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3 EXECUTIVE SUMMARY 

3.1 PROGRAM OVERVIEW  

The BAE SYSTEMS Advanced Information Technology (BAE AIT) Integrated Sensing and 
Processing (ISP) project was analyzing and developing algorithms to solve the problem of 
closed-loop sensor resource management (SRM), as illustrated in Figure 1.  These problems 
consist of managing one or more sensors to obtain measurements of the state of one or more 
targets.  The measurements are then fused to estimate the states of the targets.  The process of 
fusing the measurements reduces the uncertainty in the measurements and combines 
measurements to provide complementary information.  The measurement collection can be 
managed at several levels, but it is natural to group these into three categories: collection 
management, sensor management, and dwell management.   A collection manager controls from 
what locations measurements are made by placing the sensors in those locations.  A sensor 
manager controls what is measured by determining which sensors to use and by adjusting coarse 
control parameters such as pointing angle and operating mode on an individual sensor.  A dwell 
manager controls how a measurement is made by adjusting sensor characteristics such as 
transmitted power on an active sensor.  The focus of the BAE AIT project was on sensor 
management. 
The potential applications of sensor management are numerous and include ones in the fields of 
computer network security; environmental monitoring, and air-to-ground intelligence, 
surveillance, and reconnaissance (ISR).   

• In computer network security applications [1], the objective is to monitor the state of a 
machine to determine if it is being attacked or has been accessed by an intruder.  Multiple 
processes are operating on the computer simultaneously, and software sensors can 
monitor the activity of each of these processes as well as the aggregate state of the 
machine.  The potential exists to apply sensor management algorithms to dynamically 
control where and how measurements are made in the system to optimize the detection 
process.   

• In environmental monitoring applications, one is sensing the environment to determine 
the distribution of one or more environmental resources or pollutants.  Potential sensor 
locations may be predetermined, and then the sensor management problem is one of 
determining which sensor sites to use or how many to use.  An example would be 
selecting among candidate well sites, determining the ones to use for characterizing the 
spread of a pollutant underground.   

• In air-to-ground ISR applications, the objective is to find, track the position of, and 
classify ground targets with airborne sensors.  The sensors can be steered to look at 
different areas on the ground.  For a fixed sensor platform route, the SRM problem is 
then one of determining where to collect measurements on the ground. 
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Figure 1: BAE AIT's ISP project focus on problems of SRM, in which sensors are 
dynamically managed in closed loop to improve the quality of the data provided to the 

fusion system 
 

Our objective in analyzing the SRM problem is to develop insights applicable to a broad class of 
applications by developing formulations in a general mathematical framework.  In particular, 
SRM problems can generally be formulated as partially observable Markov decision processes 
(POMDPs).  This is a suitable framework because it can express essential characteristics of the 
SRM problem, such as uncertainty and dynamics.  Uncertainty is present in the SRM problems 
because the data being collected is noisy.  Thus, the estimates of targets’ true states are always 
uncertain, and, consequently, the predictions of measurements that would result from future 
sensor tasks are uncertain.  Dynamics are present in SRM problems because one's estimates of 
true target states are constantly changing.  This occurs for two reasons.  One is that the true 
states of the targets are changing.  The other is that new data is being collected over time and 
fused to form new estimates of target states.  The uncertainty and dynamics can be modeled in 
the POMDP framework as a function of the sensor control policy.  It dictates what sensor control 
actions are taken in response to different estimates of target states.  The POMDP framework is 
rich enough to model uncertainties, dynamics and control options in a broad class of SRM 
problems. 
Given a POMDP formulation of a SRM problem including the objective criteria as a function of 
the data collected, dynamic programming can be used to compute an optimal sensor policy.  The 
dynamic programming algorithm essentially enumerates all possible control actions and 
outcomes starting from a given collection of historical data and selects the sequence of controls 
that optimizes the expected outcome as measured by the objective criterion.  Dynamic 
programming is generally difficult to implement when the size of the problem is large.  In SRM, 
the size of the problem is dictated by the set of control options, the set of measurement outcomes 
resulting from a sensor control, and the set of possible probability distributions of target states.  
The sets are generally large and, when they are discrete, scale exponentially with the number of 
targets.  As a result, computing the optimal sensor control policy with dynamic programming is 
difficult and beyond resources of current and foreseeable computers. 
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Our problem was to analyze a class of SRM problems and develop algorithms for computing 
control policies which are computationally efficient and near optimal.  Although POMDPs 
arising in SRM problems are large enough that a standard dynamic programming algorithm will 
be too computationally intensive, the SRM problems have considerable structure that can be 
exploited to compute good sensor control policies.  In particular, the targets in SRM problems 
have states xi, i=1,…,n that are generally independent.  Thus, one would expect that the 
computation of a sensor policy could be decomposed into a set of computations performed 
independently on each individual target.  However, the sensor control at a particular time is not a 
function of the target states but of the collection of information on each target Ij(t)={yj(ty):ty<t} 
for j=1,…,n where yj(ty) is a measurement made of target j at time ty.  Moreover, the information 
collections Ij(t) at a particular time are not independent even if the individual measurements yj of 
the different targets are independent.  This is a consequence of the measurements in each of the 
collections Ij(t) being selected by the sensor control policy.  The dependence among the 
information collections complicates the structure of the problem.  Our challenge is to exploit the 
structure that is present to find computable, near-optimal sensor control policies. 
Many past approaches to developing computable sensor control policies have focused on myopic 
approaches.  Myopic approaches select sensor control actions based on their immediate expected 
benefits evaluated over the duration of a single sensor action.  These policies are generally 
computationally efficient.  However, they do not account for some key aspects of the problem.  
In particular, they do not account for dynamics in the problem other than the immediate state 
changes resulting from the next control action.  Thus, myopic policies may take an action at a 
point in time that has immediate benefits but would be better to postpone to a more opportunistic 
time in the future given the dynamics of the problem.  Moreover, myopic policies will generally 
only be effective if the reward resulting from an action is immediate.  If the rewards are not 
realized until the future, then myopic policies will not work. 
In contrast, our approaches to developing sensor control policies are farsighted.  In other words, 
the policy accounts for dynamics over a time horizon that is longer than it takes to complete the 
next control action.  Two reasons why this is beneficial are that it will appropriately value the 
placement of a control in time and it will appropriately value actions that do not have immediate 
benefits.  An example of the first case is a scenario in which the target states are changing in 
time so that the value of different control actions is changing in time.  A farsighted policy will 
account for this and postpone certain sensor actions to opportunistic times in the future even if 
there are some immediate benefits.  Such a policy is especially beneficial if alternative control 
actions require different amounts of time to complete.  In this case, the evolution of the target 
states over the period required for the control action to complete will be significantly different 
for the alternate controls.  Selecting the best sequence of controls requires accounting for these 
dynamics.  An example of the second benefit often occurs when rewards reflect threshold 
objectives.  For example, one may want to achieve a particular level of accuracy in the state 
estimate.  The reward function may then be modeled as taking the value 0 if the objective is not 
met and 1 if it is met.  As a result, there may be no immediate benefits to taking a particular 
sensor action.  A farsighted policy, however, would value a particular sensor action accounting 
for the potential for achieving one's objective in the future. 
Our approach to developing farsighted policies that are computable was to decompose the 
problem into subproblems.  As mentioned previously, the individual target states are often 
modeled as independent.  Thus, a natural approach to decomposing the computation of the policy 
is across targets.  The problem of computing the sensor control policy is thus split into n distinct 
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subproblems where n is the number of targets.  Each of these subproblems is formulated in terms 
of the information particular to an individual target.  This approach to decomposing the problem 
has the potential to increase the efficiency of computing the sensor control policy by solving the 
n simpler subproblems rather than performing the computation on the single aggregate problem 
that includes the collection of information across all of the targets.  This structure will not always 
be optimal.  However, algorithms having this structure may be optimal in some situations and 
near-optimal in others.  Moreover, some algorithms having the structure may not yield a feasible 
sequence of sensor controls but may be used to generate a bound on the optimal value of a sensor 
management problem.  We have specifically investigated approaches to computing the following 
three quantities: lower bounds on the optimal sensor management performance; good, 
suboptimal strategies for sensor management; and optimal sensor management strategies. 
1. Lower bounds on optimal sensor management performance. We were interested in 

deriving bounds for the problem of dynamic adaptive scheduling of multi-mode sensor 
resources when classifying multiple unknown objects. Sensor schedules are adapted based on 
the observed data, and the objective is specified in terms of a terminal cost.  We were 
interested in comparing the performance of farsighted and myopic strategies on such 
problems.  Lower bounds on performance allow us to determine how close to optimal 
candidate strategies may be.  We were particularly interested in deriving bounds based on 
relaxations for which the optimal policy can be expressed as a mixture of farsighted sensor 
policies, each of which is local in the sense that it only depends on the information 
concerning an individual target. 

2. Good, suboptimal strategies for sensor management.  We were also investigating 
techniques for developing good, computable, suboptimal strategies for sensor management 
problems with no known computable, optimal strategies.  A particular focus had been on 
developing farsighted strategies and determining the benefits such strategies may have over 
myopic strategies.  We have been specifically interested in farsighted strategies whose 
computation involves a decomposition into single sensor problems. 

3. Optimal sensor management strategies. Another topic of study was the development of 
techniques for deriving optimal sensor management strategies.  As mentioned previously, 
computing optimal sensor management strategies in general is often intractable. For special 
cases, there exist techniques for deriving an optimal solution that can be computed 
efficiently, often as a result of a decomposition of the problem into a set of single target 
problems.  Being able to compute optimal solutions is useful for many reasons including the 
following two.  First, the quality of performance bounds or suboptimal strategies can be 
evaluated by comparing the performance predicted by the bounds or resulting from the 
suboptimal strategies on a special sensor management problem for which one can compute 
the optimal solution.  Second, the optimal solution to a special sensor management problem 
can be incorporated as a component of a suboptimal solution to a more general sensor 
management problem.  Various techniques exist currently for deriving optimal solutions to 
sensor management problems.  For example, a particular class of problems for which 
techniques exist is the class of multi-armed bandit problems.  However, existing techniques 
do not apply to the sensor management problems of interest in this program.  We were 
investigating novel techniques for computing optimal sensor management strategies that 
could be used to verify the quality of bounds or of suboptimal sensor management strategies 
developed for this program. 
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We analyzed these approaches in the context of ISR scenarios with air-to-ground sensors.  
Sensors in such a scenario are being used to detect, track, and classify ground targets.  The 
sensors include agile airborne radars, which have a constrained field of view but can be 
instantaneously steered to observe a specific area on the ground within a wide field of regard.  In 
addition, the sensors may be able to operate in different modes.  Each mode may have distinct 
characteristics and be suitable for observing specific activities.   

3.2 ACCOMPLISHMENTS 

Our accomplishments during the program have included those in the following list.  Details on 
each of these are provided in the subsequent sections and appendices. 

• Developed a bound on optimal sensor management performance.  The bound is 
derived by relaxing the problem.  In particular, almost sure constraints in the problem are 
relaxed to expected-use constraints.  For the relaxed problem, we have proved that the 
optimal sensor control policy can be expressed as a mixture of local sensor policies.  In 
this setting, a local sensor policy is one which is only a function of a single target's state.  
The value of the optimal control can thus be computed by solving sub problems 
associated with each target.  We have verified that the bound is tight for a special case for 
which we derived the optimal strategy.  The bound has been used to evaluate the 
performance of farsighted and myopic strategies to manage a sensor to classify targets. 

• Developed and analyzed farsighted sensor management strategies for controlling a 
multimode sensor.  In particular, we developed two types of farsighted algorithms for 
managing a sensor.  The algorithms control where the sensor points as well as the mode 
to use.  The sensor modes are assumed to require different amounts of time and be 
suitable for observing targets in particular states.  We also identified a myopic strategy 
for controlling this type of sensor.  All three techniques were evaluated in a simulation of 
an ISR scenario in which a multimode radar is used to track targets as they start and stop.  
The results indicate that the farsighted algorithms perform better than the myopic 
approach. 

• Derived a novel set of sufficient conditions for optimality in Markov decision 
problems.  The conditions apply to finite-horizon Markov decision problems with a 
terminal reward.  We applied the conditions to verify the optimality of strategies we 
developed for two different sensor management problems.  The first is a class of 
symmetric binary classification problems.  Specifically, a single sensor is being managed 
to collect discriminatory data to classify targets being one of two types.  The second is a 
class of search problems.  The first type of problem is also one for which the performance 
bounds apply.  Thus, the conditions derived for optimality enabled us to investigate the 
quality of performance bounds by comparing the bound to the optimal performance for a 
special case. 

• Presented an overview paper on sensor management at the IEEE Automatic 
Control Conference. The paper provides an overview of the problem of managing 
sensor resources in a closed-loop sensor fusion system. We formulated the problem in a 
stochastic dynamic programming framework. In so doing, we exposed structure in the 
problem resulting from target dynamics being independent and discussed how this can be 
exploited in solution strategies. We illustrated situations in which we believe such sensor 
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management techniques are especially beneficial with two examples. The focus of both 
examples was on air-to-ground tracking. 

• Submitted a paper on farsighted sensor management strategies for move/stop 
tracking to the International Conference on Information Fusion. We considered the 
sensor management problem arising in using a multi-mode sensor to track moving and 
stopped targets. The sensor management problem is to determine what measurements to 
take in time so as to optimize the utility of the collected data. Finding the best sequence 
of measurements is a hard combinatorial problem due to many factors, including the 
large number of possible sensor actions and the complexity of the dynamics. The 
complexity of the dynamics is due in part to the sensor dwell-time depending on the 
sensor mode, targets randomly starting and stopping, and the uncertainty in the sensor 
detection process. For such a sensor management problem, we proposed a novel, 
computationally efficient, farsighted algorithm based on an approximate dynamic 
programming methodology. The algorithm’s complexity is polynomial in the number of 
targets. We evaluated this algorithm against a myopic algorithm optimizing an 
information-theoretic scoring criterion. Our simulation results indicate that the farsighted 
algorithm performs better with respect to the average time the track error is below a 
specified goal value. 

• Submitted a paper on bounding optimal sensor management performance to the 
IEEE Conference on Decision and Control. We considered a network of sensors, each 
of which has limited sensing resources, which is tasked with collecting noisy 
classification information on a group of unknown objects. The amount of resources 
required a given sensor to measure an object depends on the specific sensor-object 
geometry. Sensors exchange collected information to estimate object identities and 
coordinate which measurements to collect next. This paper describes a computable lower 
bound on the classification error that can be achieved by a causal adaptive sensing 
schedule. This bound is based on a formulation of the adaptive sensing problem as a 
partially observed stochastic control problem. Expanding the admissible control space of 
this problem leads to a relaxed problem with simpler decision structure for which the 
bounds can be computed. The bound computations are illustrated for several examples 
involving 100 unknown objects, and compared with the Monte Carlo performance of 
specific adaptive sensor scheduling algorithms. Comparisons with optimal scheduling 
algorithms for special cases illustrate the tightness of the bounds. 

What follows in the next few sections and appendices are details on the accomplishments 
summarized in Section 3.2.  Each of the sections provides a self-contained presentation on one of 
the accomplishments. 

 

6



    
 

  

4   FARSIGHTED ALGORITHMS FOR CONTROLLING SENSOR MODES 

4.1 INTRODUCTION 

Here, we focus on investigating the advantages of applying farsighted policies to sensor resource 
management (SRM) problems.  In particular, we are interested in determining if there are SRM 
problems where using farsighted policies is beneficial.  We want to explore and characterize 
such problems, as well as find out what kind of benefits we may expect.   
An SRM problem is typically characterized by a set of targets of interest, a specific mission 
objective, and a set of available sensors.  The goal of the sensor manager is to allocate the sensor 
resources among the targets in time to support the mission success.  The sensor resources have to 
be allocated in the presence of uncertainty associated with obtaining a measurement (e.g., those 
uncertainties resulting from the sensor detection process). 
Our conjecture is that a farsighted approach is better than a myopic approach for the SRM 
problem where the sensor dwell-time required to complete a sensor task is different for different 
tasks.  A myopic approach selects a sensor action based on the current information only.  Thus, 
this approach is oblivious to the time required to complete the selected action and of future 
benefits resulting from the action.  On the other hand, a farsighted approach accounts for the 
action’s benefits as well as the time it takes to receive benefits.  We believe that a farsighted 
approach having the ability to anticipate future consequences resulting from the actions taken 
now will yield sensor schedules that manage the resources better and support the mission success 
better than a myopic approach. 
To support our conjecture, we consider analyzing a sensor management problem arising in 
move/stop tracking with multimode radar.  In particular, we are interested in tracking ground 
targets through their motion state transitions with a radar sensor having two modes: an MTI 
mode for detecting moving targets only and an FTI mode for detecting stopped targets only.  
These modes have dwell durations that differ by an order of the magnitude; an FTI dwell is about 
100 times longer than an MTI dwell, which adds to the problem complexity.  The goal is to 
manage sensor resources to provide continuous tracking of the targets.   
For this problem, we compare a myopic entropy-based SRM algorithm to farsighted SRM 
algorithms.  The farsighted SRM algorithms generate sensor actions by evaluating an objective 
function parameterized by predictions of target state.  The objective function is constructed to 
value the future benefits of a measurement obtained now.  The algorithms also estimate the 
probability of a target sitting or moving from past reports so as to evaluate the expected benefits 
of MTI and FTI sensor modes.  The expected benefit evaluation accounts for the dwell-time of 
each mode.  The algorithms address the combinatorial complexity of the problem through the use 
of a rollout approach, which is described in the next section. 

4.2 BASIC PRINCIPLES OF ROLLOUT ALGORITHMS 

A rollout algorithm is a dynamic programming approach that evaluates an action by estimating 
near and far-future benefits resulting from the current state and the action choice.  The near-
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future benefits are computed by predicting the action’s consequences over the look-ahead 
planning stages.  The far-future benefits are the benefits accumulated after the look-ahead 
period.  In the rollout approach, the far-future benefits are computed as the benefits resulting 
from applying a fixed policy.  Figure 2 illustrates the rollout approach. 

 

Figure 2:  A rollout approach to evaluate near and far future benefits of an action taken at 
the current state 

Now we introduce some notation and formally describe the rollout approach, starting with the 
optimality principle of the dynamic programming theory.  In particular, for a discrete time 
system, the optimality principle states that every optimal policy π* satisfies the following 
relation:        

{ }* *

( )
( ) arg max ( , ) ( ( , , )) , for all states ,

wu U S
S R S u E J f S u w Sπ α

∈
⎡ ⎤= + ⎣ ⎦                (1) 

where  
- S is state of the system 
- U(S) is the set of controls available in state S 

- ),( uSR is the instantaneous reward received at state S for selecting control u 

- α is a discount factor satisfying α∈(0,1) 
- w is a random outcome of control u 

- J* is the optimal reward (the reward collected under policy π*) 
- f(S,u,w) is the function specifying the new state to which the system transitions from    
state S under control u and the control outcome w. 

+ J π

Look-ahead benefits
Benefits of a fixed 

policy π 

Near-future benefits Far-future benefits 

Current State 

 

8



    
 

  

The rollout approach generates a policy π~  by replacing the term )),,((* wuSfJ  in Equation (1) 
with a reward Jπ collected from state ),,( wuSf  under some policy π. The resulting policy π~  is 
a one-step look-ahead policy satisfying the following relation             

[ ]{ }
( )

( ) arg max ( , ) ( ( , , )) , for all states ,
wu U S

S R S u E J f S u w Sππ α
∈

= +%                   (2) 

where π is some policy whose reward Jπ can be efficiently computed.  This relation defines a 
rollout approach that we use to solve our SRM problem.  We consider two different 
implementations, one maximizing precision and one minimizing error as discussed in the 
following section.  

4.3 SRM ALGORITHMS FOR MOVE-STOP TRACKING 

4.3.1 Precision Maximizing Algorithm 

Here we formulate the SRM problem for move-stop tracking as a dynamic programming 
problem, and we present a farsighted SRM algorithm for solving it.  Initial development of this 
algorithm was performed under a SBIR program [4]. That work assumes the dwell times of all 
modes are the same duration.  The extension considered here addresses issues associated with 
the modes having different durations.  

4.3.1.1 Formulation 

We model the SRM problem for move-stop tracking as an infinite-horizon, continuous-time 
stochastic dynamic programming problem.  The system to be controlled is the tracker.  The state 
in the dynamic program consists of the target track states.  Here, a control choice is specified by 
a target at which to look and the sensor mode to use.  At any time and any state, the available 
control options are to look at any of the targets currently in track and to use one of the two sensor 
modes.  A sensor measurement is a random outcome of the control choice and affects the future 
evolution of the tracker state.  
For a reward, we chose a function that rewards states with sufficiently high precision (i.e., small 
error).  In particular, the total expected reward accumulated has the following form 

10

( ( )) ,
n

t
i i i

i
E e V R S t dtγ

∞
− ⋅

=

⎡ ⎤
⋅⎢ ⎥

⎣ ⎦
∑∫                                                       (3) 

where  

• γ is a discount factor specifying the rate at which the future controls contribute to the 
total reward,  

• n  is  the number of tracks currently in the tracker 
• Vi is a priority value of target i 
• Ri(·) is the instantaneous reward (discussed below) 
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• Si(t)  is the state of track i (the estimated error variance of  track i at time t) 
• u(t) is the control selected at tracker state (S1(t),…,Sn(t)).  

The reward Ri is given by 

1 if ,
( )

0 if ,
i i

i i
i i

S G
R S

S G
≤⎧

= ⎨ >⎩
                                                        (4) 

where Gi is the goal state for track i (desired error variance for track i).  

4.3.1.2 Precision Maximizing SRM 

The sensor management problem is to find a sequence of controls maximizing the total expected 
reward shown in Equation (3).  In what follows, we describe an SRM algorithm that generates an 
approximate solution.  The algorithm relies on two different approximations, model 
approximation and optimal-policy approximation.  The first of type of approximation involves 
using a prediction model to approximate the track states. The second type of approximation 
involves use of a near-optimal policy instead of the optimal scheduling policy for the 
approximate model of the tracking system. We subsequently discuss these two approximations in 
detail. 

Prediction Model 
The architecture of the SRM system is illustrated in Figure 3. The SRM evaluates the sensor 
actions, in terms of the objective function, Equation (3), by measuring current and future benefits 
resulting from an action selected at the current time. The future benefits of an action are 
computed using the SRM prediction model, which predicts the future target behavior.   
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SRM

Prediction
Model

Tracks

Target-Mode
Evaluation
Procedure

Sensor
Parameters

Target-Mode
Selection

Sensor Action

 

Figure 3:  SRM Architecture 
 

From the SRM point of view, a target is characterized by a collection of attributes including 
target mode probability distribution, and target kinematic state, consisting of position error 
covariance. To accommodate efficient computation of the expected policy-reward, our sensor 
resource manager uses a tracker predictive model approximating the tracker. This model is based 
on the following: 

Assumption: 
1. Each target is either moving or is stopped, but the target motion state is unknown. 

2. A target track is dropped if the target is not detected.  

Assumption 1 is realistic for cases where the changes in target motion take longer than planning 
and executing a sensor action. Assumption 2 is more conservative than necessary (a target track 
may continue even with one or more missed detections). However, the resulting model is useful 
for planning purposes. Furthermore, these assumptions restrict the branching of the control-
outcome space of any policy. This allows us to evaluate our farsighted policy without using 
costly Monte Carlo simulations. 

Under this assumption, the probability distribution of the outcomes of any finite sequence of 
control actions can be computed. We exploit this in our subsequent algorithm development.  
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The outcome of a single sensor action is either a detection or a missed detection, which results in 
updating the target states either with or without a measurement. For each of these outcomes, we 
give the target mode and kinematic state update equations. 
Update with a Measurement 
In this case, the target state is predicted to the next update time and updated with a measurement.  
The state prediction equation is  

( )1 1 2 2( ) ( ) ( ) ( ) ,i i i i i iS t T S t T p t Q p t Q+ = + ⋅ + ⋅                                    (5) 

where  
- T is the time increment, 
- Si(t)  is the kinematic state of target i at the current time t, 
- Si(t+T)  is the predicted state of target i (into the future time t+T), 
- (pi1(t),pi2(t)) is the current probability distribution for the mode of target i, with pi1 and pi2 

being the probability of moving and stopped respectively, 
- (Qi1,Qi2) is the process noise covariance vector of the IMM filter, with Qi1 and Qi2 being 

the process covariances of the filters modeling respectively moving and stopped modes 
for target i. 

The target is detected at time t+T using sensor mode j and the target state is updated as follows: 

( )
( ) ,

( )
i ij

i
i ij

S t T r
S t T

S t T r
+

+ =
+ +

                                                   (6) 

where rij is the measurement noise covariance for target i and sensor mode j.  
The target mode probability distribution at the update time is  

pij(t+T) = 1,   and    pim(t+T) = 0   for modes m≠j.                                (7) 
Update without a Measurement 
In this case, the target state is predicted to the next update time according to Equation (5). Since 
the target is unobserved, the target mode probability distribution does not change according to 
Assumption 1. 

Algorithm 
As a first step toward maximizing the objective function in Equation (3), we replace the 
continuous-time optimization problem with a discrete-time approximation. In particular, we 
discretize the time by letting  

tk = kδ            for   δ > 0   and   k = 0,1, 2,… .                                    (8) 
We then approximate the continuous-time objective function in Equation (3) with a piece-wise 
constant function resulting in the following discrete-time objective function 

0 1
( ( ), ( )),

n
k

i i k k
k i

R S t u tα
∞

= =
∑ ∑

                                                   (9)
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where α∈(0,1) is a discount factor  given by  .γδα −= e  For this objective function, we develop a 
near-optimal policy π~  based on the rollout approach. In particular, for our SRM problem with 
variable duration dwell times, the rollout relation in Equation (2) takes the following form 

{ }( )

,
( ) arg max ( , , , ) ( ( , , , , )) , for  all  states  ,K m

m m jmwj m
S R S j m E J f S j m w Sππ α ⎡ ⎤= Δ + Δ⎣ ⎦%     (10) 

where maximization takes place over all target tracks j and sensor modes m, and  
- ∆m is the dwell time for sensor mode m 
- ),,,( mmjSR Δ  is the reward collected from state S under control u=(i,m) during time 

interval ∆m 
- K(m) is the dwell time in units of  δ  for mode m 
- Jπ is the expected reward accumulated under some policy π 
- ( , , , , )m jmf S j m wΔ  is the state of the tracker at the end of the time interval ∆m when the 

measurement is made, 
- jmw  is a random variable taking values 1 or 0 that indicate detecting and correctly 

associating the detection of target j for sensor mode m. 
Since the MTI dwell time is typically less than the FTI dwell time, one can use the MTI dwell 
time as a unit of time and express the FTI dwell time as a multiple τMTI of it.  By viewing ∆MTI as 
the time unit measure δ, we have the following values for the dwell times K(m) in Equation (10). 

K(MTI) = 1    and    K(FTI) = τMTI.                                           (11) 

The mode rewards ),,,( mmjSR Δ  for target j have the following form: 

1
( , , , ) ( )

n

MTI i i
i

R S j MTI R S
=

Δ =∑ ,                                                 (12) 

( ) 1

0 1
( , , , ) ( ( ))

K FTI n
t

FTI i i
t i

R S j FTI R S tα
−

= =

Δ = ∑ ∑ ,                                        (13) 

where S=(S1,…,Sn) is the current tracker state and S(t) is its state t units later [S(0) = S], Si is the 
current state of track i and Si(t) is its state t units later, while the reward Ri is given by Equation 
(4). 
We next describe the evaluation of the term 

  
( ( , , , , ))m ijw

E J f S j m wπ⎡ ⎤Δ⎣ ⎦                                                        (14)
 

in the right hand side of the rollout Equation (10).  The expectation is with respect to the two 
possible outcomes wjm=1 and wjm=0 indicating a detection of target j with sensor mode m. Hence, 
we have  

( ( , , , , )) ( ( , , , ,1)) { 1}

( ( , , , ,0)) { 0},

m jm m jmw

m jm

E J f S j m w J f S j m Prob w

J f S j m Prob w

π π

π

⎡ ⎤Δ = Δ =⎣ ⎦

+ Δ =                         (15)
 

The probability of outcomes wjm=1 and wjm=0 are given by 
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{ 1}jm im imProb w p β= = ,       { 0} 1 ,jm im imProb w p β= = −                               (16) 

where  
- pjm is the probability that the target mode is m (matching the sensor mode) 
- βjm is the detection probability of sensor mode m for target j.  

The target mode probabilities pjm are computed using the mode likelihoods generated by the 
IMM filter.  

We now discuss the choice of policy π. Motivated by the desire to have a good policy whose 
expected reward can be computed for any initial state, we consider a policy π  having the 
following properties: 
1. A target is observed with either MTI or FTI mode at all times.  

2. Initially, the targets are sorted in a list according to some criterion. Then, these targets are 
observed according to the list as follows: each target is observed until either its track error 
decreases below the desired value or its track is dropped. If the track error is decreased below 
the desired value, the target is revisited at the rate that keeps its track error below the desired 
value. 

We assume that the sensor can revisit the targets with the rates that keep the track errors below 
the desired values. 

Under the policy π, it is assumed that the sensor uses one and the same mode when observing a 
target. The sensor mode m(i) to be used for observing target i is determined as  the most likely 
target mode in the current target mode probability distribution pi = (pi1, pi2), i.e.,   

{ }1 2( ) arg max , .i im i p p=                                                            (17) 

Given the current tracker state 1( ,..., )nS S S= , policy π sorts the tracks according to their vicinity 

to the goal state, i.e., the tracks are sorted according to the values { }/ | 1, 2,...,i iS G i n= .  The 
order is motivated by that generated according to an index rule policy such as that discussed in 
[4].  The targets are then considered in that order, and to each target track the following rule is 
applied: 

If the target track state iS  is outside the track accuracy goal region {s | s ≤ Gi}, the target is 
consecutively observed, with the sensor mode matching the target mode, until the time its state 

)(tSi  enters the track accuracy goal region. After that time, the target is periodically revisited 
with the smallest revisit rate that guarantees the state will remain within the goal region.   

It is computationally prohibitive to exactly evaluate the policy reward Jπ due to unpredictable 
target mode changes in the future and due to the explosion of possibilities of observation 
outcomes over a long period of time. We approximately evaluate the policy reward Jπ using the 
predictive model for the evolution of the target mode probability distribution and kinematic state, 
as described earlier. 

The policy reward Jπ has the following form 
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1
( ) ( )

n

i
i

J S J Sπ
=

=∑ .                                                         (18) 

For notational convenience assume that the order of the targets is 1, 2,…,n  when the targets are 
sorted according to values { }/ | 1, 2,...,i iS G i n= .  Then, for each target, we determine the target 
mode and the associated mode probability.  The mode probabilities are derived from the mode 
likelihoods generated by the IMM filter, and the target mode is defined as the most likely of the 
modes.  
Suppose that the states of the first ι  targets are within their goal region, i.e.,  

Si ≤ Gi       for  i = 1, 2,…, ι .                                                (19) 

For these targets, we have  

( ) ,i i iJ S L=         i = 1, 2,…, ι .                                                (20) 

where Li is the long-term reward accumulated during revisits (to be discussed shortly).  
Consider now the targets ι +1,…,n, which are outside their corresponding goal regions. Suppose 
that T1 is the observation time required for state 1Sι +  to enter the goal region { }1|s s Gι +≤ . We 
then have  

( ) 1

11 1 1, ( 1)( ) .
T

mJ S L
ιι ι ι ια β
++ + + += ⋅                                              (21) 

where m( ι +1) is the sensor mode that is used for observing target ι +1. While observing target 
ι +1, the states of the remaining targets ι +2,…,n have evolved to  2 1 1( ),..., ( ).nS T S Tι +  Suppose 
now that T2 is the observation time required for state 2 1( )S Tι +  to enter the goal region 

{ }2|s s Gι +≤ . Then, we have  

( ) 1 2

2 1, ( 2) 2( ) .
T T

mJ S Lι ι ι ια β
+

+ + + += ⋅                                             (22) 

Continuing in this manner, we can see that  

( ) 1 2 ...

1, ( )( ) , for   1,..., ,jT T T

j m j jJ S L j nι ι ι ια β ι
+ + +

+ + + += ⋅ = −                  (23) 

where Tj is the time for variance 1 1( ... )j jS T Tι + −+ +  to enter the goal region { | }js s Gι +≤ . 

We now discuss the long-term rewards Li accumulated during periodic revisits of the targets. As 
we mentioned earlier, once the states of all targets enter their corresponding goal regions, the 
targets are revisited at a constant rate. Under the assumption that the target-mode probability 
distribution does not change, once a stopped target state is within its corresponding goal region, 
it remains there for the rest of the time. Therefore, the stopped targets are not revisited, and the 
long-term reward Li associated with a stopped target i is computed as follows 

.
10 α

α
−

== ∑
∞

=

i

t
i

t
i

V
VL                                                        (24)                         

We next discuss the long-term reward Li associated with a moving target i. Let M be the length 
of the revisit interval required for keeping the state of target i within the goal region. Without 
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loss of generality we may assume that the sensor revisits the target i at times t=jM, j=0,1…. Note 
that, in view of our assumptions, the revisit process continues for as long as the target is 
detected, and the process stops when the target is lost as a result of a missed detection. 
Furthermore, the reward Vi is collected while the target is still tracked, and the reward ceases 
when the target is lost.  
During the revisit stage, the target lifetime is a random variable taking value jM with 
probability ( )1 1

, ( ) , ( )1j j
i m i i m iβ β− −−  for j=1,2,… .  Let ρ be the reward accumulated between any two 

consecutive revisits.  When the lifetime takes value jM, the lifetime reward Rew(jM) is given by 

( 1) 1( ) ... .
1

jM
M j M

MRew jM αρ α ρ α ρ ρ
α

− −
= + + + =

−
                                 (25) 

The long-term reward Li is equal to the expected lifetime reward during the revisit period, and it 
can be seen that  

, ( )1i M
i m i

L ρ
α β

=
−

.                                                             (26)                         

Since ρ is the reward accumulated during the subsequent revisits, we have  

( )1 11 ... .
1

M
M

i iV V αρ α α
α

− −
= + + + =

−                                               (27)
 

By substituting this ρ in Equation 26, we see that the long-term reward for a moving target i is 
given by 

( )( ), ( )

1 .
1 1

M

i i M
i m i

L V α
α α β

−
=

− −
                                                        (28) 

We note, here, that the preceding precision maximizing SRM algorithm extends to the 
multidimensional case by replacing the variance Si with the trace Tr(Si) of the covariance Si. 

4.3.2 Error Minimizing Algorithm  

Here we present an error minimizing SRM algorithm as applied to move-stop tracking. In the 
dynamic programming formulation of the SRM problem for move-stop tracking (Section 
4.3.1.1), we use an instantaneous cost instead of a reward. In particular, a target incurs a nonzero 
cost if the target error variance exceeds a specified error variance goal. The target cost is 
instantaneous, and it is proportional to the difference between the target error and the error goal. 
Formally, the instantaneous cost at time t for target i is given by  

Ci(Si(t)) = Vi · max{Si(t)-Gi, 0},                                              (29) 
where Si(t) is the target error variance, Vi is the target priority, and Gi is the error goal for target i. 
The cost of the composite target state S(t)=(S1(t),…,Sn(t)) is additive over the targets, i.e.,  

( ) ( )
1

( ) ( ) .
n

i i
i

C S t C S t
=

=∑                                                         (30) 
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4.3.2.1 Error Minimizing SRM 

For a continuous-time system the rollout relation in Equation (2) takes the following form  

( ) [ ]
( ) 0

( ) arg min ( ) ( ( ( ), , )) , for all states ,
u

u

t
t

uwu U S
S C S e d e E J f S t u w Sγγτ

ππ τ τ −−

∈

⎧ ⎫⎪ ⎪= +⎨ ⎬
⎪ ⎪⎩ ⎭
∫%         (31) 

where  
- S is the state of targets at the current time t=0, i.e., S=S(0) 
- π is some fixed policy 
- U(S) is the set of controls available in state S 
- tu is the latency time associated with control u (for a sensor, tu is the dwell-time) 
- γ is an exponential decay factor satisfying γ>0 
- w is a random outcome of the control u 
- f(S,u,w) is the function specifying the new state to which the system transitions from state 

S under control u and the control outcome w. 
We assume that the control options are target-mode pairs, with the set of candidate modes being 
MTI, FTI, and “idle” (no target selected).  We also assume that the “idle mode” has infinite 
dwell time, so that once the idle mode is selected no other mode can ever be used in the future.  
We consider a rollout where π is the “idle”-policy, i.e., the policy selects the “idle” mode at any 
state.  For such a policy π and the additive cost, the minimization on the right-hand side of 
Equation (31) reduces to: 

( )
( ) 1 0 0

future costtransitional cost

target cost

min ( ( )) ( ( ), , ) ,
u

u

tn
tt t

i i i i uu U S wi
C S t e dt e E C f S t u w e dtγγ γ

∞
−− −

∈
=

⎧ ⎫
⎪ ⎪⎪ ⎪+ ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∫ ∫
1442443 144444424444443
14444444444244444444443

                  (32) 

where the set of controls U(S) is the same for all states S, i.e., U(S)=U for all S with  

{ }( , ) | {1,..., }, { , , } .U i m i n m MTI FTI idle= ∈ ∈                                (33) 

The transitional cost is incurred from the current time until the execution time tu of control u.  
The future cost is incurred for the rest of the time, starting from the time immediately after the 
control u is executed.  Computing each of these costs requires predicting the evolution of target 
states. We approximate the state evolution of the IMM tracker by using the predictive model 
described in Section 4.3.1.2. This simple model estimates the target behavior well and simplifies 
the integral computations in Equation 32. 

Algorithm 
We now focus on the minimization problem given in Equation (32). At first, we evaluate the 
target costs in Equation (32) for a given control u=(j,μ) with { , }MTI FTIμ ∈ .  For target j, we 
consider the cost for the cases when the target is observed and is unobserved. Without lost of 
generality, we may assume that the current time is t=0, so that the current target state is Sj(0).  
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Cost for Observed Target 
During the observation, the target state evolves as follows: 

( )1 1 2 2( ) (0) , for [0, ),j j j j j j uS t S t p Q p Q t t= + ⋅ + ∈                         (34) 

where  pj,1 and  pj,2 are the probabilities for target motion modes with 1 corresponding to moving 
target and  2 corresponding to stopped target. From the preceding relation and the definition of 
the cost [cf. Equation (29)], it follows that  

( ) ( ){ }1 1 2 2( ) max (0) , 0 , for [0, ).j j j j j j j j j uC S t V S G t p Q p Q t t= ⋅ − + ⋅ + ∈          (35) 

Define 

1 1 2 2

(0)
max , 0 ,j j

j
j j j j

G S
T

p Q p Q
⎧ ⎫−⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

                                                 (36) 

and note that Tj is the time the target variance Sj(t) exceeds the specified variance bound Gj. We 
refer to Tj as crossing time from state Sj(0). We note that this time depends on the initial variance 
Sj(0), i.e., Tj = Tj(Sj(0)), and it may be infinite.  
It can be seen that the transitional cost has the following form  

{ } ( )
( ) ( ) ( )1 1 2 2

2

( (0)) max (0) , 0 1

1 1 ,

u

u

j t
j j j j

j j j j j t
u

V
TranCost S S G e

V p Q p Q
e t e

γ

γγθ

γ

γθ γ
γ

−

−−

= − ⋅ −

⋅ +
⎡ ⎤+ ⋅ + − +⎣ ⎦

     (37) 

where  

{ }min , .u jt Tθ =  

We now focus on the expected future cost. Let Sj(tu,w) denote the target state immediately after 
the observation time tu, where w=0 or w=1 indicates that the state Sj(tu,w) results from the update 
with or without a measurement, respectively.  Since the target-mode probability distribution does 
not change when the target is unobserved (cf. Assumption 1), the future cost from state Sj(tu,w) 
for w=0 is given by: 

( ){ }1 1 2 2( ( ,0)) max ( ,0) , 0 .
u

t
j j u j j u j j j j j

t

FutureCost S t V S t G t p Q p Q e dtγ
∞

−= ⋅ − + +∫        (38) 

However, we have pjμ =1 for the observed target. Therefore, the future cost from state Sj(tu,w) for 
w=1 is given by: 

{ }( ( ,1)) max ( ,0) , 0 .
u

t
j j u j j u j j j

t

FutureCost S t V S t G tp Q e dtγ
μ μ

∞
−= ⋅ − +∫                 (39) 

Let Tj(w) be the crossing time for target j starting from state Sj(tu,w), i.e.,  
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1 1 2 2

( ,0)
(0) max , 0 ,j j j

j
j j j j

G S t
T

p Q p Q
⎧ ⎫−⎪ ⎪= ⎨ ⎬+⎪ ⎪⎩ ⎭

                                             (40) 

( ,0)
(1) max , 0 .j j j

j
j j

G S t
T

p Qμ μ

⎧ ⎫−⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

                                                  (41) 

Then, it can be seen that the future cost accumulated from state Sj(tu,w) is given by  

{ } ( )2

( )
( ( , )) max ( , ) , 0 ( ) 1 ,uj j jt

j j u j u j

V V Q w
FutureCost S t w S t w G e w eγ γτγ τ

γ γ
− −⋅

= − + ⋅ +     (42) 

where  

1 1 2 2 for 0,
( )

for  1,
j j j j

j
j j

p Q p Q w
Q w

p Q wμ μ

+ =⎧
= ⎨ =⎩

                                            (43) 

{ }( ) max , ( )             for 0,1.u jw t T w wτ = =                                       (44) 

The expected future cost is a weighted sum of the future costs corresponding to outcomes w=1 
and w=0. Specifically, it is given by 

( )( ( )) ( ( ,1)) 1 ( ( ,0)),j j u j j j j u j j j j jExpFutureCost S t p FutureCost S t p FutureCost S tμ μ μ μβ β= + − (45) 

where βjμ is the probability of detecting target j with sensor mode μ. 
Then, the total cost for target j is  

( (0)) ( (0)) ( ( ,0))

( ( ,1)) ( ( ,0)) .
j j j j j j u

j j j j u j j u

TotalCost S TranCost S FutureCost S t

p FutureCost S t FutureCost S tμ μβ

= +

⎡ ⎤+ −⎣ ⎦
       (46) 

The first two terms represent the cost associated with the event of not observing the target. The 
last term represents the expected cost reduction resulting from target detection. Note that the last 
term is non-positive, i.e., 

( ( ,1)) ( ( ,0)) 0.j j j j u j j up FutureCost S t FutureCost S tμ μβ ⎡ ⎤− ≤⎣ ⎦                     (47) 

Cost for Unobserved Target 
For a target i with i j≠ , there is no uncertainty in the future cost, so that the total cost is given 
by 

( (0)) ( (0)) ( ( ,0)),i i i i i i uTotalCost S TranCost S FutureCost S t= +                    (48) 

where transient cost ( (0))i iTranCost S  and future cost ( ( ,0))i i uFutureCost S t  are given by 
Equation (37) and Equation (38), respectively.  
By summing the total costs of all targets, we obtain the cost associated with the state S(0) and the 
control choice u=(j,μ) for { , }MTI FTIμ ∈ .  In particular, we have  
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The cost associated with the control option u =(j,idle) is  

[ ]
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( (0), , ) ( (0)) ( ( ,0)) .
n

i i i i u
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Cost S j idle TranCost S FutureCost S t
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= +∑             (50) 

In view of Equation (47), the cost of control u=(j,μ) for { , }MTI FTIμ ∈  is smaller than the cost 
of control u =(j,idle) a fixed target j, i.e., 
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Hence, the minimization in Equation (32) reduces to 

{1,..., }
{ , }

min ( (0), , ),
j n

MTI FTI

Cost S j
μ

μ
∈

∈

                                                  (52) 

with the control cost Cost(S(0),j,μ) as given in Equation (49). 
The preceding error minimizing SRM algorithm extends to the multidimensional case by 
replacing the variance Si with the trace Tr(Si) of the covariance Si. 

4.3.2.2 Myopic Entropy-Based SRM Algorithm 

Here, we present a myopic sensor management algorithm that serves as a baseline for evaluating 
the performance of the farsighted algorithms discussed in the preceding sections. We do not 
consider a myopic approach optimizing the dynamic programming formulation. This is because 
the myopic property is not well defined for the SRM problems where different control actions 
have significantly different execution time. In particular, this is the case with the SRM problem 
for move/stop tracking, where the system state transition time is significantly different for 
different controls (specifically, for different sensor modes). Thus to anticipate benefits at the 
possible future states, we have to predict into the future over significantly different time 
intervals, which is not a property of a myopic approach.  

We consider an algorithm that evaluates sensor actions based on the expected decrease in the 
entropy of the target-track errors per unit of time. The algorithm is myopic since the changes in 
the entropy are computed only for a single sensor action. Specifically, let the current time be t=0 
and let the current system state be S=(S1,…,Sn). The entropy hi for target i with variance Si and 
the mode probabilities (pi1, pi2) is given by  
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            (53) 

where Vi is the priority of target i and πc≈3.14 (see [5], Chapter 9). As seen from this relation, the 
target entropy is measured by the target-track error in log-scale. The entropy H of the system the 
current time is defined as the sum of the current target entropies hi: 

1
1

( ) ( )         where ( ,..., ).
n

i i n
i

H S h S S S S
=

= =∑                                     (54)             

An entropy-based score is associated with each control u=(j,μ). The score is equal to the 
expected decrease in the entropy per unit of time: 

[ ]( ( )) ( )
( , ) ,

uw

u

E H S t H S
D S u

t

−
=                                               (55) 

where S(tu) is the state to which the system transitions under the control u. 
At any decision time, the entropy-based SRM algorithm selects a control having the minimum 
score i.e., the sensor manager solves the following problem 

min ( , )
u U

D S u
∈

 

{ }( , ) | {1,..., }, { , }U j j n MTI FTIμ μ= ∈ ∈ .                                   (56) 

We now derive the explicit form for D(S,u). Under any control, the predicted target variances at 
time tu are  

1 1 2 2( ) ( ).i u i u i i i iS t S t p Q p Q+ = + ⋅ +                                                (57) 

Thus, the entropy at time tu for unobserved target i is given by 

[ ] ( )1 1 2 2( ( )) log 2 log ( ) log log .
2 2

i i
i i u c i u i i i i i

V Vh S t e S t V p p p pπ+ += + − +                (58) 

Under a control u=(j,μ) and outcome w=1 (corresponding to target detection), the updated 
variance of target j is  

,

,

( )ˆ ( ) .
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j u j
j u

j u j
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S t

S t r
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+

⋅
=

+
                                                           (59) 

We have pjμ=1 in this case, so that the entropy at time tu for observed target j is given by 

[ ]ˆ ˆ( ( )) log 2 log ( ).
2 2

j j
j j u c j u

V V
h S t e S tπ= +                                     (60) 
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For a given control u=(j,μ), the variances Si of targets i with i≠j do not depend on the control 
outcome w, the following holds for the expected entropy at time tu:  
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By substituting the expression for the target entropies hi [cf. Equations (25) and (60)], we obtain 
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The expected entropy change is given by 
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which reduces to 
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Thus, the myopic entropy-based SRM selects a control u that minimizes the time averaged 
changes in the entropy: 
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over all u U∈ , where { }( , ) | {1,..., }, { , }U j j n MTI FTIμ μ= ∈ ∈ . 

For the multidimensional case, the entropy of a target i is given by  
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where Si is the covariance matrix, N is the size of the matrix Si, and |Si| is the determinant of Si. 
In this case, the myopic SRM selects a control u that minimizes (over all u U∈ ) the time 
averaged changes in the entropy: 
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. 

4.4 SIMULATION RESULTS 

Here, we present our simulation model and the test results obtained for the precision maximizing 
algorithm, the error minimizing algorithm, and the myopic entropy-based algorithm.   

4.4.1 Model Parameters 

We start with a detailed discussion of the tracker and sensor parameters, and values identified to 
be reflective of realistic scenarios.   

Tracker Model Parameters 
In the tracker, the target dynamics are modeled by an interacting multiple model (IMM) filter 
(see [6]) consisting of two filters: one modeling the kinematics of a “moving” target and the 
other modeling the kinematics of a “stopped” target.  It is assumed that, when moving, targets 
move along a road (i.e., along a line) with a random velocity normally distributed with specified 
root mean square value.  The target kinematic state consists of the target location estimate and 
the estimate of error variance.  These states are estimated from position reports generated by a 
single sensor.  
Perfect report association is assumed, so that each report is associated with a single target. The 
tracker model drops the track if the target position error variance exceeds a specified maximum 
value. A new track is immediately initialized based on the target truth.   
The target motion mode, moving or stopped, is modeled according to a discrete-time Markov 
chain with state dependent transition probabilities, as illustrated in Figure 4.    

 

23



    
 

  

stopped

Pmm Pss

Pms

Psm

moving

 

Figure 4:  Discrete-time Markov chain modeling target motion  

At any time, a target can be in one of the two motion states: moving or stopped. The target state 
transitions occur at times tk= kδ,  k = 1, 2, …., where δ is the time increment. The transition 
probabilities Pij are state dependent, in 
particular },{,for} is statecurrent | is statenext { smjiijProbPij ∈= , where m and s denote 
moving and stopped respectively. 
 
By specifying the average number of the targets stopped in the steady state in a scenario, we 
derive the transition probabilities for the Markov chain model that are appropriate for the 
scenario. In particular, the average number of stopped targets in the steady state is given by  

average number of targets stopped ,ms

ms sm

nP
P P

=
+

                             (68) 

where 

- n is the number of targets in the scenario,  
- Pms is the probability that a target will stop given that it is moving, 
- Psm is the probability that a target will start moving given that it is stopped. 

We select the desired average number of targets stopped by setting  

,sm msP aP=                                                             (69) 

for appropriate value of the scalar a. 
The transition probability Pms satisfies  

(70) 
1 ,ms mmP P= −
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where Pmm is the probability that the target will be moving given that it is currently moving. This 
probability is computed using the expected time a target will be moving given that it is moving, 
i.e.,  

{time target will spend moving | target is currently moving}= .
1

mm

mm

PExpectedTimeMoving
P

δ=
−

 

where δ is the time interval between two successive transitions of Markov chain modeling target 
motion mode. Using this relation, we can see that the transition probability Pmm is given by  

.mm
ExpectedTimeMovingP

ExpectedTimeMoving δ
=

+
                                         (71) 

To summarize, the tracker parameters characterizing the target kinematic and motion models are 
as follows: 
1. Root mean square target velocity. This velocity is used to compute the process noise 

covariance for the filter corresponding to the “move” mode over the time increment ∆Time, 
as follows: 

2( ) .ProcessNoiseVariance RootMeanSquareVelocity Time= ⋅Δ                     (72) 

The process noise variance for the filter corresponding to the “stop” mode is zero (which 
follows from the preceding formula with zero root mean square velocity). 

2. Maximum variance. This is the maximum error variance allowed before a target track is 
modeled as being dropped.  

3. Expected time moving.  This is the expected time a target will be moving given that the target 
is currently moving. It is used for estimating the probability of the target of transitioning 
from the “move” to the “move” state as given in Equation (71). 

Sensor Model Parameters 
We have modeled two sensor modes, MTI and FTI. The MTI sensor mode can detect moving 
targets only, while the FTI sensor mode can detect stationary targets only.  Both sensor modes 
are characterized by the following parameters: 
1. Detection probability. For each sensor mode, the detection probabilities are currently fixed to 

a constant for all targets; however, the test setting allows one to model the scenarios where 
these probabilities are target dependent. The FTI detection probability depends on clutter and 
the number of successive looks. We use values (see Error! Reference source not found.) 
corresponding to moderate clutter and coarse image processing (a single look). 

2. Measurement error variance. For each sensor mode, the sensor measurement errors are 
assumed to be Gaussian random variables with zero mean and unit standard deviation. 

3. Dwell-time. This is the time a sensor takes to collect data in a particular mode.  

Dynamic Programming Parameters 
The parameters used in the dynamic programming formulation of the move-stop tracking 
problem are the following: 
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1. Target priority values. 
2. Discount factors. There are two discount factors, one used in the reward-based formulation, 

and the other used in the cost-based formulation. 
3. Desired target error value. For each target I, a desired position error variance Gi is specified, 

which is used to define the goal region for the kinematic state of target i. The goal region is 
{Si | Si ≤Gi }. 

4.4.2 Simulation Results 

Our simulations are generated using the tracker and sensor parameter values given in Table 1 
and Table 2, respectively. The parameter values used in the dynamic programming formulation 
of the SRM problem are listed in Table 3. 

Table 1: Tracker model parameter values used in our simulations 

 Root mean square target velocity 10 meters per second 

 Maximum variance 2500 square meters 

 Expected time moving 1 minute 

 
Table 2:  Sensor model parameter values used in our simulations 

 MTI mode FTI mode 

 Detection probability  0.9                 0.9 

 Standard deviation of 
measurement error 

1 meter                1 meter 

 Dwell-time 0.1 second               10 seconds 

 

Table 3: Dynamic programming parameter values used in our simulations 

Target priority value  1 (for all targets) 

Target goal state 5 meters (for all targets) 

Precision maximizing SRM discount factor,  
α 

0.65  

Error minimizing SRM discount factor,  γ 1 

 
We next present the simulation results obtained for the problem of tracking 50 targets with a 
single sensor. We have four truth scenarios for the target motion that differ in the average 
number of targets stopped in the steady state. In particular, the average number of targets 
stopped is varying across the values 10, 20, 30, and 40. For each of these values, the transition 

 

26



    
 

  

probabilities Psm and Pss for Markov chain modeling target motion are computed according to 
Equations (68) and (69) with n=50. Table 4 shows the relations between Pms and Psm for the four 
truth-scenarios. 

Table 4: The relation for the transition probabilities Psm and Pms as the average number of 
targets stopped (in the steady state) takes values 10, 20, 30, and 40 

Average number of 
targets stopped 

Psm relation with Pms 
(c.f. Eq.  68)  

      10       4sm msP P=  

      20     3
2sm msP P=  

      30 2
3sm msP P=  

      40 1
4sm msP P=  

 
In all scenarios, the targets have the same priority value (see Table 3), and the tracking time is 10 
minutes.   

4.4.2.1 Target Truth and SRM Control Plots 

In this section, we present the plots of the control decisions for the precision maximizing SRM, 
the error minimizing SRM, and the entropy-based SRM. The SRM decisions are given for the 
target motion scenarios where the average number of stopped targets is 10, 20, 30, and 40. 
  
Control Decisions for the Precision Maximizing SRM  
The following Figure 5, Figure 6, Figure 7, and Figure 8 show the true target motion and the 
control decisions of the precision maximizing SRM algorithm for the scenarios with 10, 20, 30, 
and 40 targets stopped on average, respectively. The control decisions correspond to a typical 
sample path generated by the algorithm. 
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Figure 5: The plots show results for the precision maximizing SRM when 10 targets are 
stopped on average.  The top plot shows the true target motion. The blue color (dark 

shade) indicates that a target is moving and the red color (light shade) indicates that a 
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is 
moving and target 2 is stopped. The bottom plot shows the control decisions corresponding 
to the precision maximizing SRM for the scenario with 10 targets stopped on average. The 
bars indicate which target is observed at which sensor dwell, and the bar color indicates 
the sensor mode used for the observation. The blue and the red colors correspond to the 
MTI and FTI sensor modes, respectively. For example, target 46 is observed at sensor 
dwell 1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute 

tracking, and the MTI mode is used in each dwell. 
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Figure 6: The plots show results for the precision maximizing SRM when 20 targets are 
stopped on average. The top plot shows the true target motion.   The blue color (dark 
shade) indicates that a target is moving and the red color (light shade) indicates that a 

target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is 
moving and target 2 is stopped.  The bottom plot shows the control decisions corresponding 
to the precision maximizing SRM for the scenario with 20 targets stopped on average. The 
bars indicate which target is observed at which sensor dwell, and the bar color indicates 
the sensor mode used for the observation. The blue and the red colors correspond to the 
MTI and FTI sensor modes, respectively. For example, target 42 is observed at sensor 
dwell 1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute 

tracking, and the MTI mode is used in each dwell. 
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Figure 7: The plots show results for the precision maximizing SRM when 30 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving 
and target 2 is stopped.  The bottom plot shows the the control decisions corresponding to 
the precision maximizing SRM for the scenario with 30 targets stopped on average.  The 
bars indicate which target is observed at which sensor dwell, and the bar color indicates 
the sensor mode used for the observation. The blue and the red colors correspond to the 
MTI and FTI sensor modes, respectively. For example, target 37 is observed at sensor 
dwell 1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute 

tracking, and the MTI mode is used in each dwell. 
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Figure 8: The plots show results for the precision maximizing SRM when 40 targets are 
stopped on average. The top plot shows the true target motion.  The blue color (dark 

shade) indicates that a target is moving and the red color (light shade) indicates that a 
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is 

moving and target 2 is stopped.  The bottom plot shows the control decisions corresponding 
to the precision maximizing SRM for the scenario with 40 targets stopped on average. The 
bars indicate which target is observed at which sensor dwell, and the bar color indicates 
the sensor mode used for the observation. The blue and the red colors correspond to the 
MTI and FTI sensor modes, respectively. For example, target 41 is observed at sensor 
dwell 1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute 

tracking, and the MTI mode is used in each dwell. 
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As indicated by the preceding plots, the precision maximizing SRM uses MTI mode exclusively. 
This is to be expected, since long FTI dwells are not beneficial for this SRM. More specifically, 
this SRM is maximizing the overall time the target errors are below the desired error goals. 
During the long FTI dwell, the errors of moving targets increase well above the desired error. 
Therefore, the time the target error goals are attained during a single FTI mode is shorter than the 
time the error goals are attained during a sequence of 100 MTI dwells. Being farsighted, the 
precision maximizing SRM captures the trade-off between the benefits resulting, respectively, 
from one long FTI dwell and a sequence of 100 short MTI dwells.  
Note that the algorithm uses the MTI mode on stopped targets to check whether the target is still 
stopped or it has started moving. 
 
Control Decisions for the Error Minimizing SRM 
The following Figure 9, Figure 10, Figure 11, and Figure 13 show the true target motion and the 
control decisions of the error minimizing SRM algorithm for the scenarios with 10, 20, 30, and 
40 targets stopped on average, respectively. The control decisions correspond to a typical sample 
path generated by this SRM algorithm. 
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Figure 9: The plots show results for the error minimizing SRM when 10 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving 
and target 2 is stopped.  The bottom plot shows the control decisions corresponding to the 

error minimizing SRM for the scenario with 10 targets stopped on average. The bars 
indicate which target is observed at which sensor dwell, and the bar color indicates the 

sensor mode used for the observation. The blue and the red colors correspond to the MTI 
and FTI sensor modes, respectively. For example, target 14 is observed at sensor dwell 

1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute tracking, 
and the MTI mode is used in each dwell. 
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Figure 10: The plots show results for the error minimizing SRM when 20 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving 
and target 2 is stopped.  The bottom plot shows the control decisions corresponding to the 

error minimizing SRM for the scenario with 20 targets stopped on average. The bars 
indicate which target is observed at which sensor dwell, and the bar color indicates the 

sensor mode used for the observation. The blue and the red colors correspond to the MTI 
and FTI sensor modes, respectively. For example, target 7 is observed at sensor dwell 1,000 
in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute tracking, and the 

MTI mode is used in each dwell. 
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Figure 11: The plots show results for the error minimizing SRM when 30 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving 
and target 2 is stopped.  The bottom plot shows the control decisions corresponding to the 

error minimizing SRM for the scenario with 30 targets stopped on average. The bars 
indicate which target is observed at which sensor dwell, and the bar color indicates the 

sensor mode used for the observation. The blue and the red colors correspond to the MTI 
and FTI sensor modes, respectively. For example, target 41 is observed at sensor dwell 

1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute tracking, 
and the MTI mode is used in each dwell. 
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Figure 12: The plots show results for the error minimizing SRM when 40 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is moving 
and target 2 is stopped.  The bottom plot shows the control decisions corresponding to the 

error minimizing SRM for the scenario with 40 targets stopped on average.The bars 
indicate which target is observed at which sensor dwell, and the bar color indicates the 

sensor mode used for the observation. The blue and the red colors correspond to the MTI 
and FTI sensor modes, respectively. For example, target 49 is observed at sensor dwell 

1,000 in MTI mode.  There are 6,000 sensor dwells scheduled during 10 minute tracking, 
and the MTI mode is used in each dwell. 
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Similar to the precision maximizing SRM, the error minimizing SRM uses MTI mode 
exclusively as indicated in the preceding plots. Again, this is to be expected, since this SRM is 
minimizing the discounted sum of the target errors above the level of the desired error goal 
accumulated over the tracking time. The total target error accumulated during a long FTI dwell is 
larger than the target error accumulated during a sequence of 100 MTI dwells. Therefore, the 
FTI mode is less beneficial for the cost-rollout algorithm than the MTI mode. Being farsighted, 
the error minimizing SRM can anticipate the benefits resulting from a long FTI dwell and a 
sequence of 100 short MTI dwells, and can select a control that is more beneficial in a long run.  
Note that, similar to the precision maximizing algorithm, the error minimizing uses the MTI 
mode for stopped targets to check whether the target is still stopped or it has started moving. 
 
Control Decisions for the Entropy-Based SRM 
The following Figure 13, Figure 14, Figure 15, and Figure 16 show the true target motion and 
the control decisions of the myopic entropy-based SRM for the scenarios with 10, 20, 30, and 40 
targets stopped on average, respectively. The control decisions correspond to a typical sample 
path generated by this algorithm. 
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Figure 13: The plots show results for the myopic entropy-based SRM when 10 targets are 
stopped on average. The top plot shows the true target motion.  The blue color (dark 

shade) indicates that a target is moving and the red color (light shade) indicates that a 
target is stopped. For example, at the time corresponding to sensor dwell 1,000, target 1 is 

moving and target 2 is stopped.  The bottom plot shows the control decisions corresponding 
to the entropy-based SRM for the scenario with 10 targets stopped on average. The bars 
indicate which target is observed at which sensor dwell, and the bar color indicates the 

sensor mode used for the observation. The blue and the red colors correspond to the MTI 
and FTI sensor modes, respectively. For example, target 37 is observed at sensor dwell 

1,000 in MTI mode.  During 10 minute tracking, 6,000 sensor dwells are scheduled and the 
MTI mode is used in each dwell. 
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Figure 14: The plots show results for the myopic entropy-based SRM when 20 targets are 
stopped on average. The top plot shows the true target motion. The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 500, target 1 is stopped 

and target 4 is moving.  The bottom plot shows the control decisions corresponding to the 
entropy-based SRM for the scenario with 20 targets stopped on average.The bars indicate 

which target is observed at which sensor dwell, and the bar color indicates the sensor mode 
used for the observation. The blue and the red colors correspond to the MTI and FTI 

sensor modes, respectively. For example, target 45 is observed at sensor dwell 500 in MTI 
mode and target 49 is observed at sensor dwell 2,052 in FTI mode. During 10 minute 

tracking, 3,546 sensor dwells are scheduled and the long FTI mode is used in 25 dwells. 
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Figure 15: The plots show results for the myopic entropy-based SRM when 30 targets are 
stopped on average. The top plot shows the true target motion The blue color (dark shade) 

indicates that a target is moving and the red color (light shade) indicates that a target is 
stopped. For example, at the time corresponding to sensor dwell 200, target 1 is stopped 

and target 3 is moving.  The bottom plot shows the control decisions corresponding to the 
entropy-based SRM for the scenario with 30 targets stopped on average.  The bars indicate 
which target is observed at which sensor dwell, and the bar color indicates the sensor mode 

used for the observation. The blue and the red colors correspond to the MTI and FTI 
sensor modes, respectively. For example, target 29 is observed at sensor dwell 200 in MTI 

mode and target 40 is observed at sensor dwell 110 in FTI mode. During 10 minute 
tracking, 1,633 sensor dwells are scheduled and the long FTI mode is used in 45 dwells. 

 

40



    
 

  

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

True Target Motion (Blue = Moving, Red = Stopped)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

45

50

 

Time (in sensor dwells)

Ta
rg

et
 N

um
be

r

Sensor Control (Blue = MTI, Red = FTI)

50 100 150 200 250 300 350 400 450 500

5

10

15

20

25

30

35

40

45

50

 

Figure 16: The plots show results for the myopic entropy-based SRM when 40 targets are 
stopped on average. The top plot shows the true target motion.  The blue color (dark 

shade) indicates that a target is moving and the red color (light shade) indicates that a 
target is stopped. For example, at the time corresponding to sensor dwell 50, target 1 is 

stopped and target 30 is moving.  The bottom plot shows the control decisions 
corresponding to the entropy-based SRM for the scenario with 40 targets stopped on 

average. The bars indicate which target is observed at which sensor dwell, and the bar 
color indicates the sensor mode used for the observation. The blue and the red colors 
correspond to the MTI and FTI sensor modes, respectively. For example, target 44 is 

observed at sensor dwell 50 in MTI mode and target 48 is observed at sensor dwell 42 in 
FTI mode. During 10 minute tracking, 504 sensor dwells are scheduled and the long FTI 

mode is used in 56 dwells. 
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As seen from the preceding plots Figure 13 through Figure 16, the entropy-based SRM algorithm 
schedules the longer FTI mode more frequently to observe the stopped targets, as the number of 
stopped targets increases. In particular: 

1. When 10 targets are stopped on average, the FTI mode is not used in any dwell.  
2. When 20 targets are stopped on average, the FTI mode is used in 25 dwells out of the 

total of 3546 dwells scheduled during the 10 minute tracking. 
3. When 30 targets are stopped on average, the FTI mode is used in 45 dwells out of the 

total of 1633 dwells scheduled during the 10 minute tracking. 
4. When 40 targets are stopped on average, the FTI mode is used in 56 dwells out of the 

total of 504 dwells scheduled during the 10 minute tracking. 
The entropy-based SRM algorithm, being myopic, does not anticipate long term benefits 
resulting from current control decisions. In particular, this algorithm selects control decisions 
based on the benefits of a single dwell plan. For such a short planning horizon, the FTI mode 
may seem more beneficial than the MTI mode, which results in scheduling dwells with the FTI 
mode.  

4.4.3 Time Averaged Mean-Square Error and Fraction of Time the Error Goals are Met 

Here, we present our simulation results for the farsighted precision maximizing SRM and the 
error minimizing SRM algorithms, and the myopic entropy-based SRM algorithm obtained for 
the four target-motion scenarios. We have 4 Monte Carlo simulations for each target-motion 
scenario and each SRM algorithm.  Note that the number of Monte Carlo simulations needed to 
achieve reasonably small 95 percent confidence intervals is small because there is not much 
variability in the simulation results. In particular, all the variability in the simulation results (for 
a fixed scenario and a selected SRM algorithm) comes from the uncertainty in the sensor 
detections and the sensor detection probability is 0.9 for both modes (see Table 2).  
We present our simulation results in terms of two measures of performance: 

1. Time averaged mean-square error. 
2. Average fraction of time the target error goals are met. 

The time averaged mean-square error is computed by averaging the sum of target errors in time 
over the number of targets, over the tracking time, and over the number of runs. Similarly, the 
average fraction of time the target error goals are met is computed by averaging the sum of the 
fractions of time the target error goal is met over the number of targets and over the number of 
runs.  The fraction of time the target error goal is met is the total time (during the tracking) the 
target error is below the desired error goal divided by the total tracking time. The simulation 
results for the time averaged mean-square error are presented in Figure 17, and the results for the 
average fraction of time the error goals are met are shown in Figure 18. The bars in the figure 
mark the intervals for the variability in the data with 95 percent confidence. 
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Figure 17: The results for the time averaged mean-square error obtained for the four 
target-motion scenarios and for the three SRM algorithms.  

The four target-motion scenarios correspond to the average number of targets stopped taking 
values 10, 20, 30, and 40, respectively. The three SRM algorithms are the farsighted precision 
maximizing and error minimizing SRM algorithms, and the myopic entropy-based SRM 
algorithm. 

The simulation results in Figure 17 indicate that the farsighted error minimizing SRM algorithm 
maintains better quality target tracks than the farsighted precision maximizing and the myopic 
algorithms. In particular, the difference in the time averaged mean-square error for the precision 
maximizing SRM and for the error minimizing SRM is largest when most of the targets are 
moving (see the results in Figure 17 for 10 and 20 targets stopped on average). When most of the 
targets are moving, the entropy-based algorithm also has smaller error than the precision 
maximizing algorithm. However, as more targets are stopped (see the results for 30 targets 
stopped on average), the entropy-based algorithm accumulates more error than the precision 
maximizing algorithm. When most of the targets are stopped, the tracking is easier because there 
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are fewer constraints on the sensor resources. In this case, all three algorithms perform similarly 
(see the results for 40 targets stopped on average).  
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Figure 18: The results for the average fraction of time the target error goals are met 
obtained for the four target-motion scenarios and for the three SRM algorithms.  

The four target-motion scenarios correspond to the average number of targets stopped taking 
values 10, 20, 30, and 40, respectively. The three SRM algorithms are the farsighted precision 
maximizing and error minimizing SRM algorithms, and the myopic entropy-based SRM 
algorithm. 

The simulation results in Figure 18 indicate that the farsighted precision maximizing SRM 
algorithm has the best performance and the myopic entropy-based has the worst performance for 
the fraction of time the target error goals are met. The difference in the fraction of time the error 
goals are met between the precision maximizing SRM and the error minimizing SRM is the 
largest when most of the targets are moving (see the results in Figure 17 for 20 targets stopped 
on average). The difference in the fraction of time the error goals are met between the precision 
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maximizing and the entropy-based algorithm is the largest when most of the targets are stopped 
(see the results in Figure 18 for 30 targets stopped on average).  

Considering the results for the precision maximizing algorithm in both Figure 17 and Figure 18, 
and the fact that this algorithm has scheduled the MTI mode for each dwell, it seems that the 
precision maximizing algorithm keeps the target error below the desired error goal for as many 
targets as possible, resulting in a very small error for some targets and very large error on the 
other targets. Consequently, the average target error is large, but the overall time the error goals 
are met is also large.  

Considering the results for the error minimizing algorithm in both Figure 17 and Figure 18, we 
see that this algorithm maintains overall small errors on all targets, but does not necessarily 
maintain the errors smaller than their corresponding error goals. Consequently, this algorithm 
has small average target error, but the overall time the error goals are met is not always the best.  

The performance of the myopic entropy-based algorithm is not satisfactory in either of the two 
measures. This algorithm schedules the longer FTI mode more frequently to observe the stopped 
targets as the number of stopped targets increases (see Figure 16). This results in substantially 
less time spent observing moving targets, and the corresponding track errors far exceed the 
goals. Consequently, the overall target error is large and the time target error goals are met is 
short.  

4.5 CONCLUSIONS 

We have developed novel, computable, farsighted SRM algorithms for move/stop tracking with 
a multi-mode sensor. This particular sensor management problem is challenging because of the 
complex target dynamics and the variable duration of sensor actions. We have evaluated the 
farsighted algorithms against a myopic, entropy-based SRM algorithm. Our simulation results 
indicate that the farsighted algorithms have promising behavior. For example, the farsighted 
precision maximizing SRM results in a policy that adaptively adjusts the frequency with which 
moving and stopped targets are observed in a manner that results in better tracks than the myopic 
entropy-based sensor manager. We attribute this to the capability of the farsighted algorithm to 
adapt the target revisit rates appropriately.  
We believe that our simulation results are important indicators that the farsighted algorithms are 
better than myopic ones, especially, for SRM problems with complex dynamics (e.g., when 
targets are randomly starting and stopping and/or sensor actions have significantly different 
durations).  
 

 

45



    
 

  

5  COMPUTABLE OPTIMAL STRATEGIES 

In this section, we investigate computable optimal strategies for sensor resource management 
(SRM) problems. SRM problems can be formulated as Markov decision processes (MDPs) 
which in turn can be solved optimally, at least in principle, by numerical dynamic programming 
algorithms. Since the processing time and memory required to solve the dynamic program 
associated with the MDP in SRM is exponential in the number n  of targets being sensed, 
optimal numerical solutions of the general SRM problem are intractable for large n  of interest 
(e.g., for hundreds of targets). However, there are classes of problems such as multi-armed 
bandit problems which have optimal strategies in terms of maximizing a priority index rule 
computed independently for each target. These strategies are computationally tractable, and can 
be used as subroutines in computing approximate optimal strategies of more realistic problems. 
Sometimes priority index solutions can be obtained for problems which aren't multi-armed 
bandit problems. For example, it is shown in [7] that a priority index solution based on the 
conditional probabilities of each target being a threat is optimal for a finite horizon classification 
problem. 

This report describes a sufficient condition to use for checking whether a given strategy, such as 
one given by a priority index rule, is optimal. The sufficient condition applies to finite horizon 
MDPs with terminal reward, and can be used to show the optimality of the search strategy in [7] 
and in some other examples that we will describe. The report is organized as follows: 

• Section 5.1 formulates the sufficient condition for a general MDP in terms of strategy 
sets. This section defines strategy set, terminal optimality of a strategy set, deferrable 
decisions, and commutative transition probabilities. If a strategy set is terminally optimal, 
has deferrable decisions, and the MDP has commutative transition probabilities, then the 
strategy set is optimal. The section specializes the general result to symmetric MDP 
problems, which are given in some of the examples later in the section. 

• Section 5.2 describes a subclass of MDP that corresponds to many SM problems, namely 
the class of MDP corresponding to one sensor observing n non-interacting targets one at 
a time. This section specializes the definitions and results of Section 5.1 to this subclass 
of SM MDP problems. 

• Section 5.3 applies the sufficient condition to show the optimality of a strategy for a class 
of MDP (which is a subclass of the SM MDP problems of Section 5.2). This class of 
MDP is characterized by n non-interacting Markov chains which have an ordered state 
space. In particular, the chains can only transition at most one step in one direction and 
include birth-death processes as a special case. 

• Section 5.4 applies the sufficient condition to show the optimal strategy for a class of 
symmetric binary classification problems. 

• Section 5.5 applies the sufficient condition to show the optimal strategy for a class of 
search problems. This strategy was developed previously in [7]. 
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5.1 SUFFICIENT CONDITION 

We will denote a MDP with terminal reward by the tuple ( )TRpu ,,,, UX  where X  denotes the 
state space of the Markov chain, U  denotes the set of possible decisions, { }U∈upu :  is the 
collection of transition probabilities parameterized by the decision u , R  is the terminal reward 
function RX →:R , and the integer T  is the terminal time. We will assume that X  is discrete 
and U  is finite. 

If ( ) TttX ≤≤0,  is the Markov process with decisions ( ) 10, −≤≤ TttU , and terminal reward 
( )( )TXR , the MDP problem is to select U  to maximize the expected value ( )( ){ }TXRE  of the 

terminal reward. We assume that the decision ( )tU  depends only on ( ) ( )tXX ,...,0  and that 

( ) ( ) ( ){ } ( ).|,|1Pr xputUxtXtX u ξξ ====+                                 (72) 

The dynamic programming equations for the optimal reward function for the MDP 
( )TRpu ,,,, UX  are given as follows. The terminal condition is 

( ) ( )., xRTxV =                                                               (73) 

The recursion is 

( ) ( ){ }txVtxV uu
,max, =                                                          (74) 

for times 10 −≤≤ Tt , where we define 

( ) ( ) ( ).|1,:, xptVtxV uu ξξ
ξ

+= ∑                                            (75) 

Definition 1. Suppose that the MDP ( )TRpu ,,,, UX  has the probability transition functions 
( )xpu |ξ  for X∈ξ,x , U∈u , and terminal reward ( )xR  for X∈x . If ( ) U⊂Φ tx,  for each 
X∈x  and 10 −≤≤ Tt , we say that Φ  is a strategy set for the MDP. 

Definition 2. If Φ  is a strategy set for the MDP ( )TRpu ,,,, UX , and if for each X∈x  and each 
( )1, −Φ∈ Txu , 

( ) ( ) ( ) ( ),|max| xypyRxypyR v
yvu

y
∑∑ =                                      (76) 
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we say that the strategy set Φ  is terminally optimal for the MDP. 

Definition 3. If Φ  is a strategy set for the MDP ( )TRpu ,,,, UX , and if for each t  such that 
10 −≤≤ Tt , each X∈x , and for all , ,u v y  

( ) ( ) ( ) ( ) ( ), , , , , and | 0 imply that , 1 ,v u vu x t V x t V x t p y x u y t∈Φ > > ∈Φ +          (77) 

then we say that decisions are deferrable in the strategy set Φ . 

Remark 1. Definition 3 gives conditions under which if u  is in the decision set at the current 
time but a different decision v  is made, then u  is still in the decision set at the next time. This 
condition allows using an interchange argument to prove the optimality of the decision set 
(Theorem 1). Unfortunately, Definition 3 is too hard to check in practice. However, it is implied 
by various stronger conditions that are easier to check. For example, if for each t  such that 

10 −≤≤ Tt , and each X∈x , 

( ) ( ) ( ), , , and | 0 imply that , 1 ,vu x t v u p y x u y t∈Φ ≠ > ∈Φ +                      (78) 

then decisions are deferrable in the strategy set Φ . This condition is stronger than the definition, 
since ( ) ( )txVtxV uv ,, >  obviously implies that uv ≠ . At the end of this section we prove another 
stronger condition for problems with symmetry. 

Definition 4. We say that the probability transition functions ( )xpu |ξ  are commutative if for 
all U∈vu, , 

( ) ( ) ( ) ( )xppxpp uvvu |||| ηηξηηξ
ηη
∑∑ =                                        (79) 

for all X∈ξ,x . 

Theorem 1. Suppose that Φ  is a strategy set for an MDP ( )TRpu ,,,, UX  with commutative 
transition probability functions up , such that Φ  is terminally optimal and decisions in Φ  are 
deferrable. Then the strategy set Φ  is optimal in the sense that any decision ( ) ( )( )ttXtU ,Φ∈  for 

10 −≤≤ Tt , is an optimal decision for ( )TRpu ,,,, UX . 

Proof. Define ( )tx,∗Φ  to be the set 

( ) ( ) ( ){ }.,max,:, txVtxVutx wwu ==Φ∗                                              (80) 
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Thus, ( )tx,∗Φ  is the set of optimal strategies. We want to prove that 

( ) ( ).,, txtx ∗Φ⊂Φ                                                                   (81) 

The terminal optimality condition is equivalent to 

( ) ( ).1,1, −Φ⊂−Φ ∗ TxTx                                                        (82) 

Thus, assume that ( ) ( )1,1, +Φ⊂+Φ ∗ txtx  is true for Φ  and prove (81) from it. Suppose that 
( , )u x t∈Φ  and ( )txu ,∗Φ∉ . Clearly ( ) ∅≠Φ∗ tx,  and there is ( )txv ,∗Φ∈  such that 

( ) ( )txVtxV uv ,, > . The condition that decisions in Φ  are deferrable implies that 
( )( )1,1 ++Φ∈ ttXu  where ( )1+tX  results from using ( ) vtU = . The induction hypothesis 

implies that 

( )( ) ( )( ),1,11,1 ++Φ⊂++Φ ∗ ttXttX                                           (83) 

so that *( ( 1), 1)u X t t∈Φ + +  and ( ) , ( 1)U t v U t u= + =  are optimal decisions. We now can use 
the commutativity of the transitions wp  to show that the decisions ( ) ( ) vtUutU =+= 1,  have the 
same expected value and must be optimal too. Thus, u  is optimal, contrary to assumption and 
we must have ( )txu ,∗Φ∈ . 

To complete the proof, we note that starting from ( )tX , if ( )2+tX  is the state resulting from 
( ) ( ) utUvtU =+= 1,  and ( )2~ +tX  is the state resulting from ( ) ( ) vtUutU =+= 1, , then 

commutativity implies that ( )2+tX  and ( )2~ +tX  have the same distribution. By assumption 
(induction) the decisions ( ) ( ) utUvtU =+= 1,  are optimal and the value 

( )( ) ( )( ) ( ){ }.|2,2E, tXttXVttXV ++=                                       (84) 

Commutativity implies that 

( )( ) ( ){ } ( )( ) ( ){ },|2,2~E|2,2E tXttXVtXttXV ++=++                         (85) 

which implies that ( ) ( ) vtUutU =+= 1,  must also be optimal decisions.    Q. E. D. 

Remark 2. If ( )tx,∗Φ  is the optimal strategy set for ( )TRpu ,,,, UX  as defined in (80), then ∗Φ  
is necessarily terminal optimal. It also necessarily satisfies the condition for deferrable decisions, 
simply because the hypothesis of the condition, 
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( ) ( ) ( ),,,, txVtxVtxu uv >Φ∈ ∗  ,                                             (86) 

is always false. As we indicated in Remark 1, this condition is difficult to check in practice, but 
we can replace it with stronger conditions which don't refer to the optimal reward function. With 
these stronger conditions, it's important to have the third condition, commutativity of the 
transition probabilities, to prove the optimality of a proposed strategy set. 

To conclude this section we will prove another stronger condition for deferrable decisions in Φ  
based on symmetric MDP problems. 

Definition 5. The MDP ( )TRpu ,,,, UX  is symmetric if for some n  

{ },,...,1
,

n

n

=
=

U
X X

                                                            (87) 

( )( ) ( )xypxyp ii || =πππ  

and 

( ) ( )xRxR π=                                                             (88) 

where π  permutes the components of yx, , namely 

( ) ( )( ),,...,1 nxxx πππ =                                                            (89) 

for any permutation π  of { }n,...,1  and all nx X∈ . 

Lemma 1. Let ( )txV ,  be the value function for MDP ( )TRpu ,,,, UX  which is symmetric. Then 
( )txV ,  is symmetric in ix  for each Tt ≤≤0 . That is, if π  is a permutation of n,...,1  and 

( ) ( )( )nxxx πππ ,...,1= , then 

( ) ( ).,, txVtxV π=                                                            (90) 

In addition, 

( ) ( ) ( ).,, txVtxV ii ππ=                                                         (91) 
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Proof. Let x  denote a vector in =nX X . The dynamic programming equations for the MDP are 
given as follows. The terminal condition is 

( ) ( )., xRTxV =                                                            (92) 

The recursion is 

( ) ( ){ }txVtxV ii
,max, =                                                    (93) 

for times 10 −≤≤ Tt , where 

( ) ( ) ( ).|1,:, xyptyVtxV i
y

i +=∑                                           (94) 

Clearly, 

( ) ( ) ( ) ( ).,,,, TxVTxRTxRTxV === ππ                                       (95) 

 

Assume that 

( ) ( )1,1, +=+ txVtxV π                                                    (96) 

for all π,x  and prove it for t . By definition, 

( ) ( ) ( )xyptyVtxV i
y

i |1,, +=∑                                             (97) 

and by symmetry assumptions, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ).|1,

|1,|1,

xyptyV

xyptyVxyptyV

i
y

i
y

i
y

π

πππ

π

π

+=

+=+

∑

∑∑
                                 (98) 

Thus, it follows that 

( ) ( ) ( ).,, txVtxV ii ππ=                                                   (99) 
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For any permutation φ  and any y  it is always true that 

( ) ( ) ( ){ }tyVtyV ii
,max, φ= .                                              (100) 

In particular, it is true for πφ =  and xy π= . Thus, 

( ) ( ) ( ){ }
( ){ }

( ).,

,max

,max,

txV

txV

txVtxV

ii

ii

=

=

= ππ π

                                                (101) 

This completes the induction and the proof.    Q. E. D. 

Proposition 1. Suppose that the MDP ( )TRpu ,,,,UX  is symmetric. Then if 

( ) ( ) ( ), ,  and | 0 imply that , 1 ,v u vu x t x x p y x u y t∈Φ ≠ > ∈Φ +                (102) 

then decisions are deferrable in Φ . 

Proof. Suppose that ( )txu ,Φ∈ , ( ) ( )txVtxV uv ,, >  and ( ) 0| >xypv . Because of the symmetry 
assumption 

( ) ( ) ( )txVtxV vv ,, ππ=                                                    (103) 

for all permutations π . Let π  be the permutation that interchanges v  and u . Then if uv xx = , 
( ) ( )txVtxV uv ,, = . Thus, ( ) ( )txVtxV uv ,, >  implies that uv xx ≠ . By the proposition's assumption, it 

follows that ( )1, +Φ∈ tyu , which proves the result.    Q. E. D. 

5.2 APPLICATIONS TO SRM PROBLEMS  

Consider the SRM problem where there are n  targets and we can only observe one target at a 
time. In the simplest case, the decision ( )tU  to make at each time t  is only which target 

ni ,...,1=  to observe. There is a Markov chain ( )tX i  corresponding to each target i , where 
( )tX i  represents the information state of target i  at time t . Typically, we assume that the chains 
( )tX i  are independent and identically distributed, and that the selected (i.e., observed) chain 

transitions using ( )xp |ξ  and the 1−n  unobserved chains transition using ( )xq |ξ . Moreover, 
the reward is typically additive over the n  targets, namely 
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( ) ( )( ) ( )( ).,...,
1

1 TXrTXTXR i

n

i
n ∑

=

=                                          (104) 

The resulting MDP ( )TRpu ,,,,UX  has special structure where 

1

 and  is the state space of one Markov chain 
{1, , }

( | ) ( | ) ( | ) for , ,

( ) ( ) for .

n
i

n
i i i j j

j i

n
n

i
i

X
n

p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X X

X

X

K

X

U

                 (105) 

Remark 3. If Xs =  is the number of states for each single Markov chain, then the 

computational complexity of the dynamic programming solution is ( )TnsO n2 . Thus, for fixed s  
and T , the complexity is exponential in n . Furthermore, the memory requirements are 
exponential, namely ( )TsO n . In some cases we can find an optimal strategy of the form 
( ) ( ) ( )( )( )ttXtXtU n ,,...,1Φ∈  where 

( ) ( ) ( ){ }.,max,:, txMtxMitx jjjii ==Φ                                           (106) 

This is what we call a priority index rule strategy. The ( )txM ii ,  are indices that can be computed 
for each target with complexity ( )TsO 2  (i.e., equivalent to solving the dynamic program for one 
target). Thus, the complexity of the n  target strategy is ( )TnsO 2  rather than ( )TnsO n2 , linear in 
n  rather than exponential in n . 

For the class of transition probabilities ( )xpi |ξ  with structure (105), commutativity is 
equivalent to the commutativity of the transition functions p  and q , as the following simple 
result shows. 

Proposition 2. If the transition probability functions ( )xpi |ξ  defined for , nxξ ∈ =X X  and 
{ }ni ,...,1∈  satisfy 

( ) ( ) ( ),||| jj
ij

iii xqxpxp ξξξ ∏
≠

=                                            (107) 

and if for all 1 1, xξ ∈X , 
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( ) ( ) ( ) ( ),|||| 11111111
11

xqpxpq ηηξηηξ
ηη
∑∑ =                                  (108) 

then ( )xpi |ξ  are commutative transition probability functions for , nxξ ∈ =X X . 

Proof. Note that for ji ≠ , 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).||||||

||||

||

,
kkkk

jik
iiiijjjj

kk
jk

jjkk
ik

ii

ji

xqqxqpxpq

xqxpqp

xpp

kij

ηηξηηξηηξ

ηηηξηξ

ηηξ

ηηη

η

η

∑∏∑∑

∏∏∑

∑

≠

≠≠

=

=          (109) 

By assumption 

( ) ( ) ( ) ( )jjjjjjjj xqpxpq
jj

|||| ηηξηηξ
ηη
∑∑ =                                  (110) 

and 

( ) ( ) ( ) ( ).|||| iiiiiiii xqpxpq
ii

ηηξηηξ
ηη
∑∑ =                                    (111) 

Thus, 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ),||

||||||

||||||

,

,

xpp

xqqxpqxqp

xqqxqpxpq

ij

kkkk
jik

iiiijjjj

kkkk
jik

iiiijjjj

kij

kij

ηηξ

ηηξηηξηηξ

ηηξηηξηηξ

η

ηηη

ηηη

∑

∑∏∑∑

∑∏∑∑

=

=
≠

≠

            (112) 

proving that 

( ) ( ) ( ) ( ).|||| xppxpp ijji ηηξηηξ
ηη
∑∑ =                             (113) 

Q. E. D. 
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Remark 4. Note that commutativity always holds if p  or q  is the identity transition 
( ) 1| =ii xξδ  for ii x=ξ  and 0  otherwise. Note that δ=q  is assumed true in (non-restless) 

multi-armed bandit problems. Also, classification sensor management problems often satisfy 
δ=q  (i.e., the classification information state remains unchanged while the target is 

unobserved). For this class of MDPs corresponding to SRM problems, the general result 
(Theorem 1) reduces to the result of Corollary 1. 

Remark 5. Transition probabilities of the form 

( ) ( ) ( )jj
ij

iii xqxpxp ||| ξξξ ∏
≠

=                                               (114) 

and reward functions 

( ) ( )i

n

i

xrxR ∑
=

=
1

                                                            (115) 

are obviously symmetric. 

Corollary 1. Suppose that the MDP ( )TRpu ,,,,UX  has special symmetric structure where 

1

 and  is the state space of one Markov chain 
{1, , }

( | ) ( | ) ( | ) for , ,

( ) ( ) for .

n
i

n
i i i j j

j i

n
n

i
i

X
n

p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X X

X

X

K

X

U

                     (116) 

Suppose that ( )tx,Φ  is a strategy set for ( )nxxx ,...,1=  such that ( )1, +Φ∈ Txi  implies 

( ) ( ) ( ) ( ) ( ) ( )jjjj
y

iiii
y

xrxypyrxrxypyr
ii

−≥− ∑∑ ||                            (117) 

for all ij ≠ , and 

( ) ( ) 0|,,...,,...,,...,1 >≠Φ∈ jjjinji xypxxtxxxxi  and , ,                         (118) 

implies that 
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( )1,,...,,...,,...,1 +Φ∈ txyxxi nji                                              (119) 

Then the strategy set Φ  is optimal. 

Proof. The condition on ( )xpi |ξ  implies that it is commutative. The second condition implies 
that Φ  is terminally optimal for the terminal reward ( )xR , and the third condition implies that 
decisions in Φ  are deferrable (Proposition 1). The result follows from Theorem 1.    Q. E. D. 
 

5.3 BIRTH-DEATH MDPS  

One class of MDPs for which the sufficient conditions hold is analogous to a birth-death process 
that evolves on an ordered set and can only transition one step at a time. Specifically, suppose 
that each individual Markov chain ( )tX i  has states in the nonnegative integers ,...1,0  and can 
transition down at most one unit at a time (but can transition up any number of units at a time). 
Thus, ( ) ( ) 11 −≥+ tXtX ii . If the Markov chain ( )tX i  is in state 0 , it stays there (so that 0  is a 
trapping state). The terminal reward gives reward 1 if the state is 0  and gives reward 0  for any 
other state. The objective of the MDP is to control as many of the individual Markov chains into 
state 0  by the terminal time T  as possible. In this case, the sufficient condition shows that the 
greedy solution is optimal--that is, select i  next for the smallest nonzero state ( )tX i . 

Corollary 2. Suppose that the MDP ( )TRpu ,,,,UX  has the special structure 

0 0

0

0
1

 and {0,1,2, }
{1, , }

( | ) ( | ) ( | ) for , ,

( ) ( ) for ,

n

n
i i i j j

j i

n
n

i
i

n
p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

= =
=

= ∈ ∈

= ∈

∏

∑

K

K

X N N

U

N

N

                      (120) 

where ( ) 0| =xyp  for 1−< xy , ( ) 10|0 =p , ( ) 0=ixr  if 0≠ix , and ( ) 10 =r . For any x  and 
time-to-go 0>τ , define 

{ }0
( ) : min{ }  if some 0,

j
i j jx

x i x x x
>

Φ = = >                                    (121) 

and 

( ) {1, , } if 0 for all .jx n x jΦ = =K                                       (122) 
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Then any control ( ) ( )( )tXtU Φ∈  is optimal. 

Proof.  First check that ( )xi Φ∈  maximizes the marginal reward 

( ) ( )[ ] ( ) ( ) .
00

1|0
10

|
⎪
⎩

⎪
⎨

⎧

=
=

>
=−∑

i

ii

i

ii
y x

xxp
x

xypxryr
 if 

 if 
 if 

                                  (123) 

Suppose 0>ix  and ji xx ≤ . If 1=ix , then i  has marginal reward ( )ixp |0  and j  has the same 
marginal reward ( ) ( )ji xpxp |0|0 =  if ji xx = , or smaller marginal reward 0  if ij xx > . If 

2≥ix , then i  and j  both have marginal reward 0 . Likewise, if 0=jx  for all j , then all j  
have marginal reward 0 , so that any selection is optimal. Thus, Φ  is terminally optimal. 

Suppose that ( ) 0| >jj xyp  for ji xx ≠ . Then we will show that 

1 1( , , ) implies ( , , , , ).n j ni x x i x y x∈Φ ∈ΦK K K                              (124) 

Suppose ( )nxxi ,...,1Φ∈ . Note that 0>ix  because ji xx ≠  and there is at least one non-zero kx . 
Let ( ) 0| >jj xyp . If 0=jx , then 0=jy  and none of the kx  change values, and therefore 

( ) ( ).,...,,...,,...,,..., 11 njnj xxxxyxi Φ=Φ∈                                  (125) 

If 0>jx , then ij xx >  since ij xx ≠ . Thus, ( ) 0| >jj xyp  implies that 1−≥ jj xy  and ij xy ≥ . 
Although jy  is non-zero, it is no smaller than ix , and ix  is still the minimum of the non-zero 
elements of nj xyx ,...,,...,1 . Therefore 

( ).,...,,...,1 nj xyxi Φ∈                                                (126) 

It follows that decisions in Φ  are deferrable (Corollary 1), and the proof is complete.    Q. E. D. 

Example 1. As an example of the birth-death MDP we have defined, consider the four state 
model of tracking quality given by the Markov chains shown the figure, showing the possible 
transitions for the case in which target i  is observed or not observed. 
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undetected

detected

tracked

handover

undetected

detected

tracked

handover

if target i is observed if target i is not observed  

Figure 19: In example 1, the state of the target remains unchanged if it is not observed, but 
the state may change, as indicated in the illustration, if the target is observed. 

Here, there are states of tracking accuracy ranging from undetected, detected, tracked, and 
handover (e.g., to a weapon system). The model requires that the state can transition at most one 
step to the right at any time interval, but could transition to left all the way to undetected (i.e., 
drop track). If the track reaches the handover state, it stays there. The goal of the example is to 
control as many targets into the handover state by time T . The transition probabilities reflect the 
probability of track error increase or decrease, depending on the type of measurements taken. 
The optimal strategy is to look at the target which is the state closest to but not equal to 
handover. 

5.4 BINARY CLASSIFICATION PROBLEM  

This problem is to classify as many of n  objects over a finite time horizon T  given binary 
measurements of the objects. The problem is interesting because it is a partially observed 
Markov decision process (POMDP) which can be interpreted as an MDP with a countable state 
space. Suppose there are n  random variables iZ  with values 0 , 1 and that { } pZi ==1Pr  for all 

ni ,...1= . Suppose that the ( )tYi  are 1,0  observations of iZ , and ( )tYi  are independent and 
identically distributed conditioned on iZ  with 

( ){ } ( ) ( ),11|Pr ,, zyzyii zZytY δεδε −⋅+⋅−===                              (127) 
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where we use the notation 1, =zyδ  if zy =  and 0  otherwise. We assume that 2
1<ε . Note that ε  

is the probability of classification error for one measurement. 

Define the conditional probability ( )tX i  as 

( ) ( ) ( ){ }.,...,1|1Pr tYYZtX iiii ==                                               (128) 

The objective of the problem is to maximize the expected reward 

( )( )
⎭
⎬
⎫

⎩
⎨
⎧∑

=

TXr i

n

i 1

E                                                          (129) 

at the terminal time T , where ( )ixr  is the individual reward 

( ) ( ) ( )( ){ }iiiidi xdrxdrxr
i

−+=
=

10,1,max
1,0

                                          (130) 

and ( )zdr ,  are the rewards for the different types of outcomes (i.e., deciding id  when the true 
state of i  is iz  ). 

The processes ( )tX i  satisfy 

( ) pX i =0                                                                (131) 

and for 0≥t , 

( )

( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1
     with probability 1 2

1 2
1 .

    with probability 2 1 1 .
2 1 1

i
i

i
i

i
i

i

X t
X t

X t
X t

X t
X t

X t

ε
ε ε

ε ε

ε
ε ε

ε ε

−⎧
− +⎪ − +⎪+ = ⎨

⎪ − + −⎪ − + −⎩

                 (132) 

Note that although ( )tX i  take values in R , there are only a countable number of possible values 
they can take. Thus, ( ) R⊂∈XtX i  where X  is a countable set. Thus, we have an MDP 
( )TRpu ,,,,UX  where 
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1

 
{1, , }

( | ) ( | ) ( | ) for , ,

( ) ( ) for .

n

n
i i i j j

j i

n
n

i
i

n
p x p x q x i U x

R x r x x

ξ ξ ξ ξ
≠

=

=
=

= ∈ ∈

= ∈

∏

∑

X

X

X

K

X

U

                         (133) 

where ( )ii xp |ξ  is defined by 

( )
( ) ( )

( ) ( ) εε
εε

ε

εε
εε

ε

−+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−

112|
112

21|
21

1

ii
i

i

ii
i

i

xx
x
xp

xx
x
xp

                                     (134) 

and ( )ixr  is defined by Equation (130). We will consider the special case for which 
( ) ( ) 10,01,1 == rr  and ( ) ( ) 00,11,0 == rr  so that 

( ) ,2
1

2
1 −+= ii xxr                                                        (135) 

and we will assume that the prior probability 2
1=p . Note that if 2

1=p , then 

( )
.,...2,1,0:

1
1

1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

±±=
+

=
−

mm
ε
ε

X                                          (136) 

 

Proposition 3.  The strategy set Φ  defined by 

( ) { }2
1

2
1 min: −=−=Φ jji xxix                                           (137) 

is optimal for the binary classification problem with ( ) ( ) 10,01,1 == rr , ( ) ( ) ,00,11,0 == rr  and 
prior probability 2

1=p  for each object i . 

Proof. The transition probabilities ( )xpi |ξ  are obviously commutable and symmetric, and the 
reward function ( )xR  is obviously symmetric. Note that 
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( ) ( )[ ] ( )

( )
( ) ( )( )

( ) ( )( ).112
112

21
21

1

|

2
1

2
1

2
1

2
1

2
1

2
1

εε
εε

ε

εε
εε

ε

−+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−+−
++

+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+−
−

++

−−−=

−∑

i
i

i

i
i

i

i

iiii
y

x
x
x

x
x
x

x

xypxRyR
i

                          (138) 

This simplifies to 

( ) ( )[ ] ( ) ( ) ,1| 2
1

2
1

2
1 εε −−+−+−−=−∑ iiiiiii

y

xxxxypxRyR
i

                (139) 

which is equivalent to 

( ) ( ) ( )
1
2

1
2

0   for 0
   for 

| .
1    for 1

0   for 1 1

i

i i
i i

y i i

i

x
x x

R y R x p y x
x x

x

ε
ε ε
ε ε

ε

≤ ≤⎧
⎪ − ≤ ≤⎪− =⎡ ⎤ ⎨⎣ ⎦ − − ≤ ≤ −⎪
⎪ − ≤ ≤⎩

∑                        (140) 

Note that because 

( )
,

1
1

1
mix

ε
ε
−+

=                                                            (141) 

if 0<m , then 

( )
ε

ε
ε

=
+

≤ −
−

1
11
1

ix                                                       (142) 

and if 0>m , then 

( ) .1
1

1

1

ε
ε
ε

−=
+

≥
−

ix                                                    (143) 

Thus, 
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( ) ( )[ ] ( ) .
0

|
2
1

2
1

2
1

⎩
⎨
⎧

=−
≠

=−∑
i

i
iiii

y x
x

xypxRyR
i

 for 
 for 

ε
                                   (144) 

In particular, 

( ) ( ) ( )
1
2

1 1
2 2

0    if all 
max |

    if some 
j

i
j j j jj

y i

x
R y R x p y x

xε

⎧ ⎫ ≠⎧⎪ ⎪⎡ ⎤− =⎨ ⎬ ⎨⎣ ⎦ − =⎩⎪ ⎪⎩ ⎭
∑                (145) 

and if 

,min 2
1

2
1 −=− jji xx                                                    (146) 

then 

( ) ( )[ ] ( ) ( ) ( )[ ] ( ) .|max|
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=− ∑∑ jjjj
yjiiii

y

xypxRyRxypxRyR
ji

                   (147) 

This shows that Φ  is terminally optimal. 

To show that decisions in Φ  can be deferred, suppose that ( )xi Φ∈  so that 

2
1

2
1 min −=− kki xx                                                    (148) 

and suppose ij xx ≠ , ( ) 0| >jj xyp . Thus, 

( )
( ) εε

ε
+−

−
=

j

j
j x

x
y

21
1

                                                        (149) 

or 

( ) .
112 εε

ε
−+−

=
j

j
j x

x
y                                                     (150) 
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If 2
1

2
1 −>− ij xx , then it's easy to see that 2

1
2
1 −≥− ij xy  and therefore ( )nj xyxi ,...,,...,1Φ∈ . 

However, it's possible that 2
1

2
1 −=− ij xx  and ji xx ≠ . If 2

1≠ix , then the conclusion is not true, 

because one of the two values of jy  is closer to 2
1  than ix . 

However, we can easily extend the proposition to cover this case. Note that if 2
1

2
1 −=− ij xx , 

then ij xx −=1 . The classification problem is invariant under the transformation ii xx −→1 , and 
in particular, 

( ) ( ).,...,1...,,...,..., ττ ii xVxV −=                                              (151) 

Furthermore, if ( ) 0| >ii xyp , then ( ) 01|1 >−− ii xyp . It follows that 

( ) ( ).,...,1...,,...,..., ττ iiii xVxV −=                                           (152) 

As a consequence of this and the symmetry of V , we find that 2
1

2
1 −=− ij xx  implies that 

( ) ( ).,, ττ xVxV ji =                                                       (153) 

Thus, ( )xji Φ∈,  implies that ( ) ( )ττ ,, xVxV ji = . This is sufficient to extend the proposition 

because if ( ) ( )txVtxV ij ,, > , then both ji xx ≠  and 2
1

2
1 −≠− ij xx . Thus, we can apply the 

earlier argument to show that ( )nj xyxi ,...,,...,1Φ∈ . Consequently, decisions are deferrable in Φ . 
From Theorem 1 it follows that Φ  is optimal.    Q. E. D. 

5.5 SEARCH PROBLEM  

Here, we investigate the applicability of the sufficient optimality condition to the search problem 
considered in [7].  In particular, we consider the search problem where M locations are given and 
each of them may contain an object of interest. We are given a finite-time to search locations and 
at any time, we can search one location only. Initially, at time t=0, for every location i, we are 
given a priori probability xi(0) that location i contains an object. 

With each location i, we associate a hypothesis Hi, with Hi=1 denoting that there is an object at 
location i. With each location i, we also associate a state xi(t) defined as the probability that 
object is in location i, given the past measurement collection I(t). In other words, xi(t) is the 
conditional probability that hypothesis Hi is true:  

( ) { 1| ( )}.i ix t P H I t= =                                                (154) 
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We consider the independent hypothesis assumption, where the events that the hypotheses are 
true are independent. Under this assumption, the search problem is multi-armed bandit problem. 
The sufficient optimality condition given in Section 5.1 applies to a sub-class of multi-armed 
bandit problems. Note, however, that this optimality condition does not apply to the search 
problem considered in [7] with the exclusive hypothesis assumption. The reason is that, under 
the exclusive hypothesis assumption, the states of all of the locations are changing after each 
search, thus violating the basic property of multi-armed bandit problems. 

Searching a location results in a measurement Z taking values 0 or 1. The value of the 
measurement is generated independently at each stage as a random variable with the following 
probability distribution  

{ } { }
{ } { }

0 | 0 1| 1 1 ,

1| 0 0 | 1 .
i i

i i

P Z H P Z H

P Z H P Z H

ε

ε

= = = = = = −

= = = = = =
                                (155) 

Let x(t)=(x1(t),…,xM(t)) be the state of locations at time t, u(t) be the location searched at time t, 
and Z(t+1)=zk be the measurement obtained. Then, the new state of locations is given by vector 

( )1( 1) ( ),..., ( ( ), ),..., ( )       with ( ),i i k Mx t x t f x t z x t i u t+ = =                      (156) 

where ( ( ), )i i kf x t z  is a Bayesian update of xi(t) with new measurement zk: 

( )
( ) ( )( ( ), ) ,

| , ( )
i k

i i k
k

x t g zf x t z
p z i I t

=                                                       (157) 

and 

( ) { }| , ( ) ( 1) | ( ) , ( )
( ) ( ) [1 ( )] ( ).

k k

i k i k

p z i I t P Z t z u t i I t
x t g z x t f z

= + = =

= + −
                                        (158) 

The probability of transitioning from state x(t) to state ( )1( ),..., ( ( ), ),..., ( )i i k Mx t f x t z x t  is equal to 

( )| , ( )kp z i I t , which does not depend on time.  

Let X denote the set of all states reachable from the initial state x(0) during the given finite 
horizon, i.e., the set of all x such that x results from the initial state and some information I that 
can be collected within the given time horizon.  

For the search problem considered in [7], all stage rewards are zero, except for the final-stage 
reward, which is equal to the probability of the most likely location. In particular,  
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( , ) 0     for all   and  0.R x x Xτ τ= ∈ >                                    (159) 

( ,0) max .kk
R x x=                                                       (160) 

The goal is find a search strategy that maximizes the final probability of selecting a correct 
hypothesis, i.e., a strategy γ maximizing the expected final-stage reward  

max ( ).ii
E x T
γ

                                                          (161) 

The structure of the search problem is identical to the classification example considered in 
Section 5.4.  The only difference is that these two problems have different final-stage rewards. In 
[7], it is shown that selecting one of the two most likely locations is an optimal search strategy. 
We will here show this result by using the sufficient optimality condition of Section 5.1.  

Let V(x,τ) be the optimal reward-to-go τ stages from state x, and define functions Vj, j=1,…,M as 
follows (see Vu in  Equation (75) of Section 5.1): 

1

1

( , ) ( ,..., ( , ),..., , 1)

( ,..., ( , )..., , 1) ( | , )
k

j j j MZ

j j k M k j
z

V x EV x f x Z x

V x f x z x p z x j

τ τ

τ

= −

= − ⋅∑
                          (162) 

for all x, τ>0, and all j. 

For any state x and any stage τ, we define function ( , )x τΦ  to be the index set of the two most 
likely locations. In particular, ( , )x τΦ  is given by 

[ ] [ ]{ }1 2
( , ) | ( ) or ( ) for  all and 0.i ix i x S x x S x xτ τΦ = = = ≥ ,                    (163) 

where S(·) is a nonlinear operator from RM to RM that maps vector x into a sorted vector x, i.e.,  

( )(1) ( ) (1) ( )( ) ,...,    with   ... ,s s M s s MS x x x x x= ≥ ≥                                    (164) 

and [S(x)]j denotes  the j-th component of vector S(x).  

We next prove that Φ defines an optimal policy in the sense that for all x X∈  and τ >0, 

( , ) ( , 1)  for any ( , 1).iV x V x i xτ τ τ= − ∈Φ −                                       (165) 
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In particular, we show that Φ satisfies the sufficient optimality conditions given in Proposition 1 
of Section 5.1. 

Proposition: Assume that the initial state is x(0)=(1/2,…,1/2). Then, the function ( , )x τΦ has the 
following properties:  

1. For all x X∈ , τ=0, and any ( ,0)i x∈Φ , we have  

      ( ,0) max ( ,0),i jj
V x V x=                                                 (165) 

 where Vj is as defined in (162). 

2. For all ,x X∈  τ>0, ( , ),i x τ∈Φ and all j such that xi≠xj and p(zk|xj, u=j)>0, we have 

1( ,..., ( , ),..., , 1).j j k Mi x f x z x τ∈Φ −                                             (166) 

Proof:  We start by showing that relation (165) holds. The proof is based on the same line of 
argument as the proof of Proposition 4 in [7]. Note the symmetry assumption in [7] is satisfied 
[cf. Equation (154)]. 

Let x X∈  be arbitrary, and let I be an information state such that x results from the initial state 
x(0) and information I.  By using the definition of Vj [cf. Equation (162)], we have 

{ }

1

1

( ,0) ( ,..., ( , ),..., ,0) ( | , )

max ,..., ( , ),..., ( | , ).

k

k

j j j k M k
z

j j k M k
z

V x R x f x z x p z j I

x f x z x p z j I

=

=

∑

∑
                              (167) 

Since reward–to-go V(x,τ) is invariant under permutations of x, [i.e., V(Px,τ)=V(x,τ) for any 
permutation matrix P], without loss of generality, we may assume that  

1 2 ... .Mx x x≥ ≥ ≥                                                                                       (168) 

Then, we have 

{ }1 1 1 2max ,..., ( , ),..., max{ ( , ), },     for  1  and all ,j j k M kx f x z x f x z x j k= =              (169) 

{ } { }1 1max ,..., ( , ),..., max , ( , ) ,     for  1  and all .j j k M j j kx f x z x x f x z j k= >             (170) 

Thus, for j=1, 
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{ }

{ }

1 1 1 2

1
2

1 2

( ,0) max ( , ), ( |1, )

( )max , ( |1, )
( |1, )

max ( ), ( |1, ) .

k

k

k

k k
z

k
k

z k

k k
z

V x f x z x p z I

x g z x p z I
p z I

x g z x p z I

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

∑

∑

∑

                                        (171) 

By using the definition of p(zk|j,I) in Equation (158), we see that 

{ }1 1 2 1 2 1( ,0) max ( ), ( ) (1 ) ( ) .
k

k k k
z

V x x g z x x g z x x f z= + −∑                    (172) 

Similar to the preceding, for j ≥ 2, we obtain 

{ }

{ }

{ }

1

1

1

1 1

( ,0) max , ( , ) ( | , )

( )
max , ( | , )

( | , )

max ( | , ), ( )

max ( ) (1 ) ( ), ( ) .

k

k

k

k

j j j k k
z

j k
k

z k

k j k
z

j k j k j k
z

V x x f x z p z j I

x g z
x p z j I

p z j I

x p z j I x g z

x x g z x x f z x g z

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

= + −

∑

∑

∑

∑

                   (173) 

By taking the terms x1xjf(zk) into a separate summation, we have 

{ }1 1 1 1( ,0) max ( ) ( ), ( ) ( ) ( ),
k k

j j k k j k j k j k
z z

V x x x g z x f z x g z x x f z x x f z= + + −∑ ∑            (174) 

By using the relation  

( ) 1 ( ),
k k

k k
z z

f z g z= =∑ ∑                                                   (175) 

we obtain  
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{ }

{ }

1 1 1 1

1 1 1

( ,0) max ( ) ( ), ( ) ( ) ( )

max ( ), (1 ) ( ) ( ) .

k k

k

j j k k j k j k j k
z z

k j k j k
z

V x x x g z x f z x g z x x f z x x g z

x f z x x g z x x f z

= + + −

= − +

∑ ∑

∑
         (176) 

Furthermore, since 2jx x≤  for all j≥2, we see that  

2( ,0) ( ,0) for all 2.jV x V x j≤ ≥                                              (177) 

We now prove that V2(x,0)=V1(x,0). For j=2, relation (176) gives 

{ }2 1 2 1 1 2( ,0) max ( ), (1 ) ( ) ( ) .
k

k k k
z

V x x f z x x g z x x f z= − +∑                         (178) 

By changing the variables and by using the symmetry assumption on f and g, we obtain 

{ }

{ }

2 1 2 1 1 2

1 2 1 1 2

( ,0) max ( ), (1 ) ( ) ( )

max ( ), (1 ) ( ) ( ) .

k

k

k k k
z

k k k
z

V x x f b z x x g b z x x f b z

x g z x x f z x x g z

= − − − + −

= − +

∑

∑
                  (179) 

By comparing this with the expression for V1(x,0) [cf. Equation (172)],  we see that  

V2(x,0)=V1(x,0).                                                         (180) 

Therefore,  

1 2max ( ,0) ( ,0) ( ,0).jj
V x V x V x= =                                        (181) 

According to the definition of Φ, we have Φ(x,0)={1,2}, which together with the preceding 
inequality show that condition shown in Equation (165) holds.  

We now show that Φ satisfies relation in Equation (166).  Again, without loss of generality, we 
may assume that 

1 2 ... ,Mx x x≥ ≥ ≥  so that Φ(x,τ) ={1,2}. Then, for i=1, any j such that xj≠x1, and 
any zk with p(zk| j,I)>0, we have 

either    fj(xj,zk)≤x1   or   fj(xj,zk)>x1.                                    (182) 
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Hence, x1 is either the best or the second best, implying that 

11 ( ,..., ( , ),..., , 1).j j k Mx f x z x τ∈Φ −                                           (183) 

Consider now the case where i=2 and j=1. Similar to the preceding, we have that  

either    f1(x1,zk)≤x2   or   f1(x1,zk)>x2,                                       (184) 

implying that x2 is either the best or the second best. Hence, in this case, we have 

12 ( ,..., ( , ),..., , 1),j j k Mx f x z x τ∈Φ −                                         (185) 

and we are done. 

Consider now the case where i=2 and j>2. We will show that for all j>2 with xj≠x2 and any zk 
with p(zk| j,I)>0, we have 

2 ( , ).j j kx f x z≥                                                         (186) 

As shown in Section 5.4, the components of x have the following form: 

1  for  some  {..., 2, 1,0,1,2,...},
1

1

j mx m
ε
ε

= ∈ − −
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

                         (187) 

where m is the difference between the number of measurements of object j with outcome 1 and 
the number of measurements of object j with outcome 0. Thus, for some integers m2 and mj, we 
have 

22
1 1, .

1 1
1 1

jjm mx x
ε ε
ε ε

= =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

                                     (188) 

Furthermore, since x2≥xj and xj≠x2, from the preceding relation it follows that 2 .jm m>  If object j 
is observed one more time and no measurement is obtained, then the state xj of the object does 
not change so x2 is still the second best. If a measurement z is obtained, then the state of object j 
is given by  
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1

1

1( , ) for 0,
1

1
1( , ) for 1.

1
1

j

j

j j m

j j m

f x z z

f x z z

ε
ε

ε
ε

−

+

= =
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

= =
⎛ ⎞+ ⎜ ⎟−⎝ ⎠

                                       (189) 

Since we have m2≥mj+1, it follows that  

22 1

1 1 ( , ) for 0,1.
1 1

1 1

j j jm mx f x z z
ε ε
ε ε

+= ≥ ≥ =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

                      (190) 

showing that x2 is still the second best. Therefore, x2 remains the second best for any observation 
outcome, implying that  

12 ( ,..., ( , ),..., , 1),j j k Mx f x z x τ∈Φ −                                           (191) 

thus showing that Φ satisfies condition in Equation (166).    Q. E. D. 
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Abstract

This paper studies the problem of dynamic adaptive scheduling of multi-mode sensor resources for the
problem of classification of multiple unknown objects. Sensor schedules are adapted based on the observed
data. The resulting decision problem is formulated as a partially observed Markov decision problem with a
large state space. The paper describes a computable lower bound on the achievable performance by a causal
adaptive schedule, based on techniques of numerical stochastic control and combinatorial optimization. The
lower bound is based on an expansion of the admissible control space of the dynamic decision problem, leading
to a problem with simpler decision structure for which the bounds can be computed. The solution of the relaxed
problem may be infeasible, but can be used as an approximate scheduling technique in a model predictive control
framework. The bound computations are illustrated for several examples involving 100 unknown objects, and
compared with the Monte Carlo performance of several sensor scheduling algorithms.

1 Introduction

Many modern avionics systems include multiple sensors as well as individual sensors capable of focusing on different
objects with different modes. In order to achieve an accurate possible representation of all objects of interest, it is
important to coordinate the allocation and scheduling of the different sensors and sensor modes across the different
objects of interest. The various modes may be viewed as multiple resources to be managed, and the measurement of
different objects under specific modes may be viewed as tasks to be performed with these resources. The adaptive
sensor management problem consists of selecting and scheduling the sensor modes which are applied to objects of
interest, integrating the collected past information into the selection of future sensing actions.

This paper develops a model for a class of adaptive sensor management problems involving the goal of classifying
a known number of objects with unknown type, given a fixed number of sensor resources, where the sensor
performance parameters are time-invariant, so that the performance parameters associated with a sensor observing
an object with a given mode do not depend on the time that sensing activity occurs. This class of problems
arises in several applications, from object classification in surveillance platforms such as Joint STARS, dynamic
search, and fault inspection and isolation in manufacturing systems. In these applications, inaccuracies in sensor
measurements and variations in object characteristics and pose imply that individual measurements provide noisy
estimates of object type whose quality depends on the specific mode used by the sensor. In situations with multiple
objects and limited resources, this noisy information can be used to prioritize which objects to look at, and to
assign appropriate sensor modes to the objects.

Because of the uncertain nature of the underlying object types and the adaptive nature of the desired schedules,
dynamic sensor management problems can be formulated as partially observed Markov decision problems (POMDP)
[2, 1, 10, 11]. As such, this class of problems can be solved using stochastic dynamic programming [3]. However, for
large numbers of objects, the required state space is very high-dimensional, consisting of the conditional probability

∗
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distributions of all of the objects. This leads to intractable computational problems, even with the fastest POMDP
algorithms.

Sensor management problems have been formulated previously as dynamic optimization problems with partial
information. The extensive literature in search theory [20] deals with sensor management problems involving
objects that can be of one of two types (hidden or found) with sensors that have only a single mode. The dynamic
hypothesis testing problems studied in [6] also have objects that can be of two types and a single sensor mode, but
generalize results in search theory to broader classes of measurements. More recently, there has been work [17]
using Markov decision problem techniques for sensor management, particularly techniques based on the solution of
multiarmed bandit problems. However, these formulations also restrict the sensors to a single sensor with a single
mode, and require an infinite horizon, time-invariant formulation.

Because of the complexity of general SM algorithms with multiple sensors and modes, most practical SM
algorithms are based on heuristic algorithms based on information-theoretic metrics [5]. To date, there has been
no effective approach that can characterize the achievable SM performance to determine whether such heuristic
algorithms are performing well.

In this paper, we consider sensor management (SM) problems involving multiple distributed sensors with multiple
modes per sensor. This model is an extension of the model discussed in [7]. We show that the resulting POMDP
models admit a lower bound based on modifying the constraint structure to expand the space of admissible
strategies. The resulting problem becomes a dynamic optimization problem subject to expected value constraints,
a class of problems recently studied by Chen and Blankenship in [24]. We develop a hierarchical algorithm that
exploits the structure of the resulting relaxed problem. This hierarchical algorithm is based on the solution of single
object POMDP problems, coupled with nondifferentiable optimization techniques based on Lagrangian relaxation
[16]. The single object problems are of small dimension, and can be readily solved using standard algorithms for
POMDPs [10, 11, 13]. The hierarchical algorithm avoids the exponential growth of the dimensions of the resulting
state space in the POMDP problem as a function of the number of objects.

The algorithm used to compute the bounds can also be used as a suboptimal algorithm for real-time sensor
management. Since the algorithm solves the SM problem with an expanded set of strategies, it is possible that
the resulting SM strategies are not feasible. This requires modification of the problem solution, typically using
a receding horizon technique similar to model-predictive control. We describe in the paper one such approach at
this SM algorithm. The paper includes several examples where the lower bound performance is computed, and
compared with the Monte Carlo performance achieved by suboptimal SM algorithms.

The remainder of this paper is organized as follows. Section II includes the mathematical statement of the
sensor management problem for a single sensor, and discusses the stochastic dynamic programming algorithm for
this problem. Section III describes the modified SM formulation and the derivation of the lower bound. Section
IV describes computation approaches for evaluating the lower bound. Section V discusses extensions of the earlier
results to multiple sensors. Section VI describes the numerical experiments and results. Section VII is a summary
of the results and discussion of open problems of interest.

2 Problem formulation

In this section, we develop a formulation of the adaptive SM problem as a partially observed Markov decision
problem (POMDP). Assume that there are N objects of interest in the problem. Each object can belong to
one and only one of K different classes, and the object identity does not change over time. Let the variable
xi ∈ X ≡ {1, . . . , K} denote the true class of object i. We define the complete (but unknown) system state as:

x =
(
x1 x2 · · · xN

)
(1)

Since the identities do not change over time, the complete system state is constant over time. We assume that
xi are independent random variables with values in the finite space X . Associated with each object i is a prior
probability vector πi(0) which describes the probability distribution of the random variable xi. That is,

πij(0) = Prob{xi = j} (2)

These probability distributions represent a priori knowledge collected on each object before the start of the SM
problem.
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In order to obtain information about the state of each object, selected objects are examined with different modes
from different sensors. In order to simplify the notation in the exposition, we consider the case of a single sensor
with multiple modes m ∈ {1, . . . , M}. We will highlight later the extensions required to incorporate multiple
sensors. The action to use a sensor mode m on object i produces an observable ym in a finite set Ym, with a
conditional probability distribution that depends only on the object i, its type xi and the mode m, denoted by
p(ym|i, xi, m). We assume that the observation outcomes of these sensing actions are conditionally independent of
each other given the object types.

We assume that obtaining a measurement of object i with mode m requires sensor resources Rim > 0 (e.g.
duty cycle of a radar), which depend on the specific object and mode selected. For the SM problem of interest,
the sensor has a finite amount of sensor resources R that can be used for measuring objects. The objective is to
classify, with minimal error cost, the objects after the sensor resource R is exhausted. This formulation is stated
more rigorously below.

Without loss of generality, we restrict our attention to SM strategies that execute only one action at a time.
Such strategies are optimal in that they provide maximal information for adaptation, and will achieve minimal
error cost. Let u(k) = (i(k), m(k)) denote the k + 1-th action (starting at k = 0) taken by the sensor, consisting
of measuring object i(k) with mode m(k). Let U denote the set of possible sensor actions, and let ym(k)(k) denote
the measured value resulting from action u(k) ∈ U . The past information available to adaptively select u(k) is
I(k) = {u(0), ym(0)(0), . . . , u(k − 1), ym(k−1)(k − 1)}. The SM problem decisions are selected adaptively until a
final random stopping instance T , selected based on the information I(T ). At the end of this stopping instance,
the information I(T ) is available for estimating the object types. For each object i, there is a final decision vi ∈ X
based on I(T ) that is selected to minimize the expected classification error.

An admissible adaptive SM policy is a set of measurable feedback strategies {γ(0), . . . , γ(T )} and stopping time
T such that

γ(k) : I(k) → U, k < T

T : I(T ) → {stop, continue}
γ(T ) : I(T ) → XN (3)

Let Γ denote the set of all admissible SM policies. Since the observation space is finite and the decision space is
also finite, Γ is a countable space.

Denote by c(v, x) the cost of selecting classification decision v when the true object type is x. The SM problem
statement is to minimize the expected total classification cost

J(γ) = Eγ{
M∑
i=1

c(vi, xi)} (4)

over adaptive SM policies γ ∈ Γ satisfying the resource utilization constraint

T−1∑
k=0

R(u(k)) ≤ R (5)

with the notation R(u(k)) ≡ Ri(k)m(k). Note that the constraint in (5) is a sample path constraint; for every
realization of the information sets I(k), the adaptive policy γ must not exceed the total sensor resources available.
Note also that, given the finite state nature of the set of possible observation outcomes per mode Ym and possible
decisions um, the number of possible information sets after k− 1 actions I(k) is countable. This implies that there
is a finite number of possible admissible SM policies that satisfy the constraint (5).

The above problem is a class of finite-state, finite-observation partially observed Markov decision problems
studied in [2, 1, 11, 10, 3], with the special structure that the underlying state dynamics are trivial, and the
presence of the sample path constraints of (5). Such problem scan be transformed into fully-observed Markovian
decision problems in terms of a sufficient statistic: the conditional probability distribution of the state x given
information I(k), as follows: Let S ⊂ RK denote the space of probability distributions on X , and let SN denote
the space of probability distributions on XN . The conditional distribution vector for the composite state x given
the information I(k), P (x|I(k)) ∈ SN , can be viewed as an information state, a sufficient statistic summarizing the
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past observations. The recursive evolution of this information state in response to an action u(k) = (i(k), m(k))
can be described by Bayes’ rule as

P (x|I(k + 1)) = P (x|I(k), u(k), ym(k)(k)) (6)

=
P (ym(k)(k)|x, I(k), u(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(7)

=
P (ym(k)(k)|xi(k) , m(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(8)

with the initial condition

P (x|I(0)) =
N∏

i=1

πi(0) (9)

Under the previous independence assumptions, the following lemma establishes a convenient representation:

Lemma 2.1 Under the SM problem assumptions, the conditional probability

P (x|I(k)) =
N∏

i=1

P (xi|I(k)) (10)

where the evolution of P (xi|I(k)) under sensing action u(k) = (i(k), m(k)) and observed value ym(k)(k) is given by

P (xi|I(k + 1)) =

{
P (xi|I(k)) if i(k) �= i

P (ym(k)(k)|xi(k),m(k))P (xi|I(k))∑ K
j=1 P (ym(k)(k)|xi=j,I(k))P (xi=j|I(k))

otherwise
(11)

The proof of this lemma is straightforward by induction, as the independence assumption of the object types xi

guarantees the Lemma is satisfied at k = 0, and (8) establishes the recursion. Note also that P (xi|I(k)) depends
only on measurements in I(k) corresponding to object i.

The importance of Lemma 2.1 is that we can characterize the information state as a product of marginal
distributions, in SN , as opposed to a joint distribution in SN . As notation, define πi(k) to be the conditional
probability distribution of xi given information I(k):

πi(k) = P (xi|I(k)) (12)

The vector πi(k) has components πij(k) = P (xi = j|I(k)). The results of Lemma 2.1 establish the following
representation for the conditional probability distribution of the entire state: P (x|I(k)) can be computed from
πi(k), i = 1, . . . , N . Define the information vector

�π =




π1

...
πN


 (13)

For a given observation ym using mode m on object index i, define the observation probability matrix as the K×K
diagonal matrix

Bi(ym) = diag{P (ym|xi = 1, m), P (ym|xi = 2, m), . . . , P (ym|xi = K, m)} (14)

With this notation, we can define the evolution of the information vector in response to a measurement ym obtained
from a sensing action (i, m) in terms of an evolution operator on (SN , U, Y ) as

T (�π, u = (i, m), y) =




π1

...
πi−1

Bi(y)πi

eT Bi(y)πi

πi + 1
...

πN




(15)
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where e is a K-dimensional vector of all ones.
Conceptually, the SM problem described above can be solved by stochastic dynamic programming [3]. The

resource constraint in (5) can be incorporated into the dynamics to obtain a dynamic programming recursion, as
follows. Define a value function V (�π, C) to be the optimal solution of SM in (3)-(5) when the initial information
is �π and the available sensor resource level is R = C. The value function V is thus defined on SN × R+. The SM
optimization problem is stated as a total cost problem with nonnegative costs, for which the optimal value function
satisfies Bellman’s equation [3], as described below. Let U(R) ⊂ U denote the set of sensor actions (i, m) such
that Rim ≤ R; this is the subset of sensor actions that are feasible when there are only R resources left. At each
decision stage, there is a choice of stopping and classifying the objects with the available information, or taking
additional measurements. The optimal value function therefore satisfies the Bellman equation

V (�π, R) = min
[ N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij ,

min
u≡(i′,m′)∈U(R)

Ey{V (T (�π, u, y), R − Ri′m′)}] (16)

where

Ey{V (T (�π, u, y), R − Ri′m′)} =
∑

y∈Ym′

P (y|I(k), u)V (T (�π, u, y), R − Ri′m′) (17)

=
∑

y∈Ym′

eT Bi′(y)πiV (T (�π, u, y), R − Ri′m′) (18)

This recursion defines the optimal value function from a given information vector and a given resource level in
terms of the value function at other information vectors evaluated with strictly less resource levels. Furthermore,
we have boundary conditions for this recursion as follows: Let Rmin = mini,m Rim. Then, the set of admissible
modes U(R) is empty for R < Rmin. Thus,

V (�π, R) =
N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij if R < Rmin (19)

Eqs. (16)-(19) can be used recursively to compute the optimal value for all information states and nonnegative
resource levels.

Note that the initialization of the recursion decouples into N independent optimizations, as there are no coupling
constraints on the decisions vi, and the local decision costs c(vi, xi) depend only on the marginal probability
distributions of each object’s type. However, the recursion (16) does not preserve this decomposability. The
coupling arises primarily because of the resource use constraints in (5); the decision of which object to view
and which mode to use depends on the information vector of all the objects and the available resources. Thus,
the dynamic programming induction must be carried out for the entire state �π(t), which becomes a formidable
computation problem even for moderate numbers of objects.

3 Relaxed Formulation and Lower Bounds on Classification Perfor-

mance

A possible approach to overcoming the computational difficulty of the previous formulation is to relax the sample
path sensor resource use constraints (5) and use an averaged version of the same constraints, as

E{
T∑

k=1

R(u(k))} ≤ R (20)

This approach replaces a large set of constraints (one per sample path) by a single aggregate constraint. Note that
any SM strategies that satisfy (5) will also satisfy (20). Thus, this approach increases the set of admissible SM
strategies. Let J∗ denote the optimal classification cost of the original SM problem in (4)-(3) with constraints (5).
Let J∗

A denote the optimal classification cost of the SM problem in (4)-(3) with constraints (20). This leads to the
following lemma:
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Lemma 3.1 J∗ ≥ J∗
A

The relaxed SM problem has a single coupling constraint relating the sensing actions on different objects. This
structure can be exploited using Lagrange multipliers as follows. Let λ ≥ 0 denote a Lagrange multiplier. Consider
the new SM objective for admissible SM policies in Γ as

J(λ, γ) = Eγ{
N∑

i=1

c(vi, xi)} + λ[Eγ{
T−1∑
k=0

R(u(k))} − R] (21)

Consider now the unconstrained SM problem of finding adaptive SM strategies γ and an adaptive stopping time
T to minimize (21). If (γ, T ) is an adaptive SM policy that satisfies (20), the second term in (21) is nonpositive.
Denote by J∗(λ) the optimal value of (21) over all adaptive SM strategies γ ∈ Γ. Then,

Lemma 3.2 For all values of λ ≥ 0,
J∗ ≥ J∗

A ≥ J∗(λ) (22)

In particular,
J∗ ≥ sup

λ≥0
J∗(λ) (23)

Lemma 3.2 is a consequence of weak duality in nonlinear programming [4]. Note that the number of adaptive SM
strategies that satisfy (21) is finite, because the set of possible histories I(k) is finite for all k. Thus, computation
of J∗

A is an integer programming problem, and computation of supλ≥0 J∗(λ) is its dual problem. The key issue is
whether the lower bounds J∗(λ) can be computed efficiently. Rewrite (21) for γ ∈ Γ as

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δ(i(k) − i)]} − λR (24)

where the indicator function δ(i) = 1 if i = 0, and 0 otherwise. This suggests that optimization of J(λ) may be
separable across individual objects i.

Partition the information I(k) into disjoint sets Ii(k), where Ii(k) are the sensing actions and measurement
actions applied to object i:

Ii(k) = {(u(j), y(j))|j < k, i(j) = i} (25)

Note that the conditional probability vector πi only changes on measurements included in Ii(k). We wish to restrict
the set of adaptive SM strategies to a subset where the decision to apply a sensor action for object i depends only
on the information previously collected for object i. We refer to this subset of strategies as adaptive local SM
strategies, defined as:

Definition 3.1 An adaptive local SM policy is an adaptive SM policy γ and stopping times Ti, i = 1, . . . , N , with
the properties that, for each sensing action instance k,

1. If u(k) = (i(k), m(k)), then i(k) = k mod N + 1.

2. The selected sensor mode m(k) depends only on the information Ii(k).

3. For each object i, there is a stopping time Ti which depends only on Ii(Ti) such that, for all k ≥ Ti, if i = k
mod N + 1, no sensing action is taken. If k < Ti and i = k mod N + 1, then u(k) = (i, m) for some mode
m in {1, . . . , M}.

4. At time Ti, the local decision vi for object i is selected as a function of Ii(Ti).

Adaptive local SM strategies use a round-robin schedule for selecting which objects to measure. Thus, the choice
of sensing object for each action is not adapted to the prior information. Furthermore, the choice of sensing mode
for each action on object i depends only on the prior information collected on that object. In addition, there is an
independent stopping time for each object i such that a final classification decision is made on object i, based only
on prior information collected on that object. Note that there are decision instances k where no sensing action
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is taken, when k ≥ Ti and i = k mod N + 1; these instances correspond to times after a final decision has been
selected for object i. The effective stopping time of an adaptive local SM policy is defined as T = maxi=1,...,N Ti,
and is the earliest time at which every object has a final classification decision. Thus, adaptive local SM strategies
can be viewed as a subset of the class of adaptive SM strategies.

Let ΓL denote the set of adaptive local SM policies. For a given amount of sensor resources R, there are a finite
number of feasible adaptive local SM strategies. In general, ΓL is a countable discrete set. For the purposes of
bound computation, we will expand ΓL to include mixed policies, consisting of probabilistic mixtures of policies in
ΓL:

Definition 3.2 A mixed local SM policy is a probability distribution q(γ) over ΓL such that local SM policy γ is
selected for use with probability p(γ). The set of mixed local SM strategies is denoted by Q(Γs).

Consider the problem of minimizing the relaxed cost (24) over local SM policies ΓL. Since ΓL ⊂ Γ, we have

min
γ∈Γ

J(λ, γ) ≤ min
γ∈ΓL

J(λ, γ) (26)

Furthermore, since (24) is an unconstrained objective, the minimum in mixed local SM policies is achieved by a
pure local SM policy, so

min
γ∈Γ

J(λ, γ) ≤ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (27)

The importance of mixed local SM strategies is highlighted in the theorem below.

Theorem 3.1 Consider any admissible adaptive SM policy γ ∈ Γ. Then, there exists a mixed local SM policy
q ∈ Q(Γs) such that the expected classification costs in (4) and the expected total resource use in (20) are equal
under both policies γ and q.

The proof of this result is by construction, and is included in the Appendix. This result implies the following
inequality:

min
γ∈Γ

J(λ, γ) ≥ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (28)

Combining (27) and (28) yields the following:

min
γ∈Γ

J(λ, γ) = min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) = min
γ∈ΓL

J(λ, γ) (29)

Eq. (29) implies that lower bounds for the achievable classification performance can be computed by optimizing
over local SM policies only. For each local SM policy γ ∈ ΓL, let γi denote the policy that is used for instances k
when actions are taken for object i, and let ΓLi be the set of such admissible local SM policies for object i. Thus, γi

selects actions for object i based on past observations Ii(k), and selects a stopping time Ti and a final classification
vi at that stopping time. The importance of local SM policies is that the optimization in (29) decouples over
objects as

min
γ∈ΓL

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δ(i(k) − i)]} − λR

=
N∑

i=1

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] − λR

This implies that computation of the bounds can be achieved with N independent optimization problems for each
value of λ. Furthermore, the optimal bound can be computed as in Lemma 3.2, as

J∗ ≥ sup
λ≥0

{
N∑

i=1

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] − λR} (30)

 

79



Note that the right hand side of (30) is the dual of the following linear programming problem:

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)EγJ(γ) (31)

subject to ∑
γ∈ΓL

q(γ)Eγ [
∑

k=0T−1

R(u(k))] ≤ R (32)

∑
γ∈ΓL

q(γ) = 1 (33)

which is a linear program over the choice of probability distributions q ∈ Q(ΓL). This can be exploited to solve
efficiently for the bound. Specifically, note that this is a linear program subject to two constraints, which implies
that the optimal mixed local SM policy q will have support only on two pure local SM policies. This property will
be exploited in the next section for bound computation.

4 Computation of the Lower Bound

There are two potential approaches to compute a lower bound: a dual approach, based on Lagrangian relaxation
[16], that optimizes (30) over the choice of dual variable λ, and a primal approach based on solving the linear
program (31)-(33). The dual approach is straightforward, and uses techniques from nondifferentiable optimization
[19] to search the space of possible λ. The primal approach is harder, because the optimization is over a large
space of possible values of mixture probabilities q. However, this mixture has very sparse support, which makes it
suitable for column generation algorithms [18].

A fundamental step in either approach is the computation of the optimal local SM strategies for a fixed value
of λ for each object. For object i, one must solve the local problem given λ:

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=k mod N+1

R(u(k))] (34)

This problem is a multi-stage single object partially observed Markov decision problem, with sufficient statistic
given by the marginal probability distribution πi(k). Furthermore, we can reduce the action instants to a new
counter k′ indexing only the action opportunities for object i, to obtain

min
γi∈ΓLi

Eγi [c(vi, xi) + λ

T ′
i−1∑
k′

Rim(k′)] (35)

The resulting POMDP problems are small enough to solve using existing algorithms such as those overviewed in
[1, 11, 10, 13, 14]. These algorithms exploit Smallwood and Sondik’s efficient parameterization [2] of the optimal
cost-to-go at stage k′ as a minimum of linear functions of the statistic πi(k′), and are efficient for problems with a
few discrete true states.

Solution of the N decoupled problems (35) yields a local SM policy γ ∈ ΓL, for which the expected classification
cost Eγ [

∑N
i=1 c(vi, xi)] and expected resource use Eγ [

∑T−1
k=0 R(u(k))] are computed from the solution. This provides

the starting point for the use of column generation [18] for solution of (31)-(33). Column generation was used by
Yost [21, 22, 23] in his work on POMDPs for resource assignment and was also exploited in [8] for the solution
of stochastic weapon assignment problems. The main result of [21, 22, 23] is an efficient constraint generation
algorithm which solves the linear program in (31)-(33) while considering only mixtures of a very small number of
local strategies. We summarize their algorithm below.

The algorithm starts with an initial set of pure local SM policies γd indexed by d = 1, . . . , D, with known
expected classification performance Jd and expected resource use Rd. The first step in the algorithm is to solve
the linear program in (31)-(33) restricted to mixtures of the d = 1, . . . , D initial policies. Since the support of the
admissible mixed policies is restricted, the solution provides an upper bound JUB to the optimal cost. Denote by
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λD the optimal dual price of the resource constraint (33) in this solution. The constraint generation algorithm uses
this optimal dual price value in (35) to generate a new candidate local SM policy γD+1, solving N independent
POMDP problems. The combined solution of the N subproblems also provides a lower bound JLB on the optimal
performance, as described in Lemma 3.2. The key result in the constraint generation algorithm is stated as follows

Lemma 4.1 Consider the pure local SM policy generated by the solution of (35). If JLB = JUB , the optimal
solution over all mixtures of local SM policies is a mixture of the local strategies indexed by d = 1, . . . , D. Otherwise,
the pure local SM policy γD+1 can be used as part of a mixed strategy which provides a cost lower than JUB .

The proof of this result is given by Gilmore and Gomory [18]. It is based on the fact that solving the decoupled
dual problem (35) is equivalent to finding the local SM policy which has the greatest impact in reducing the cost
of the current best mixture. This leads to a dynamic column generation algorithm, as follows: if JLB < JUB,
increase the number of local SM policies considered in the LP by adding the new pure local SM policy γD+1, and
resolve the primal problem in (31-33) with support restricted on {γ1, . . . , γD+1}. For the optimal dual value, solve
the relaxed problem in (35), and compare the new upper and lower bounds. Each iteration, reduces the upper
bound, until the lower bound and upper bound estimates are close enough. By the lemma above, the optimal
solution will be obtained without enumerating all of the pure local strategies.

5 Extension to Multiple Sensors

The development of the previous sections carries through with little modification when multiple sensors are used.
The key difference is that there is a separate resource constraint for each sensor. Thus, there will be a vector of
sensor resources Rs, where s is a sensor index, thus resulting in a vector of averaged constraints (20). The Lagrange
multipliers λ will thus be vectors instead of scalars. Nevertheless, all of the lemmas and theorems can be extended
to the multisensor case with minor modifications.

The main assumption that was used in the single sensor formulation was that only one sensor action would
be performed simultaneously. While this assumption is accurate for single sensor problems, it is an optimistic
assumption for multiple sensor problems where time or duty cycle is the main resource. Multisensor problems are
often required to operate the sensors simultaneously, thereby potentially degrading the achievable performance.
However, note that the local SM strategies that are used in the lower bound computation allow for the parallel
execution of sensing actions on different objects, so as long ans the number of objects is greater than the number
of sensors, there won’t be much performance degradation from executing simultaneous sensing actions.

The column generation algorithm discussed in the previous section extends naturally to multiple sensors. When
there are L sensors, the optimal mixed local SM policies will be mixtures of L + 1 pure local SM policies. Nondif-
ferentiable optimization algorithms that maximize the dual cost can also be used in this case.

6 Examples

In this section, we present computational experiments comparing the lower bounds described in the previous section
with the Monte Carlo performance of a pair of SM feedback policies.

We consider scenarios involving a single sensor with 100 unknown objects. The objects can be of three different
types (K = 3), corresponding to cars, trucks and military vehicles. The sensor can be electronically steered to
collect images of each object; the sensor has a low resolution mode that takes 1 second per image (Ri1 = 1),
and a higher resolution mode that requires 5 seconds per image, (Ri2 = 5). Low resolution imagery is useful
in separating cars from trucks and military vehicles, but separating trucks from military vehicles requires high
resolution imagery.

In the experiments, we start with the a priori information that there are on average 10 military vehicles, 20
trucks and 70 cars in a group of 100 objects. Thus, each object has an initial probability distribution over type of
(0.1, 0.2, 0.7), where types are indexed as military vehicle, truck and car. We assume that the images generated by
the sensor are processed into binary outputs, where yij = 1 indicates that object i is estimated to be potentially a
military vehicle, and yij = 2 indicates that object i is likely not to be a military vehicle.
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The objective of the problem is to determine as accurately as possible which objects are military vehicles (type
1). Thus, the classification costs are given by d(vi, xi) as a 3 × 3 matrix where vi is the row index:

(d(vi, xi)) =


 0 MD MD

FA 0 0
FA 0 0


 (36)

where MD, FA will be variables in the experiments representing false alarm and missed detection costs. In the
experiments, FA is kept constant to 1, while MD varies from 1 to 80, indicating the relative cost of failing to
classify correctly a military vehicle.

To complete the problem specification, we need to describe the conditional probability distribution of the
measurements and the constraints on the decisions. The conditional probability distributions p(y|x, m) are given
by:

p(y1 = 1|1, 1) = 0.90 ; p(y1 = 2|1, 1) = 0.10
p(y1 = 1|2, 1) = 0.90 ; p(y1 = 2|2, 1) = 0.10
p(y1 = 1|3, 1) = 0.10 ; p(y1 = 2|3, 1) = 0.90
p(y2 = 1|1, 2) = 0.80 ; p(y2 = 2|1, 2) = 0.20
p(y2 = 1|2, 2) = 0.15 ; p(y2 = 2|2, 2) = 0.85
p(y2 = 1|3, 2) = 0.05 ; p(y2 = 2|3, 2) = 0.95

Note that mode 1 is unable to distinguish between types 1 and 2 (military vehicles vs trucks), but mode 2 can do
so.

In terms of constraints, we assume that there is a single resource pool of R seconds to be used before all objects
need to be classified. This number will also be varied across the experiments from 300 seconds to 700 seconds, to
evaluate the bounds and algorithm performance for scenarios where the amount of sensor resources ranges from
poor to rich.

In order to evaluate the utility of the lower bound, we compare the bound with the performance of two adaptive
SM algorithms: a variation of Kastella’s discrimination gain algorithm [5], which is a sequential algorithm for
selecting the best sensor mode and target on the basis of maximizing the expected entropy reduction in the
distribution of object type per unit sensor resource applied, and a dynamic SM scheduling algorithm based on
Lagrangian relaxation and POMDP approximations described in [7]. The algorithms are summarized next.

The discrimination gain algorithm of [5] starts from the sufficient statistic π(k), consisting of the conditional
probability type of each object after k sensor actions have been taken. Associated with each object is the entropy
of this distribution,

H(πi(k)) = −
K∑

j=1

πi(k) log πi(k) (37)

For each sensor mode m and each object i such that the available resources allow the use of that mode, the expected
entropy from using mode m on object i obtained from (11) as

Ey{H(πi(k + 1)|y, i, m)} =
∑

y∈Ym

P (y|i, m)H(πi(k + 1)|y, i, m) (38)

The discrimination gain algorithm computes an index for each object and sensor mode, the expected entropy gain
per unit resource, as

Gain(i, m)(k) =
H(πi(k)) − Ey{H(πi(k + 1)|y, i, m)}

Rim
(39)

and selects as its next sensing action the object and mode that has the highest Gain(i, m)(k). Once all sensing
resources are exhausted, the classification of each object is performed in a Bayes’ optimal manner to minimize the
expected classification cost.

The Lagrangian relaxation algorithm of [7] uses a receding horizon planning approach based on a POMDP
algorithm that is similar to that used for computation of the lower bound, with the additional restriction that a
maximum of three actions per object are considered. Since there is a resource constraint, the algorithm performs
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a simple line search to vary a Lagrange multiplier. For each value of the Lagrange multiplier, a local SM policy
is computed from (24) that uses a maximum of three sensing actions per object, using a variation of the Witness
algorithm [12, 13]. The algorithm selects the best local SM policy found this way that satisfies the expected
resource use bound in (20). This policy is likely to be conservative with respect to the use of resources, because to
fully utilize the available resources requires the use of mixed local SM policies. A local SM policy can be viewed
as a decision tree for each object, as in [7]. The initial action in such decision trees is deterministic, based on
the current knowledge, and the future actions are contingent on the measured values. The Lagrangian relaxation
algorithm computes the local SM policy, and schedules the initial sensing actions for each object. Once all the
initial sensing actions are observed, the probability state is updated, the resource state is decremented, and the
problem is solved again from the new probability state π and the remaining resource level. This process continues
until no sensor resources remain to take additional sensing actions, at which time all of the objects are classified
for minimum discrimination cost based on the available information.

Each algorithm was simulated for 100 independent Monte Carlo runs using the same measurement outcomes to
evaluate its average performance for three different levels of sensor resources: 300 seconds, 500 seconds and 700
seconds. Figure 1 shows the results for the two algorithms and the lower bound for 300 seconds for a range of
values of MD from 1 to 80. Figure 2 shows similar results for 500 seconds, and Figure 3 shows the results for 700
seconds. The results indicate that neither algorithm consistently performs close to the lower bound, but there are
conditions where the performance of the algorithms and the lower bounds are close. For instance, when MD is
close to 1, the costs of missed detections and false alarms is close, and policies such as maximizing information
gain as measured by entropy are near-optimal. Similarly, the performance of the Lagrangian Relaxation algorithm
is closer to the lower bound for limited sensor resources, as the limited lookahead approximation is closer to the
actual optimal number of sensor actions per object. However, there is significant room for improvement in both
policies: the discrimination gain algorithm fails to incorporate the relative values of different types of errors in its
information seeking strategy, and the Lagrangian relaxation is conservative in that it does not use mixed strategies,
and thus can underutilize sensor resources.
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Figure 1: Monte Carlo performance of algorithms and lower bound for 300 seconds of sensor resource.

It is possible to construct curves similar to a receiver operating characteristic (ROC) by varying the value of
MD. Such curves can characterize the potential tradeoffs in system performance achieved by different algorithms
for a fixed amount of sensor resources. Figures 4, 5 and 6 illustrate the resulting ROC curves for 300, 500 and 700
seconds of sensor resources for the two algorithms. Note that the performance of the two algorithms is closer than
the optimal values of Figs. 1-3 imply.

7 Discussion

In this paper, we have presented a mathematical formulation for adaptive multisensor management in problems
of object classification as a partially observed Markovian decision problem. We developed an exact stochastic
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Figure 2: Monte Carlo performance of algorithms and lower bound for 500 seconds of sensor resource.
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Figure 3: Monte Carlo performance of algorithms and lower bound for 700 seconds of sensor resource.
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Figure 4: ROC of algorithms for 300 seconds of sensor resource.
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Figure 5: ROC of algorithms for 500 seconds of sensor resource.
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Figure 6: ROC of algorithms for 700 seconds of sensor resource.

dynamic programming algorithm for solution of these problems. However, the combinatorial nature of the decision
space when multiple objects are present make the computations prohibitive even for small time horizons. We
developed an approximate formulation that provides a lower bound on the achievable performance for such sensor
management problems. This lower bound is obtained by expanding the space of admissible SM policies, replacing
a sample path resource utilization constraint by an expected resource use constraint.

The resulting lower bound formulation is an integer programming problem, that has a simple, separable dual
formulation. A key result in establishing this separability is to show that the lower bound formulation can be
solved in terms of a subset of SM policies known as mixed local SM policies, which are random mixtures of policies
that select actions on each object based only on the past information collected on that object. This results in
a hierarchical algorithm for computing the lower bound, where dual variables are selected that decouple the SM
problem into independent subproblems for each object. Each of the independent subproblems can be solved as a
low-dimension partially observed Markov decision problem. The solutions of these independent subproblems are
then used to improve the dual variables, until an optimal lower bound is obtained.

We presented experimental results that compared the lower bound with the performance of two suboptimal SM
algorithms available in the literature. The experimental results established that the performance of both algorithms
should be improved substantially in order to achieve the lower bound.

The lower bound developed in this paper can be used as a reference solution for the development of effective SM
algorithms. Furthermore, the approximation used in developing the lower bound can be used in SM algorithms
that attempt to optimize this lower bound, in order to generate practical real-time algorithms whose performance
approaches this lower bound. This requires embedding the solution algorithms for lower bounds into a real-
time algorithm such as model-predictive control, and developing a scheduling algorithm for determining when to
recomputed the SM policies using a receding horizon approach. Development of real-time SM algorithms with
performance that approaches the lower bound remains a challenge for future research.
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8 Appendix

Outline of proof of Theorem 3.1, to be expanded later
Given an SM policy γ, construct a local behavior policy ηi for each object i, which uses randomized decisions

at each decision time, such that the marginal distribution of the decisions for object i are the same under γ and
ηi, as follows:

Using policy γ, compute the marginal probability distribution of the first sensor action made on object i;
note that this may include making no sensor action at all. Use this probability distribution as the probability
distribution for selecting the first sensing decision in policy ηi. For each possible measurement value, compute
the probability distribution of the next sensor action under policy γ on object i. Use this probability distirbution
as the distribution for selecting the second sensor action on object i, conditioned on the measurement obtained
from the first action. Repeat this process until there are no sample paths generated by policy γ with subsequent
actions on object i. for the final classification decision on object i, compute the probability distribution of the final
decision after the final sensing outcome on object i, aggregating over the sample paths generated by γ.

By construction, the marginal probability of sensor actions on object i is the same under γ and ηi. Repeating
this construction for all objects i, one obtains a set of local SM random policies η = {η1, . . . , ηN} that obtain
the same expected classification performance and the same expected resource use as policy γ. From this random
policy η, one can construct a mixed local SM policy with the same property, using the standard construction for
generating mixed policies from random behavior policies in decision problems with perfect recall.

References

[1] G. E. Monahan, “A survey of partially observable Markov decision processes: Theory, models and algorithms,”
Mgmy. Sci., V. 28, p1-16, Jan. 1982.

[2] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable Markov processes over a finite
horizon” Op. Res.h, V. 21, p 1071-1088, 1973.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols. I-II, Athena Scientific, Belmont, MA 1995.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1999.

[5] K. Kastella, “Discrimination Gain to Optimize Detection and Classification,”IEEE Trans. on Systems, Man
and Cybernetics, Part A, V. 27, No. 1, Jan. 1977.
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Abstract—This paper provides an overview of the problem 

of managing sensor resources in a closed-loop sensor fusion 
system. We formulate the problem in a stochastic dynamic 
programming framework. In so doing, we expose structure in 
the problem resulting from target dynamics being 
independent and discuss how this can be exploited in solution 
strategies. We illustrate situations in which we believe such 
sensor management techniques are especially beneficial with 
two examples. One example is the management of a single 
sensor, and the other is the management of multiple sensors. 
The focus of both examples is on air-to-ground tracking. 

I. INTRODUCTION 
N this paper, we address control aspects of sensor 

fusion. For the sensor fusion problem of interest here, 
one would like to infer the state of multiple targets from 
measurements made by one or more sensors over time. 
Targets are typically located on the ground and can include 
vehicles, buildings, and other man-made objects. States of 
interest could include position, velocity, mode (e.g. on- or 
off-road), vehicle type, etc. Estimates of the states are 
inferred by fusing information from multiple sensors over 
time. The fusion engine responsible for piecing together 
information from different types of sensors will typically 
create hypotheses by associating new observations with 
previously detected targets. Alternative hypotheses are 
formulated to deal with ambiguities caused by incomplete 
or even contradictory information. New hypotheses are 
created and abandoned as data is accumulated that indicates 
the current target states have changed or resolves 
ambiguities in the past states of targets. The data can be 
generated by many different types of sensors, including 
airborne surveillance radars, video sensors, etc. The sensors 
are managed to collect the appropriate measurements. We 
view sensor resource management (SRM) as the control 
problem of allocating available sensor resources to obtain 
the best awareness of the situation.  
 

This material is based upon work supported in part by the U.S. Air 
Force under Contract Nos. F33615-02-C-1197, F33615-03-M-1515, and 
F3365-02-C-1129.  

The authors are with ALPHATECH, Inc., Burlington, MA 01803 USA. 
(phone: 781-273-3388; fax: 781-273-9345; e-mail: {michaels, gmealy, 
fpait}@ALPHATECH.com). 

Efficient sensor management requires consideration of 
the value of particular pieces of information to the fusion 
engine at each moment, so the plant to be controlled 
comprises not only the sensors and communication 
systems, but also the fusion engine that processes the 
information collected by them, as illustrated in Fig. 1. The 
plant’s inputs are precisely the requests that the sensor 
management system is allowed to make, and its outputs 
include all the information obtained from the sensors. The 
state of the plant is then the total information available to 
the fusion engine, and in principle also to the SRM 
controller, at a given time. The dimension of the state is not 
fixed: it increases as information is collected, and new 
tracks are initiated. It also decreases when new information 
results in hypotheses being resolved, and when the 
hypothesis tree is pruned of alternatives that are considered 
less likely. 

From this point of view the process model is completely 
deterministic, and full information about the process is 
available. Uncertainty enters the picture in the form of the 
actual measurements obtained by the sensors, which can be 
treated as external disturbances about which we, as 
designers of a sensor management and fusion system, have 
no control or previous knowledge. Additional disturbances 
include sensor actions over which the system has no control 
– for example, sensor systems which are allocated at a 
higher command level. Indeed, the current state of the 
fusion system represents the best possible guess about the 
actual ground truth – taking into account the information 
available and our capacity to process it. Since the estimate 
does not depend on probabilities of obtaining specific data 

Closing the Loop in Sensor Fusion Systems: 
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in the future, the system is essentially causal, a fact that 
simplifies conceptually the design of a sensor management 
algorithm. Of course the variable dimensionality of the 
state space precludes the use of textbook control design 
techniques, which are not likely to be applicable in any 
event. 

A number of different approaches to the design of sensor 
managers have been proposed in the literature. They cover 
the different aspects of the sensor management problem 
including how to manage sensors to support detecting and 
localizing [3], [7], [8], [9]; tracking [2], [8], [10], [11], 
[12]; and classifying [4], [5], [6] targets. The proposed 
solutions include policies based on information-theoretic 
optimization criteria [8], [11] as well as policies for 
optimizing more traditional criteria (e.g., track error) 
generated using stochastic optimization techniques such as 
index rules [2], [5], [12]; Lagrangian relaxation [6]; et al. 
[3], [4], [7], [9], [10]. In this paper, we overview some of 
the technical issues in sensor management including 
structure in the problem that we believe can be exploited 
when designing solution techniques. This is discussed in a 
stochastic dynamic programming framework in Section II. 
In Section III, we illustrate situations in which we believe 
sophisticated sensor management strategies are especially 
beneficial with two examples. One example is the 
management of a single sensor, and the other is the 
management of multiple sensors. The focus of both 
examples is on air-to-ground tracking. 

II. APPROXIMATE STOCHASTIC DYNAMIC PROGRAMMING 
APPROACH 

We have conceived designs to the sensor management 
control problem in the framework of stochastic dynamic 
programming. A typical formulation starts with the system 
state at time t, x(t). The state includes all target true 
positions and types. A control at time t, u(t), specifies a 
measurement of the system to be taken. The measurement 
may be corrupted by a stochastic disturbance v(t) and may 
be delayed so that it is not realized until a later time. The 
measurement process is given by the function h, so that 
 ( ) ( ( ), ( ), ( ))yy t h x t u t v t=  (1) 

is the measurement realized at time ty>t. The information 
about the system at time t is summarized in the information 
state I(t), consisting of all past measurements and controls 
 ( ) { ( ) : } { ( ) : }y y u uI t y t t t u t t t= ≤ ∪ < . (2) 

The delay in realizing the measurement, ∆y, taken at time t, 
is a function of the information state, control, and 
stochastic disturbance at time t so that 
 ( ( ), ( ), ( ))y yt t I t u t v t= + ∆ . (3) 

Control decisions occur at discrete instants in time, tu,0, 
tu,1, tu,2,…. Following time tu,i, the next control is executed 

after the delay of ∆u, which is a function of the information 
state, control, and stochastic disturbance at time tu,i. Thus, 
 , 1 , , , ,( ( ), ( ), ( ))u i u i u u i u i u it t I t u t v t+ = + ∆ . (4) 

The control is chosen from a constraint set U(I(t)) 
according to a control law, µ, which is a function of the 
information state and time. Thus, 
 , , ,( ) ( ( ), )u i u i u iu t I t tµ= . (5) 

The sensor management policy is the collection of these 
control laws 
 { ( ( ), )}I t tπ µ= . (6) 
Rewards are achieved upon executing the policy by 
attaining particular information states. The reward for 
attaining information state I(t) is given by R(I(t)). These 
rewards are discounted by the factor e-γt and integrated 
across time to yield an expected reward for executing 
policy π from the information state I(0) of 

 
0

( (0)) ( ( ))J I E e R I dγτ
π τ τ

∞
−= ∫ . (7) 

The optimal sensor management policy π∗ is the one that 
maximizes (7) over all policies π. The optimal policy can 
be characterized in terms of Bellman’s equation [1]. In this 
context, the equation states that the expected reward for the 
optimal policy satisfies 

 

( )( )

( ( ), ( ), ( ))

*

( ) ( ( ))
*

( ( ))
( ( )) max E

( ( ), ( ), ( )

ut I t u t v t

t
u t U I t

u

e R I d
J I t

J I t I t u t v t

γτ τ τ
+∆

−

∈

 
+ 

=  
 + ∆ 

∫ . (8) 

The first term on the right-hand side is the reward accrued 
until the next decision time after t. The second term is the 
expected reward after that time accrued from the resulting 
information state. The policy  

 { }* *( ( ), )I t tπ µ=  (9) 

is optimal provided that the argument of the maximum in 
(8) is given by µ*(I(t),t) for all I(t) and t (the assumption 
here is that the set of candidate controls is compact, if not 
finite, so that the maximum is well-defined). Several 
computational techniques, including both policy and value 
iteration, exploit the characterization in (8) to compute 
policies. The difficulties in exploiting this characterization 
are tied to the size of the state space, the set of candidate 
controls, and the set of stochastic disturbances. In 
particular, Bellman’s equation characterizes J* for all 
possible information states I(t) by evaluating the right-hand 
side of (8) for all possible controls u(t), taking an 
expectation over all disturbances. This can be difficult to 
apply when the size of the sets involved is large. 

However, there is special structure that can be exploited. 
Consider the following special case in which the system 
state is the aggregate state of n targets 
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 1( ) { ( ), , ( )}nx t x t x t= …  (10) 
whose individual states xi(t) are independent and evolving 
in time as Markov processes. This would be the case, for 
example, when tracking independent, isolated targets. 
Moreover, suppose the measurements of the system state 
are conditionally independent given target state and sensor 
controls so that one can write 
 ( ) { ( ) : 1 }iy t y t i n= = …  (11) 
where an individual measurement can be written 
 ( ) ( ( ), ( ), ( ))i i i iy t h x t u t v t=  (12) 
for independent stochastic disturbances vi(t). Independence 
introduces considerable structure; however, the problem is 
still complex since the information states of the system do 
not have similar independence properties. For example, one 
can consider partitioning the information state as 
 1 2( ) ( ) ( ) ( ) ( )n uI t I t I t I t I t= ∪ ∪ ∪ ∪…  (13) 
where 
 ( ) { ( ) : }j j y yI t y t t t= ≤  (14) 

and 
 ( ) { ( ) : }u u uI t u t t t= < . (15) 
However, the future information states Ij(τ) for τ>t are 
neither independent nor conditionally independent given 
the current control u(t) and system state x(t). The reason is 
that the information states of targets are coupled through 
the control decisions. Thus, one cannot rely on methods for 
computing sensor management policies that require the 
independence of the targets’ information states. 

One approach we have used to develop sensor 
management policies that exploit the special structure is the 
application of index rules [1], [13]. Index rules are optimal 
for the following type of sensor management problem. 
There are n targets, whose states are independent. A 
measurement can be made of only one target at a time, and 
the measurement is of fixed duration, i.e. ∆y and ∆u are 
constants and ∆y<∆u. The state of the target can only 
change at instants when a measurement is made of it (e.g. 
the target state may not be changing, but the information 
state of the target may be as more measurements are 
acquired). In addition, the mission must be formulated such 
that the reward R(I(t)) accrued in a particular information 
state at time t depends only on the information state Ij(t) of 
the target j being measured at that time. In this case, the 
optimal policy determining the next target at which to look 
from information state I(t) is given by an index rule, which 
has the form 
 

{1, , }
( ( )) arg max ( ( ))j j

j n
I t m I tµ

∈
=

…
 (16) 

where mj(Ij(t)) is the index of the target. The index for 
target j can be represented in terms of a single target 
problem. We have been able to develop solutions to these 

single target problems and apply the resulting index rule 
policy. Although the assumptions required for the index 
rule to be optimal are often violated in sensor management 
problems (e.g. one may be able to measure the state of 
more than one target at a time), we have found that index 
rules may still be optimal or, at least, applicable as part of 
heuristics [5], [14]. 

Another approach we have used to develop sensor 
management policies is to use limited lookahead algorithms 
[1]. A limited lookahead policy is one for which the control 
action is chosen as the solution to 
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where 
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for k=1,…,N-1 where N is the number of steps of 
lookahead and the terminal reward NJ�  is chosen to 
approximate the expected reward. The algorithm for 
computing the limited lookahead policy is effectively 
enumerating possible controls and outcomes over N steps, 
calculating a reward for the resultant state based on an 
approximation, and selecting the control that yields the best 
outcome. Structure in the problem can be exploited in the 
construction of NJ� . As noted previously, the problem has 
special structure in that individual target state evolutions 
are often independent. One approach to exploiting this is to 
use an approximate terminal reward that is separable so that 

 ,
1

( ( ) ( ))
n

N N j j u
j

J J I t I t
=

= ∪∑� �  (19) 

for per-target rewards ,N jJ� . These can be constructed a 

number of different ways. One technique we have used is 
to calculate the expected rewards associated with a single-
target form of the problem, motivated by the index 
definition in [13]. Essentially, we use a function of the 
index mj as the approximation ,N jJ� . We have also 

explored other methods for constructing NJ�  including 
rollout and heuristic methods. In each case, we have tried 
to exploit structure in the problem such as the existence of 
independent target evolutions. 

III. APPLICATION EXAMPLES 
What follows are two examples of how we have been 

applying these techniques to sensor management problems. 
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The examples outline how we have applied the stochastic 
control techniques described above to the development of 
sensor managers and illustrate areas where we have found 
distinct advantages to using these techniques. In order to 
illustrate the breadth of applicability, the examples are 
drawn from two different types of problems. The first is the 
control of a single sensor; the second is the control of 
multiple, distributed sensors. 

A. Control of a Single Sensor 
In this first example, consider managing a single sensor 

air-to-ground radar tracking system. The sensor, tracker, 
and sensor manager are all colocated on the sensing 
platform. As a result, the latencies in transmitting 
information between components are minimal; so, the 
sensor manager is generating sensor controls on a fast time 
scale. In this context, two scenarios in which a stochastic 
control approach to sensor management has advantages are 
when there are differentiated targets and when the sensor 
mode must be matched to target state. 

 An example of the second scenario occurs when using 
an airborne radar to track ground targets. In the radar’s 
standard ground moving target indicator (GMTI) mode, 
only targets moving against the background can be 
observed. However, the radar may have another mode such 
as a fixed-target indicator (FTI) mode, with which only 
stopped targets may be observed. In order to track the 
targets, the radar must be managed to periodically revisit 
targets in the appropriate mode to update the estimate of 
their position. Too long a period without observing the 
target will lead to the tracking system dropping the track. 
Longer track lifetimes are desirable. The sensor 
management problem is thus one of selecting the sequence 
of targets at which to look with the radar as well as the 
mode to use. One source of complexity in the problem is 
that targets may not be detected even if the appropriate 
mode is used. Thus, the sensor management policy must 
appropriately hedge to select the best mode based on past 
detections. Another potential source of complexity in the 
problem is that the measurements are taken over different 
durations ∆y in the different modes. Thus, the policy must 
appropriately hedge in time so that longer duration modes 
are not chosen at poor instants in time. To address these 
two issues, we have developed a limited lookahead policy, 
of the form described by (17) and (18). The policy allows 
one to account for past detections as well as for predictions 
of future rewards that depend on the different measurement 
durations in each sensor mode. Initial results of 
performance are illustrated in Fig. 2. Here, a simple 
simulation is used to compute the average track lifetime for 
two different sensor policies. One is the limited lookahead 
policy; the other is a policy that only uses the GMTI mode. 
The simulation includes synthetic target motion, a simple 
tracker, and a simple sensor model. For this sensor model, 

the measurement durations are the same for the two 
different modes. The results indicate that constructing a 
sensor policy that takes advantage of the FTI sensor mode 
has the potential to provide significant improvements in 
track lifetime. More realistic simulations would be required 
to determine the precise benefit. 

 The other example of a scenario for which we have 
noted benefits of sensor management is one in which there 
are differentiated targets. Specifically, a subset of the 
tracked targets is designated by a user to be higher priority 
than the others. The high-priority targets could have 
different tracking requirements than the low-priority 
targets. For example, they may have more stringent track 
accuracy requirements. The specific context considered 
here is air-to-ground tracking with a GMTI radar. Thus, 
there is no mode selection problem for the sensor manager, 
as in the previously discussed scenario. However, the 
problem of selecting the sequence of targets at which to 
look is more complex. The sensor management policy must 
account for the different numbers of high-and low-priority 
targets, the different tracking requirements, and the current 
state of tracks to generate a control sequence that generates 
measurements of targets to meet the tracking requirements. 
Some initial, simple simulations indicate that significant 
benefits can be realized from a good sensor management 
policy. In particular, we simulated a scenario with a high-
priority target and several low-priority targets. Two limited 
lookahead sensor management policies were evaluated. 
One used one step of lookahead (N=1), and the other used 
two steps (N=2). Both policies performed equally well on 
the high-priority target. However, the two step lookahead 
policy achieved track accuracy requirements on the low-
priority targets 86% more of the time than the one step 
lookahead policy. This suggests that significant benefits 
can be realized by appropriately managing the sensor to 

0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

10

20

30

40

50

Fraction of Time the Target Is Stopped

%
 T

ra
ck

 L
ife

tim
e 

Im
pr

ov
em

en
t

Performance Gain from Managing Sensor Modes   

Fig. 2. The curve plots the fractional increase in track lifetime for using a 
limited lookahead sensor policy that controls sensor mode over a simple 
single mode policy. In this example, a different sensor mode must be used 
to observe the target when it is stopped than when it is moving. However, 
the sensor will only detect a target in the proper mode with some 
probability less than 1. 
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track differentiated targets. We are currently planning to 
evaluate the benefits in this type of scenario with a more 
realistic simulation. 

B. Control of Multiple, Distributed Sensors 
The second example differs from the previous one in two 

key respects. The first is a decomposition of the sensor 
resource management function into two parts: an 
information valuation step followed by a sensor allocation 
calculation (i.e., constructing a sensor scheduling plan that 
maximizes the value of collected information subject to 
constraints on sensor availability and routing). The second 
is the introduction of multiple sensors into the problem. In 
this example, we focus on the information valuation aspect 
for multiple sensors of differing capability. 

As described above, the fusion state is determined by 
both the stochastic evolution of the real system and the 
stochastic results of sensor measurements of that system. 
Different sensor tasking choices will thus result in different 
evolutions of the system’s state. The decision becomes one 
of determining the optimal valuation of sensor resources 
with respect to their impact on the fusion process. While 
there are multiple reasons for requesting particular sensor 
tasks, the approach described herein addresses an important 
subset – requesting sensor tasks that will either improve 
target track estimates or remove association ambiguity in 
the current or near-future fusion state. To emphasize this 
aspect of the approach, the algorithm has been termed 
FIND (Fusion Information Needs Determination). 

The goal of the FIND algorithm is to maximize the time 
discounted reward J in (7) for the special case where the 
time between control actions ∆u is constant so that one can 
rewrite it for a constant α as 

 
0

( ( ))t

t
J R I tα

∞

=

= ∑ .  (20) 

The reward function R has the form 
 ( ( )) ( ( ) ( ))j j u

j

R I t R I t I t= ∪∑  (21) 

where the index j in this case ranges over the hypothesis 
space of the fusion system. The track hypothesis space 
contains information about the relative certainty of 
different data associations that are not reflected in the 
single global set of track estimates normally output. The 
individual rewards Rj are a function of a set of goals and 
priorities, specifically: 

1. The required kinematic accuracy (expressed as 
tracking uncertainty, ΣGoal) for tracking confirmed 
targets 

2. The required classification accuracy (probability of 
correct classification, PGoal) for declaring high 
confidence identification of a target 

3. The relative priorities for meeting the kinematic and 

classification accuracy goals, both singly and in 
combination, for each of the expected target types 

4. Indications of time-criticality of the information need. 
Given this information, we can specify the reward for a 

given hypothesis Hj. The reward takes on differing values 
depending upon which combination of the goals is 
satisfied. For hypothesis Hj, with associated kinematic 
uncertainty σj

2(t) (the maximum eigenvalue of the position 
error covariance) and classification probabilities pj(t) 
(defined as the vector of probabilities that the target is of a 
given type), the individual reward at time t is given by: 
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Different candidate sensor tasks are valued using a 1-
step limited lookahead approach given by (17) and (18). A 
heuristic approximation of the terminal award is given by 
the separable function  
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where the summation is over the different hypotheses 
within the track hypothesis space. The FIND values are 
computed as the increment in the expected reward of the 
one-step lookahead for a set of candidate sensor tasks 
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 (23) 

Since FIND does not have information as to which specific 
sensors are available, the FIND value is computed for a set 
of candidate sensor controls u parameterized by hypothesis 
as well as a range of kinematic measurement accuracies 
and classification abilities. 

The FIND valuation is used to determine the benefit 
derived from tasking a sensor to provide information on a 
specified hypothesis. In practice, these valuations are rank-
ordered and filtered such that only a subset of the possible 
hypotheses is considered in the sensor allocation 
calculation. This portion of the solution balances the set of 
valuations (which vary with sensor performance) against 
competing requirements (e.g., requests produced at a higher 
command level) to produce a multiple sensor tasking plan. 

To illustrate the performance of the FIND algorithm and 
demonstrate its utility for identifying (and quantifying) the 
benefits of candidate sensor taskings, consider the simple 
scenario. It begins with a single, stationary, high priority 
target. Initial information about the target consists of good 
classification, but poor kinematic information. A short time 
later, two distinct tracks are reported by an MTI system. 
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While these reports provide good kinematic information, 
target classification knowledge is poor. The problem 
becomes one of identifying which, if either, of the moving 
targets is the original high priority one. 

Three approaches for generating sensor task valuations 
were examined: 

1. Raster which simply tasks the sensor(s) to address 
each hypothesis in turn 

2. Myopic which implements a 1-step lookahead, greedy 
approach. Defaults to Raster if no sensor task is 
expected to achieve a goal 

3. FIND which implements a 1-step lookahead and uses 
the heuristic terminal reward in (22) to approximate 
the long-time reward. 

Two sensors are available for tasking. Nominally, the first 
provides accurate kinematic information but no 
classification data, while the second provides classification 
information but has a poorer (i.e., larger) kinematic 
uncertainty. Each is assumed to report the results of the 
tasked observation. The FIND problem is to produce a 
sensor tasking (or set of sensor tasks) that resolves the 
inherent ambiguities in the hypothesis space while 
minimizing the number of such tasks. This is equivalent to 
producing a set of recommended sensor taskings that 
results in the best (minimum number of observations) 
solution to achieving the target tracking and classification 
goals. 

Fig. 3 illustrates how the above algorithms perform for 
one set of evaluation conditions. The curves are the 
probability that the tracking and classification goals are 
exceeded as a function of the number of recommended 
sensor taskings. The results shown in the figure are 
representative; the FIND algorithm is clearly superior to 
the other approaches. 

The valuations provided by the FIND algorithm can be 
viewed as providing different types of requests to improve 
fusion performance. The highest value requests are those 
which remove ambiguity in report associations to high 
priority targets. Requests that confirm ID and track likely 
high priority targets typically have medium values, while 
those with the lowest value are requests to ID unknown 
targets and are usually ignored unless no higher value tasks 
are requested for a given sensor resource. 

IV. CONCLUSION 
The examples in the previous section highlight issues in 

sensor management and indicate how one could exploit 
structure resulting from independent target motions to 
develop a sensor management policy.  The results indicate 
that such policies will appropriately allocate sensor 
resources to improve the resolution of hypotheses in multi-
target tracking systems and, specifically, to improve the 
surveillance of high-priority targets.  Further 
experimentation is required to determine the precise degree 

to which benefits can be realized in practice. Planned 
development of high fidelity simulations will allow us to 
perform the necessary experiments. We expect results will 
indeed confirm that significant benefits can be realized.  
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Fig. 3. FIND significantly reduces the number of sensor taskings required 
to achieve performance goals. 

 

93



Farsighted Sensor Management Strategies for Move/Stop 
Tracking 

 
Angelia Nedich, Michael K. Schneider, and Robert B. Washburn 

 
BAE Systems 

6 New England Executive Park 
Burlington, MA, USA. 

{angelia.nedich, michael.k.schneider}@baesystems.com 
 

Abstract – We consider the sensor management problem 
arising in using a multi-mode sensor to track moving and 
stopped targets. The sensor management problem is to 
determine what measurements to take in time so as to 
optimize the utility of the collected data. Finding the best 
sequence of measurements is a hard combinatorial 
problem due to many factors, including the large number 
of possible sensor actions and the complexity of the 
dynamics. The complexity of the dynamics is due in part 
to the sensor dwell-time depending on the sensor mode, 
targets randomly starting and stopping, and the 
uncertainty in the sensor detection process. For such a 
sensor management problem, we propose a novel, 
computationally efficient, farsighted algorithm based on 
an approximate dynamic programming methodology. The 
algorithm’s complexity is linear in the number of targets. 
We evaluate this algorithm against a myopic algorithm 
optimizing an information-theoretic scoring criterion. 
Our simulation results indicate that the farsighted 
algorithm performs better with respect to the average 
time the track error is below a specified goal value.  

Keywords: Tracking, sensor management, farsighted 
strategy, stochastic dynamic programming. 

1 Introduction 
We consider the problem of sensor management arising in 
tracking multiple targets with a multi-mode sensor. The 
sensor management problem is to determine which target 
to be observed by the sensor and which sensor mode to 
use. These decisions are to be made over time so as to 
optimize the utility of the collected measurements.  An 
example of the sensor management problem of interest is 
that of managing a multi-mode airborne radar to track 
moving and stopped ground targets .  Specifically, the 
radar may have two modes, a moving target indicator 
(MTI) mode for observing moving targets and a fixed-
target indicator (FTI) mode for observing stopped targets. 
Each mode is characterized by the uncertainties in the 
target detection and measurement processes as well as the 

measurement collection time. These may all be different in 
the different modes. The radar controls include which 
mode to use as well as where to point the radar for a 
particular measurement.  The objective is to collect enough 
data on target position over time to meet desired track 
error goals .  Determining how to optimally manage a 
sensor over time to meet such objectives is a hard 
combinatorial optimization problem. The problem 
complexity stems from many factors, including the large 
number of possible sensor actions as well as the 
complexity of the dynamics.  The complexity of the 
dynamics results partially from the radar dwell-time 
depending on the radar mode, targets randomly starting 
and stopping, and the uncertainty in the sensor detection 
process.  As a result of these factors , computing optimal 
sensor management strategies is often infeasible.  

   Various strategies have been proposed for sensor 
management including strategies that use information-
theoretic scoring criterions such as those developed in  [1] 
for tracking, and [2] and [3] for collaboration of networked 
sensors.  Some farsighted strategies have been developed 
in [4], [5], and [6] for tracking. More specifically, the work 
in [6] evaluates some farsighted strategies and compares 
them to a myopic strategy. A farsighted strategy is one 
where the sensor manager considers the benefits resulting 
from a sequence of (two or more) sensor actions, while a 
myopic strategy is one where the sensor manager 
considers only the benefits resulting from a single sensor 
action. In [6], the evaluations of these two kinds of 
strategies are performed on the problem of managing a  
single mode sensor to track targets that may become 
occluded. 

 The work presented in this paper is also motivated 
by an interest in comparing the benefits of farsighted 
strategies with that of myopic strategies. In contrast to 
previous work, the investigation presented here considers 
a novel farsighted algorithm and problem for evaluation.  
In particular, we consider the problem of move/stop 
tracking outlined above, which has not previously been 
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considered for evaluating the relative benefits of 
farsighted sensor management strategies.  For this 
problem, we develop a novel, efficiently computable 
farsighted sensor management strategy.  

 In the remainder of this paper, we present the 
algorithms for evaluation and the results of that 
evaluation. In Section 2, we describe the farsighted sensor 
management strategy, which is based on an approximate 
stochastic dynamic programming methodology. In Section 
3, we introduce a myopic sensor management algorithm 
that serves as a baseline for the evaluation of the 
farsighted sensor management algorithm. In Section 4, we 
report some simulation results comparing the two 
algorithms. In Section 5, we give some concluding remarks.  

2 Farsighted Strategy  
Our development of the farsighted strategy is based on a 
formulation of the sensor management problem of interest 
as a stochastic dynamic program. This formulation is 
discussed in the following section.  

2.1 Formulation As a Dynamic Program 
We formulate our sensor management problem as a 
continuous-time stochastic dynamic programming problem 
with an infinite horizon (cf. [7]). The system to be 
controlled is the tracker, whose state x(t) at time t is 
composed of the target track states xi(t), i.e.,  

( )1( ) ( ),..., ( ) ,nx t x t x t=  

where n is the number of targets. The target track state xi(t) 
is given by 

( )( ) ( ), ( ), ( ) ,i i im isx t S t p t p t=  

where Si(t) is the position-error covariance for target i, and 
pim(t) and pis(t) are the probabilities that the target is 
moving or is stopped at time t, respectively. These 
probabilities can be estimated, for example, by computing 
the target-mode likelihoods based on the target detection 
history.  

 The candidate controls include the location of a 
sensor dwell and the mode of the sensor.  For clarity of 
exposition, we assume that the sensor may observe only 
one target at a time . In particular, we say that the sensor 
observes target i when the sensor is actually pointed at 
the estimated position of target i. Therefore, at any state 
and time, the set of candidate controls U consists of 
target-radar mode pairs, i.e., 

{ }( , ) | {1,..., }, { , } .U i i n MTI FTIµ µ= ∈ ∈  

This set can be modified to include other candidate 
locations to accommodate a more general case when the 
sensor may observe more than one target at a time. 

 Given that a control u(tk) has been selected at time tk, 
the new state of the system depends on the control u(tk) 
and the resulting measurement outcome.  The dynamics of 
the state are given by a track filter, such as an interacting 
multiple-model (IMM) filter (see [8]). To simplify the 
notation, for the target-state and system-state evolution, 
respectively, we will write   

( )( ) ( ), ( ), , ,i i k k kx t f x t u t w t t= −  

( ) ( ( ), ( ), , ),k k kx t F x t u t w t t= −  

where w is the detection outcome with w=1 or w=0 
indicating detection and missed detection, respectively.  

 Now, we define a reward ri for each target i, which is 
nonzero only when the target-track error is sufficiently 
small. In particular, for a specified track error goal Gi 
associated with target i, the reward ri is nonzero if the 
mean-squared track error, the trace of the error covariance, 
is below Gi. Otherwise,  ri is  zero. Formally,  

if

otherwise

  ( ( )) ,
( ( ))

0   ,           
i i i

i i

V Tr S t G
r x t

≤
= 


           (1)     

where Vi is the priority value for target i and Tr(·) denotes 
the trace. In essence, the reward is collected only when the 
track accuracy is high enough. The total reward R at state 
x(t) is the sum of the target rewards, 

1
( ( )) ( ( )).

n

i i
i

R x t r x t
=

= ∑  

The sensor manager goal is to select the sequence of 
controls {u*(tk)|k=0,1,…} maximizing the expected reward 
accumulated over time. Formally, the sensor manager is 
solving the following problem 

 0{ ( )| 0,1...}
0

max ( ( )) | (0) ,
k

t

u t k
E R x t e dt x xγ

∞
−

=

 
= 

 
∫  

where ? is a decay factor modeling the information 
depreciation in time and x0 is the initial state of the system.  
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 According to dynamic programming theory, there is 
an optimal policy p* specifying an optimal control for each 
state. Furthermore, every optimal policy satisfies Bellman’s 
equation: 

*

*

0

( )

max ( ( )) ( ( , , , )) ,
u

u

t
tt

uwu U

J x

R x t e dt e E J F x u w tγγ −−

∈

=

  + 
  
∫

 

where tu is the time needed to complete the sensor task 
specified by a control u, and J*(x) is the expected reward 
accumulated under the optimal policy p* when the system 
starts at state x. Note that, to find an optimal policy using 
Bellman’s equation, the equation has to be solved for all 
states x. When the number of states is large or the number 
of control choices is large, solving Bellman’s equation is 
computationally prohibitive due to the combinatorial 
explosion of state-control combinations. This is exactly the 
case with our sensor management problem, where the 
computational complexity grows exponentially with the 
number of targets, the number of target track states, the 
number of sensor modes, and the number of sensor dwells. 
For example, the number of target track states grows 
exponentially with the number of sensor dwells, and can 
be large even for a single target. Many different 
techniques for generating suboptimal policies have been 
developed. We consider a rollout-based approach, as 
discussed in the following section.  

2.2 Rollout Strategy 
The rollout strategy is an approximate dynamic 
programming technique (see [7], Vol. 1, p. 314). This 
technique evaluates a control action by estimating near 
and far-future benefits resulting from the control choice at 
the current state. The near-future benefits are computed 
by predicting the action consequences  over the look-
ahead planning stages. The far-future benefits are the 
benefits accumulated after the look-ahead stages. In the 
rollout approach, the far-future benefits are computed as 
the benefits resulting from applying a fixed policy.  This 
approach as illustrated in Figure 1.  

 

Current State  + Jπ 

Lookahead benefits 
Benefits of 
fixed policy π 

- Near future benefits - Far future benefits 
 

Figure 1. The rollout approach evaluates near and far-
future benefits of an action taken at the current state. 

 Formally speaking, the rollout approach is one 
policy-iteration step performed on some fixed policy p. In 
particular, for a fixed policy p, one step of the policy-
iteration consists of solving the following problem: 

0

max ( ( )) ( ( , , , ))
u

u

t
tt

uwu U
R x t e dt e E J F x u w tγγ

π
−−

∈

  
+ 

  
∫

(2) 

where Jπ is the expected reward of policy π. The resulting 
overall policy is a one-step improvement of the original 
policy p. Thus, it is desirable that p is  near-optimal. 
Furthermore, it also desirable to select p so that the 
expected policy-reward Jp is computable. 

In the rollout-based algorithm, the sensor manager 
selects a sensor action by solving (2). As a first step 
toward solving this  maximization problem, we discretize the 
time by letting  

t k = kδ    for  δ > 0  and   k = 0,1, 2,… . 

Then, relation (2) reduces to  

1

0
max ( ( )) ( ( , , , ))

u

u

u

K
Kk

k Kwu U
k

R x E J F x u wπα τ α τ
−

∈
=

 
+ 

 
∑

(3) 

where Ku is the sensor dwell-time (in units of δ ) for the 
sensor action specified by control u, and a∈(0,1) is a 
discount factor  given by 

a = e-?d. 
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Recall that for any control choice u=(j,µ), the detection 
outcome w can take value 1 or 0. Thus, the expectation in 
relation (3) reduces to  

( ( , , , ))

( ) ( ( , ,1, ))

1 ( ) ( ( , ,0, )),

u

u u

u u

Kw

j K j K

j K j K

E J F x u w

p J F x u

p J F x u

π

µ µ π

µ µ π

τ

τ β τ

τ β τ

=

 + − 

 

where ( )
uj K

p
µ

τ  is the probability that target j is in mode µ 

at the time of the observation, and ßjµ is the detection 
probability for radar mode µ when observing target j.  

 To accommodate efficient computation of the 
expected policy-reward, our sensor resource manager uses 
a tracker predictive model approximating the tracker. This 
model is based on the following: 

Assumption: 

1. Each target is either moving or is stopped, but the 
target motion state is unknown. 

2. A target track is dropped if the target is  not detected.  

Assumption 1 is realistic for cases where the changes in 
target motion take longer than planning and executing a 
sensor action. Assumption 2 is more conservative than 
necessary (a target track may continue even with one or 
more missed detections). However, the resulting model is 
useful for planning purposes. Furthermore, these 
assumptions restrict the branching of the control-outcome 
space of any policy. This allows us to evaluate our 
farsighted policy without using costly Monte Carlo 
simulations. 

 We now discuss the choice of policy π. Motivated 
by the desire to have a good policy whose expected 
reward can be computed for any initial state, we consider a 
policy π  having the following properties: 

1. A target is observed with either MTI or FTI mode at all 
times.  

2. Initially, the targets are sorted in a list according to 
some criterion. Then, these targets are observed 
according to the list as follows: each target is observed 
until either its track error decreases below the desired 
value or its track is dropped. If the track error is 
decreased below the desired value, the target is 
revisited at the rate that keeps its track error below the 
desired value. 

We assume that the sensor can revisit the targets with  
rates that keep the track errors below the desired values. 

 We next describe a procedure for selecting a radar 
mode and a procedure for ordering the targets in a list. In 
particular, let x be the system state when the policy π is to 
be applied, i.e.,  

1 with( ,..., ) ( , , ) , 1,..., .n i i im isx x x x S p p i n= = =  

From the current target-mode probabilities pim and pis, we 
determine the most likely target modes 

{ }( ) argmax , .im isi p pµ =  

Under the policy π, the radar always uses mode µ(i) when 
observing target i. Given the current target covariances Si, 
i=1,…,n, the policy π sorts the targets according to the 
vicinity of their track errors to the desired goal, i.e., the 
targets are sorted according to the values Tr(Si)/Gi for 
i=1,...,n. This  order is motivated by that generated 
according to an index-rule policy such as that discussed in 
[5].  

 We now evaluate the policy reward Jπ. We note that, 
even for our simple tracker predictive model, it is still 
computationally prohibitive to exactly evaluate the reward 
Jπ due to coupling of the target dynamics under the policy. 
We thus approximate the policy reward Jπ assuming that it  
is separable across the targets, i.e.,  

1
1

with( ) ( )   ( ,..., ).
n

i n
i

J S J S S S Sπ
=

= =∑  

For notational convenience, without loss of generality, we 
may assume that the order of the targets is 1, 2,…,n  when 
they are sorted according to values Tr(Si)/Gi.  Suppose 
that the mean-squared errors for the first ? targets are 
within their goal region, i.e., 

for( )        1,..., .i iTr S G i κ≤ =   

For these targets, the reward J(Si) is the reward collected 
during the revisit period, i.e.,  

for( )       1,..., ,i iJ S L i κ= =   

where Li is the long-term reward accumulated during target 
revisits (to be discussed shortly).  

 Consider now the targets i=?+1,..,n. Their mean-
squared errors exceed the desired goals. Under the policy 
π  (property 2), each of these targets is observed until the 
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track is dropped or its mean-squared error decreases below 
the value Gi. However, it can be seen that the accumulated 
reward is nonzero only if the mean-squared error decreases 
below the value Gi. Let T?+1 be the observation time 
required to decrease the trace Tr(S?+1) below value G?+1. 
Then, we have  

( ) 1

1 1, ( 1) 1( ) .
T

J S Lκ

κ κ µ κ καβ +

+ + + +=  

While observing target ?+1, the covariances of targets 
?+2,…,n evolve to S?+2(T?+1),…,Sn(T?+1). Let T?+2 be the 
observation time required to decrease the trace of 
covariance S?+2(T?+1) below value G?+2. Then, we have  

( ) 1 2

2 2, ( 2) 2( ) .
T T

J S Lκ κ

κ κ µ κ καβ + ++

+ + + +=  

Continuing in this manner, we can see that  

( ) 1 2 ...
, ( ) for( )  1,..., .iT T T

i i i iJ S L i nκ κ

µαβ κ+ ++ + +
= = +  

where Ti is the time required to decrease the trace  of 
Si(T?+1+…+Ti-1) below goal value Gi. 

 We next  discuss the long-term rewards Li 
accumulated during periodic revisits of the targets. As 
mentioned earlier, once the traces of error covariances for 
all targets decrease below their corresponding goal values, 
the targets are revisited at a constant rate. Under 
Assumption 1, the target modes do not change in time, so 
the error covariance of a stopped target does not change 
in time. Therefore, the stopped targets with error traces 
below their corresponding goals are not revisited, and the 
long-term reward Li is given by 

0
for a stopped target .

1
t i

i i
t

V
L V iα

α

∞

=

= =
−∑    

We focus now on the long-term reward Li associated with 
a moving target i. Let M be the length of the revisit interval 
required for keeping the trace of the target i error 
covariance below the desired value. Without loss of 
generality we may assume that the sensor revisits the 
target i at times t=jM, j=0,1,…. During the revisit process, 
the reward is collected for as long as the target is detected, 
and the reward ceases when the target is  not detected (cf. 
Assumption 2). Thus, during the revisit stage, the reward 
is collected per unit of target lifetime. The target lifetime is 
a random variable taking value jM with probability 

( )1

, ( ) , ( )1j

i i i iµ µβ β− − . Hence, if the lifetime takes value jM, 

then the collected reward G(jM) is equal to 

( )( 1) 1( ) 1 ... ,
1

jM
M j M

MjM
α

ρ α α ρ
α

− −
Γ = + + + =
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where ? is the reward accumulated between any two 
consecutive revisits and is given by 

( )1 11 ... .
1

M
M

i iV V
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ρ α α
α
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= + + + =

−
 

The long-term reward Li is equal to the expected reward G 
collected during the target lifetime, so that by computing 
the expected value of G(jM), we can see that  

( )
( ) ( ), ( )

for a moving target
1

 .
1 1

M
i

i M
i i

V
L i

µ

α

α α β

−
=

− −
 

 Concluding this section, we note that the preceding 
algorithm description involved only two sensor modes 
mainly for the clarity of exposure. The algorithm can be 
easily extended to a more general case involving an 
arbitrary number of sensor modes. Note that, the 
preceding procedure for approximating the expected 
reward Jπ  has polynomial complexity in the number of 
targets, in contrast to the exponential complexity required 
to compute the reward Jπ exactly. 

3 Myopic Strategy 
Here, we present a myopic sensor management algorithm 
that serves as a baseline for evaluating the performance of 
the farsighted algorithm discussed in the preceding 
section. We do not consider a myopic approach optimizing 
the dynamic programming formulation presented in the 
previous section. This is  because the reward function has 
a threshold structure so that no value may be realized from 
a single action.  Instead, we consider an algorithm that 
evaluates sensor actions based on the expected decrease 
in the entropy of the target-track errors per unit of time. 
The algorithm is myopic since the changes in the entropy 
are computed only for a single sensor action.  

 Specifically, the entropy hi for target i at state 
xi=(Si,pim,pis) is given by 

[ ]( ) log 2 ( ) ,
2

i
i i c i

V
h x eTr Sπ=                (4) 

where Vi is the priority of target i and pc˜3.14 (see [9], 
Chapter 9). As seen from this relation, the target entropy is 
measured by the target-track error in log-scale. The 
entropy H of the system at state x is defined as the sum of 
the target entropies hi: 
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=

= =∑          (5) 

Let tk be the current time and x(tk) be the current state. 
Given a control u is selected at time tk,  the expected 
entropy decrease per unit of time at state x(tk) is given by 

[ ]1( ( )) ( ( ))
( ( ), ) ,

k kw
k

u

E H x t H x t
D x t u

t
+ −

=  

where tu is the time required for completing the sensor 
action specified by control u, tk+1= tk + tu, is the time the 
detection outcome w is available, and x(tk+1) is the state to 
which the system transitions under the control u. From 
relations (4) and (5), it can be seen that for state x(tk) with 
components  

( )( ) ( ), ( ), ( )i k i k im k is kx t S t p t p t=  

and for control u=(j,µ), the expected entropy decrease is 
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     (6) 

where 1( )
i k

S t+

+
 is the predicted target covariance and 

1
ˆ ( )

i k
S t

+
 is the updated target covariance according to the 

standard Kalman-filter equations.  

 The entropy-based sensor manager is myopic: at 
state x(tk), it selects a control u* optimizing the entropy 
decrease D. More specifically, the entropy-based sensor 
manager solves the following problem 

min ( ( ), ),ku U
D x t u

∈
 

where D(x(tk),u) is computed according to equation (6). 

4 Numerical Results 
Here, we present our simulation scenario and the test 
results obtained for the farsighted rollout algorithm and 
the myopic entropy-optimizing algorithm.  The purpose of 
the simulations is to determine if the farsighted algorithm 
has any potential advantages over the myopic algorithm. 

4.1 Simulation scenario 

stoppedmoving

Pmm Pss

Pms

Psm  

Figure 2. Discrete-time Markov chain modeling target 
motion. At any time, either a target is moving or it is 
stopped. The transitions occur at times kδ, for k  = 1,2,…, 
where δ is the time increment. 

We consider a 10 minute scenario in which there are 50 
targets to be tracked while they are both moving and 
stopped by a radar having two modes, MTI and FTI. We 
assume that each target moves along a one-dimensional 
road and has normally distributed velocity with a specified 
root mean square value. The target transitions between 
being moving and stopped are modeled by a discrete-time 
Markov chain with two states, moving and stopped, and 
with state dependent transition probabilities, as illustrated 
in Figure 2. By varying Psm, we simulate the cases where 
the average number of targets that are stopped in steady-
state is 20, 30, and 40, and we initiate the number of targets 
being stopped in the scenario to the average steady-state 
value. 

 Our tracker model is based on a simple IMM filter (cf. 
[8]) consisting of a filter modeling the kinematics of a 
“moving” target and another one modeling the kinematics 
of a “stopped” target. The target track state consists of 
the target location estimate, the estimate of error variance, 
and the target mode probabilities. The target mode 
probabilities are updated given information on whether a 
target is detected or not. In particular, if a target is not 
detected in MTI mode, then the probability that the target 
is moving decreases .  A similar update results from a 
missed detection in FTI mode. The tracker drops a target if 
its mean-squared error exceeds a specified upper bound. 
Furthermore, the tracker report association is assumed to 
be perfect.  

 The MTI radar mode can detect moving targets only, 
while the FTI mode can detect stationary targets only.  
Each mode is characterized by its detection probability, 
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measurement error variance, and dwell-time. For both 
modes and all targets, the detection probability is  0.9 and 
the measurement error variance is 1 m2. The MTI mode 
dwell-time is 0.1 seconds, and the FTI mode dwell-time is 
10 seconds.    

 We assume that all targets have the same priority 
and the same goal values for their error variances. In 
particular, in equation (1), we use priority Vi=1 and goal 
value Gi=25 m2 for all i.  

4.2 Simulation results 
In this section, we present the simulation results obtained 
for the farsighted sensor management algorithm and the 
myopic entropy-optimizing algorithm. We use the average 
fraction of time the error goals are met as a measure of 
performance. This is  computed as the fraction of time the 
target error goal is  met per target and then averaged over 
the number of targets. These average values, obtained for 
typical sample paths, are presented in Figure 3. The bars in 
the figure mark the standard deviations of performance 
over time for each sample path.  They give an indication of 
the expected variability in performance for different sample 
paths provided that the dynamics are ergodic. 
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Figure 3. As the average number of stopped targets 
increases, the average time the error goals are met for the 
farsighted algorithm is increasingly better than that of the 
myopic algorithm. 

 The simulation results indicate that the farsighted 
sensor management algorithm maintains better quality 
target tracks than the myopic algorithm. In particular, the 
average time the error goals are met for the farsighted 
algorithm is much longer than for the myopic algorithm. 
Furthermore, the difference between the average time the 
error goals are met for the farsighted algorithm and for the 
myopic algorithms is increasing as the average number of 
stopped targets increases. We attribute this to the 

capability of the farsighted algorithm to adapt the target 
revisit rates appropriately.  

 In particular, the myopic algorithm schedules the 
longer FTI mode more frequently to observe the stopped 
targets, as the number of stopped targets  increases. This 
results in substantially less time being spent observing 
moving targets, and the corresponding track errors far 
exceed the goals. In contrast to the myopic algorithm, the 
farsighted algorithm schedules the FTI mode less 
frequently. Instead, it schedules shorter MTI modes to 
revisit stopped targets at an appropriate rate to determine 
if they have started moving.  The resulting revisit rates on 
the moving targets are faster, and the farsighted algorithm 
is able to maintain track errors on the moving targets 
below the desired goals for longer periods of time. 

  We believe that our simulation results are important 
indicators that, for some sensor management problems, 
farsighted strategies are better than myopic ones. We 
believe that this is the case for sensor management 
problems with complex dynamics (e.g., when targets are 
randomly starting and stopping and/or sensor actions 
have significantly different durations). The move/stop 
tracking problem considered here is one such. For these 
problems, the consequences of a single sensor action do 
not provide enough information about the impact of the 
action on the future system behavior.  Thus, to make good 
decisions, it is important that the sensor manager 
anticipates future consequences resulting from the sensor 
actions taken at the present time. In particular, the 
farsighted, rollout sensor manager results in a strategy 
that adaptively adjusts the frequency with which moving 
and stopped targets are observed in a manner that results 
in better tracks than the myopic, entropy-optimizing 
algorithm. 

5 Conclusions 
We have developed a novel, computable, farsighted 
sensor manager for move/stop tracking with a multi-mode 
sensor. This particular sensor management problem is 
challenging because of the complex target dynamics and 
the variable duration of sensor actions. We have 
evaluated the farsighted algorithm against a myopic, 
entropy-optimizing sensor management algorithm. Our 
simulation results indicate that the farsighted algorithm 
has promising behavior. In particular, the farsighted 
algorithm results in better quality tracks than the myopic 
algorithm.   
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Stochastic Control Bounds on Sensor Network Performance

David A. Castañón

Abstract— Consider a network of sensors, each of which has
limited sensing resources, which is tasked with collecting noisy
classification information on a group of unknown objects. The
amount of resources required a given sensor to measure an
object depends on the specific sensor-object geometry. Sensors
exchange collected information to estimate object identities and
coordinate which measurements to collect next. This paper
describes a computable lower bound on the classification error
that can be achieved by a causal adaptive sensing schedule. This
bound is based on a formulation of the adaptive sensing problem
as a partially observed stochastic control problem. Expanding
the admissible control space of this problem leads to a relaxed
problem with simpler decision structure for which the bounds
can be computed. The bound computations are illustrated for
several examples involving 100 unknown objects, and compared
with the Monte Carlo performance of specific adaptive sensor
scheduling algorithms. Comparisons with optimal scheduling
algorithms for special cases illustrate the tightness of the
bounds.

I. INTRODUCTION

There are many recent applications for networks of sen-
sors, each of which has a given amount of resources, such as
available power or duty cycle. Often, each sensor has mul-
tiple sensing modes that it can use to collect different types
of information; the amount of resources required to collect
a measurement by a sensor depends on the specific sensor-
object geometry and the mode used. The network is tasked
with using its available resources to obtain information on
a given number of objects or areas. In order to achieve the
best information possible, it is important to coordinate the
allocation and scheduling of the different sensors and sensor
modes across objects of interest. Sensors exchange collected
information to determine the current state of information on
objects. The adaptive sensing problem consists of selecting
and scheduling the sensor modes which are applied to objects
of interest based on the collected past information.

This paper develops a model for a class of adaptive
sensing problems involving the objective of classifying a
known number of unknown objects at known locations, given
a fixed number of sensor with finite resources and finite
modes. We assume that sensor performance parameters are
time-invariant, so that the performance associated with a
sensor observing an object with a given mode do not depend
on the time that the sensing activity occurs. This class of
problems arises in several applications, from object classi-
fication using multiple airborne platforms, dynamic search,
and fault inspection and isolation in manufacturing systems.

This work was supported in part by grants NSF DMI-0330171 and
DARPA F33615-02-C-1197

Dept. Electrical & Computer Eng., Boston University, Boston, MA
dac@bu.edu

In these applications, inaccuracies in sensor measurements
and variations in object characteristics result in individual
measurements that provide noisy estimates of object type
whose quality depends on the specific mode used by the
sensor. In situations with multiple sensors, multiple objects
and limited resources, this noisy information can be used to
prioritize which objects to look at next, from which sensor,
and to assign appropriate sensor modes to the objects.

Because of the uncertain nature of the underlying object
types and the adaptive nature of the desired schedules, adap-
tive sensing problems can be formulated as partially observed
Markov decision problems (POMDP) [1], [2], [10], [11]. As
such, this class of problems can be solved using stochastic
dynamic programming [3]. However, for large numbers of
objects, the required state space is very high-dimensional,
consisting of the conditional probability distributions of all of
the objects. This leads to intractable computational problems,
even with the fastest POMDP algorithms.

Sensing problems have been formulated previously as
dynamic optimization problems with partial information. The
extensive literature in search theory [20] deals with sensor
management problems involving objects that can be of one
of two types (hidden or found) with sensors that have only
a single mode. The dynamic hypothesis testing problems
studied in [6] also have objects that can be of two types and
a single sensor mode, but generalize results in search theory
to broader classes of measurements. More recently, there has
been work [17] using Markov decision problem techniques
for sensor management, particularly techniques based on
the solution of multiarmed bandit problems. However, these
formulations also restrict the sensors to a single sensor with
a single mode, and require an infinite horizon, time-invariant
formulation.

Because of the complexity of general adaptive sensing
algorithms with multiple sensors and modes, most practical
algorithms are heuristic algorithms based on information-
theoretic metrics [5]. To date, there has been no effective
approach that can characterize the achievable adaptve sensing
performance performance to determine whether such heuris-
tic algorithms are performing well.

In this paper, we consider sensing problems involving
multiple distributed sensors with multiple modes per sensor.
This model is an extension of the model discussed in [7]. We
show that the resulting POMDP models admit a lower bound
on classification error performance based on modifying the
constraint structure to expand the space of admissible strate-
gies. The resulting problem becomes a dynamic optimization
problem subject to expected value constraints, a class of
problems recently studied by in [24]. We develop a hier-
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archical algorithm that exploits the structure of the resulting
relaxed problem. This hierarchical algorithm is based on
the solution of single object POMDP problems, coupled
with nondifferentiable optimization techniques based on La-
grangian relaxation [16]. The single object problems are of
small dimension, and can be readily solved using standard
algorithms for POMDPs [10], [11], [13]. The hierarchical
algorithm avoids the exponential growth of the dimensions
of the resulting state space in the POMDP problem as a
function of the number of objects.

The paper includes several examples where the lower
bound performance is computed, and compared with the
Monte Carlo performance achieved by suboptimal SM al-
gorithms. In particular, we compute bounds for a special
problem for which the optimal sensing strategy is known,
and compare the bounds to the optimal performance to show
how tight the bounds are.

II. PROBLEM FORMULATION

In this section, we develop a formulation of the adaptive
sensing problem as a partially observed Markov decision
problem (POMDP). Assume that there are N objects of
interest in the problem, with known locations. Each object
can belong to one and only one of K different classes, and
the object identity does not change over time. Let the variable
xi ∈ X ≡ {1, . . . , K} denote the true class of object i. We
define the complete (but unknown) system state as:

x =
(
x1 x2 · · · xN

)
(1)

Since the identities do not change over time, the complete
system state is constant over time. We assume that xi are
independent random variables with values in the finite space
X . Associated with each object i is a prior probability vector
πi(0) which describes the probability distribution of the
random variable xi. That is,

πij(0) = Prob{xi = j} (2)

These probability distributions represent a priori knowledge
collected on each object.

To obtain information about the state of each object,
selected objects are examined with different modes from
different sensors. In order to simplify the notation in the
exposition, we consider the case of a single sensor with
multiple modes m ∈ {1, . . . , M}. We will highlight later
the extensions required to incorporate multiple sensors. The
action to use a sensor mode m on object i produces an ob-
servable ym in a finite set Ym, with a conditional probability
distribution that depends only on the object i, its type x i

and the mode m, denoted by p(ym|i, xi, m). We assume
that the observation outcomes of these sensing actions are
conditionally independent of each other given the object
types.

We assume that obtaining a measurement of object i with
mode m requires sensor resources Rim > 0 (e.g. power),
which depend on the object location, sensor location and
specific mode selected. The sensor has a finite amount of sen-
sor resources R that can be used for measuring objects. The

objective is to classify, with minimal error cost, the objects
after the sensor resource R is exhausted. This formulation is
stated below.

Without loss of generality, we restrict our attention to
sensing policies that execute only one action at a time.
Such strategies are optimal in that they provide maximal
information for adaptation, and will achieve minimal error
cost. Let u(k) = (i(k), m(k)) denote the k + 1-th action
(starting at k = 0) taken by the sensor, consisting of
measuring object i(k) with mode m(k). Let U denote the
set of possible sensor actions, and let ym(k)(k) denote the
measured value resulting from action u(k) ∈ U . The past
information available to adaptively select u(k) is I(k) =
{u(0), ym(0)(0), . . . , u(k−1), ym(k−1)(k−1)}. The sensing
problem decisions are selected adaptively until a final ran-
dom stopping instance T , selected based on the information
I(T ). At the end of this stopping instance, the information
I(T ) is available for estimating the object types. For each
object i, there is a final decision vi ∈ X based on I(T ) that
is selected to minimize the expected classification error.

An admissible adaptive sensing policy is a set of measur-
able feedback policies {γ(0), . . . , γ(T )} and stopping time
T such that

γ(k) : I(k) → U, k < T

T : I(T ) → {stop, continue}
γ(T ) : I(T ) → XN (3)

Let Γ denote the set of all admissible sensing policies. Since
the observation space is finite and the decision space is also
finite, Γ is a countable space.

Denote by c(v, x) the cost of selecting classification deci-
sion v when the true object type is x. The adaptive sensing
problem is to minimize the expected total classification cost

J(γ) = Eγ{
M∑
i=1

c(vi, xi)} (4)

over adaptive sensing policies γ ∈ Γ satisfying the resource
utilization constraint

T−1∑
k=0

R(u(k)) ≤ R (5)

with the notation R(u(k)) ≡ Ri(k)m(k). Note that the con-
straint in (5) is a sample path constraint; for every realization
of the information sets I(k), the adaptive policy γ must not
exceed the total sensor resources available. Since the sets of
possible observation outcomes per mode Ym and possible
decisions um are finite, the number of possible information
sets after k − 1 actions I(k) is also finite. This implies
that there is a finite number of possible admissible sensing
policies that satisfy the constraint (5).

The above problem is a class of finite-state, finite-
observation partially observed Markov decision problems
studied in [1], [2], [10], [11], with the special structure
that the underlying state dynamics are trivial, and the pres-
ence of the sample path constraints of (5). Such problem
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scan be transformed into fully-observed Markovian decision
problems in terms of a sufficient statistic: the conditional
probability distribution of the state x given information I(k),
as follows: Let S ⊂ RK denote the space of probabil-
ity distributions on X , and let SN denote the space of
probability distributions on X N . The conditional distribution
vector for the composite state x given the information I(k),
P (x|I(k)) ∈ SN , can be viewed as an information state,
a sufficient statistic summarizing the past observations. The
recursive evolution of this information state in response to
an action u(k) = (i(k), m(k)) can be described by Bayes’
rule as

P (x|I(k + 1)) = P (x|I(k), u(k), ym(k)(k))

=
P (ym(k)(k)|xi(k) , m(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(6)

with the initial condition

P (x|I(0)) =
N∏

i=1

πi(0) (7)

Under the previous independence assumptions, the following
lemma establishes a convenient representation:

Lemma 2.1: Under the adaptive sensing problem assump-
tions, the conditional probability P (x|I(k)) can be factored
as

P (x|I(k)) =
N∏

i=1

P (xi|I(k)) (8)

where the evolution of P (xi|I(k)) under sensing action
u(k) = (i(k), m(k)) and observation ym(k)(k) is given by

P (xi|I(k + 1)) ={
P (xi|I(k)) if i(k) �= i

P (ym(k)(k)|xi(k),m(k))P (xi|I(k))∑
K
j=1 P (ym(k)(k)|xi=j,I(k))P (xi=j|I(k))

otherwise
(9)

The proof of this lemma is straightforward by induction, as
the independence assumption of the object types x i guaran-
tees the Lemma is satisfied at k = 0, and (6) establishes
the recursion. Note also that P (xi|I(k)) depends only on
measurements in I(k) corresponding to object i.

Define πi(k) to be the conditional probability distribution
of xi given information I(k):

πi(k) = P (xi|I(k)) (10)

The vector πi(k) has components πij(k) = P (xi = j|I(k)).
Lemma 2.1 establishes that the conditional probability dis-
tribution of the entire state, P (x|I(k)), can be computed as
the product of πi(k), i = 1, . . . , N . Define the information
vector �π =

(
πT

1 . . . πT
N

)T
For a given observation ym

using mode m on object index i, define the observation
probability matrix as the K × K diagonal matrix

Bi(ym) = diag{P (ym|xi = 1, m), . . . , P (ym|xi = K, m)}
The information vector evolves in response to a measurement
ym obtained from a sensing action (i, m) according to an

operator T , where

T (�π, u = (i′, m), ym) =




T1(π1, u = (i′, m), ym)
...

Tn(πN , u = (i′, m), ym)




and

Ti(πi, u = (i′, m), ym) =

{
πi if i �= i′

Bi(ym)πi

�eT Bi(ym)πi
if i = i′

and �e is a K-dimensional vector of all ones.
The adaptive sensing problem described above can be

solved by stochastic dynamic programming [3]. The resource
constraint in (5) can be incorporated into the dynamics to
obtain a dynamic programming recursion, as follows [24].
Define a value function V (�π, C) to be the optimal solution
of (3)-(5) when the initial information is �π and the available
sensor resource level is R = C. The value function V
is thus defined on SN × R+. The dynamic programming
problem is stated as a total cost problem with nonnegative
costs, for which the optimal value function satisfies the
following Bellman’s equation: Let U(R) ⊂ U denote the
set of feasible sensor actions (i, m) such that Rim ≤ R.
At each decision stage, there is a choice of stopping and
classifying the objects with the available information, or
taking additional measurements. The optimal value function
satisfies the Bellman equation

V (�π, R) = min
[ N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij ,

min
u≡(i′,m′)∈U(R)

Eym′ {V (T (�π, (i′, m′), ym′), R − Ri′m′)}]
(11)

where

Eym′ {V (T (�π, (i′, m′), ym′), R − Ri′m′)} =∑
ym′∈Ym′

P (ym′ |I(k), u)V (T (�π, u, ym′), R − Ri′m′)

=
∑

ym′∈Ym′

eT Bi′(ym′)πiV (T (�π, u, ym′), R − Ri′m′)

(12)

This recursion starts from the following boundary conditions:
Let Rmin = mini,m Rim. Then, the set of admissible modes
U(R) is empty for R < Rmin. Thus,

V (�π, R) =
N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij if R < Rmin

(13)

Eqs. (11)-(13) can be used recursively to compute the optimal
value for all information states and nonnegative levels.

The initialization of the recursion decouples into N inde-
pendent optimizations, as there are no coupling constraints
on the decisions vi, and the local decision costs c(vi, xi)
depend only on the marginal probability distributions of
each object’s type. However, the recursion (11) does not
preserve this decomposability. The coupling arises primarily
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because of the resource use constraints in (5); the decision
of which object to view and which mode to use depends on
the information vector of all the objects and the available
resources. Thus, the dynamic programming induction must
be carried out for the entire state �π(t), which becomes a
formidable computation problem even for moderate numbers
of objects.

III. RELAXED FORMULATION AND LOWER
BOUNDS

To obtain a simpler dynamic programming formulation,
we relax the sample path sensor resource use constraints (5)
and use an averaged version of the same constraints, as

E{
T∑

k=1

R(u(k))} ≤ R (14)

This approach replaces a large set of constraints (one per
sample path) by a single aggregate constraint. Note that any
adaptive sensing policies that satisfy (5) will also satisfy (14).
Thus, this approach increases the set of admissible policies.
Let J∗ denote the optimal classification cost of the problem
in (3)-(4) with constraints (5). Let J ∗

A denote the optimal
classification cost of the problem in (3)-(4) with constraints
(14), denoted as the relaxed adaptive sensing problem.

Lemma 3.1: J∗ ≥ J∗
A

The relaxed problem has a single coupling constraint (for
one sensor) relating the sensing actions on different objects.
Let λ ≥ 0 denote a Lagrange multiplier. For any admissible
policies in Γ, consider the objective

J(λ, γ) = Eγ{
N∑

i=1

c(vi, xi)} + λ[Eγ{
T−1∑
k=0

R(u(k))} − R]

(15)
Consider the unconstrained adaptive sensing problem of find-
ing policies γ and an adaptive stopping time T to minimize
(15). If (γ, T ) is an adaptive SM policy that satisfies (14),
the second term in (15) is nonpositive. Denote by J ∗(λ)
the optimal value of (15) over all adaptive sensing policies
γ ∈ Γ. Then,

Lemma 3.2: For all values of λ ≥ 0,

J∗ ≥ J∗
A ≥ J∗(λ) (16)

In particular,
J∗ ≥ sup

λ≥0
J∗(λ) (17)

Lemma 3.2 is a consequence of weak duality in nonlinear
programming [4]. Note that the number of adaptive sensing
policies that satisfy (15) is finite, because the set of possible
histories I(k) is finite for all k. Thus, computation of J ∗

A

is an integer programming problem, and computation of
supλ≥0 J∗(λ) is its dual problem.

The key issue is whether the lower bounds J ∗(λ) can be
computed efficiently. Rewrite (15) for γ ∈ Γ as

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δi(k)−i]} − λR

(18)

where the indicator function δi = 1 if i = 0, and 0 otherwise.
This suggests that optimization of J(λ, γ) may be separable
across individual objects i.

Partition the information I(k) into disjoint sets Ii(k),
where Ii(k) are the sensing actions and measurement actions
applied to object i:

Ii(k) = {(u(j), y(j))|j < k, i(j) = i} (19)

Note that the conditional probability vector π i only changes
on measurements included in Ii(k). We wish to restrict the
set of adaptive sensing policies to a subset where the decision
to apply a sensor action for object i depends only on the
information previously collected for object i. We refer to this
subset of policies as adaptive local sensing policies, defined
as:

Definition 3.1: An adaptive local sensing policy is an
adaptive sensing policy γ and stopping times T i, i =
1, . . . , N , with the properties that, for each sensing action
instance k,

1) If u(k) = (i(k), m(k)), then i(k) = k mod N + 1.
2) The selected sensor mode m(k) depends only on the

information Ii(k).
3) For each object i, there is a stopping time T i which

depends only on Ii(Ti) such that, for all k ≥ Ti, if i =
k mod N + 1, no sensing action is taken. If k < Ti

and i = k mod N + 1, then u(k) = (i, m) for some
mode m in {1, . . . , M}.

4) At time Ti, the local decision vi for object i is selected
as a function of Ii(Ti).

Adaptive local sensing policies use a fixed round-robin
schedule for selecting which objects to measure. Further-
more, the choice of sensing mode for each action on object
i depends only on the prior information collected on that
object. In addition, there is an independent stopping time
for each object i such that a final classification decision is
made on object i, based only on prior information collected
on that object. Note that there are decision instances k
where no sensing action is taken, when k ≥ Ti and i = k
mod N + 1; these instances correspond to times after a
final decision has been selected for object i. The effective
stopping time of an adaptive local sensing policy is defined
as T = maxi=1,...,N Ti, and is the earliest time at which
every object has a final classification decision. Thus, adaptive
local sensing policies can be viewed as a subset of the class
of adaptive sensing policies.

Let ΓL denote the set of adaptive local sensing policies.
For a given amount of sensor resources R, there are a finite
number of feasible adaptive local sensing policies. In general,
ΓL is a countable discrete set. For the purposes of bound
computation, we will expand ΓL to include mixed policies,
consisting of probabilistic mixtures of policies in ΓL:

Definition 3.2: A mixed local sensing policy is a proba-
bility distribution q(γ) over ΓL such that local SM policy γ
is selected for use with probability p(γ). The set of mixed
local sensing policies is denoted by Q(Γs).
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Consider the problem of minimizing the relaxed cost (18)
over local sensing policies ΓL. Since ΓL ⊂ Γ, we have

min
γ∈Γ

J(λ, γ) ≤ min
γ∈ΓL

J(λ, γ) (20)

Furthermore, since (18) is an unconstrained objective, the
minimum in mixed local sensing policies is achieved by a
pure local sensing policy, so

min
γ∈Γ

J(λ, γ) ≤ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (21)

The importance of mixed local sensing policies is highlighted
in the theorem below, proven in [25]:

Theorem 3.1: For any admissible adaptive sensing policy
γ ∈ Γ, there exists a mixed local sensing policy q ∈ Q(Γs)
such that the expected classification costs in (4) and the
expected total resource use in (14) are equal under both
policies γ and q.
This result implies the following inequality:

min
γ∈Γ

J(λ, γ) ≥ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (22)

Combining (21) and (22) yields the following:

min
γ∈Γ

J(λ, γ) = min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) = min
γ∈ΓL

J(λ, γ)

(23)
Eq. (23) implies that lower bounds for the achievable

classification performance can be computed by optimizing
over local sensing policies only. For each local policy γ ∈
ΓL, let γi denote the policy that is used for instances k when
actions are taken for object i, and let ΓLi be the set of such
admissible local policies for object i. Thus, γi selects actions
for object i based on past observations Ii(k), and selects a
stopping time Ti and a final classification vi at that stopping
time. The importance of local sensing policies is that the
optimization in (23) decouples over objects as

min
γ∈ΓL

J(λ, γ) =
∑

i

min
γi∈ΓLi

Ji(λ, γi) − λR (24)

where

Ji(λ, γi) = Eγi{c(vi, xi) + λ
T−1∑
k=0

R(u(k))δi(k)−i} (25)

This implies that computation of the bounds can be achieved
with N independent optimization problems for each value of
λ. Furthermore, the optimal bound can be computeed as in
Lemma 3.2, as

J∗ ≥ sup
λ≥0

min
γ∈ΓL

J(λ, γ) (26)

Note that the right hand side of (26) is the dual of the
following linear programming problem:

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)EγJ(γ) (27)

subject to ∑
γ∈ΓL

q(γ)Eγ [
∑

k=0T−1

R(u(k))] ≤ R (28)

∑
γ∈ΓL

q(γ) = 1 (29)

which is a linear program over the choice of probability
distributions q ∈ Q(ΓL). This can be exploited to solve
efficiently for the bound. Specifically, note that this is a linear
program subject to two constraints, which implies that the
optimal mixed local sensing policy q will have support only
on two pure local sensing policies. This property will be
exploited in the next section for bound computation.

IV. BOUND ALGORITHMS

There are two potential approaches to compute a lower
bound: a dual approach, based on Lagrangian relaxation
[16], that optimizes (26) over the choice of dual variable λ,
and a primal approach based on solving the linear program
(27)-(29). The dual approach is straightforward, and uses
techniques from nondifferentiable optimization [19] to search
the space of possible λ. The primal approach is harder,
because the optimization is over a large space of possible
values of mixture probabilities q. However, this mixture has
very sparse support, which makes it suitable for column
generation algorithms [18].

A fundamental step in either approach is the computation
of the optimal local sensing policies for a fixed value of λ for
each object. For object i, one must solve the local problem
given λ:

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=kmodN+1

R(u(k))] (30)

This problem is a multi-stage single object POMDP, with
sufficient statistic given by the marginal probability distri-
bution πi(k). One can reduce the action instants to a new
counter k′ indexing only the action opportunities for object
i, to obtain

min
γi∈ΓLi

Eγi [c(vi, xi) + λ

T ′
i−1∑
k′

Rim(k′)] (31)

The resulting POMDP problems are small enough to solve
using existing algorithms such as those overviewed in [2],
[10], [13], [14].

Solution of the N decoupled problems (31) yields a
local policy γ ∈ ΓL, for which the expected classifi-
cation cost Eγ [

∑N
i=1 c(vi, xi)] and expected resource use

Eγ [
∑T−1

k=0 R(u(k))] are computed from the solution. This
provides the starting point for the use of column generation
[18] for solution of (27)-(29). Column generation was used
by Yost [21], [22], [23] in his work on POMDPs for resource
assignment and was also exploited in [8] for the solution of
stochastic weapon assignment problems.

The algorithm starts with an initial set of pure local
sensing policies γd indexed by d = 1, . . . , D, with known ex-
pected classification performance J d and expected resource

 

106



use Rd. The first step in the algorithm is to solve the
linear program in (27)-(29) restricted to mixtures of the d =
1, . . . , D initial policies. Since the support of the admissible
mixed policies is restricted, the solution provides an upper
bound JUB to the optimal cost. Denote by λD the optimal
dual price of the resource constraint (29) in this solution.
The constraint generation algorithm uses this optimal dual
price value in (31) to generate a new candidate local policy
γD+1,by solving N independent POMDP problems with this
value of λ. The combined solution of the N subproblems also
provides a lower bound J LB on the optimal performance, as
described in Lemma 3.2. The key result in the constraint
generation algorithm is stated as follows [18]:

Lemma 4.1: Consider the pure local policy generated by
the solution of (31). If J LB = JUB , the optimal solution
over all mixtures of local policies is a mixture of the local
policies indexed by d = 1, . . . , D. Otherwise, the pure local
policy γD+1 can be used as part of a mixed policy which
provides a cost lower than J UB .

V. EXTENSION TO MULTIPLE SENSORS

The development of the previous sections carries through
with little modification when multiple sensors are used. The
key difference is that there is a separate resource constraint
for each sensor. Thus, there will be a vector of sensor
resources Rs, where s is a sensor index, thus resulting in a
vector of averaged constraints (14). The Lagrange multipliers
λ will thus be vectors instead of scalars. Nevertheless, all of
the lemmas and theorems can be extended to the multisensor
case with minor modifications.

The main assumption that was used in the single sensor
formulation was that only one sensor action would be per-
formed simultaneously. This assumption is still used for the
multiple sensor problem to derive the lower bound, although
the results in the previous section indicate that optimal local
sensing strategies that achieve the lower bound may use
simultaneous sensing by multiple sensors.

The column generation algorithm discussed in the previous
section extends naturally to multiple sensors. When there
are L sensors, the optimal mixed local SM policies will be
mixtures of L + 1 pure local SM policies. Nondifferentiable
optimization algorithms that maximize the dual cost can also
be used in this case.

VI. EXAMPLES

For our first example, we consider a case where the
optimal strategies are known [26]. In this example, there
are 100 unknown objects with one of two types, with equal
priors for each object. There is a single sensor that has
a single measurement mode, and the problem is optimal
adaptive allocation of a fixed number of measurements over
the number of objects. Measurement outcomes are binary-
valued, identifying one of the two types, and a single mea-
surement has a probability of error Pe, which is symmetric
over type. The objective is to minimize the expected number
of classification errors after N measurements. The optimal

strategy derived in [26] is to assign the next measurement to
the object with conditional probability.

Table I shows the results of 1000 Monte Carlo simula-
tions of the optimal strategy, compared with the predicted
performance of the lower bound, in terms of expected
number of classification errors for 3 different conditions
of symmetric single measurement Pe and four levels of
number of measurements N . As the table indicates, the
bound predictions are very tight for this case. The gap
between gap and optimal strategy increases as the number
of measurements N increases because likelihood of errors
decreases, and the bound strategy allows the use of more
resources than available in the unlikely cases that lead to
errors.

Pe = 0.25 Pe = 0.2 Pe = 0.15
N Bound Opt. Bound Opt. Bound Opt.

100 25 25.03 20 20.02 15 15.067
200 18.182 18.185 12.727 12.765 7.888 7.988
300 11.364 11.432 5.749 6.038 2.518 2.593
400 7.833 7.905 3.468 3.543 0.927 0.987

TABLE I

COMPARISON OF EXPECTED NUMBER OF ERRORS BY LOWER BOUND

AND MONTE CARLO OF OPTIMAL STRATEGY

For the second set of experiments, we consider a different
100 object scenario where objects can be of three different
types (K = 3): cars, trucks and military vehicles (MV).
There is a single sensor, with two modes: a low resolution
mode 1 that takes 1 second per image (R i1 = 1), and a
high resolution mode 2 that requires 5 seconds per image,
(Ri2 = 5). Low resolution imagery is useful in separating
cars from trucks and MVs, but separating trucks from MVs
requires high resolution imagery. Apriori, each object has a
probability of 0.1 as a military vehicle, 0.2 truck and 0.7 car.
Imagery generated by the sensor is processed into a binary
decision as to whether the object is MV or not. Hence y ij ∈
{0, 1}, where 1 indicates that the decision is MV.

The objective of the problem is to determine as accurately
as possible which objects are military vehicles (type 1). Thus,
the classification costs are given by d(vi, xi) as a 3×3 matrix
where vi is the row index:

(d(vi, xi)) =


 0 MD MD

FA 0 0
FA 0 0


 (32)

where FA = 1 and MD will vary from 1 to 80 in the
experiments.

low-resolution high-resolution
Type y = 0 y = 1 y = 0 y = 1

Car 0.9 0.1 0.95 0.05
Truck 0.1 0.9 0.85 0.15
MV 0.1 0.9 0.8 0.2

TABLE II

MEASUREMENT LIKELIHOODS FOR DIFFERENT MODES

The conditional probability distributions p(y|x, m) are
given in Table II. In terms of constraints, we assume that
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there is a single resource pool of R seconds to be used
before all objects need to be classified. This number will also
be varied across the experiments from 300 seconds to 700
seconds, to evaluate the bounds and algorithm performance
for scenarios where the amount of sensor resources ranges
from poor to rich.

In order to evaluate the utility of the lower bound, we
compare the bound with the performance of two adaptive SM
algorithms: a variation of Kastella’s discrimination gain (DG)
algorithm [5], which is a sequential algorithm for selecting
the best sensor mode and target on the basis of maximizing
the expected entropy reduction in the distribution of object
type per unit sensor resource applied, and a dynamic schedul-
ing algorithm (ADP) based on Lagrangian relaxation and
POMDP approximations described in [7].

Each algorithm was simulated for 100 independent Monte
Carlo runs using the same measurement outcomes to evaluate
its average performance for three different levels of sensor
resources: 300 seconds, 500 seconds and 700 seconds. The
expected cost results were compared with the predictions
of the lower bound. Table III includes the results for 300
seconds and 700 seconds of resources for six levels of missed
detection (MD) costs. In this more complex case, the bound
shows that there is room for improvement in both of the
algorithms, although the performance of the algorithms is
close to optimal for some of the conditions. For instance,
when MD is close to 1, the costs of missed detections
and false alarms is close, and policies such as maximizing
information gain as measured by entropy are near-optimal.
Similarly, the performance of the ADP is closer to the lower
bound for limited sensor resources, as the limited look ahead
approximation is closer to the actual optimal number of
sensor actions per object.

700 Seconds 300 Seconds
MD Bound ADP DG Bound ADP Greedy

1 1.6 1.58 1.91 4.61 9.7 9.17
5 4.5 4.46 6.75 15.66 17.03 18.62
10 6.5 6.49 9.87 19.56 21.18 20.71
20 8 8.25 14.87 21.67 22.38 22.11
40 10 10.01 23.05 24.18 24.53 24.91
80 11.25 14.6 29.85 26.38 26.38 30.5

TABLE III

PERFORMANCE OF SCHEDULING ALGORITHMS VS. BOUND

Figure 1 shows the results for the two algorithms and the
lower bound for 500 seconds of sensing resource time. The
results show that there is significant room for improvement in
both policies: the discrimination gain (DG)algorithm fails to
incorporate the relative values of different types of errors in
its information seeking policy, and the ADP is conservative
in that it does not use mixed policies and uses a limited
lookahead, and thus can underutilize sensor resources.

VII. DISCUSSION

In this paper, we have presented a lower bound for
the achievable classification performance for a network of
sensors with finite sensing resources. The approach is based
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Fig. 1. Monte Carlo performance of algorithms and lower bound for 500
seconds of sensor resource.

on formulation of the adaptive sensing problem as a par-
tially observed Markovian decision problem, which is then
approximated by expanding the admissible decision space.
This approximate formulation can be posed as an integer
programming problem that has a separable dual formulation.
A key result in establishing this separability is to show that
the lower bound formulation can be solved in terms of a
subset of sensing policies known as mixed local sensing
policies, which are random mixtures of policies that select
actions on each object based only on the past information
collected on that object.

We presented experimental results that compared the lower
bound with the performance of two suboptimal adaptive
sensing algorithms available in the literature. The exper-
imental results established that the performance of both
algorithms can be improved substantially in order to achieve
the lower bound, and that the bound is tight in that the
performance of the suboptimal algorithms is close to the
predicted performance of the bound for several conditions.

In terms of sensor networks, the bound in this paper
neglects the cost of communications as compared to the
cost of active sensing. This is the case when sensors are
in near vicinity of each other, and sensing requires active
emissions by the sensors, so that the two-directional path
loss is significant. In situations where communications also
consume significant number of resources, the bound is op-
timistic, and would not be a good prediction for sensor
network performance.
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