using Lagrange multipliers as follows. Let λ ≥ 0 denote a Lagrange multiplier. Consider
the new SM objective for admissible SM policies in Γ as

J(λ, γ) = Eγ{
N∑

i=1

c(vi, xi)} + λ[Eγ{
T−1∑
k=0

R(u(k))} − R] (21)

Consider now the unconstrained SM problem of finding adaptive SM strategies γ and an adaptive stopping time
T to minimize (21). If (γ, T) is an adaptive SM policy that satisfies (20), the second term in (21) is nonpositive.
Denote by J∗(λ) the optimal value of (21) over all adaptive SM strategies γ ∈ Γ. Then,

Lemma 3.2 For all values of λ ≥ 0,
J∗ ≥ J∗

A ≥ J∗(λ) (22)

In particular,
J∗ ≥ sup

λ≥0
J∗(λ) (23)

Lemma 3.2 is a consequence of weak duality in nonlinear programming [4]. Note that the number of adaptive SM
strategies that satisfy (21) is finite, because the set of possible histories I(k) is finite for all k. Thus, computation
of J∗

A is an integer programming problem, and computation of supλ≥0 J∗(λ) is its dual problem. The key issue is
whether the lower bounds J∗(λ) can be computed efficiently. Rewrite (21) for γ ∈ Γ as

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δ(i(k) − i)]} − λR (24)

where the indicator function δ(i) = 1 if i = 0, and 0 otherwise. This suggests that optimization of J(λ) may be
separable across individual objects i.

Partition the information I(k) into disjoint sets Ii(k), where Ii(k) are the sensing actions and measurement
actions applied to object i:

Ii(k) = {(u(j), y(j))|j < k, i(j) = i} (25)

Note that the conditional probability vector πi only changes on measurements included in Ii(k). We wish to restrict
the set of adaptive SM strategies to a subset where the decision to apply a sensor action for object i depends only
on the information previously collected for object i. We refer to this subset of strategies as adaptive local SM
strategies, defined as:

Definition 3.1 An adaptive local SM policy is an adaptive SM policy γ and stopping times Ti, i = 1, . . . , N , with
the properties that, for each sensing action instance k,

1. If u(k) = (i(k), m(k)), then i(k) = k mod N + 1.

2. The selected sensor mode m(k) depends only on the information Ii(k).

3. For each object i, there is a stopping time Ti which depends only on Ii(Ti) such that, for all k ≥ Ti, if i = k
mod N + 1, no sensing action is taken. If k < Ti and i = k mod N + 1, then u(k) = (i, m) for some mode
m in {1, . . . , M}.

4. At time Ti, the local decision vi for object i is selected as a function of Ii(Ti).

Adaptive local SM strategies use a round-robin schedule for selecting which objects to measure. Thus, the choice
of sensing object for each action is not adapted to the prior information. Furthermore, the choice of sensing mode
for each action on object i depends only on the prior information collected on that object. In addition, there is an
independent stopping time for each object i such that a final classification decision is made on object i, based only
on prior information collected on that object. Note that there are decision instances k where no sensing action

78

is taken, when k ≥ Ti and i = k mod N + 1; these instances correspond to times after a final decision has been
selected for object i. The effective stopping time of an adaptive local SM policy is defined as T = maxi=1,...,N Ti,
and is the earliest time at which every object has a final classification decision. Thus, adaptive local SM strategies
can be viewed as a subset of the class of adaptive SM strategies.

Let ΓL denote the set of adaptive local SM policies. For a given amount of sensor resources R, there are a finite
number of feasible adaptive local SM strategies. In general, ΓL is a countable discrete set. For the purposes of
bound computation, we will expand ΓL to include mixed policies, consisting of probabilistic mixtures of policies in
ΓL:

Definition 3.2 A mixed local SM policy is a probability distribution q(γ) over ΓL such that local SM policy γ is
selected for use with probability p(γ). The set of mixed local SM strategies is denoted by Q(Γs).

Consider the problem of minimizing the relaxed cost (24) over local SM policies ΓL. Since ΓL ⊂ Γ, we have

min
γ∈Γ

J(λ, γ) ≤ min
γ∈ΓL

J(λ, γ) (26)

Furthermore, since (24) is an unconstrained objective, the minimum in mixed local SM policies is achieved by a
pure local SM policy, so

min
γ∈Γ

J(λ, γ) ≤ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (27)

The importance of mixed local SM strategies is highlighted in the theorem below.

Theorem 3.1 Consider any admissible adaptive SM policy γ ∈ Γ. Then, there exists a mixed local SM policy
q ∈ Q(Γs) such that the expected classification costs in (4) and the expected total resource use in (20) are equal
under both policies γ and q.

The proof of this result is by construction, and is included in the Appendix. This result implies the following
inequality:

min
γ∈Γ

J(λ, γ) ≥ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (28)

Combining (27) and (28) yields the following:

min
γ∈Γ

J(λ, γ) = min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) = min
γ∈ΓL

J(λ, γ) (29)

Eq. (29) implies that lower bounds for the achievable classification performance can be computed by optimizing
over local SM policies only. For each local SM policy γ ∈ ΓL, let γi denote the policy that is used for instances k
when actions are taken for object i, and let ΓLi be the set of such admissible local SM policies for object i. Thus, γi

selects actions for object i based on past observations Ii(k), and selects a stopping time Ti and a final classification
vi at that stopping time. The importance of local SM policies is that the optimization in (29) decouples over
objects as

min
γ∈ΓL

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δ(i(k) − i)]} − λR

=
N∑

i=1

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] − λR

This implies that computation of the bounds can be achieved with N independent optimization problems for each
value of λ. Furthermore, the optimal bound can be computed as in Lemma 3.2, as

J∗ ≥ sup
λ≥0

{
N∑

i=1

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] − λR} (30)

79

Note that the right hand side of (30) is the dual of the following linear programming problem:

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)EγJ(γ) (31)

subject to ∑
γ∈ΓL

q(γ)Eγ [
∑

k=0T−1

R(u(k))] ≤ R (32)

∑
γ∈ΓL

q(γ) = 1 (33)

which is a linear program over the choice of probability distributions q ∈ Q(ΓL). This can be exploited to solve
efficiently for the bound. Specifically, note that this is a linear program subject to two constraints, which implies
that the optimal mixed local SM policy q will have support only on two pure local SM policies. This property will
be exploited in the next section for bound computation.

4 Computation of the Lower Bound

There are two potential approaches to compute a lower bound: a dual approach, based on Lagrangian relaxation
[16], that optimizes (30) over the choice of dual variable λ, and a primal approach based on solving the linear
program (31)-(33). The dual approach is straightforward, and uses techniques from nondifferentiable optimization
[19] to search the space of possible λ. The primal approach is harder, because the optimization is over a large
space of possible values of mixture probabilities q. However, this mixture has very sparse support, which makes it
suitable for column generation algorithms [18].

A fundamental step in either approach is the computation of the optimal local SM strategies for a fixed value
of λ for each object. For object i, one must solve the local problem given λ:

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] (34)

This problem is a multi-stage single object partially observed Markov decision problem, with sufficient statistic
given by the marginal probability distribution πi(k). Furthermore, we can reduce the action instants to a new
counter k′ indexing only the action opportunities for object i, to obtain

min
γi∈ΓLi

Eγi [c(vi, xi) + λ

T ′
i−1∑
k′

Rim(k′)] (35)

The resulting POMDP problems are small enough to solve using existing algorithms such as those overviewed in
[1, 11, 10, 13, 14]. These algorithms exploit Smallwood and Sondik’s efficient parameterization [2] of the optimal
cost-to-go at stage k′ as a minimum of linear functions of the statistic πi(k′), and are efficient for problems with a
few discrete true states.

Solution of the N decoupled problems (35) yields a local SM policy γ ∈ ΓL, for which the expected classification
cost Eγ [

∑N
i=1 c(vi, xi)] and expected resource use Eγ [

∑T−1
k=0 R(u(k))] are computed from the solution. This provides

the starting point for the use of column generation [18] for solution of (31)-(33). Column generation was used by
Yost [21, 22, 23] in his work on POMDPs for resource assignment and was also exploited in [8] for the solution
of stochastic weapon assignment problems. The main result of [21, 22, 23] is an efficient constraint generation
algorithm which solves the linear program in (31)-(33) while considering only mixtures of a very small number of
local strategies. We summarize their algorithm below.

The algorithm starts with an initial set of pure local SM policies γd indexed by d = 1, . . . , D, with known
expected classification performance Jd and expected resource use Rd. The first step in the algorithm is to solve
the linear program in (31)-(33) restricted to mixtures of the d = 1, . . . , D initial policies. Since the support of the
admissible mixed policies is restricted, the solution provides an upper bound JUB to the optimal cost. Denote by

80

λD the optimal dual price of the resource constraint (33) in this solution. The constraint generation algorithm uses
this optimal dual price value in (35) to generate a new candidate local SM policy γD+1, solving N independent
POMDP problems. The combined solution of the N subproblems also provides a lower bound JLB on the optimal
performance, as described in Lemma 3.2. The key result in the constraint generation algorithm is stated as follows

Lemma 4.1 Consider the pure local SM policy generated by the solution of (35). If JLB = JUB , the optimal
solution over all mixtures of local SM policies is a mixture of the local strategies indexed by d = 1, . . . , D. Otherwise,
the pure local SM policy γD+1 can be used as part of a mixed strategy which provides a cost lower than JUB .

The proof of this result is given by Gilmore and Gomory [18]. It is based on the fact that solving the decoupled
dual problem (35) is equivalent to finding the local SM policy which has the greatest impact in reducing the cost
of the current best mixture. This leads to a dynamic column generation algorithm, as follows: if JLB < JUB,
increase the number of local SM policies considered in the LP by adding the new pure local SM policy γD+1, and
resolve the primal problem in (31-33) with support restricted on {γ1, . . . , γD+1}. For the optimal dual value, solve
the relaxed problem in (35), and compare the new upper and lower bounds. Each iteration, reduces the upper
bound, until the lower bound and upper bound estimates are close enough. By the lemma above, the optimal
solution will be obtained without enumerating all of the pure local strategies.

5 Extension to Multiple Sensors

The development of the previous sections carries through with little modification when multiple sensors are used.
The key difference is that there is a separate resource constraint for each sensor. Thus, there will be a vector of
sensor resources Rs, where s is a sensor index, thus resulting in a vector of averaged constraints (20). The Lagrange
multipliers λ will thus be vectors instead of scalars. Nevertheless, all of the lemmas and theorems can be extended
to the multisensor case with minor modifications.

The main assumption that was used in the single sensor formulation was that only one sensor action would
be performed simultaneously. While this assumption is accurate for single sensor problems, it is an optimistic
assumption for multiple sensor problems where time or duty cycle is the main resource. Multisensor problems are
often required to operate the sensors simultaneously, thereby potentially degrading the achievable performance.
However, note that the local SM strategies that are used in the lower bound computation allow for the parallel
execution of sensing actions on different objects, so as long ans the number of objects is greater than the number
of sensors, there won’t be much performance degradation from executing simultaneous sensing actions.

The column generation algorithm discussed in the previous section extends naturally to multiple sensors. When
there are L sensors, the optimal mixed local SM policies will be mixtures of L + 1 pure local SM policies. Nondif-
ferentiable optimization algorithms that maximize the dual cost can also be used in this case.

6 Examples

In this section, we present computational experiments comparing the lower bounds described in the previous section
with the Monte Carlo performance of a pair of SM feedback policies.

We consider scenarios involving a single sensor with 100 unknown objects. The objects can be of three different
types (K = 3), corresponding to cars, trucks and military vehicles. The sensor can be electronically steered to
collect images of each object; the sensor has a low resolution mode that takes 1 second per image (Ri1 = 1),
and a higher resolution mode that requires 5 seconds per image, (Ri2 = 5). Low resolution imagery is useful
in separating cars from trucks and military vehicles, but separating trucks from military vehicles requires high
resolution imagery.

In the experiments, we start with the a priori information that there are on average 10 military vehicles, 20
trucks and 70 cars in a group of 100 objects. Thus, each object has an initial probability distribution over type of
(0.1, 0.2, 0.7), where types are indexed as military vehicle, truck and car. We assume that the images generated by
the sensor are processed into binary outputs, where yij = 1 indicates that object i is estimated to be potentially a
military vehicle, and yij = 2 indicates that object i is likely not to be a military vehicle.

81

The objective of the problem is to determine as accurately as possible which objects are military vehicles (type
1). Thus, the classification costs are given by d(vi, xi) as a 3 × 3 matrix where vi is the row index:

(d(vi, xi)) =


 0 MD MD

FA 0 0
FA 0 0


 (36)

where MD, FA will be variables in the experiments representing false alarm and missed detection costs. In the
experiments, FA is kept constant to 1, while MD varies from 1 to 80, indicating the relative cost of failing to
classify correctly a military vehicle.

To complete the problem specification, we need to describe the conditional probability distribution of the
measurements and the constraints on the decisions. The conditional probability distributions p(y|x, m) are given
by:

p(y1 = 1|1, 1) = 0.90 ; p(y1 = 2|1, 1) = 0.10
p(y1 = 1|2, 1) = 0.90 ; p(y1 = 2|2, 1) = 0.10
p(y1 = 1|3, 1) = 0.10 ; p(y1 = 2|3, 1) = 0.90
p(y2 = 1|1, 2) = 0.80 ; p(y2 = 2|1, 2) = 0.20
p(y2 = 1|2, 2) = 0.15 ; p(y2 = 2|2, 2) = 0.85
p(y2 = 1|3, 2) = 0.05 ; p(y2 = 2|3, 2) = 0.95

Note that mode 1 is unable to distinguish between types 1 and 2 (military vehicles vs trucks), but mode 2 can do
so.

In terms of constraints, we assume that there is a single resource pool of R seconds to be used before all objects
need to be classified. This number will also be varied across the experiments from 300 seconds to 700 seconds, to
evaluate the bounds and algorithm performance for scenarios where the amount of sensor resources ranges from
poor to rich.

In order to evaluate the utility of the lower bound, we compare the bound with the performance of two adaptive
SM algorithms: a variation of Kastella’s discrimination gain algorithm [5], which is a sequential algorithm for
selecting the best sensor mode and target on the basis of maximizing the expected entropy reduction in the
distribution of object type per unit sensor resource applied, and a dynamic SM scheduling algorithm based on
Lagrangian relaxation and POMDP approximations described in [7]. The algorithms are summarized next.

The discrimination gain algorithm of [5] starts from the sufficient statistic π(k), consisting of the conditional
probability type of each object after k sensor actions have been taken. Associated with each object is the entropy
of this distribution,

H(πi(k)) = −
K∑

j=1

πi(k) log πi(k) (37)

For each sensor mode m and each object i such that the available resources allow the use of that mode, the expected
entropy from using mode m on object i obtained from (11) as

Ey{H(πi(k + 1)|y, i, m)} =
∑

y∈Ym

P (y|i, m)H(πi(k + 1)|y, i, m) (38)

The discrimination gain algorithm computes an index for each object and sensor mode, the expected entropy gain
per unit resource, as

Gain(i, m)(k) =
H(πi(k)) − Ey{H(πi(k + 1)|y, i, m)}

Rim
(39)

and selects as its next sensing action the object and mode that has the highest Gain(i, m)(k). Once all sensing
resources are exhausted, the classification of each object is performed in a Bayes’ optimal manner to minimize the
expected classification cost.

The Lagrangian relaxation algorithm of [7] uses a receding horizon planning approach based on a POMDP
algorithm that is similar to that used for computation of the lower bound, with the additional restriction that a
maximum of three actions per object are considered. Since there is a resource constraint, the algorithm performs

82

a simple line search to vary a Lagrange multiplier. For each value of the Lagrange multiplier, a local SM policy
is computed from (24) that uses a maximum of three sensing actions per object, using a variation of the Witness
algorithm [12, 13]. The algorithm selects the best local SM policy found this way that satisfies the expected
resource use bound in (20). This policy is likely to be conservative with respect to the use of resources, because to
fully utilize the available resources requires the use of mixed local SM policies. A local SM policy can be viewed
as a decision tree for each object, as in [7]. The initial action in such decision trees is deterministic, based on
the current knowledge, and the future actions are contingent on the measured values. The Lagrangian relaxation
algorithm computes the local SM policy, and schedules the initial sensing actions for each object. Once all the
initial sensing actions are observed, the probability state is updated, the resource state is decremented, and the
problem is solved again from the new probability state π and the remaining resource level. This process continues
until no sensor resources remain to take additional sensing actions, at which time all of the objects are classified
for minimum discrimination cost based on the available information.

Each algorithm was simulated for 100 independent Monte Carlo runs using the same measurement outcomes to
evaluate its average performance for three different levels of sensor resources: 300 seconds, 500 seconds and 700
seconds. Figure 1 shows the results for the two algorithms and the lower bound for 300 seconds for a range of
values of MD from 1 to 80. Figure 2 shows similar results for 500 seconds, and Figure 3 shows the results for 700
seconds. The results indicate that neither algorithm consistently performs close to the lower bound, but there are
conditions where the performance of the algorithms and the lower bounds are close. For instance, when MD is
close to 1, the costs of missed detections and false alarms is close, and policies such as maximizing information
gain as measured by entropy are near-optimal. Similarly, the performance of the Lagrangian Relaxation algorithm
is closer to the lower bound for limited sensor resources, as the limited lookahead approximation is closer to the
actual optimal number of sensor actions per object. However, there is significant room for improvement in both
policies: the discrimination gain algorithm fails to incorporate the relative values of different types of errors in its
information seeking strategy, and the Lagrangian relaxation is conservative in that it does not use mixed strategies,
and thus can underutilize sensor resources.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

Lower Bound

Lagrangian Relaxation

Discrim ination Gain

M D Value

Figure 1: Monte Carlo performance of algorithms and lower bound for 300 seconds of sensor resource.

It is possible to construct curves similar to a receiver operating characteristic (ROC) by varying the value of
MD. Such curves can characterize the potential tradeoffs in system performance achieved by different algorithms
for a fixed amount of sensor resources. Figures 4, 5 and 6 illustrate the resulting ROC curves for 300, 500 and 700
seconds of sensor resources for the two algorithms. Note that the performance of the two algorithms is closer than
the optimal values of Figs. 1-3 imply.

7 Discussion

In this paper, we have presented a mathematical formulation for adaptive multisensor management in problems
of object classification as a partially observed Markovian decision problem. We developed an exact stochastic

83

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90

M D Value

Figure 2: Monte Carlo performance of algorithms and lower bound for 500 seconds of sensor resource.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

Lower Bound

Lagrangian Relaxation

Discrim ination Gain

M D Value

Figure 3: Monte Carlo performance of algorithms and lower bound for 700 seconds of sensor resource.

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

Prob. False Alarm

P
ro
b
.
M
is
se
d
 D
e
te
ct
io
n

Figure 4: ROC of algorithms for 300 seconds of sensor resource.

84

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

Prob. False Alarm

P
ro
b
.
M
is
se
d
 D
e
te
ct
io
n

Figure 5: ROC of algorithms for 500 seconds of sensor resource.

0.85

0.9

0.95

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Prob. False Alarm

P
ro
b
.
M
is
se
d
 D
e
te
ct
io
n

Figure 6: ROC of algorithms for 700 seconds of sensor resource.

dynamic programming algorithm for solution of these problems. However, the combinatorial nature of the decision
space when multiple objects are present make the computations prohibitive even for small time horizons. We
developed an approximate formulation that provides a lower bound on the achievable performance for such sensor
management problems. This lower bound is obtained by expanding the space of admissible SM policies, replacing
a sample path resource utilization constraint by an expected resource use constraint.

The resulting lower bound formulation is an integer programming problem, that has a simple, separable dual
formulation. A key result in establishing this separability is to show that the lower bound formulation can be
solved in terms of a subset of SM policies known as mixed local SM policies, which are random mixtures of policies
that select actions on each object based only on the past information collected on that object. This results in
a hierarchical algorithm for computing the lower bound, where dual variables are selected that decouple the SM
problem into independent subproblems for each object. Each of the independent subproblems can be solved as a
low-dimension partially observed Markov decision problem. The solutions of these independent subproblems are
then used to improve the dual variables, until an optimal lower bound is obtained.

We presented experimental results that compared the lower bound with the performance of two suboptimal SM
algorithms available in the literature. The experimental results established that the performance of both algorithms
should be improved substantially in order to achieve the lower bound.

The lower bound developed in this paper can be used as a reference solution for the development of effective SM
algorithms. Furthermore, the approximation used in developing the lower bound can be used in SM algorithms
that attempt to optimize this lower bound, in order to generate practical real-time algorithms whose performance
approaches this lower bound. This requires embedding the solution algorithms for lower bounds into a real-
time algorithm such as model-predictive control, and developing a scheduling algorithm for determining when to
recomputed the SM policies using a receding horizon approach. Development of real-time SM algorithms with
performance that approaches the lower bound remains a challenge for future research.

85

8 Appendix

Outline of proof of Theorem 3.1, to be expanded later
Given an SM policy γ, construct a local behavior policy ηi for each object i, which uses randomized decisions

at each decision time, such that the marginal distribution of the decisions for object i are the same under γ and
ηi, as follows:

Using policy γ, compute the marginal probability distribution of the first sensor action made on object i;
note that this may include making no sensor action at all. Use this probability distribution as the probability
distribution for selecting the first sensing decision in policy ηi. For each possible measurement value, compute
the probability distribution of the next sensor action under policy γ on object i. Use this probability distirbution
as the distribution for selecting the second sensor action on object i, conditioned on the measurement obtained
from the first action. Repeat this process until there are no sample paths generated by policy γ with subsequent
actions on object i. for the final classification decision on object i, compute the probability distribution of the final
decision after the final sensing outcome on object i, aggregating over the sample paths generated by γ.

By construction, the marginal probability of sensor actions on object i is the same under γ and ηi. Repeating
this construction for all objects i, one obtains a set of local SM random policies η = {η1, . . . , ηN} that obtain
the same expected classification performance and the same expected resource use as policy γ. From this random
policy η, one can construct a mixed local SM policy with the same property, using the standard construction for
generating mixed policies from random behavior policies in decision problems with perfect recall.

References

[1] G. E. Monahan, “A survey of partially observable Markov decision processes: Theory, models and algorithms,”
Mgmy. Sci., V. 28, p1-16, Jan. 1982.

[2] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable Markov processes over a finite
horizon” Op. Res.h, V. 21, p 1071-1088, 1973.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I-II, Athena Scientific, Belmont, MA 1995.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.

[5] K. Kastella, “Discrimination Gain to Optimize Detection and Classification,”IEEE Trans. on Systems, Man
and Cybernetics, Part A, V. 27, No. 1, Jan. 1977.

[6] D. A. Castañón, “Optimal search strategies for dynamic hypothesis testing,” IEEE Trans. Sys., Man &
Cybernetics, v. 25, 1995.

[7] D. A. Castañón, “Approximate Dynamic Programming for Sensor Management,” Proc. 36th IEEE Conference
on Decision and Control, San Diego, CA, December 1997.

[8] D. A. Castañón and J. M Wohletz, “Model Predictive Control for Unreliable Dynamic Task Assignment,”
Proc. 2002 Conf. Decision and Control, Las Vegas, NV, Dec. 2002.

[9] G. Cohen, “Auxiliary problem principle and decomposition of optimization problems,” J. Opt. Theory and
Appl., V. 32, 1980.

[10] W. S. Lovejoy, “A survey of algorithmic methods for partially observable Markov decision processes,” Annals
of Operations Research, v. 28, 1991.

[11] C. C. White, “Partially observed Markov decision processes: A Survey,” Ann. of Op. Res., V. 32, 1991

[12] M. L. Littman, A. R. Cassandra and L. Pack-Kaelbling, “Efficient dynamic programming updates in partially
observable Markov decision processes,” working paper, Brown University, Dec. 1995.

[13] A. R. Cassandra, Exact and Approximate Algorithms for Markov Decision Processes, Ph. D. Dissertation,
Brown University, Providence, RI 1998.

86

[14] A. R. Cassandra, M. L. Littman and N. L. Zhang, “Incremental Pruning: A Simple, Fast Exact Method
for Partially Observed Markov Decision Processes,” Proc. 13th Conf. Uncertainty in Aritifical Intelligence,
Providence, RI 1997.

[15] M. R. Garey and D.S. Johnson,Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman, New York, 1979.

[16] A. M. Geoffrion, “Lagrangian relaxation for integer programming,” Math. Prog. Studies, v. 2, 1974.

[17] V. Krishnamurth and R. J. Evans, “Hidden Markov Model Multiarm Bandits: A Methodology for Beam
Scheduling in Multitarget Tracking,” IEEE Trans. Signal Processing, V. 49, N. 12, Dec. 2001.

[18] P. C. Gilmore and R. E. Gomory, “A Linear Programming Approach to the Cutting Stock Problem” Operations
Research, V. 9, 1961.

[19] V. M. Demyanov and L. V. Vasilev, Nondifferentiable Optimization, Optim. Software, New York 1985.

[20] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger, “A Survey of the Search Theory Literature,” Naval
Research Logistics, Vol. 38, No. 4, 1991, pp. 469-494.

[21] K. A. Yost, Solution of Large-Scale Allocation Problems with Partially Observed Outcomes, Ph. D. Thesis,
Naval Postgraduate School, Monterey, CA, Sept. 1998.

[22] K. A. Yost and A. R. Washburn, “The LP/POMDP Marriage: Optimization with Imperfect Information,”
Naval Research Logistics, Vol 47, No. 8, 607-619, 2000.

[23] K. A. Yost and A. R. Washburn, “Optimizing Assignments of Air-to-Ground Assets and BDA Sensors,”
Military Operations Research, Vol. 5, No. 2, 77-91, 2000.

[24] R. Chen and G. L. Blankenship, “Dynamic Programming Equations for Discounted Constrained Stochastic
Control, ” IEEE Trans. Automatic Control,” v.49, no. 5, May 2004.

87

Abstract—This paper provides an overview of the problem

of managing sensor resources in a closed-loop sensor fusion
system. We formulate the problem in a stochastic dynamic
programming framework. In so doing, we expose structure in
the problem resulting from target dynamics being
independent and discuss how this can be exploited in solution
strategies. We illustrate situations in which we believe such
sensor management techniques are especially beneficial with
two examples. One example is the management of a single
sensor, and the other is the management of multiple sensors.
The focus of both examples is on air-to-ground tracking.

I. INTRODUCTION
N this paper, we address control aspects of sensor

fusion. For the sensor fusion problem of interest here,
one would like to infer the state of multiple targets from
measurements made by one or more sensors over time.
Targets are typically located on the ground and can include
vehicles, buildings, and other man-made objects. States of
interest could include position, velocity, mode (e.g. on- or
off-road), vehicle type, etc. Estimates of the states are
inferred by fusing information from multiple sensors over
time. The fusion engine responsible for piecing together
information from different types of sensors will typically
create hypotheses by associating new observations with
previously detected targets. Alternative hypotheses are
formulated to deal with ambiguities caused by incomplete
or even contradictory information. New hypotheses are
created and abandoned as data is accumulated that indicates
the current target states have changed or resolves
ambiguities in the past states of targets. The data can be
generated by many different types of sensors, including
airborne surveillance radars, video sensors, etc. The sensors
are managed to collect the appropriate measurements. We
view sensor resource management (SRM) as the control
problem of allocating available sensor resources to obtain
the best awareness of the situation.

This material is based upon work supported in part by the U.S. Air
Force under Contract Nos. F33615-02-C-1197, F33615-03-M-1515, and
F3365-02-C-1129.

The authors are with ALPHATECH, Inc., Burlington, MA 01803 USA.
(phone: 781-273-3388; fax: 781-273-9345; e-mail: {michaels, gmealy,
fpait}@ALPHATECH.com).

Efficient sensor management requires consideration of
the value of particular pieces of information to the fusion
engine at each moment, so the plant to be controlled
comprises not only the sensors and communication
systems, but also the fusion engine that processes the
information collected by them, as illustrated in Fig. 1. The
plant’s inputs are precisely the requests that the sensor
management system is allowed to make, and its outputs
include all the information obtained from the sensors. The
state of the plant is then the total information available to
the fusion engine, and in principle also to the SRM
controller, at a given time. The dimension of the state is not
fixed: it increases as information is collected, and new
tracks are initiated. It also decreases when new information
results in hypotheses being resolved, and when the
hypothesis tree is pruned of alternatives that are considered
less likely.

From this point of view the process model is completely
deterministic, and full information about the process is
available. Uncertainty enters the picture in the form of the
actual measurements obtained by the sensors, which can be
treated as external disturbances about which we, as
designers of a sensor management and fusion system, have
no control or previous knowledge. Additional disturbances
include sensor actions over which the system has no control
– for example, sensor systems which are allocated at a
higher command level. Indeed, the current state of the
fusion system represents the best possible guess about the
actual ground truth – taking into account the information
available and our capacity to process it. Since the estimate
does not depend on probabilities of obtaining specific data

Closing the Loop in Sensor Fusion Systems:
Stochastic Dynamic Programming Approaches

Michael K. Schneider, Member, IEEE, Gregory L. Mealy, Member, IEEE, and Felipe M. Pait, Senior
Member, IEEE

I

SENSORS FUSIONmeasurements

SRM
requests

ground
truth

external
commands

tracks &
hypotheses

measurement
errors

tracks
SENSORS FUSIONmeasurements

SRM
requests

ground
truth

external
commands

tracks &
hypotheses

measurement
errors

tracks

Fig. 1 Sensor Resource Management (SRM) closes the sensor/fusion
control loop.

88

in the future, the system is essentially causal, a fact that
simplifies conceptually the design of a sensor management
algorithm. Of course the variable dimensionality of the
state space precludes the use of textbook control design
techniques, which are not likely to be applicable in any
event.

A number of different approaches to the design of sensor
managers have been proposed in the literature. They cover
the different aspects of the sensor management problem
including how to manage sensors to support detecting and
localizing [3], [7], [8], [9]; tracking [2], [8], [10], [11],
[12]; and classifying [4], [5], [6] targets. The proposed
solutions include policies based on information-theoretic
optimization criteria [8], [11] as well as policies for
optimizing more traditional criteria (e.g., track error)
generated using stochastic optimization techniques such as
index rules [2], [5], [12]; Lagrangian relaxation [6]; et al.
[3], [4], [7], [9], [10]. In this paper, we overview some of
the technical issues in sensor management including
structure in the problem that we believe can be exploited
when designing solution techniques. This is discussed in a
stochastic dynamic programming framework in Section II.
In Section III, we illustrate situations in which we believe
sophisticated sensor management strategies are especially
beneficial with two examples. One example is the
management of a single sensor, and the other is the
management of multiple sensors. The focus of both
examples is on air-to-ground tracking.

II. APPROXIMATE STOCHASTIC DYNAMIC PROGRAMMING
APPROACH

We have conceived designs to the sensor management
control problem in the framework of stochastic dynamic
programming. A typical formulation starts with the system
state at time t, x(t). The state includes all target true
positions and types. A control at time t, u(t), specifies a
measurement of the system to be taken. The measurement
may be corrupted by a stochastic disturbance v(t) and may
be delayed so that it is not realized until a later time. The
measurement process is given by the function h, so that
 () ((), (), ())yy t h x t u t v t= (1)

is the measurement realized at time ty>t. The information
about the system at time t is summarized in the information
state I(t), consisting of all past measurements and controls
 () { () : } { () : }y y u uI t y t t t u t t t= ≤ ∪ < . (2)

The delay in realizing the measurement, ∆y, taken at time t,
is a function of the information state, control, and
stochastic disturbance at time t so that
 ((), (), ())y yt t I t u t v t= + ∆ . (3)

Control decisions occur at discrete instants in time, tu,0,
tu,1, tu,2,…. Following time tu,i, the next control is executed

after the delay of ∆u, which is a function of the information
state, control, and stochastic disturbance at time tu,i. Thus,
 , 1 , , , ,((), (), ())u i u i u u i u i u it t I t u t v t+ = + ∆ . (4)

The control is chosen from a constraint set U(I(t))
according to a control law, µ, which is a function of the
information state and time. Thus,
 , , ,() ((),)u i u i u iu t I t tµ= . (5)

The sensor management policy is the collection of these
control laws
 { ((),)}I t tπ µ= . (6)
Rewards are achieved upon executing the policy by
attaining particular information states. The reward for
attaining information state I(t) is given by R(I(t)). These
rewards are discounted by the factor e-γt and integrated
across time to yield an expected reward for executing
policy π from the information state I(0) of

0

((0)) (())J I E e R I dγτ
π τ τ

∞
−= ∫ . (7)

The optimal sensor management policy π∗ is the one that
maximizes (7) over all policies π. The optimal policy can
be characterized in terms of Bellman’s equation [1]. In this
context, the equation states that the expected reward for the
optimal policy satisfies

()()

((), (), ())

*

() (())
*

(())
(()) max E

((), (), ()

ut I t u t v t

t
u t U I t

u

e R I d
J I t

J I t I t u t v t

γτ τ τ
+∆

−

∈

 
+ 

=  
 + ∆ 

∫ . (8)

The first term on the right-hand side is the reward accrued
until the next decision time after t. The second term is the
expected reward after that time accrued from the resulting
information state. The policy

 { }* *((),)I t tπ µ= (9)

is optimal provided that the argument of the maximum in
(8) is given by µ*(I(t),t) for all I(t) and t (the assumption
here is that the set of candidate controls is compact, if not
finite, so that the maximum is well-defined). Several
computational techniques, including both policy and value
iteration, exploit the characterization in (8) to compute
policies. The difficulties in exploiting this characterization
are tied to the size of the state space, the set of candidate
controls, and the set of stochastic disturbances. In
particular, Bellman’s equation characterizes J* for all
possible information states I(t) by evaluating the right-hand
side of (8) for all possible controls u(t), taking an
expectation over all disturbances. This can be difficult to
apply when the size of the sets involved is large.

However, there is special structure that can be exploited.
Consider the following special case in which the system
state is the aggregate state of n targets

89

 1() { (), , ()}nx t x t x t= … (10)
whose individual states xi(t) are independent and evolving
in time as Markov processes. This would be the case, for
example, when tracking independent, isolated targets.
Moreover, suppose the measurements of the system state
are conditionally independent given target state and sensor
controls so that one can write
 () { () : 1 }iy t y t i n= = … (11)
where an individual measurement can be written
 () ((), (), ())i i i iy t h x t u t v t= (12)
for independent stochastic disturbances vi(t). Independence
introduces considerable structure; however, the problem is
still complex since the information states of the system do
not have similar independence properties. For example, one
can consider partitioning the information state as
 1 2() () () () ()n uI t I t I t I t I t= ∪ ∪ ∪ ∪… (13)
where
 () { () : }j j y yI t y t t t= ≤ (14)

and
 () { () : }u u uI t u t t t= < . (15)
However, the future information states Ij(τ) for τ>t are
neither independent nor conditionally independent given
the current control u(t) and system state x(t). The reason is
that the information states of targets are coupled through
the control decisions. Thus, one cannot rely on methods for
computing sensor management policies that require the
independence of the targets’ information states.

One approach we have used to develop sensor
management policies that exploit the special structure is the
application of index rules [1], [13]. Index rules are optimal
for the following type of sensor management problem.
There are n targets, whose states are independent. A
measurement can be made of only one target at a time, and
the measurement is of fixed duration, i.e. ∆y and ∆u are
constants and ∆y<∆u. The state of the target can only
change at instants when a measurement is made of it (e.g.
the target state may not be changing, but the information
state of the target may be as more measurements are
acquired). In addition, the mission must be formulated such
that the reward R(I(t)) accrued in a particular information
state at time t depends only on the information state Ij(t) of
the target j being measured at that time. In this case, the
optimal policy determining the next target at which to look
from information state I(t) is given by an index rule, which
has the form

{1, , }
(()) arg max (())j j

j n
I t m I tµ

∈
=

…
 (16)

where mj(Ij(t)) is the index of the target. The index for
target j can be represented in terms of a single target
problem. We have been able to develop solutions to these

single target problems and apply the resulting index rule
policy. Although the assumptions required for the index
rule to be optimal are often violated in sensor management
problems (e.g. one may be able to measure the state of
more than one target at a time), we have found that index
rules may still be optimal or, at least, applicable as part of
heuristics [5], [14].

Another approach we have used to develop sensor
management policies is to use limited lookahead algorithms
[1]. A limited lookahead policy is one for which the control
action is chosen as the solution to

()()

((), (), ())

() (())

1

(())
max E

((), (), ()

ut I t u t v t

t
u t U I t

u

e R I d

J I t I t u t v t

γτ τ τ
+∆

−

∈

 
+ 

 
 + ∆ 

∫
�

. (17)

where

()()

((), (), ())

() (())

1

(())
(()) max E

((), (), ()

ut I t u t v t

tk u t U I t

k u

e R I d
J I t

J I t I t u t v t

γτ τ τ
+∆

−

∈

+

 
+ 

=  
 + ∆ 

∫�
�

. (18)

for k=1,…,N-1 where N is the number of steps of
lookahead and the terminal reward NJ� is chosen to
approximate the expected reward. The algorithm for
computing the limited lookahead policy is effectively
enumerating possible controls and outcomes over N steps,
calculating a reward for the resultant state based on an
approximation, and selecting the control that yields the best
outcome. Structure in the problem can be exploited in the
construction of NJ� . As noted previously, the problem has
special structure in that individual target state evolutions
are often independent. One approach to exploiting this is to
use an approximate terminal reward that is separable so that

 ,
1

(() ())
n

N N j j u
j

J J I t I t
=

= ∪∑� � (19)

for per-target rewards ,N jJ� . These can be constructed a

number of different ways. One technique we have used is
to calculate the expected rewards associated with a single-
target form of the problem, motivated by the index
definition in [13]. Essentially, we use a function of the
index mj as the approximation ,N jJ� . We have also

explored other methods for constructing NJ� including
rollout and heuristic methods. In each case, we have tried
to exploit structure in the problem such as the existence of
independent target evolutions.

III. APPLICATION EXAMPLES
What follows are two examples of how we have been

applying these techniques to sensor management problems.

90

The examples outline how we have applied the stochastic
control techniques described above to the development of
sensor managers and illustrate areas where we have found
distinct advantages to using these techniques. In order to
illustrate the breadth of applicability, the examples are
drawn from two different types of problems. The first is the
control of a single sensor; the second is the control of
multiple, distributed sensors.

A. Control of a Single Sensor
In this first example, consider managing a single sensor

air-to-ground radar tracking system. The sensor, tracker,
and sensor manager are all colocated on the sensing
platform. As a result, the latencies in transmitting
information between components are minimal; so, the
sensor manager is generating sensor controls on a fast time
scale. In this context, two scenarios in which a stochastic
control approach to sensor management has advantages are
when there are differentiated targets and when the sensor
mode must be matched to target state.

 An example of the second scenario occurs when using
an airborne radar to track ground targets. In the radar’s
standard ground moving target indicator (GMTI) mode,
only targets moving against the background can be
observed. However, the radar may have another mode such
as a fixed-target indicator (FTI) mode, with which only
stopped targets may be observed. In order to track the
targets, the radar must be managed to periodically revisit
targets in the appropriate mode to update the estimate of
their position. Too long a period without observing the
target will lead to the tracking system dropping the track.
Longer track lifetimes are desirable. The sensor
management problem is thus one of selecting the sequence
of targets at which to look with the radar as well as the
mode to use. One source of complexity in the problem is
that targets may not be detected even if the appropriate
mode is used. Thus, the sensor management policy must
appropriately hedge to select the best mode based on past
detections. Another potential source of complexity in the
problem is that the measurements are taken over different
durations ∆y in the different modes. Thus, the policy must
appropriately hedge in time so that longer duration modes
are not chosen at poor instants in time. To address these
two issues, we have developed a limited lookahead policy,
of the form described by (17) and (18). The policy allows
one to account for past detections as well as for predictions
of future rewards that depend on the different measurement
durations in each sensor mode. Initial results of
performance are illustrated in Fig. 2. Here, a simple
simulation is used to compute the average track lifetime for
two different sensor policies. One is the limited lookahead
policy; the other is a policy that only uses the GMTI mode.
The simulation includes synthetic target motion, a simple
tracker, and a simple sensor model. For this sensor model,

the measurement durations are the same for the two
different modes. The results indicate that constructing a
sensor policy that takes advantage of the FTI sensor mode
has the potential to provide significant improvements in
track lifetime. More realistic simulations would be required
to determine the precise benefit.

 The other example of a scenario for which we have
noted benefits of sensor management is one in which there
are differentiated targets. Specifically, a subset of the
tracked targets is designated by a user to be higher priority
than the others. The high-priority targets could have
different tracking requirements than the low-priority
targets. For example, they may have more stringent track
accuracy requirements. The specific context considered
here is air-to-ground tracking with a GMTI radar. Thus,
there is no mode selection problem for the sensor manager,
as in the previously discussed scenario. However, the
problem of selecting the sequence of targets at which to
look is more complex. The sensor management policy must
account for the different numbers of high-and low-priority
targets, the different tracking requirements, and the current
state of tracks to generate a control sequence that generates
measurements of targets to meet the tracking requirements.
Some initial, simple simulations indicate that significant
benefits can be realized from a good sensor management
policy. In particular, we simulated a scenario with a high-
priority target and several low-priority targets. Two limited
lookahead sensor management policies were evaluated.
One used one step of lookahead (N=1), and the other used
two steps (N=2). Both policies performed equally well on
the high-priority target. However, the two step lookahead
policy achieved track accuracy requirements on the low-
priority targets 86% more of the time than the one step
lookahead policy. This suggests that significant benefits
can be realized by appropriately managing the sensor to

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

10

20

30

40

50

Fraction of Time the Target Is Stopped

%
 T

ra
ck

 L
ife

tim
e

Im
pr

ov
em

en
t

Performance Gain from Managing Sensor Modes

Fig. 2. The curve plots the fractional increase in track lifetime for using a
limited lookahead sensor policy that controls sensor mode over a simple
single mode policy. In this example, a different sensor mode must be used
to observe the target when it is stopped than when it is moving. However,
the sensor will only detect a target in the proper mode with some
probability less than 1.

91

track differentiated targets. We are currently planning to
evaluate the benefits in this type of scenario with a more
realistic simulation.

B. Control of Multiple, Distributed Sensors
The second example differs from the previous one in two

key respects. The first is a decomposition of the sensor
resource management function into two parts: an
information valuation step followed by a sensor allocation
calculation (i.e., constructing a sensor scheduling plan that
maximizes the value of collected information subject to
constraints on sensor availability and routing). The second
is the introduction of multiple sensors into the problem. In
this example, we focus on the information valuation aspect
for multiple sensors of differing capability.

As described above, the fusion state is determined by
both the stochastic evolution of the real system and the
stochastic results of sensor measurements of that system.
Different sensor tasking choices will thus result in different
evolutions of the system’s state. The decision becomes one
of determining the optimal valuation of sensor resources
with respect to their impact on the fusion process. While
there are multiple reasons for requesting particular sensor
tasks, the approach described herein addresses an important
subset – requesting sensor tasks that will either improve
target track estimates or remove association ambiguity in
the current or near-future fusion state. To emphasize this
aspect of the approach, the algorithm has been termed
FIND (Fusion Information Needs Determination).

The goal of the FIND algorithm is to maximize the time
discounted reward J in (7) for the special case where the
time between control actions ∆u is constant so that one can
rewrite it for a constant α as

0

(())t

t
J R I tα

∞

=

= ∑ . (20)

The reward function R has the form
 (()) (() ())j j u

j

R I t R I t I t= ∪∑ (21)

where the index j in this case ranges over the hypothesis
space of the fusion system. The track hypothesis space
contains information about the relative certainty of
different data associations that are not reflected in the
single global set of track estimates normally output. The
individual rewards Rj are a function of a set of goals and
priorities, specifically:

1. The required kinematic accuracy (expressed as
tracking uncertainty, ΣGoal) for tracking confirmed
targets

2. The required classification accuracy (probability of
correct classification, PGoal) for declaring high
confidence identification of a target

3. The relative priorities for meeting the kinematic and

classification accuracy goals, both singly and in
combination, for each of the expected target types

4. Indications of time-criticality of the information need.
Given this information, we can specify the reward for a

given hypothesis Hj. The reward takes on differing values
depending upon which combination of the goals is
satisfied. For hypothesis Hj, with associated kinematic
uncertainty σj

2(t) (the maximum eigenvalue of the position
error covariance) and classification probabilities pj(t)
(defined as the vector of probabilities that the target is of a
given type), the individual reward at time t is given by:

2

2

2

2

0 () and max(())
() and max(())

(() ())
() and max(())
() and max(())

j Goal j Goal

j Goal j Goal
j j u

Y j Goal j Goal

Y j Goal j Goal

t p t P
R t p t P

R I t I t
R t p t P
R t p t P

σ
σ
σ
σ

Σ

Σ

 > Σ <
 ≤ Σ <∪ =  > Σ ≥
 ≤ Σ ≥

Different candidate sensor tasks are valued using a 1-
step limited lookahead approach given by (17) and (18). A
heuristic approximation of the terminal award is given by
the separable function

2

1

()1() arctan 0.5Goal jT
j j

j

J p p R
σ

ρ
πΣ

 Σ −
= + +  Γ 

∑� (22)

where the summation is over the different hypotheses
within the track hypothesis space. The FIND values are
computed as the increment in the expected reward of the
one-step lookahead for a set of candidate sensor tasks

FIND value

Incremental reward

((), (),)

E (() () ()) (())

u

u

V I t u t

J I t y t u t J I t

∆ =

 ∪ + ∆ ∪ − 

���	��

� �
��������	�������

 (23)

Since FIND does not have information as to which specific
sensors are available, the FIND value is computed for a set
of candidate sensor controls u parameterized by hypothesis
as well as a range of kinematic measurement accuracies
and classification abilities.

The FIND valuation is used to determine the benefit
derived from tasking a sensor to provide information on a
specified hypothesis. In practice, these valuations are rank-
ordered and filtered such that only a subset of the possible
hypotheses is considered in the sensor allocation
calculation. This portion of the solution balances the set of
valuations (which vary with sensor performance) against
competing requirements (e.g., requests produced at a higher
command level) to produce a multiple sensor tasking plan.

To illustrate the performance of the FIND algorithm and
demonstrate its utility for identifying (and quantifying) the
benefits of candidate sensor taskings, consider the simple
scenario. It begins with a single, stationary, high priority
target. Initial information about the target consists of good
classification, but poor kinematic information. A short time
later, two distinct tracks are reported by an MTI system.

92

While these reports provide good kinematic information,
target classification knowledge is poor. The problem
becomes one of identifying which, if either, of the moving
targets is the original high priority one.

Three approaches for generating sensor task valuations
were examined:

1. Raster which simply tasks the sensor(s) to address
each hypothesis in turn

2. Myopic which implements a 1-step lookahead, greedy
approach. Defaults to Raster if no sensor task is
expected to achieve a goal

3. FIND which implements a 1-step lookahead and uses
the heuristic terminal reward in (22) to approximate
the long-time reward.

Two sensors are available for tasking. Nominally, the first
provides accurate kinematic information but no
classification data, while the second provides classification
information but has a poorer (i.e., larger) kinematic
uncertainty. Each is assumed to report the results of the
tasked observation. The FIND problem is to produce a
sensor tasking (or set of sensor tasks) that resolves the
inherent ambiguities in the hypothesis space while
minimizing the number of such tasks. This is equivalent to
producing a set of recommended sensor taskings that
results in the best (minimum number of observations)
solution to achieving the target tracking and classification
goals.

Fig. 3 illustrates how the above algorithms perform for
one set of evaluation conditions. The curves are the
probability that the tracking and classification goals are
exceeded as a function of the number of recommended
sensor taskings. The results shown in the figure are
representative; the FIND algorithm is clearly superior to
the other approaches.

The valuations provided by the FIND algorithm can be
viewed as providing different types of requests to improve
fusion performance. The highest value requests are those
which remove ambiguity in report associations to high
priority targets. Requests that confirm ID and track likely
high priority targets typically have medium values, while
those with the lowest value are requests to ID unknown
targets and are usually ignored unless no higher value tasks
are requested for a given sensor resource.

IV. CONCLUSION
The examples in the previous section highlight issues in

sensor management and indicate how one could exploit
structure resulting from independent target motions to
develop a sensor management policy. The results indicate
that such policies will appropriately allocate sensor
resources to improve the resolution of hypotheses in multi-
target tracking systems and, specifically, to improve the
surveillance of high-priority targets. Further
experimentation is required to determine the precise degree

to which benefits can be realized in practice. Planned
development of high fidelity simulations will allow us to
perform the necessary experiments. We expect results will
indeed confirm that significant benefits can be realized.

REFERENCES
[1] D. P. Bertsekas. Dynamic Programming and Optimal Control.

Athena Scientific, Belmont, MA, 2001.
[2] V. Krishnamurthy and R. J. Evans. Hidden Markov model multiarm

bandits: A methodology for beam scheduling in multitarget tracking.
IEEE Transactions on Signal Processing, 49(12):2893 - 2908, 2001.

[3] S. Singh and V. Krishnamurthy. The optimal search for a Markovian
target when the search path is constrained: The infinite-horizon case.
IEEE Transactions on Automatic Control, 48:493-497, 2003.

[4] V. Krishnamurthy. Algorithms for optimal scheduling and
management of hidden Markov model sensors. IEEE Transactions
on Signal Processing, pages 1382 - 1397, 2002.

[5] D. A. Castanon. Optimal search strategies in dynamic hypothesis
testing. IEEE Transactions on Systems, Man, and Cybernetics,
25(7):1130-1138, 1995.

[6] D.A. Castanon. Approximate dynamic programming for sensor
management. In Proceedings of the 36th IEEE Conference on
Decision and Control, 1997.

[7] B. LaScala, B. Moran, and R. Evans. Optimal adaptive waveform
selection for target detection. In Proceedings of the International
Radar Conference, 2003.

[8] E. Ertin, J. W. Fisher, and L. C. Potter. Maximum mutual
information principal for dynamic sensor query problems. In
Proceedings Information Processing in Sensor Networks, pages 405-
416, 2003.

[9] D. Sinno, D. Cochran, and D. Morrell. Multi-mode detection with
markov target motion. In Proceedings of the 3rd International
Conference on Information Fusion, pages 25-31, 2000.

[10] D. Sinno and D. Cochran. Dynamic estimation with selectable linear
measurements. In Proceedings IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 2193-2196, 1998.

[11] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor
collaboration. IEEE Signal Processing Magazine, 19:61-72, 2002.

[12] R.B. Washburn, M.K. Schneider, and J.J. Fox. Stochastic dynamic
programming based approaches to sensor resource management. In
Proceedings of 5th International Conference on Information Fusion,
pages 608- 615, 2002.

[13] J. C. Gittins. Bandit processes and dynamic allocation indices.
Journal of the Royal Statistical Society: Series B (Methodological),
41(2):148-177, 1979.

[14] P. Whittle. Restless bandits: Activity allocation in a changing world.
Journal of Applied Probability, 25A:287--298, 1988.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Number of Sensor Taskings

Pr
ob

ab
ilit

y
of

 A
ch

ie
vi

ng
 P

er
fo

rm
an

ce
 G

oa
ls

FIND
Raster

Myopic

Fig. 3. FIND significantly reduces the number of sensor taskings required
to achieve performance goals.

93

Farsighted Sensor Management Strategies for Move/Stop
Tracking

Angelia Nedich, Michael K. Schneider, and Robert B. Washburn

BAE Systems

6 New England Executive Park
Burlington, MA, USA.

{angelia.nedich, michael.k.schneider}@baesystems.com

Abstract – We consider the sensor management problem
arising in using a multi-mode sensor to track moving and
stopped targets. The sensor management problem is to
determine what measurements to take in time so as to
optimize the utility of the collected data. Finding the best
sequence of measurements is a hard combinatorial
problem due to many factors, including the large number
of possible sensor actions and the complexity of the
dynamics. The complexity of the dynamics is due in part
to the sensor dwell-time depending on the sensor mode,
targets randomly starting and stopping, and the
uncertainty in the sensor detection process. For such a
sensor management problem, we propose a novel,
computationally efficient, farsighted algorithm based on
an approximate dynamic programming methodology. The
algorithm’s complexity is linear in the number of targets.
We evaluate this algorithm against a myopic algorithm
optimizing an information-theoretic scoring criterion.
Our simulation results indicate that the farsighted
algorithm performs better with respect to the average
time the track error is below a specified goal value.

Keywords: Tracking, sensor management, farsighted
strategy, stochastic dynamic programming.

1 Introduction
We consider the problem of sensor management arising in
tracking multiple targets with a multi-mode sensor. The
sensor management problem is to determine which target
to be observed by the sensor and which sensor mode to
use. These decisions are to be made over time so as to
optimize the utility of the collected measurements. An
example of the sensor management problem of interest is
that of managing a multi-mode airborne radar to track
moving and stopped ground targets . Specifically, the
radar may have two modes, a moving target indicator
(MTI) mode for observing moving targets and a fixed-
target indicator (FTI) mode for observing stopped targets.
Each mode is characterized by the uncertainties in the
target detection and measurement processes as well as the

measurement collection time. These may all be different in
the different modes. The radar controls include which
mode to use as well as where to point the radar for a
particular measurement. The objective is to collect enough
data on target position over time to meet desired track
error goals . Determining how to optimally manage a
sensor over time to meet such objectives is a hard
combinatorial optimization problem. The problem
complexity stems from many factors, including the large
number of possible sensor actions as well as the
complexity of the dynamics. The complexity of the
dynamics results partially from the radar dwell-time
depending on the radar mode, targets randomly starting
and stopping, and the uncertainty in the sensor detection
process. As a result of these factors , computing optimal
sensor management strategies is often infeasible.

 Various strategies have been proposed for sensor
management including strategies that use information-
theoretic scoring criterions such as those developed in [1]
for tracking, and [2] and [3] for collaboration of networked
sensors. Some farsighted strategies have been developed
in [4], [5], and [6] for tracking. More specifically, the work
in [6] evaluates some farsighted strategies and compares
them to a myopic strategy. A farsighted strategy is one
where the sensor manager considers the benefits resulting
from a sequence of (two or more) sensor actions, while a
myopic strategy is one where the sensor manager
considers only the benefits resulting from a single sensor
action. In [6], the evaluations of these two kinds of
strategies are performed on the problem of managing a
single mode sensor to track targets that may become
occluded.

 The work presented in this paper is also motivated
by an interest in comparing the benefits of farsighted
strategies with that of myopic strategies. In contrast to
previous work, the investigation presented here considers
a novel farsighted algorithm and problem for evaluation.
In particular, we consider the problem of move/stop
tracking outlined above, which has not previously been

94

considered for evaluating the relative benefits of
farsighted sensor management strategies. For this
problem, we develop a novel, efficiently computable
farsighted sensor management strategy.

 In the remainder of this paper, we present the
algorithms for evaluation and the results of that
evaluation. In Section 2, we describe the farsighted sensor
management strategy, which is based on an approximate
stochastic dynamic programming methodology. In Section
3, we introduce a myopic sensor management algorithm
that serves as a baseline for the evaluation of the
farsighted sensor management algorithm. In Section 4, we
report some simulation results comparing the two
algorithms. In Section 5, we give some concluding remarks.

2 Farsighted Strategy
Our development of the farsighted strategy is based on a
formulation of the sensor management problem of interest
as a stochastic dynamic program. This formulation is
discussed in the following section.

2.1 Formulation As a Dynamic Program
We formulate our sensor management problem as a
continuous-time stochastic dynamic programming problem
with an infinite horizon (cf. [7]). The system to be
controlled is the tracker, whose state x(t) at time t is
composed of the target track states xi(t), i.e.,

()1() (),..., () ,nx t x t x t=

where n is the number of targets. The target track state xi(t)
is given by

()() (), (), () ,i i im isx t S t p t p t=

where Si(t) is the position-error covariance for target i, and
pim(t) and pis(t) are the probabilities that the target is
moving or is stopped at time t, respectively. These
probabilities can be estimated, for example, by computing
the target-mode likelihoods based on the target detection
history.

 The candidate controls include the location of a
sensor dwell and the mode of the sensor. For clarity of
exposition, we assume that the sensor may observe only
one target at a time . In particular, we say that the sensor
observes target i when the sensor is actually pointed at
the estimated position of target i. Therefore, at any state
and time, the set of candidate controls U consists of
target-radar mode pairs, i.e.,

{ }(,) | {1,..., }, { , } .U i i n MTI FTIµ µ= ∈ ∈

This set can be modified to include other candidate
locations to accommodate a more general case when the
sensor may observe more than one target at a time.

 Given that a control u(tk) has been selected at time tk,
the new state of the system depends on the control u(tk)
and the resulting measurement outcome. The dynamics of
the state are given by a track filter, such as an interacting
multiple-model (IMM) filter (see [8]). To simplify the
notation, for the target-state and system-state evolution,
respectively, we will write

()() (), (), , ,i i k k kx t f x t u t w t t= −

() ((), (), ,),k k kx t F x t u t w t t= −

where w is the detection outcome with w=1 or w=0
indicating detection and missed detection, respectively.

 Now, we define a reward ri for each target i, which is
nonzero only when the target-track error is sufficiently
small. In particular, for a specified track error goal Gi
associated with target i, the reward ri is nonzero if the
mean-squared track error, the trace of the error covariance,
is below Gi. Otherwise, ri is zero. Formally,

if

otherwise

 (()) ,
(())

0 ,
i i i

i i

V Tr S t G
r x t

≤
= 


 (1)

where Vi is the priority value for target i and Tr(·) denotes
the trace. In essence, the reward is collected only when the
track accuracy is high enough. The total reward R at state
x(t) is the sum of the target rewards,

1
(()) (()).

n

i i
i

R x t r x t
=

= ∑

The sensor manager goal is to select the sequence of
controls {u*(tk)|k=0,1,…} maximizing the expected reward
accumulated over time. Formally, the sensor manager is
solving the following problem

 0{ ()| 0,1...}
0

max (()) | (0) ,
k

t

u t k
E R x t e dt x xγ

∞
−

=

 
= 

 
∫

where ? is a decay factor modeling the information
depreciation in time and x0 is the initial state of the system.

95

 According to dynamic programming theory, there is
an optimal policy p* specifying an optimal control for each
state. Furthermore, every optimal policy satisfies Bellman’s
equation:

*

*

0

()

max (()) ((, , ,)) ,
u

u

t
tt

uwu U

J x

R x t e dt e E J F x u w tγγ −−

∈

=

  + 
  
∫

where tu is the time needed to complete the sensor task
specified by a control u, and J*(x) is the expected reward
accumulated under the optimal policy p* when the system
starts at state x. Note that, to find an optimal policy using
Bellman’s equation, the equation has to be solved for all
states x. When the number of states is large or the number
of control choices is large, solving Bellman’s equation is
computationally prohibitive due to the combinatorial
explosion of state-control combinations. This is exactly the
case with our sensor management problem, where the
computational complexity grows exponentially with the
number of targets, the number of target track states, the
number of sensor modes, and the number of sensor dwells.
For example, the number of target track states grows
exponentially with the number of sensor dwells, and can
be large even for a single target. Many different
techniques for generating suboptimal policies have been
developed. We consider a rollout-based approach, as
discussed in the following section.

2.2 Rollout Strategy
The rollout strategy is an approximate dynamic
programming technique (see [7], Vol. 1, p. 314). This
technique evaluates a control action by estimating near
and far-future benefits resulting from the control choice at
the current state. The near-future benefits are computed
by predicting the action consequences over the look-
ahead planning stages. The far-future benefits are the
benefits accumulated after the look-ahead stages. In the
rollout approach, the far-future benefits are computed as
the benefits resulting from applying a fixed policy. This
approach as illustrated in Figure 1.

Current State + Jπ

Lookahead benefits
Benefits of
fixed policy π

- Near future benefits - Far future benefits

Figure 1. The rollout approach evaluates near and far-
future benefits of an action taken at the current state.

 Formally speaking, the rollout approach is one
policy-iteration step performed on some fixed policy p. In
particular, for a fixed policy p, one step of the policy-
iteration consists of solving the following problem:

0

max (()) ((, , ,))
u

u

t
tt

uwu U
R x t e dt e E J F x u w tγγ

π
−−

∈

  
+ 

  
∫

(2)

where Jπ is the expected reward of policy π. The resulting
overall policy is a one-step improvement of the original
policy p. Thus, it is desirable that p is near-optimal.
Furthermore, it also desirable to select p so that the
expected policy-reward Jp is computable.

In the rollout-based algorithm, the sensor manager
selects a sensor action by solving (2). As a first step
toward solving this maximization problem, we discretize the
time by letting

t k = kδ for δ > 0 and k = 0,1, 2,… .

Then, relation (2) reduces to

1

0
max (()) ((, , ,))

u

u

u

K
Kk

k Kwu U
k

R x E J F x u wπα τ α τ
−

∈
=

 
+ 

 
∑

(3)

where Ku is the sensor dwell-time (in units of δ) for the
sensor action specified by control u, and a∈(0,1) is a
discount factor given by

a = e-?d.

96

Recall that for any control choice u=(j,µ), the detection
outcome w can take value 1 or 0. Thus, the expectation in
relation (3) reduces to

((, , ,))

() ((, ,1,))

1 () ((, ,0,)),

u

u u

u u

Kw

j K j K

j K j K

E J F x u w

p J F x u

p J F x u

π

µ µ π

µ µ π

τ

τ β τ

τ β τ

=

 + − 

where ()
uj K

p
µ

τ is the probability that target j is in mode µ

at the time of the observation, and ßjµ is the detection
probability for radar mode µ when observing target j.

 To accommodate efficient computation of the
expected policy-reward, our sensor resource manager uses
a tracker predictive model approximating the tracker. This
model is based on the following:

Assumption:

1. Each target is either moving or is stopped, but the
target motion state is unknown.

2. A target track is dropped if the target is not detected.

Assumption 1 is realistic for cases where the changes in
target motion take longer than planning and executing a
sensor action. Assumption 2 is more conservative than
necessary (a target track may continue even with one or
more missed detections). However, the resulting model is
useful for planning purposes. Furthermore, these
assumptions restrict the branching of the control-outcome
space of any policy. This allows us to evaluate our
farsighted policy without using costly Monte Carlo
simulations.

 We now discuss the choice of policy π. Motivated
by the desire to have a good policy whose expected
reward can be computed for any initial state, we consider a
policy π having the following properties:

1. A target is observed with either MTI or FTI mode at all
times.

2. Initially, the targets are sorted in a list according to
some criterion. Then, these targets are observed
according to the list as follows: each target is observed
until either its track error decreases below the desired
value or its track is dropped. If the track error is
decreased below the desired value, the target is
revisited at the rate that keeps its track error below the
desired value.

We assume that the sensor can revisit the targets with
rates that keep the track errors below the desired values.

 We next describe a procedure for selecting a radar
mode and a procedure for ordering the targets in a list. In
particular, let x be the system state when the policy π is to
be applied, i.e.,

1 with(,...,) (, ,) , 1,..., .n i i im isx x x x S p p i n= = =

From the current target-mode probabilities pim and pis, we
determine the most likely target modes

{ }() argmax , .im isi p pµ =

Under the policy π, the radar always uses mode µ(i) when
observing target i. Given the current target covariances Si,
i=1,…,n, the policy π sorts the targets according to the
vicinity of their track errors to the desired goal, i.e., the
targets are sorted according to the values Tr(Si)/Gi for
i=1,...,n. This order is motivated by that generated
according to an index-rule policy such as that discussed in
[5].

 We now evaluate the policy reward Jπ. We note that,
even for our simple tracker predictive model, it is still
computationally prohibitive to exactly evaluate the reward
Jπ due to coupling of the target dynamics under the policy.
We thus approximate the policy reward Jπ assuming that it
is separable across the targets, i.e.,

1
1

with() () (,...,).
n

i n
i

J S J S S S Sπ
=

= =∑

For notational convenience, without loss of generality, we
may assume that the order of the targets is 1, 2,…,n when
they are sorted according to values Tr(Si)/Gi. Suppose
that the mean-squared errors for the first ? targets are
within their goal region, i.e.,

for() 1,..., .i iTr S G i κ≤ =

For these targets, the reward J(Si) is the reward collected
during the revisit period, i.e.,

for() 1,..., ,i iJ S L i κ= =

where Li is the long-term reward accumulated during target
revisits (to be discussed shortly).

 Consider now the targets i=?+1,..,n. Their mean-
squared errors exceed the desired goals. Under the policy
π (property 2), each of these targets is observed until the

97

track is dropped or its mean-squared error decreases below
the value Gi. However, it can be seen that the accumulated
reward is nonzero only if the mean-squared error decreases
below the value Gi. Let T?+1 be the observation time
required to decrease the trace Tr(S?+1) below value G?+1.
Then, we have

() 1

1 1, (1) 1() .
T

J S Lκ

κ κ µ κ καβ +

+ + + +=

While observing target ?+1, the covariances of targets
?+2,…,n evolve to S?+2(T?+1),…,Sn(T?+1). Let T?+2 be the
observation time required to decrease the trace of
covariance S?+2(T?+1) below value G?+2. Then, we have

() 1 2

2 2, (2) 2() .
T T

J S Lκ κ

κ κ µ κ καβ + ++

+ + + +=

Continuing in this manner, we can see that

() 1 2 ...
, () for() 1,..., .iT T T

i i i iJ S L i nκ κ

µαβ κ+ ++ + +
= = +

where Ti is the time required to decrease the trace of
Si(T?+1+…+Ti-1) below goal value Gi.

 We next discuss the long-term rewards Li
accumulated during periodic revisits of the targets. As
mentioned earlier, once the traces of error covariances for
all targets decrease below their corresponding goal values,
the targets are revisited at a constant rate. Under
Assumption 1, the target modes do not change in time, so
the error covariance of a stopped target does not change
in time. Therefore, the stopped targets with error traces
below their corresponding goals are not revisited, and the
long-term reward Li is given by

0
for a stopped target .

1
t i

i i
t

V
L V iα

α

∞

=

= =
−∑

We focus now on the long-term reward Li associated with
a moving target i. Let M be the length of the revisit interval
required for keeping the trace of the target i error
covariance below the desired value. Without loss of
generality we may assume that the sensor revisits the
target i at times t=jM, j=0,1,…. During the revisit process,
the reward is collected for as long as the target is detected,
and the reward ceases when the target is not detected (cf.
Assumption 2). Thus, during the revisit stage, the reward
is collected per unit of target lifetime. The target lifetime is
a random variable taking value jM with probability

()1

, () , ()1j

i i i iµ µβ β− − . Hence, if the lifetime takes value jM,

then the collected reward G(jM) is equal to

()(1) 1() 1 ... ,
1

jM
M j M

MjM
α

ρ α α ρ
α

− −
Γ = + + + =

−

where ? is the reward accumulated between any two
consecutive revisits and is given by

()1 11
1

M
M

i iV V
α

ρ α α
α

− −
= + + + =

−

The long-term reward Li is equal to the expected reward G
collected during the target lifetime, so that by computing
the expected value of G(jM), we can see that

()
() (), ()

for a moving target
1

 .
1 1

M
i

i M
i i

V
L i

µ

α

α α β

−
=

− −

 Concluding this section, we note that the preceding
algorithm description involved only two sensor modes
mainly for the clarity of exposure. The algorithm can be
easily extended to a more general case involving an
arbitrary number of sensor modes. Note that, the
preceding procedure for approximating the expected
reward Jπ has polynomial complexity in the number of
targets, in contrast to the exponential complexity required
to compute the reward Jπ exactly.

3 Myopic Strategy
Here, we present a myopic sensor management algorithm
that serves as a baseline for evaluating the performance of
the farsighted algorithm discussed in the preceding
section. We do not consider a myopic approach optimizing
the dynamic programming formulation presented in the
previous section. This is because the reward function has
a threshold structure so that no value may be realized from
a single action. Instead, we consider an algorithm that
evaluates sensor actions based on the expected decrease
in the entropy of the target-track errors per unit of time.
The algorithm is myopic since the changes in the entropy
are computed only for a single sensor action.

 Specifically, the entropy hi for target i at state
xi=(Si,pim,pis) is given by

[]() log 2 () ,
2

i
i i c i

V
h x eTr Sπ= (4)

where Vi is the priority of target i and pc˜3.14 (see [9],
Chapter 9). As seen from this relation, the target entropy is
measured by the target-track error in log-scale. The
entropy H of the system at state x is defined as the sum of
the target entropies hi:

98

1
1

where() () (,...,).
n

i i n
i

H x h x x x x
=

= =∑ (5)

Let tk be the current time and x(tk) be the current state.
Given a control u is selected at time tk, the expected
entropy decrease per unit of time at state x(tk) is given by

[]1(()) (())
((),) ,

k kw
k

u

E H x t H x t
D x t u

t
+ −

=

where tu is the time required for completing the sensor
action specified by control u, tk+1= tk + tu, is the time the
detection outcome w is available, and x(tk+1) is the state to
which the system transitions under the control u. From
relations (4) and (5), it can be seen that for state x(tk) with
components

()() (), (), ()i k i k im k is kx t S t p t p t=

and for control u=(j,µ), the expected entropy decrease is

()
()

()
()

1

1

1

1

()1((),) log
2 ()

ˆ ()1 () log ,
2 ()

n
i k

k i
iu i k

j k

j j k j
u j k

Tr S t
D x t u V

t Tr S t

Tr S t
p t V

t Tr S tµ µβ

+
+

=

+

+
+

=

+

∑
 (6)

where 1()
i k

S t+

+
 is the predicted target covariance and

1
ˆ ()

i k
S t

+
 is the updated target covariance according to the

standard Kalman-filter equations.

 The entropy-based sensor manager is myopic: at
state x(tk), it selects a control u* optimizing the entropy
decrease D. More specifically, the entropy-based sensor
manager solves the following problem

min ((),),ku U
D x t u

∈

where D(x(tk),u) is computed according to equation (6).

4 Numerical Results
Here, we present our simulation scenario and the test
results obtained for the farsighted rollout algorithm and
the myopic entropy-optimizing algorithm. The purpose of
the simulations is to determine if the farsighted algorithm
has any potential advantages over the myopic algorithm.

4.1 Simulation scenario

stoppedmoving

Pmm Pss

Pms

Psm

Figure 2. Discrete-time Markov chain modeling target
motion. At any time, either a target is moving or it is
stopped. The transitions occur at times kδ, for k = 1,2,…,
where δ is the time increment.

We consider a 10 minute scenario in which there are 50
targets to be tracked while they are both moving and
stopped by a radar having two modes, MTI and FTI. We
assume that each target moves along a one-dimensional
road and has normally distributed velocity with a specified
root mean square value. The target transitions between
being moving and stopped are modeled by a discrete-time
Markov chain with two states, moving and stopped, and
with state dependent transition probabilities, as illustrated
in Figure 2. By varying Psm, we simulate the cases where
the average number of targets that are stopped in steady-
state is 20, 30, and 40, and we initiate the number of targets
being stopped in the scenario to the average steady-state
value.

 Our tracker model is based on a simple IMM filter (cf.
[8]) consisting of a filter modeling the kinematics of a
“moving” target and another one modeling the kinematics
of a “stopped” target. The target track state consists of
the target location estimate, the estimate of error variance,
and the target mode probabilities. The target mode
probabilities are updated given information on whether a
target is detected or not. In particular, if a target is not
detected in MTI mode, then the probability that the target
is moving decreases . A similar update results from a
missed detection in FTI mode. The tracker drops a target if
its mean-squared error exceeds a specified upper bound.
Furthermore, the tracker report association is assumed to
be perfect.

 The MTI radar mode can detect moving targets only,
while the FTI mode can detect stationary targets only.
Each mode is characterized by its detection probability,

99

measurement error variance, and dwell-time. For both
modes and all targets, the detection probability is 0.9 and
the measurement error variance is 1 m2. The MTI mode
dwell-time is 0.1 seconds, and the FTI mode dwell-time is
10 seconds.

 We assume that all targets have the same priority
and the same goal values for their error variances. In
particular, in equation (1), we use priority Vi=1 and goal
value Gi=25 m2 for all i.

4.2 Simulation results
In this section, we present the simulation results obtained
for the farsighted sensor management algorithm and the
myopic entropy-optimizing algorithm. We use the average
fraction of time the error goals are met as a measure of
performance. This is computed as the fraction of time the
target error goal is met per target and then averaged over
the number of targets. These average values, obtained for
typical sample paths, are presented in Figure 3. The bars in
the figure mark the standard deviations of performance
over time for each sample path. They give an indication of
the expected variability in performance for different sample
paths provided that the dynamics are ergodic.

15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Fraction of Time the Target Error Goals are Attained

Average number of targets stopped in steady state

Fr
ac

tio
n

of
 ti

m
e

Farsighted Algorithm
Myopic Algorithm

Figure 3. As the average number of stopped targets
increases, the average time the error goals are met for the
farsighted algorithm is increasingly better than that of the
myopic algorithm.

 The simulation results indicate that the farsighted
sensor management algorithm maintains better quality
target tracks than the myopic algorithm. In particular, the
average time the error goals are met for the farsighted
algorithm is much longer than for the myopic algorithm.
Furthermore, the difference between the average time the
error goals are met for the farsighted algorithm and for the
myopic algorithms is increasing as the average number of
stopped targets increases. We attribute this to the

capability of the farsighted algorithm to adapt the target
revisit rates appropriately.

 In particular, the myopic algorithm schedules the
longer FTI mode more frequently to observe the stopped
targets, as the number of stopped targets increases. This
results in substantially less time being spent observing
moving targets, and the corresponding track errors far
exceed the goals. In contrast to the myopic algorithm, the
farsighted algorithm schedules the FTI mode less
frequently. Instead, it schedules shorter MTI modes to
revisit stopped targets at an appropriate rate to determine
if they have started moving. The resulting revisit rates on
the moving targets are faster, and the farsighted algorithm
is able to maintain track errors on the moving targets
below the desired goals for longer periods of time.

 We believe that our simulation results are important
indicators that, for some sensor management problems,
farsighted strategies are better than myopic ones. We
believe that this is the case for sensor management
problems with complex dynamics (e.g., when targets are
randomly starting and stopping and/or sensor actions
have significantly different durations). The move/stop
tracking problem considered here is one such. For these
problems, the consequences of a single sensor action do
not provide enough information about the impact of the
action on the future system behavior. Thus, to make good
decisions, it is important that the sensor manager
anticipates future consequences resulting from the sensor
actions taken at the present time. In particular, the
farsighted, rollout sensor manager results in a strategy
that adaptively adjusts the frequency with which moving
and stopped targets are observed in a manner that results
in better tracks than the myopic, entropy-optimizing
algorithm.

5 Conclusions
We have developed a novel, computable, farsighted
sensor manager for move/stop tracking with a multi-mode
sensor. This particular sensor management problem is
challenging because of the complex target dynamics and
the variable duration of sensor actions. We have
evaluated the farsighted algorithm against a myopic,
entropy-optimizing sensor management algorithm. Our
simulation results indicate that the farsighted algorithm
has promising behavior. In particular, the farsighted
algorithm results in better quality tracks than the myopic
algorithm.

Acknowledgements
This material is based upon work supported by the United
States Air Force under Contract No. F33615-02-C-1197.

100

References
[1] Kreucher C., Kastella K., and Hero A.O., Sensor
Management Using Relevance Feedback Learning.
Submitted to IEEE Trans. on Signal Processing.

[2] Ertin E.J., Fisher W., and Potter L.C. Maximum
Mutual Information Principle for Dynamic Sensor Query
Problems. Information Processing in Sensor Networks,
Proc. pp. 405-416, 2003.

[3] Zhao F., Shin J., and Reich J. Information-driven
dynamic sensor collaboration. IEEE Signal Processing
Magazine, Vol. 19, pp. 61-72, 2002.

[4] Krishnamurthy V. and Evans R.J. Hidden Markov
model multiarm bandits: A methodology for beam
scheduling in multitarget tracking, IEEE Transactions on
Signal Processing, Vol. 49, No. 12, pp. 2893-2908, Dec.
2001.

[5] Washburn R.B., Schneider M.K., and Fox J.J.
Stochastic Dynamic Programming Based Approaches to
Sensor Resource Management. Fifth International
Conference on Information Fusion, Proc. pp. 608- 615,
2002.

[6] Kreucher C., Hero A.O., Kastella K., and Chang D.,
Efficient Methods of Non-myopic Sensor Management for
Multitarget Tracking. Submitted to Proceedings of the
2nd IEEE Conference on Information Processing in Sensor
Networks, 2004.

[7] Bertsekas D.P., Dynamic Programming and Optimal
Control. Athena Scientific, Belmont, Vol. 1 and 2, Second
edition, 2000.

[8] Mazor E., Averbuch A., Bar-Shalom Y., and Dayan J.
Interacting multiple model methods in target tracking: a
survey. IEEE Transactions on Aerospace and Electronic
Systems , Vol. 34, No. 1, pp.103-123, 1998.

[9] Cover T.M. and Thomas J.A. Elements of
information theory. John Wiley & Sons, New York, 1991.

101

Stochastic Control Bounds on Sensor Network Performance

David A. Castañón

Abstract— Consider a network of sensors, each of which has
limited sensing resources, which is tasked with collecting noisy
classification information on a group of unknown objects. The
amount of resources required a given sensor to measure an
object depends on the specific sensor-object geometry. Sensors
exchange collected information to estimate object identities and
coordinate which measurements to collect next. This paper
describes a computable lower bound on the classification error
that can be achieved by a causal adaptive sensing schedule. This
bound is based on a formulation of the adaptive sensing problem
as a partially observed stochastic control problem. Expanding
the admissible control space of this problem leads to a relaxed
problem with simpler decision structure for which the bounds
can be computed. The bound computations are illustrated for
several examples involving 100 unknown objects, and compared
with the Monte Carlo performance of specific adaptive sensor
scheduling algorithms. Comparisons with optimal scheduling
algorithms for special cases illustrate the tightness of the
bounds.

I. INTRODUCTION

There are many recent applications for networks of sen-
sors, each of which has a given amount of resources, such as
available power or duty cycle. Often, each sensor has mul-
tiple sensing modes that it can use to collect different types
of information; the amount of resources required to collect
a measurement by a sensor depends on the specific sensor-
object geometry and the mode used. The network is tasked
with using its available resources to obtain information on
a given number of objects or areas. In order to achieve the
best information possible, it is important to coordinate the
allocation and scheduling of the different sensors and sensor
modes across objects of interest. Sensors exchange collected
information to determine the current state of information on
objects. The adaptive sensing problem consists of selecting
and scheduling the sensor modes which are applied to objects
of interest based on the collected past information.

This paper develops a model for a class of adaptive
sensing problems involving the objective of classifying a
known number of unknown objects at known locations, given
a fixed number of sensor with finite resources and finite
modes. We assume that sensor performance parameters are
time-invariant, so that the performance associated with a
sensor observing an object with a given mode do not depend
on the time that the sensing activity occurs. This class of
problems arises in several applications, from object classi-
fication using multiple airborne platforms, dynamic search,
and fault inspection and isolation in manufacturing systems.

This work was supported in part by grants NSF DMI-0330171 and
DARPA F33615-02-C-1197

Dept. Electrical & Computer Eng., Boston University, Boston, MA
dac@bu.edu

In these applications, inaccuracies in sensor measurements
and variations in object characteristics result in individual
measurements that provide noisy estimates of object type
whose quality depends on the specific mode used by the
sensor. In situations with multiple sensors, multiple objects
and limited resources, this noisy information can be used to
prioritize which objects to look at next, from which sensor,
and to assign appropriate sensor modes to the objects.

Because of the uncertain nature of the underlying object
types and the adaptive nature of the desired schedules, adap-
tive sensing problems can be formulated as partially observed
Markov decision problems (POMDP) [1], [2], [10], [11]. As
such, this class of problems can be solved using stochastic
dynamic programming [3]. However, for large numbers of
objects, the required state space is very high-dimensional,
consisting of the conditional probability distributions of all of
the objects. This leads to intractable computational problems,
even with the fastest POMDP algorithms.

Sensing problems have been formulated previously as
dynamic optimization problems with partial information. The
extensive literature in search theory [20] deals with sensor
management problems involving objects that can be of one
of two types (hidden or found) with sensors that have only
a single mode. The dynamic hypothesis testing problems
studied in [6] also have objects that can be of two types and
a single sensor mode, but generalize results in search theory
to broader classes of measurements. More recently, there has
been work [17] using Markov decision problem techniques
for sensor management, particularly techniques based on
the solution of multiarmed bandit problems. However, these
formulations also restrict the sensors to a single sensor with
a single mode, and require an infinite horizon, time-invariant
formulation.

Because of the complexity of general adaptive sensing
algorithms with multiple sensors and modes, most practical
algorithms are heuristic algorithms based on information-
theoretic metrics [5]. To date, there has been no effective
approach that can characterize the achievable adaptve sensing
performance performance to determine whether such heuris-
tic algorithms are performing well.

In this paper, we consider sensing problems involving
multiple distributed sensors with multiple modes per sensor.
This model is an extension of the model discussed in [7]. We
show that the resulting POMDP models admit a lower bound
on classification error performance based on modifying the
constraint structure to expand the space of admissible strate-
gies. The resulting problem becomes a dynamic optimization
problem subject to expected value constraints, a class of
problems recently studied by in [24]. We develop a hier-

102

archical algorithm that exploits the structure of the resulting
relaxed problem. This hierarchical algorithm is based on
the solution of single object POMDP problems, coupled
with nondifferentiable optimization techniques based on La-
grangian relaxation [16]. The single object problems are of
small dimension, and can be readily solved using standard
algorithms for POMDPs [10], [11], [13]. The hierarchical
algorithm avoids the exponential growth of the dimensions
of the resulting state space in the POMDP problem as a
function of the number of objects.

The paper includes several examples where the lower
bound performance is computed, and compared with the
Monte Carlo performance achieved by suboptimal SM al-
gorithms. In particular, we compute bounds for a special
problem for which the optimal sensing strategy is known,
and compare the bounds to the optimal performance to show
how tight the bounds are.

II. PROBLEM FORMULATION

In this section, we develop a formulation of the adaptive
sensing problem as a partially observed Markov decision
problem (POMDP). Assume that there are N objects of
interest in the problem, with known locations. Each object
can belong to one and only one of K different classes, and
the object identity does not change over time. Let the variable
xi ∈ X ≡ {1, . . . , K} denote the true class of object i. We
define the complete (but unknown) system state as:

x =
(
x1 x2 · · · xN

)
(1)

Since the identities do not change over time, the complete
system state is constant over time. We assume that xi are
independent random variables with values in the finite space
X . Associated with each object i is a prior probability vector
πi(0) which describes the probability distribution of the
random variable xi. That is,

πij(0) = Prob{xi = j} (2)

These probability distributions represent a priori knowledge
collected on each object.

To obtain information about the state of each object,
selected objects are examined with different modes from
different sensors. In order to simplify the notation in the
exposition, we consider the case of a single sensor with
multiple modes m ∈ {1, . . . , M}. We will highlight later
the extensions required to incorporate multiple sensors. The
action to use a sensor mode m on object i produces an ob-
servable ym in a finite set Ym, with a conditional probability
distribution that depends only on the object i, its type x i

and the mode m, denoted by p(ym|i, xi, m). We assume
that the observation outcomes of these sensing actions are
conditionally independent of each other given the object
types.

We assume that obtaining a measurement of object i with
mode m requires sensor resources Rim > 0 (e.g. power),
which depend on the object location, sensor location and
specific mode selected. The sensor has a finite amount of sen-
sor resources R that can be used for measuring objects. The

objective is to classify, with minimal error cost, the objects
after the sensor resource R is exhausted. This formulation is
stated below.

Without loss of generality, we restrict our attention to
sensing policies that execute only one action at a time.
Such strategies are optimal in that they provide maximal
information for adaptation, and will achieve minimal error
cost. Let u(k) = (i(k), m(k)) denote the k + 1-th action
(starting at k = 0) taken by the sensor, consisting of
measuring object i(k) with mode m(k). Let U denote the
set of possible sensor actions, and let ym(k)(k) denote the
measured value resulting from action u(k) ∈ U . The past
information available to adaptively select u(k) is I(k) =
{u(0), ym(0)(0), . . . , u(k−1), ym(k−1)(k−1)}. The sensing
problem decisions are selected adaptively until a final ran-
dom stopping instance T , selected based on the information
I(T). At the end of this stopping instance, the information
I(T) is available for estimating the object types. For each
object i, there is a final decision vi ∈ X based on I(T) that
is selected to minimize the expected classification error.

An admissible adaptive sensing policy is a set of measur-
able feedback policies {γ(0), . . . , γ(T)} and stopping time
T such that

γ(k) : I(k) → U, k < T

T : I(T) → {stop, continue}
γ(T) : I(T) → XN (3)

Let Γ denote the set of all admissible sensing policies. Since
the observation space is finite and the decision space is also
finite, Γ is a countable space.

Denote by c(v, x) the cost of selecting classification deci-
sion v when the true object type is x. The adaptive sensing
problem is to minimize the expected total classification cost

J(γ) = Eγ{
M∑
i=1

c(vi, xi)} (4)

over adaptive sensing policies γ ∈ Γ satisfying the resource
utilization constraint

T−1∑
k=0

R(u(k)) ≤ R (5)

with the notation R(u(k)) ≡ Ri(k)m(k). Note that the con-
straint in (5) is a sample path constraint; for every realization
of the information sets I(k), the adaptive policy γ must not
exceed the total sensor resources available. Since the sets of
possible observation outcomes per mode Ym and possible
decisions um are finite, the number of possible information
sets after k − 1 actions I(k) is also finite. This implies
that there is a finite number of possible admissible sensing
policies that satisfy the constraint (5).

The above problem is a class of finite-state, finite-
observation partially observed Markov decision problems
studied in [1], [2], [10], [11], with the special structure
that the underlying state dynamics are trivial, and the pres-
ence of the sample path constraints of (5). Such problem

103

scan be transformed into fully-observed Markovian decision
problems in terms of a sufficient statistic: the conditional
probability distribution of the state x given information I(k),
as follows: Let S ⊂ RK denote the space of probabil-
ity distributions on X , and let SN denote the space of
probability distributions on X N . The conditional distribution
vector for the composite state x given the information I(k),
P (x|I(k)) ∈ SN , can be viewed as an information state,
a sufficient statistic summarizing the past observations. The
recursive evolution of this information state in response to
an action u(k) = (i(k), m(k)) can be described by Bayes’
rule as

P (x|I(k + 1)) = P (x|I(k), u(k), ym(k)(k))

=
P (ym(k)(k)|xi(k) , m(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(6)

with the initial condition

P (x|I(0)) =
N∏

i=1

πi(0) (7)

Under the previous independence assumptions, the following
lemma establishes a convenient representation:

Lemma 2.1: Under the adaptive sensing problem assump-
tions, the conditional probability P (x|I(k)) can be factored
as

P (x|I(k)) =
N∏

i=1

P (xi|I(k)) (8)

where the evolution of P (xi|I(k)) under sensing action
u(k) = (i(k), m(k)) and observation ym(k)(k) is given by

P (xi|I(k + 1)) ={
P (xi|I(k)) if i(k) �= i

P (ym(k)(k)|xi(k),m(k))P (xi|I(k))∑
K
j=1 P (ym(k)(k)|xi=j,I(k))P (xi=j|I(k))

otherwise
(9)

The proof of this lemma is straightforward by induction, as
the independence assumption of the object types x i guaran-
tees the Lemma is satisfied at k = 0, and (6) establishes
the recursion. Note also that P (xi|I(k)) depends only on
measurements in I(k) corresponding to object i.

Define πi(k) to be the conditional probability distribution
of xi given information I(k):

πi(k) = P (xi|I(k)) (10)

The vector πi(k) has components πij(k) = P (xi = j|I(k)).
Lemma 2.1 establishes that the conditional probability dis-
tribution of the entire state, P (x|I(k)), can be computed as
the product of πi(k), i = 1, . . . , N . Define the information
vector �π =

(
πT

1 . . . πT
N

)T
For a given observation ym

using mode m on object index i, define the observation
probability matrix as the K × K diagonal matrix

Bi(ym) = diag{P (ym|xi = 1, m), . . . , P (ym|xi = K, m)}
The information vector evolves in response to a measurement
ym obtained from a sensing action (i, m) according to an

operator T , where

T (�π, u = (i′, m), ym) =




T1(π1, u = (i′, m), ym)
...

Tn(πN , u = (i′, m), ym)




and

Ti(πi, u = (i′, m), ym) =

{
πi if i �= i′

Bi(ym)πi

�eT Bi(ym)πi
if i = i′

and �e is a K-dimensional vector of all ones.
The adaptive sensing problem described above can be

solved by stochastic dynamic programming [3]. The resource
constraint in (5) can be incorporated into the dynamics to
obtain a dynamic programming recursion, as follows [24].
Define a value function V (�π, C) to be the optimal solution
of (3)-(5) when the initial information is �π and the available
sensor resource level is R = C. The value function V
is thus defined on SN × R+. The dynamic programming
problem is stated as a total cost problem with nonnegative
costs, for which the optimal value function satisfies the
following Bellman’s equation: Let U(R) ⊂ U denote the
set of feasible sensor actions (i, m) such that Rim ≤ R.
At each decision stage, there is a choice of stopping and
classifying the objects with the available information, or
taking additional measurements. The optimal value function
satisfies the Bellman equation

V (�π, R) = min
[N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij ,

min
u≡(i′,m′)∈U(R)

Eym′ {V (T (�π, (i′, m′), ym′), R − Ri′m′)}]
(11)

where

Eym′ {V (T (�π, (i′, m′), ym′), R − Ri′m′)} =∑
ym′∈Ym′

P (ym′ |I(k), u)V (T (�π, u, ym′), R − Ri′m′)

=
∑

ym′∈Ym′

eT Bi′(ym′)πiV (T (�π, u, ym′), R − Ri′m′)

(12)

This recursion starts from the following boundary conditions:
Let Rmin = mini,m Rim. Then, the set of admissible modes
U(R) is empty for R < Rmin. Thus,

V (�π, R) =
N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij if R < Rmin

(13)

Eqs. (11)-(13) can be used recursively to compute the optimal
value for all information states and nonnegative levels.

The initialization of the recursion decouples into N inde-
pendent optimizations, as there are no coupling constraints
on the decisions vi, and the local decision costs c(vi, xi)
depend only on the marginal probability distributions of
each object’s type. However, the recursion (11) does not
preserve this decomposability. The coupling arises primarily

104

because of the resource use constraints in (5); the decision
of which object to view and which mode to use depends on
the information vector of all the objects and the available
resources. Thus, the dynamic programming induction must
be carried out for the entire state �π(t), which becomes a
formidable computation problem even for moderate numbers
of objects.

III. RELAXED FORMULATION AND LOWER
BOUNDS

To obtain a simpler dynamic programming formulation,
we relax the sample path sensor resource use constraints (5)
and use an averaged version of the same constraints, as

E{
T∑

k=1

R(u(k))} ≤ R (14)

This approach replaces a large set of constraints (one per
sample path) by a single aggregate constraint. Note that any
adaptive sensing policies that satisfy (5) will also satisfy (14).
Thus, this approach increases the set of admissible policies.
Let J∗ denote the optimal classification cost of the problem
in (3)-(4) with constraints (5). Let J ∗

A denote the optimal
classification cost of the problem in (3)-(4) with constraints
(14), denoted as the relaxed adaptive sensing problem.

Lemma 3.1: J∗ ≥ J∗
A

The relaxed problem has a single coupling constraint (for
one sensor) relating the sensing actions on different objects.
Let λ ≥ 0 denote a Lagrange multiplier. For any admissible
policies in Γ, consider the objective

J(λ, γ) = Eγ{
N∑

i=1

c(vi, xi)} + λ[Eγ{
T−1∑
k=0

R(u(k))} − R]

(15)
Consider the unconstrained adaptive sensing problem of find-
ing policies γ and an adaptive stopping time T to minimize
(15). If (γ, T) is an adaptive SM policy that satisfies (14),
the second term in (15) is nonpositive. Denote by J ∗(λ)
the optimal value of (15) over all adaptive sensing policies
γ ∈ Γ. Then,

Lemma 3.2: For all values of λ ≥ 0,

J∗ ≥ J∗
A ≥ J∗(λ) (16)

In particular,
J∗ ≥ sup

λ≥0
J∗(λ) (17)

Lemma 3.2 is a consequence of weak duality in nonlinear
programming [4]. Note that the number of adaptive sensing
policies that satisfy (15) is finite, because the set of possible
histories I(k) is finite for all k. Thus, computation of J ∗

A

is an integer programming problem, and computation of
supλ≥0 J∗(λ) is its dual problem.

The key issue is whether the lower bounds J ∗(λ) can be
computed efficiently. Rewrite (15) for γ ∈ Γ as

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δi(k)−i]} − λR

(18)

where the indicator function δi = 1 if i = 0, and 0 otherwise.
This suggests that optimization of J(λ, γ) may be separable
across individual objects i.

Partition the information I(k) into disjoint sets Ii(k),
where Ii(k) are the sensing actions and measurement actions
applied to object i:

Ii(k) = {(u(j), y(j))|j < k, i(j) = i} (19)

Note that the conditional probability vector π i only changes
on measurements included in Ii(k). We wish to restrict the
set of adaptive sensing policies to a subset where the decision
to apply a sensor action for object i depends only on the
information previously collected for object i. We refer to this
subset of policies as adaptive local sensing policies, defined
as:

Definition 3.1: An adaptive local sensing policy is an
adaptive sensing policy γ and stopping times T i, i =
1, . . . , N , with the properties that, for each sensing action
instance k,

1) If u(k) = (i(k), m(k)), then i(k) = k mod N + 1.
2) The selected sensor mode m(k) depends only on the

information Ii(k).
3) For each object i, there is a stopping time T i which

depends only on Ii(Ti) such that, for all k ≥ Ti, if i =
k mod N + 1, no sensing action is taken. If k < Ti

and i = k mod N + 1, then u(k) = (i, m) for some
mode m in {1, . . . , M}.

4) At time Ti, the local decision vi for object i is selected
as a function of Ii(Ti).

Adaptive local sensing policies use a fixed round-robin
schedule for selecting which objects to measure. Further-
more, the choice of sensing mode for each action on object
i depends only on the prior information collected on that
object. In addition, there is an independent stopping time
for each object i such that a final classification decision is
made on object i, based only on prior information collected
on that object. Note that there are decision instances k
where no sensing action is taken, when k ≥ Ti and i = k
mod N + 1; these instances correspond to times after a
final decision has been selected for object i. The effective
stopping time of an adaptive local sensing policy is defined
as T = maxi=1,...,N Ti, and is the earliest time at which
every object has a final classification decision. Thus, adaptive
local sensing policies can be viewed as a subset of the class
of adaptive sensing policies.

Let ΓL denote the set of adaptive local sensing policies.
For a given amount of sensor resources R, there are a finite
number of feasible adaptive local sensing policies. In general,
ΓL is a countable discrete set. For the purposes of bound
computation, we will expand ΓL to include mixed policies,
consisting of probabilistic mixtures of policies in ΓL:

Definition 3.2: A mixed local sensing policy is a proba-
bility distribution q(γ) over ΓL such that local SM policy γ
is selected for use with probability p(γ). The set of mixed
local sensing policies is denoted by Q(Γs).

105

Consider the problem of minimizing the relaxed cost (18)
over local sensing policies ΓL. Since ΓL ⊂ Γ, we have

min
γ∈Γ

J(λ, γ) ≤ min
γ∈ΓL

J(λ, γ) (20)

Furthermore, since (18) is an unconstrained objective, the
minimum in mixed local sensing policies is achieved by a
pure local sensing policy, so

min
γ∈Γ

J(λ, γ) ≤ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (21)

The importance of mixed local sensing policies is highlighted
in the theorem below, proven in [25]:

Theorem 3.1: For any admissible adaptive sensing policy
γ ∈ Γ, there exists a mixed local sensing policy q ∈ Q(Γs)
such that the expected classification costs in (4) and the
expected total resource use in (14) are equal under both
policies γ and q.
This result implies the following inequality:

min
γ∈Γ

J(λ, γ) ≥ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (22)

Combining (21) and (22) yields the following:

min
γ∈Γ

J(λ, γ) = min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) = min
γ∈ΓL

J(λ, γ)

(23)
Eq. (23) implies that lower bounds for the achievable

classification performance can be computed by optimizing
over local sensing policies only. For each local policy γ ∈
ΓL, let γi denote the policy that is used for instances k when
actions are taken for object i, and let ΓLi be the set of such
admissible local policies for object i. Thus, γi selects actions
for object i based on past observations Ii(k), and selects a
stopping time Ti and a final classification vi at that stopping
time. The importance of local sensing policies is that the
optimization in (23) decouples over objects as

min
γ∈ΓL

J(λ, γ) =
∑

i

min
γi∈ΓLi

Ji(λ, γi) − λR (24)

where

Ji(λ, γi) = Eγi{c(vi, xi) + λ
T−1∑
k=0

R(u(k))δi(k)−i} (25)

This implies that computation of the bounds can be achieved
with N independent optimization problems for each value of
λ. Furthermore, the optimal bound can be computeed as in
Lemma 3.2, as

J∗ ≥ sup
λ≥0

min
γ∈ΓL

J(λ, γ) (26)

Note that the right hand side of (26) is the dual of the
following linear programming problem:

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)EγJ(γ) (27)

subject to ∑
γ∈ΓL

q(γ)Eγ [
∑

k=0T−1

R(u(k))] ≤ R (28)

∑
γ∈ΓL

q(γ) = 1 (29)

which is a linear program over the choice of probability
distributions q ∈ Q(ΓL). This can be exploited to solve
efficiently for the bound. Specifically, note that this is a linear
program subject to two constraints, which implies that the
optimal mixed local sensing policy q will have support only
on two pure local sensing policies. This property will be
exploited in the next section for bound computation.

IV. BOUND ALGORITHMS

There are two potential approaches to compute a lower
bound: a dual approach, based on Lagrangian relaxation
[16], that optimizes (26) over the choice of dual variable λ,
and a primal approach based on solving the linear program
(27)-(29). The dual approach is straightforward, and uses
techniques from nondifferentiable optimization [19] to search
the space of possible λ. The primal approach is harder,
because the optimization is over a large space of possible
values of mixture probabilities q. However, this mixture has
very sparse support, which makes it suitable for column
generation algorithms [18].

A fundamental step in either approach is the computation
of the optimal local sensing policies for a fixed value of λ for
each object. For object i, one must solve the local problem
given λ:

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=kmodN+1

R(u(k))] (30)

This problem is a multi-stage single object POMDP, with
sufficient statistic given by the marginal probability distri-
bution πi(k). One can reduce the action instants to a new
counter k′ indexing only the action opportunities for object
i, to obtain

min
γi∈ΓLi

Eγi [c(vi, xi) + λ

T ′
i−1∑
k′

Rim(k′)] (31)

The resulting POMDP problems are small enough to solve
using existing algorithms such as those overviewed in [2],
[10], [13], [14].

Solution of the N decoupled problems (31) yields a
local policy γ ∈ ΓL, for which the expected classifi-
cation cost Eγ [

∑N
i=1 c(vi, xi)] and expected resource use

Eγ [
∑T−1

k=0 R(u(k))] are computed from the solution. This
provides the starting point for the use of column generation
[18] for solution of (27)-(29). Column generation was used
by Yost [21], [22], [23] in his work on POMDPs for resource
assignment and was also exploited in [8] for the solution of
stochastic weapon assignment problems.

The algorithm starts with an initial set of pure local
sensing policies γd indexed by d = 1, . . . , D, with known ex-
pected classification performance J d and expected resource

106

use Rd. The first step in the algorithm is to solve the
linear program in (27)-(29) restricted to mixtures of the d =
1, . . . , D initial policies. Since the support of the admissible
mixed policies is restricted, the solution provides an upper
bound JUB to the optimal cost. Denote by λD the optimal
dual price of the resource constraint (29) in this solution.
The constraint generation algorithm uses this optimal dual
price value in (31) to generate a new candidate local policy
γD+1,by solving N independent POMDP problems with this
value of λ. The combined solution of the N subproblems also
provides a lower bound J LB on the optimal performance, as
described in Lemma 3.2. The key result in the constraint
generation algorithm is stated as follows [18]:

Lemma 4.1: Consider the pure local policy generated by
the solution of (31). If J LB = JUB , the optimal solution
over all mixtures of local policies is a mixture of the local
policies indexed by d = 1, . . . , D. Otherwise, the pure local
policy γD+1 can be used as part of a mixed policy which
provides a cost lower than J UB .

V. EXTENSION TO MULTIPLE SENSORS

The development of the previous sections carries through
with little modification when multiple sensors are used. The
key difference is that there is a separate resource constraint
for each sensor. Thus, there will be a vector of sensor
resources Rs, where s is a sensor index, thus resulting in a
vector of averaged constraints (14). The Lagrange multipliers
λ will thus be vectors instead of scalars. Nevertheless, all of
the lemmas and theorems can be extended to the multisensor
case with minor modifications.

The main assumption that was used in the single sensor
formulation was that only one sensor action would be per-
formed simultaneously. This assumption is still used for the
multiple sensor problem to derive the lower bound, although
the results in the previous section indicate that optimal local
sensing strategies that achieve the lower bound may use
simultaneous sensing by multiple sensors.

The column generation algorithm discussed in the previous
section extends naturally to multiple sensors. When there
are L sensors, the optimal mixed local SM policies will be
mixtures of L + 1 pure local SM policies. Nondifferentiable
optimization algorithms that maximize the dual cost can also
be used in this case.

VI. EXAMPLES

For our first example, we consider a case where the
optimal strategies are known [26]. In this example, there
are 100 unknown objects with one of two types, with equal
priors for each object. There is a single sensor that has
a single measurement mode, and the problem is optimal
adaptive allocation of a fixed number of measurements over
the number of objects. Measurement outcomes are binary-
valued, identifying one of the two types, and a single mea-
surement has a probability of error Pe, which is symmetric
over type. The objective is to minimize the expected number
of classification errors after N measurements. The optimal

strategy derived in [26] is to assign the next measurement to
the object with conditional probability.

Table I shows the results of 1000 Monte Carlo simula-
tions of the optimal strategy, compared with the predicted
performance of the lower bound, in terms of expected
number of classification errors for 3 different conditions
of symmetric single measurement Pe and four levels of
number of measurements N . As the table indicates, the
bound predictions are very tight for this case. The gap
between gap and optimal strategy increases as the number
of measurements N increases because likelihood of errors
decreases, and the bound strategy allows the use of more
resources than available in the unlikely cases that lead to
errors.

Pe = 0.25 Pe = 0.2 Pe = 0.15
N Bound Opt. Bound Opt. Bound Opt.

100 25 25.03 20 20.02 15 15.067
200 18.182 18.185 12.727 12.765 7.888 7.988
300 11.364 11.432 5.749 6.038 2.518 2.593
400 7.833 7.905 3.468 3.543 0.927 0.987

TABLE I

COMPARISON OF EXPECTED NUMBER OF ERRORS BY LOWER BOUND

AND MONTE CARLO OF OPTIMAL STRATEGY

For the second set of experiments, we consider a different
100 object scenario where objects can be of three different
types (K = 3): cars, trucks and military vehicles (MV).
There is a single sensor, with two modes: a low resolution
mode 1 that takes 1 second per image (R i1 = 1), and a
high resolution mode 2 that requires 5 seconds per image,
(Ri2 = 5). Low resolution imagery is useful in separating
cars from trucks and MVs, but separating trucks from MVs
requires high resolution imagery. Apriori, each object has a
probability of 0.1 as a military vehicle, 0.2 truck and 0.7 car.
Imagery generated by the sensor is processed into a binary
decision as to whether the object is MV or not. Hence y ij ∈
{0, 1}, where 1 indicates that the decision is MV.

The objective of the problem is to determine as accurately
as possible which objects are military vehicles (type 1). Thus,
the classification costs are given by d(vi, xi) as a 3×3 matrix
where vi is the row index:

(d(vi, xi)) =


 0 MD MD

FA 0 0
FA 0 0


 (32)

where FA = 1 and MD will vary from 1 to 80 in the
experiments.

low-resolution high-resolution
Type y = 0 y = 1 y = 0 y = 1

Car 0.9 0.1 0.95 0.05
Truck 0.1 0.9 0.85 0.15
MV 0.1 0.9 0.8 0.2

TABLE II

MEASUREMENT LIKELIHOODS FOR DIFFERENT MODES

The conditional probability distributions p(y|x, m) are
given in Table II. In terms of constraints, we assume that

107

there is a single resource pool of R seconds to be used
before all objects need to be classified. This number will also
be varied across the experiments from 300 seconds to 700
seconds, to evaluate the bounds and algorithm performance
for scenarios where the amount of sensor resources ranges
from poor to rich.

In order to evaluate the utility of the lower bound, we
compare the bound with the performance of two adaptive SM
algorithms: a variation of Kastella’s discrimination gain (DG)
algorithm [5], which is a sequential algorithm for selecting
the best sensor mode and target on the basis of maximizing
the expected entropy reduction in the distribution of object
type per unit sensor resource applied, and a dynamic schedul-
ing algorithm (ADP) based on Lagrangian relaxation and
POMDP approximations described in [7].

Each algorithm was simulated for 100 independent Monte
Carlo runs using the same measurement outcomes to evaluate
its average performance for three different levels of sensor
resources: 300 seconds, 500 seconds and 700 seconds. The
expected cost results were compared with the predictions
of the lower bound. Table III includes the results for 300
seconds and 700 seconds of resources for six levels of missed
detection (MD) costs. In this more complex case, the bound
shows that there is room for improvement in both of the
algorithms, although the performance of the algorithms is
close to optimal for some of the conditions. For instance,
when MD is close to 1, the costs of missed detections
and false alarms is close, and policies such as maximizing
information gain as measured by entropy are near-optimal.
Similarly, the performance of the ADP is closer to the lower
bound for limited sensor resources, as the limited look ahead
approximation is closer to the actual optimal number of
sensor actions per object.

700 Seconds 300 Seconds
MD Bound ADP DG Bound ADP Greedy

1 1.6 1.58 1.91 4.61 9.7 9.17
5 4.5 4.46 6.75 15.66 17.03 18.62
10 6.5 6.49 9.87 19.56 21.18 20.71
20 8 8.25 14.87 21.67 22.38 22.11
40 10 10.01 23.05 24.18 24.53 24.91
80 11.25 14.6 29.85 26.38 26.38 30.5

TABLE III

PERFORMANCE OF SCHEDULING ALGORITHMS VS. BOUND

Figure 1 shows the results for the two algorithms and the
lower bound for 500 seconds of sensing resource time. The
results show that there is significant room for improvement in
both policies: the discrimination gain (DG)algorithm fails to
incorporate the relative values of different types of errors in
its information seeking policy, and the ADP is conservative
in that it does not use mixed policies and uses a limited
lookahead, and thus can underutilize sensor resources.

VII. DISCUSSION

In this paper, we have presented a lower bound for
the achievable classification performance for a network of
sensors with finite sensing resources. The approach is based

0

5

10

15

20

25

30

0 20 40 60 80

E
x
p
e
c
t
e
d

C
l
a
s
s
i
f
i
c
a
t
i
o
n

C
o
s
t

Missed Detection Cost

Lower Bound
ADP

DG

Fig. 1. Monte Carlo performance of algorithms and lower bound for 500
seconds of sensor resource.

on formulation of the adaptive sensing problem as a par-
tially observed Markovian decision problem, which is then
approximated by expanding the admissible decision space.
This approximate formulation can be posed as an integer
programming problem that has a separable dual formulation.
A key result in establishing this separability is to show that
the lower bound formulation can be solved in terms of a
subset of sensing policies known as mixed local sensing
policies, which are random mixtures of policies that select
actions on each object based only on the past information
collected on that object.

We presented experimental results that compared the lower
bound with the performance of two suboptimal adaptive
sensing algorithms available in the literature. The exper-
imental results established that the performance of both
algorithms can be improved substantially in order to achieve
the lower bound, and that the bound is tight in that the
performance of the suboptimal algorithms is close to the
predicted performance of the bound for several conditions.

In terms of sensor networks, the bound in this paper
neglects the cost of communications as compared to the
cost of active sensing. This is the case when sensors are
in near vicinity of each other, and sensing requires active
emissions by the sensors, so that the two-directional path
loss is significant. In situations where communications also
consume significant number of resources, the bound is op-
timistic, and would not be a good prediction for sensor
network performance.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon” Op. Res., V. 21,
p 1071-1088, 1973.

[2] G. E. Monahan, “A survey of partially observable Markov decision
processes: Theory, models and algorithms,” Mgmt. Sci., V. 28, p1-16,
Jan. 1982.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols.
I-II, Athena Scientific, Belmont, MA 1995.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
MA, 1999.

108

[5] K. Kastella, “Discrimination Gain to Optimize Detection and Classifi-
cation,”IEEE Trans. on Systems, Man and Cybernetics, Part A, V. 27,
No. 1, Jan. 1977.

[6] D. A. Castañón, “Optimal search strategies for dynamic hypothesis
testing,” IEEE Trans. Sys., Man & Cybernetics, v. 25, 1995.

[7] D. A. Castañón, “Approximate Dynamic Programming for Sensor
Management,” Proc. 36th IEEE Conference on Decision and Control,
San Diego, CA, December 1997.

[8] D. A. Castañón and J. M Wohletz, “Model Predictive Control for
Unreliable Dynamic Task Assignment,” Proc. 2002 Conf. Decision
and Control, Las Vegas, NV, Dec. 2002.

[9] G. Cohen, “Auxiliary problem principle and decomposition of opti-
mization problems,” J. Opt. Theory and Appl., V. 32, 1980.

[10] W. S. Lovejoy, “A survey of algorithmic methods for partially observ-
able Markov decision processes,” Annals of Operations Research, v.
28, 1991.

[11] C. C. White, “Partially observed Markov decision processes: A Sur-
vey,” Ann. of Op. Res., V. 32, 1991

[12] M. L. Littman, A. R. Cassandra and L. Pack-Kaelbling, “Efficient dy-
namic programming updates in partially observable Markov decision
processes,” working paper, Brown University, Dec. 1995.

[13] A. R. Cassandra, Exact and Approximate Algorithms for Markov De-
cision Processes, Ph. D. Dissertation, Brown University, Providence,
RI 1998.

[14] A. R. Cassandra, M. L. Littman and N. L. Zhang, “Incremental
Pruning: A Simple, Fast Exact Method for Partially Observed Markov
Decision Processes,” Proc. 13th Conf. Uncertainty in Artificial Intel-
ligence, Providence, RI 1997.

[15] M. R. Garey and D.S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman, New York, 1979.

[16] A. M. Geoffrion, “Lagrangian relaxation for integer programming,”
Math. Prog. Studies, v. 2, 1974.

[17] V. Krishnamurthy and R. J. Evans, “Hidden Markov Model Multiarm
Bandits: A Methodology for Beam Scheduling in Multitarget Track-
ing,” IEEE Trans. Signal Processing, V. 49, N. 12, Dec. 2001.

[18] P. C. Gilmore and R. E. Gomory, “A Linear Programming Approach
to the Cutting Stock Problem” Operations Research, V. 9, 1961.

[19] V. M. Demyanov and L. V. Vasilev, Nondifferentiable Optimization,
Optim. Software, New York 1985.

[20] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger, “A Survey of
the Search Theory Literature,” Naval Research Logistics, Vol. 38, No.
4, 1991, pp. 469-494.

[21] K. A. Yost, Solution of Large-Scale Allocation Problems with Par-
tially Observed Outcomes, Ph. D. Thesis, Naval Postgraduate School,
Monterey, CA, Sept. 1998.

[22] K. A. Yost and A. R. Washburn, “The LP/POMDP Marriage: Opti-
mization with Imperfect Information,” Naval Research Logistics, Vol
47, No. 8, 607-619, 2000.

[23] K. A. Yost and A. R. Washburn, “Optimizing Assignments of Air-to-
Ground Assets and BDA Sensors,” Military Operations Research, Vol.
5, No. 2, 77-91, 2000.

[24] R. Chen and G. L. Blankenship, “Dynamic Programming Equations for
Discounted Constrained Stochastic Control, ” IEEE Trans. Automatic
Control,” v.49, no. 5, May 2004.

[25] D. A. Castañón, “A Lower Bound on Adaptive Sensor Management
Performance for Classification,” CISE Report 2005-3, Boston Univer-
sity, January 2005.

[26] M. Schneider, “An Optimal Policy for Sensor Management with Sym-
metric Sensor Measurements,” ALPHATECH working paper, August
2004.

109

	Final Report.pdf
	draft final report 0405.pdf
	1 LIST OF FIGURES
	2 LIST OF TABLES
	3 EXECUTIVE SUMMARY
	3.1 PROGRAM OVERVIEW
	3.2 ACCOMPLISHMENTS
	4 FARSIGHTED ALGORITHMS FOR CONTROLLING SENSOR MODES
	4.1 INTRODUCTION
	4.2 BASIC PRINCIPLES OF ROLLOUT ALGORITHMS
	4.3 SRM ALGORITHMS FOR MOVE-STOP TRACKING
	4.3.1 Precision Maximizing Algorithm
	4.3.1.1 Formulation
	4.3.1.2 Precision Maximizing SRM
	Prediction Model
	Algorithm

	4.3.2 Error Minimizing Algorithm
	4.3.2.1 Error Minimizing SRM
	Algorithm

	Cost for Observed Target
	Cost for Unobserved Target
	4.3.2.2 Myopic Entropy-Based SRM Algorithm

	4.4 SIMULATION RESULTS
	4.4.1 Model Parameters
	Tracker Model Parameters
	Sensor Model Parameters
	Dynamic Programming Parameters
	4.4.2 Simulation Results
	4.4.2.1 Target Truth and SRM Control Plots

	4.4.3 Time Averaged Mean-Square Error and Fraction of Time the Error Goals are Met

	4.5 CONCLUSIONS

	5 COMPUTABLE OPTIMAL STRATEGIES
	5.1 SUFFICIENT CONDITION
	5.2 APPLICATIONS TO SRM PROBLEMS
	5.3 BIRTH-DEATH MDPS
	5.4 BINARY CLASSIFICATION PROBLEM
	5.5 SEARCH PROBLEM

	6 REFERENCES
	

	Appendix A.pdf
	Appendix B.pdf
	Appendix C.pdf
	Appendix D.pdf

