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1. INTRODUCTION 

 Currently, in turbomachinery, the two main design considerations are blade forced 

response and flutter.  Forced response of the blades result due to aerodynamic excitations 

from upstream wakes and occur at integer multiples of the vane passing frequency.  

Flutter is a self-excited aeroelastic instability in which the aerodynamic forces on the 

blade add to the blade vibration itself.  In both these cases, the vibrations can be large 

enough to cause the blades to fracture.  However, in recent years, engine manufacturers 

have encountered a new class of aeromechanical problems.  This category generally 

includes separated flow vibrations (SFV) and non-synchronous vibrations (NSV).  

Separated flow vibrations are similar to buffeting in wings and occur when an unsteady, 

separated flow is generated over a row of turbine blades that randomly excites blade 

vibration (Hall 2004, 675).  In addition, they generally have a broadband frequency 

content.  Non-synchronous vibrations are similar to separated flow vibrations except they 

are usually well-ordered, can occur away from a stalled condition, and occur at one 

dominant frequency.  The blade vibrations are generally frequency and phase locked.  

Typical non-turbulent examples of these phenomena include the vortex shedding flow 

over a car antenna, power lines, cables, or off-shore risers and all can cause large 

amplitude vibrations.  Although both non-synchronous vibrations and separated flow 

vibrations are emerging research areas, this effort is only concerned with the study and 

prevention of non-synchronous vibrations.  

Non-synchronous vibrations in turbine engine blades are the result of the 

interaction of an aerodynamic instability, such as vortex shedding, with the vibrations of 

the blades.  It is a serious aeroelastic problem that has been observed by most engine 
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companies and can ultimately lead to blade fracture.  Currently, there is limited 

knowledge of this phenomenon, so failures typically do not occur until the testing phase.  

As a result, engineers must redesign the blade or the rotor.  This procedure is costly and 

greatly increases production time.   

Therefore, the overall goal of the NSV research effort at Duke is to develop a fast, 

systematic method for engine companies to prevent and eliminate NSV.  This will be 

accomplished by using a novel computational fluid dynamic technique, namely the 

nonlinear, unsteady harmonic balance method developed by Hall, et al. to solve the three-

dimensional Reynolds averaged Navier-Stokes equations governing the flow through an 

engine blade passage (Hall, Thomas, and Clark 2002, 879).   This method offers distinct 

computational advantages over currently used methods.  In particular, it requires one to 

two orders of magnitude less computational time than conventional time marching 

computational fluid dynamic (CFD) methods (Hall, Thomas, and Clark 2002, 886).  

Furthermore, the harmonic balance method can handle large flow disturbances while 

time-linearized equations are only valid for small unsteady perturbations.  However, 

typically in a flow analysis, the oscillation frequency is known beforehand and therefore 

serves as an input to the system.  Since the goal of the research is to find the NSV 

frequency, a new phase error method is employed to achieve quick solution convergence.  

This novel frequency search technique utilizes the phase difference between successive 

iterations of an unsteady first harmonic quantity such as unsteady lift and was developed 

by Kenneth Hall (private communication).  It requires only a few harmonic balance 

solution computations to determine the precise NSV frequency.  This method will be 

described in detail in the latter portion of the theory section. Therefore, by integrating 
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these numerical solution techniques, a more computationally efficient method for 

predicting both the NSV frequency and amplitude will be developed.   

An accurate prediction of the NSV is important because it provides useful 

Campbell diagram information for rotating blade design purposes.    A hypothetical 

Campbell diagram is presented in Figure 1.  The Campbell diagram is a plot of the 

blade’s natural frequencies of vibration in Hz as a function of the rotational speed of the 

engine in RPM.  The diagonal lines of constant slope represent engine order excitations 

lines, i.e. multiples of the operation speed or machine harmonics.  The nearly horizontal 

lines represent natural frequencies of particular blade modes, i.e. first flex (1F) or first 

torsion (1T).  As a result of the harmonic balance analysis, the NSV frequencies could be 

added to the Campbell diagram to identify regions where the frequency of the flow 

instability might interact with a blade natural frequency, resulting in blade vibrations.  

These possible points of intersection have been identified on the Campbell diagram.  

Presently, engineers commonly use the Campbell diagram to determine potential resonant 

response problems by examining the crossing synchronous excitations (such as vane 

passings) with the blade natural frequencies.  In addition, the presence of asynchronous 

vibrations such as flutter can be determined by examining the Campbell diagram. For all 

cases, the stress levels at the crossing points can be high enough to cause high cycle 

fatigue of the blades and therefore, greatly reduce the component’s life span.  However, 

other aeromechanical problems such as SFV and NSV are not presently placed on a 

Campbell diagram because they are not well enough understood and a design analysis 

method has not yet been developed.  Therefore, the proposed method, when extended to 

blades, will allow engineers to better understand NSV behavior and to predict the 
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occurrence of vortex-induced vibrations.  Once this fluid dynamic instability becomes 

better understood, it will be possible to couple the NSV with blade motion. 

 
Figure 1.  Hypothetical Campbell Diagram Demonstrating Design Considerations 

Including Non-Synchronous Vibrations (NSV) 
 

 As an initial step towards better understanding the NSV in turbine engine 

configurations, it is advantageous to investigate a well-known two-dimensional case that 

exhibits similar NSV features such as shedding flow about a circular cylinder.  In this 

case, the flow separates from the cylinder’s surface and results in a wake region 

characterized by a low pressure behind the body (Fox and McDonald 1992, 34).  If a 

cylinder is placed in a low Reynolds number flow (Re>47), vortices are shed alternately 

from the top and bottom of the cylinder.  This phenomenon is generally known as Von 

Karman vortex shedding.   

The flow behind the cylinder becomes three-dimensional for Reynolds numbers 

greater than 180.  This case is much more difficult to model, so this preliminary study 

only considers flow in the Reynolds number range of 47 < Re < 180.  The Reynolds 

number measures the relative significance of the viscous effects as compared to inertial 
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effects.  At very low Reynolds number (i.e. Re < 5), the flow remains attached to the 

cylinder.  As the Reynolds number is increased, the flow starts to separate from the 

surface of the cylinder (5 < Re < 47).  At a Reynolds number greater than 47, the flow 

begins to shed.  If the Re is continually increased, the vortices begin to detach themselves 

from the cylinder, resulting in a periodic wake with two staggered rows of vortices.  This 

regular pattern of vortices is known as a Von Karman vortex street (see Figure 2).   

 
Figure 2.  Development of Von Karman Vortex Streets in the Laminar Flow Regime 

for a Re = 150 (Williamson 2004, 480) 
 

 The flow over a stationary cylinder can be determined by two non-dimensional 

parameters – the Reynolds number and the Strouhal number.  For a given Reynolds 

number, the flow sheds at a distinct frequency.  The Reynolds number represents a non-

dimensional ratio of the inertial forces in a fluid to the viscous forces.  It is given by: 

 
∞

∞=
ν

DURe  (1) 

where U∞ is the velocity of the fluid, D is the characteristic dimension (i.e. diameter of 

the cylinder), and ν∞ is the kinematic viscosity of the fluid.  Whether the flow is laminar 

or turbulent is primarily governed by the Reynolds number.  This study is concerned with 

the laminar flow over a circular cylinder.  Another important parameter related to the 
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flow over a cylinder is the Strouhal number.   This is the non-dimensional vortex 

shedding frequency.  It is: 

 
∞

=
U

Df
St st  (2) 

where fst is the dimensional vortex shedding frequency, D is the cylinder diameter, and 

U∞ is the steady velocity of the uniform flow.  A relationship between Reynolds number 

and Strouhal number was determined. 

Another important measure of vortex shedding is the unsteady lift on a stationary 

cylinder.  Lift is primarily due to variations in pressure on the cylinder’s surface and is 

the integrated result of the pressure loading on the cylinder (Norberg 2001, 460).  Based 

on experimental results and 2-D simulations, it can be seen that the amplitude of the RMS 

lift coefficient increases rapidly within the laminar shedding regime from the onset of 

shedding at a Reynolds number of 47 (see Figure 10).  The onset can be characterized as 

a supercritical Hopf bifurcation and is typically described by the Stuart-Landau equation 

(Norberg 2001, 464).  The unsteady lift can be used to determine the transition from 

steady flow to Von Karman vortex shedding in the two-dimensional wake behind a 

circular cylinder in low Reynolds number flow.   

Finally, the HB methodology was applied to both two-dimensional and three-

dimensional real world turbomachinery blade applications.  Numerous other researchers 

have studied the NSV problem in turbomachinery and one particular area that has 

received considerable interest is tip flow instability.  Examples of work in this area can be 

found in Mailach (1999), Mailach et al. (2000 & 2001), Marz et al. (1999 & 2001), Inoue 

et al. (1999), Lenglin & Tan (2002), and Vo (2001).  Mailach et al. (2001) present results 

from both a four stage low speed research compressor and a linear cascade, and conclude 
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that the tip flow instability is a vortex interaction effect that produces a multi-cell 

circumferentially traveling wave. This phenomenon is found near the stall line with a 

relatively large tip clearance (greater than 2% of tip chord). A new Strouhal-type number 

is proposed to characterize the frequency of the oscillation. Marz et al. (2001) also found 

a tip flow instability on a low speed fan rig near the stall line and with a large tip 

clearance. This paper also presents the results of an unsteady CFD model that predicts a 

frequency of 950 Hz compared to the measured value of 880 Hz.  

Camp (1999) reports that this vexing problem has been observed in a high speed 

compressor.  As a result, an experimental study was performed in a low speed 

compressor facility. A helical acoustic structure (circumferential Mach number of 0.84) 

was found using casing dynamic pressure transducers. It was also found that there were 

step changes in response frequency as the flow rate was changed. Although not proven, 

the author speculates that the phenomenon involves vortex shedding from the blades that 

excites the helical acoustic cavity modes, which, in turn, excite the blades.  

In this study, we examined three different engine configurations.  Based on input 

from industry, NSV was encountered in experimental rig testing for two of the three test 

cases.  In particular, we studied a modern first stage compressor rotor blade (C1), a 

modern first stage fan blade (H1), and a modern fan vane blade (H2).  Although NSV 

was not encountered for the H1 case, an analysis was performed to show that NSV is not 

predicted.  As an initial step, a flow instability about a two-dimensional airfoil section of 

the C1 blade was examined at an off-design condition.  Finally, a full three-dimensional 

analysis of all three blades was performed to predict both the frequency and amplitude of 

the fluid dynamic instability.   
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2. THEORY 
 

In general, the unsteady perturbations are significant and serve as a useful test 

case for the verification of the harmonic balance method as a valuable tool for solving 

NSV problems in turbomachinery.  The flow over the cylinder is modeled by the two-

dimensional nonlinear, unsteady Navier-Stokes equations.  Two currently available 

analysis techniques, namely the time domain approach and the time-linearized frequency 

domain approach, were considered and the merits of each were examined.  Finally, the 

harmonic balance method developed by Kenneth Hall will be described.  For time-

periodic flows, Hall’s method can be computationally more efficient than the other 

approaches and it is not limited by the assumptions required by a linearized solution.        

In the past, most researchers have employed a time-domain approach to model the 

fluid flow over bluff bodies (Ni 1987, He 1993).  In this case, the governing Navier-

Stokes equations are discretized over the computational grid and then the flow solution is 

marched in time using conventional CFD techniques and applying appropriate unsteady 

boundary conditions.  The discretization of the flow equations requires the solution of a 

set of coupled nonlinear equations at each physical time step.  Commonly, an inner 

iteration is introduced with a pseudotime variable and marched to a steady state.  The 

converged solutions obtained at the end of the inner iteration represents a solution of the 

equations at the end of the physical time step (McMullen, Jameson, and Alonso 2001, 1).  

Therefore, this procedure must be repeated numerous times to achieve one physical time 

step and resolve the features of one period in the oscillation of the flow.  Many 

convergence acceleration techniques such as multi-grid and variable pseudotime stepping 

can be implemented in the inner iteration.  However, as more periods are needed for 
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convergence, the computations can become extremely costly.   Although this approach is 

straightforward to implement and can model both nonlinear as well as linear 

disturbances, it typically takes considerable computational time to ensure numerical 

stability.  Therefore, this approach is too expensive for routine use by industry to predict 

and design for NSV.   

Another popular technique for modeling the flow over turbomachinery blades is 

the time-linearized frequency domain approach.  This method has been used to model 

transonic flow problems as well as two- and three-dimensional viscous flows in 

turbomachinery (Clark and Hall 2000, Hall and Crawley 1989).  In this method, the 

problem is divided into two parts:  the steady flow and the unsteady perturbations in the 

flow.  The steady, or time-mean, part of the flow is solved using well-known CFD 

techniques and the unsteady part is assumed to be small and harmonic in time (ejωt).  The 

governing Navier-Stokes equations can then be linearized about the mean flow solution 

to determine a set of equations that describe the unsteady flow component and they can 

be solved relatively easily.  By replacing the time derivative by jω where ω is the 

frequency of the unsteady flow disturbance, the resulting time-linearized equations can be 

solved inexpensively.  A solution to the complex harmonic amplitude is obtained at a 

given frequency.  When compared to unsteady time marching methods, the time-

linearized frequency domain method is much more efficient but it is limited by the linear 

assumption of unsteadiness. 

This study utilizes the harmonic balance technique for nonlinear, unsteady flows 

developed at Duke University by Kenneth Hall in 2002.  It was originally developed as a 

mathematical tool to study the behavior of harmonic ordinary differential equations 
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(Maple 2002, 3).  However, in recent years, Hall extended the application to the study of 

turbomachinery flows.  In this novel method, the unsteady flow is assumed to be periodic 

time and can be represented by a Fourier series in time with frequencies that are integer 

multiples of the fundamental excitation frequency.  Then, using the harmonic balance 

technique, a set of coupled partial differential equations is obtained for the unknown 

Fourier coefficients of the flowfield.  A source term, dU/dt, accounts for the unsteadiness.  

Finally, a pseudo-time term is introduced into the harmonic balance equations and the 

solution is marched like a steady CFD solver.  From this result, the lift, drag, etc. for each 

harmonic can be determined from the calculated Fourier coefficients.  For a given 

problem, it is desirable to use the minimum number of harmonics because the 

computational cost is proportional to the number of harmonics included.    Local time 

stepping, preconditioning, and multi-grid can be use to accelerate convergence.  

Therefore, a key aspect of the methodology is its ability to exploit the use of conventional 

CFD techniques.  The theory presented in Hall’s paper entitled, “Computation of 

Unsteady Flow in Cascades Using a Harmonic Balance Technique”, is summarized in the 

following sections.      

Governing Equations  

The flow over a cylinder can be best represented by the Reynolds-averaged, two-

dimensional Navier-Stokes equations for unsteady, nonlinear flow.  The derivation of 

these equations is well documented in literature and arises from applying three 

conservation laws:  conservation of mass, conservation of momentum, and conservation 

of energy (Anderson 1984, 181).  The flow is assumed to be compressible and viscous.  

Therefore, the resulting equations of motion in integral form are: 



F49620-03-1-0204  Final Report 

Duke University Page 14 March 2006 

 ∫ ∫∫∫∫∫ ∂∂
=

∂
∂

−−
∂
∂

−+
c ccc D DDD

Sdxdydx
t
gUGdy

t
fUFUdxdy

dt
d )()(  (3) 

where Dc is a deforming control volume bounded by the control surface ∂Dc. U is a 

vector of conservation variables, F and G are flux vectors in the x and y directions, and S 

is the source vector. The quantities ∂f/∂t and ∂g/∂t are the x and y components of the 

velocity of the control surface ∂Dc.  Based on the strong conservative law form of the 

Navier-Stokes equations given above, the vector U and the inviscid and viscous 

components of F, G and S can be written in vector form as: 
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By examining the governing equations in compact vector form, the first row corresponds 

to the continuity equation, the second and third rows are the momentum equation in the x 

and y directions respectively, and the final equation is the conservation of energy 

equation.  In these equations, ρ is the density of the fluid; u and v are the velocity 

components in the x and y directions, respectively; e is the total internal energy; h is the 

total enthalpy; and p is the static pressure.  If the divergence theorem is applied, a 

differential form of the Navier-Stokes is obtained: 
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y
UG

x
UF

t
U

=
∂

∂
+

∂
∂

+
∂
∂ )()(  (5) 
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Assuming the fluid (air in this case) is an ideal gas with constant specific heats, it is 

possible to express the pressure and enthalpy in terms of the conservation variables.  The 

equation of state is given by: 

 RTp ρ=  (6) 

where T is the temperature and R is the universal gas constant.  In addition, for a perfect 

gas, the following relationships exist: 

 Tce v= ,   Tch p= ,   
v

p

c
c

=γ ,    
1−

=
γ

Rcv ,    
1−

=
γ
γRc p  (7)  

where cv is the specific heat at constant volume, cp is the specific heat at constant 

pressure, and γ is defined as the ratio of these two specific heats.  Therefore, the pressure 

and enthalpy can be determined and are given by: 

 ]})()[(2/1){1( 22 vuep ρρρργ +−−=  (8) 
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The shear stresses τxx, τxy, τyy can be written in terms of the viscosity and the shear rate in 

the x and y directions, respectively: 
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where µ is the molecular viscosity.  Furthermore, the terms τhx and τhy in the energy 

equation are given by: 

 xxyxxhx qvu −+= τττ  (13) 
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 yyyxyhy qvu −+= τττ  (14) 

where qx and qy are the x and y components of the heat flux and can be written as: 
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where PrL is the laminar Prandtl number and ∂T/∂x and ∂T/∂y are the temperature 

gradients in the x and y directions, respectively.  The variable µ is determined from 

Sutherland’s Law and results from the use of a dynamic molecular viscosity.  

Sutherland’s formula for viscosity is given by: 
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where µ0 = 3.583 x 10-7 at a reference temperature T0 = 491.4°R and the constant S0 = 

199.8°R.  For air at standard conditions, PrL = 0.72.  Therefore, by using knowledge of 

the flow and the principles of thermodynamics, it is now possible to implement the 

harmonic balance method to solve the governing two-dimensional, nonlinear, unsteady 

Navier-Stokes equations. 

Non-Dimensionalization  

 In order to make the computations easier, the equations are often put into a non-

dimensional form.  This allows the system parameters such as Reynolds number, Mach 

number, etc. to be varied independently (Anderson 1984, 191).  Therefore, the variables 

of interest were non-dimensionalized as follows: 

 
refL
xx =′ , 
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yy =′ , 
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uu =′ , 
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vv =′ , (18) 
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refp
pp =′ , 

refT
TT =′ , 

refρ
ρρ =′ , 

refµ
µµ =′  

where the reference quantities are given by: 

Lref is a user-defined constant length scale 
pref    is the user-defined total pressure 
Tref   is the user defined total temperature 
ρref   is the total density defined as  ρref  =  pref/RrefTref 
aref   is the freestream total acoustic velocity defined as aref = (γRrefTref)1/2 
Vref   is the reference velocity defined as aref/(γ)1/2 
µref   is the reference viscosity defined as µref = ρrefvrefLref 

   
By rewriting the equations in dimensionless form, it makes it easier to compare with 

experimental results.  As a result, the system’s behavior and dependence on various 

parameters can be extracted more easily.  

Application of Harmonic Balance Method to Governing Equations 

 To introduce the harmonic balance method in a simplistic manner, one can 

assume that the flow is inviscid and non-heat conducting, as was done by Hall, et al. in 

2002 (Hall, Thomas, and Clark, 879-886).  In his paper, the flow was modeled by the 

two-dimensional Euler equations: 
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 where the vector of conservation variables and the flux vectors F and G are given by: 
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To begin the analysis, one first assumes that the flow behind the cylinder is temporally 

periodic whereby, 

 ),,(),,( TtyxUtyxU +=  (21) 
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where T is the period of the unsteadiness and is given by T = 2π/ω.  Here, ω is the 

frequency of the unsteadiness.  As result of the temporal periodicity of the flow, the flow 

variables can be represented as a Fourier series in time with spatially varying coefficients.  

Therefore, the density becomes: 

  ∑=
n

ntj
n eyxRtyx ωρ ),(),,(  (22) 

Similar relationships can be obtained for the other conservation variables as well as 1/ρ, 

which is necessary for determining the enthalpy and pressure.  In theory, one would sum 

the variables over all n but in practice, the solution is truncated and summed over a finite 

number of terms.  Next, the Fourier expansions are substituted into the Euler equations 

and expressions for the conservation of mass, momentum, and energy can be developed.  

The terms in the resulting equations are grouped by frequency and each frequency 

component must satisfy the conservation equations individually.  The equations can then 

be written in vector form as: 
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where the tilde indicates a Fourier transformed variable and S~ is the frequency 

component resulting from the transformed time dependent variable ∂U/∂t.  In addition, 

since the conservation variables are all real-valued, it is only necessary to store the 

Fourier coefficients for non-negative n.  For example, if NH harmonics are retained in the 

Fourier series, then 2NH +1 coefficients must be stored for each flow variable.  There is 

one for the zeroth harmonic (mean flow) and 2NH for the real and imaginary components 

of the rest of the harmonics (Hall, Thomas, and Clark 2002, 881).  However, this method 
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proved to be extremely difficult and computationally expensive so an alternate approach 

was developed to reduce the complexity of the problem.  

Utilization of Time Domain Methodology 

 The new method works in terms of time domain variables by assuming that the 

values of U, F, and G could be evaluated at 2NH +1 equally spaced points in time over 

one temporal period.  Therefore,  

  UEU ~* 1−=  (24) 

where U* is a vector of the conservation variable evaluated at 2NH +1 points and E-1 is 

the inverse discrete Fourier transform operator.  Similar expressions can be developed for 

the flux vectors and the new governing vector equation becomes: 
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where  
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S* is a spectral operator which approximates the change in U* with respect to time.  This 

method can easily be extended to the two-dimensional, unsteady, viscous Navier-Stokes 

equations used in this study.  The technique used to actually solve the governing 

equations will be described in the next section.   

Numerical Solution Technique 

 To obtain the solution to the harmonic balance equations, a pseudotime term was 

introduced.  This allows the equations to be marched to a steady state using conventional 

CFD techniques.  For the Euler equations, the equation becomes: 
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where τ is a new time variable merely used to march the equation to a steady state.  This 

equation very closely resembles the differential form of the Euler equations so it is 

analogous to solving the time domain equations using a CFD scheme.  Therefore, the 

overall method would consist of pseudotime marching N x (2NH +1) dependent variables, 

where N is the number of mesh points and NH is the number of harmonics retained in the 

solution.    

Grid Generation 

In general, the grid is constructed based on the geometric attributes of the body 

under consideration.  The flow properties at each point in the grid are assigned a value 

based on the initial flow condition (Ni 1982, 1565).  Then, the governing equations are 

discretized into distinct cells on a computational mesh.   The solution is then numerically 

integrated for each cell over the entire domain.  Finally, the governing equations are 

marched in the psuedo time domain. Multi-grid and local time stepping methods can be 

used to accelerate convergence.  Effectively, multi-grid uses a combination of fine grids 

and coarse grids to achieve both rapid solution convergence as well as accuracy.               

Lax-Wendroff Method 

 In particular, for the two-dimension Navier-Stokes equations, a computational 

grid is generated for each time level and then the harmonic balance equations are 

discretized over the entire domain using common CFD techniques.  The conservation 

variables are stored at each node of the grid for each time level.  In this analysis, the two-

step Lax-Wendroff method was used to solve the harmonic balance equations.  The Lax-

Wendroff method is a node-centered conservative finite difference scheme.  For the 
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Navier-Stokes equations, the Lax-Wendroff scheme is second-order accurate in space and 

first order accurate in time due to viscous terms (Davis, Ni, and Carter 1987, 407).  As 

before, the Navier-Stokes equations are given as: 
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where U, F, G, and S are defined in the preceding section.  The Lax-Wendroff method is 

developed from a Taylor series expansion of U in time: 
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The first derivative term can be determined from the governing equation and therefore 

can be written as: 
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The second time derivative can be found by differentiating this equation with respect to 

time: 
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When these expressions are substituted back into the Taylor-series expansion for U, the 

resulting equation becomes: 
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where ∆U = (∂U/∂t)∆t, ∆F = (∂F/∂U)∆U, ∆G = (∂G/∂U)∆U, ∆H = (∂H/∂U)∆U,  

and ∆S = (∂S/∂U)∆U.  
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Therefore, the first derivative representation provides a first-order correction 

whereas the second derivative gives a second-order correction.  This technique is applied 

to the harmonic balance described in the previous section and the solution can be 

obtained by marching these equations in time at each grid point.  A steady state is 

reached when the corrections are driven to zero.  Since this method was originally 

developed for inviscid flow analysis, some small changes must be made to the integration 

scheme to handle the viscous components (Davis, Ni, and Carter, 409).  Finally, it is 

common to use an artificial viscosity to maintain stability in regions with large 

discontinuities and coarse grid spacing. In this study, both second and fourth difference 

numerical smoothing are used to eliminate oscillations.      

Application of Initial and Boundary Conditions 

 In addition, proper boundary and initial conditions must be applied.  In particular, 

at each iteration of the code, the no-slip boundary condition must be applied on the 

cylinder surface since viscous flow analysis is being conducted.  Furthermore, the 

periodicity conditions must be implemented.  Also, non-reflecting far field boundary 

conditions should be applied in the frequency domain such that there are no disturbances 

far from the body (Hall, Thomas, and Clark 2002, 882).  Finally, both upstream and 

downstream initial flow conditions are prescribed.       

Frequency Search Procedure 

Once the system has been completely described, CFD techniques can be invoked 

and the equations are marched in pseudo-time until convergence is reached.  However, 

nonlinear harmonic balance analysis requires the user to input the frequency of the flow 

instability (a known quantity) to the system.  Since the purpose of the study is to find the 
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NSV frequency, two different approaches can be applied.  A simple method is to choose 

a wide range of frequencies and compute the solution residual of the harmonic balance 

equation for each case.  The NSV frequency corresponds to that for which the harmonic 

balance solution residual goes to zero.  However, previous studies by McMullen, et al. 

indicate the solution residual drops off suddenly at the precise NSV frequency 

(McMullen, Jameson, and Alonso 2002, 6). As a result, this method of guessing 

frequencies can easily miss the correct NSV frequency and also requires numerous 

iterations of the harmonic balance code.    

Phase Error Method 

Therefore, a novel frequency search technique was developed by Hall (private 

communication).  This technique requires much fewer harmonic balance calculations 

than the frequency sweep method.  For a given frequency, the converged solution will 

have a constant amplitude and phase.  The phase shift can be calculated relatively simply 

once the unsteady lift is determined.  After each iteration of the HB solver, the phase is 

updated and the change in phase from one iteration to the next is computed.  When an 

incorrect frequency is inputted using the nonlinear harmonic balance method, it was 

discovered that the amplitude of any unsteady first harmonic quantity, such as unsteady 

lift, stays nearly constant but the phases rotates from one iteration to the next and 

eventually settles down to constant value.  Once this value is calculated for a couple 

different frequencies, it becomes readily apparent that the phase is nearly linearly related 

to the frequency.  The exact frequency can be calculated by determining the frequency 

for which the phase shift is zero.  This can be accomplished by simple interpolation.  
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Thus, this simple phase error technique results in a reasonable approximation of the NSV 

frequency and only requires a few harmonic balance calculations. 

3. APPLICATIONS OF HARMONIC BALANCE METHOD 

3.1  STATIONARY CYLINDER IN CROSS FLOW 

 A well-studied fluid dynamics phenomenon is a stationary cylindrical structure in 

cross flow.  This test case is important for the study of towers, cables, antennae, wires, 

etc.  As a result, extensive experimental data is available demonstrating the relationship 

between Strouhal number and Reynolds number.  Therefore, as an initial illustration of 

the merits of the harmonic balance method, the first goal was to reproduce these 

experimentally determined results.  The problem was modeled using the HB method and 

a 129x65 mesh for various Reynolds numbers.  A typical mesh is shown in Figure 3 with 

129 points in the circumferential direction and 65 points in the radial direction.  The mesh 

boundary is 40 diameters from the center of the cylinder in this figure.   

 

Figure 3.  Computational Grid (129x65 mesh) for Cylinder in Cross Flow 
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Application of Phase Error Method 
 

To determine the Strouhal number representing the NSV frequency for a 

particular Reynolds number, it was necessary to run the code for different Strouhal 

numbers and note the solution residual for each case.  Figure 4 shows the HB solution 

residuals for a number of assumed Strouhal numbers at a Reynolds number of 170 using 

two harmonics. As can be seen from the graph, the predicted Strouhal number is 

approximately 0.1865.  The NSV frequency or the “correct” frequency is that for which 

the solution residual drops down significantly i.e. |dq| = |0| (the difference between the 

current solution and the previous solution is zero).  However, this method requires the 

user to run the code for many different cases to hone in on the precise NSV frequency.    
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Figure 4.  HB Solution Residual versus Strouhal Number – Re = 170 (2 Harmonics) 

 
A more efficient method is to use the phase error method described previously 

that utilizes the change in an integrated global quantity such as the phase of the unsteady 

lift as opposed to the solution residual.  By choosing the same Strouhal numbers, the 

phase shift per iteration was also determined.  A plot of these quantities is shown in 

Figure 5 and it can be seen that the change in phase of the unsteady lift is nearly linear 
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with respect to the Strouhal number.   The zero crossing represents the NSV non-

dimensional frequency and is also the point where the HB solution residual exhibits a 

sudden drop-off.  Therefore, it is only necessary to run the code for a small number of 

different frequencies and note the change in phase of the unsteady lift for each case.  

Then, one can interpolate between these points to find the zero crossing, which 

corresponds to the precise NSV frequency.  Therefore, this frequency search technique 

provides a solution much more quickly than simply searching directly for the frequency 

where the HB solution residual is a minimum.  Furthermore, a more accurate solution can 

be obtained by adding more harmonics and performing a mesh refinement study. 
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Figure 5. Change in Phase Angle of Unsteady Lift Per Iteration – Re = 170  

(2 Harmonics) 
 

Strouhal – Reynolds Number Relationship 

 This process was repeated for a range of Reynolds numbers in the laminar flow 

regime and a corresponding Strouhal number was determined for each case.  The 

resulting Strouhal numbers were then compared with experimental data collected by 

Williamson in 1996 (Williamson, 494).  The results can be found in Figure 6.   
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Figure 6. Cylinder in Cross Flow - Strouhal Number Dependency on Reynolds 

Number 
 

As can be seen from the plot, the HB method shows good agreement with the 

experimentally determined values.  Previous studies had indicated large discrepancies in 

the St –Re relationship in the laminar flow region but Williamson found that the wake 

frequency was very sensitive to the experimental setup, particularly the 3-D effects of 

oblique vortex shedding.  To counter these effects, parallel shedding was induced by 

angling the endplates on the cylinder (Williamson 1988, 2744).  Therefore, by applying 

this end boundary condition and ensuring the freestream is sufficiently uniform, a curve 

is produced that is universal as well as continuous.  Therefore, the harmonic balance 

method accurately predicts the relationship between Strouhal number and Reynolds 

number. 
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Stationary Cylinder Flow Simulation 

A typical flow solution for the total pressure contours for Reynolds numbers of 

50, 100, and 170 are shown in Figures 7, 8, and 9, respectively.  These plots demonstrate 

the low-pressure region that is generated behind the cylinder and also show the formation 

of vortices in the cylinder’s wake.  In particular, for Re = 50, it shows the beginning of 

the vortices being shed alternatively from the top and bottom of the cylinder.  For 

Reynolds numbers of 100 and 170, the wake has become unstable and the vortices have 

detached themselves from the cylinder.  Consequently, staggered rows of vortices of 

opposite sign are being formed.  Therefore, the HB method is able to produce time 

accurate results and is a viable tool to predict the frequency of the unsteady flow about a 

stationary cylinder in cross flow and the solution at chosen Reynolds numbers agrees 

well with previous experimental investigations.  Furthermore, the observed flow patterns, 

such as the Von Karman vortex street, are consistent with previous experimental flow 

simulation results.  This can be seen by comparing the figures below with Williamson’s 

photograph of the formation of Von Karman vortex streets in the introduction.     
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Figure 7.  Total Pressure Contours for Flow Over a Cylinder at Re = 50 

 
Figure 8.  Total Pressure Contours for Flow Over a Cylinder at Re = 100 
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Figure 9.  Total Pressure Contours for Flow Over a Cylinder at Re = 170 
 
Unsteady Cylinder Lift 

 In addition to determining the frequency of the fluid dynamic instability, another 

important quantity to be able to calculate is the RMS amplitude of the lift on the cylinder.  

At the NSV frequency for a range of Reynolds numbers, the amplitude of the first 

harmonic lift acting on the shedding cylinder is determined.  A plot demonstrating this 

relationship can be found in Figure 10.  This plot gives a measure of the unsteady lift (1st 

harmonic).  The alternate periodic shedding causes the pressure fluctuations at around fst 

to be essentially out-of-phase between the upper and lower side of the cylinder so the lift 

fluctuation energy is concentrated to a band around fst (Norberg 2003, 57).  Furthermore, 

by extrapolating to the Reynolds number of zero oscillating lift, the onset of the vortex 

shedding can be determined.  Figure 10 shows that this occurs at about a Reynolds 

number of 47, which is approximately the same as the value determined from nonlinear 

dynamic numerical techniques (Norberg 2001, 464).  In addition, the plot shows that 
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there is rapid increase in the unsteady RMS lift coefficient within the laminar shedding 

regime.  This is characteristic of all supercritical Hopf bifurcations in which the size of 

the limit cycle grows continuously from zero, and increases proportional to (µ - µc)1/2 

where µ is a control parameter. In fact, experimental studies and 2-D simulations have 

shown that the unsteady lift coefficient exhibits this square-root dependency on Reynolds 

number, CL’ ∝ ε = (Re-Rec)/Rec))1/2  where Rec is the critical Reynolds number for which 

shedding begins (Norberg 2001, 464).  Therefore, by examining the nonlinear dynamics 

of the system, the unsteady lift provides a measure of the stability of the system and can 

be used to determine the transition from steady flow to Von Karman vortex shedding in 

the 2-D cylinder wake.  Furthermore, the HB method demonstrates the unsteady lift’s 

square-root dependency on Reynolds number. 

 
Figure 10. Computed Amplitude of First Harmonic of Unsteady Lift Acting on 

Shedding Cylinder from Onset at Re = 47 
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Experimental Procedure and Results 

               To validate the results obtained by the HB method, a comparison was made 

with the experimental study of Tanida, et al. as well as numerous 2-D numerical 

simulations.  Figure 11 shows that the results obtained from the HB method show 

reasonable agreement with the 2-D computational data but vary considerably from the 

experimental data.  This discrepancy may be explained in part by the use of unsealed 

gaps in Tanida’s towing tank study (Norberg 2003, 65).  Tanida, et al. utilized a force 

element method to measure the fluctuating lift in which the load-transmitting part of the 

cylinder is connected to a cantilever beam element that is fixed to a base inside a 

“dummy” part of the cylinder.  Keefe found that unsealed gaps can result in a drastic 

reduction in fluctuating unsteady lift forces as Reynolds number is decreased, as much as 

10 times lower than with sealing (Keefe 1962, 1712).  However, his experiment was 

conducted at higher Reynolds number so it is difficult to determine a definitive reason for 

the incongruity between the experimental and computational data.  Unfortunately, this is 

the only experimental data available in the Reynolds regime of interest so it is hard to 

make a qualitative comparison.  When the HB method is compared with other numerical 

simulations, it seems to slightly over predict the unsteady lift coefficient.  As a result, 

further study is required to determine the validity of Tanida’s experimental results.   
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Figure 11.  Comparison of Lift Data with Other Numerical Results and 

Experimental Data 

Mean Cylinder Drag 

 Another interesting feature to examine is the response of the cylinder drag to the 

onset of unsteadiness and vortex shedding.  There are numerous contributions to the total 

drag on a cylinder, including the viscous drag coefficient and the pressure drag 

coefficient.  Henderson computed these coefficients numerically using a highly accurate 

spectral element method based on 8th order polynomials (Henderson 1995, 2102).  

Furthermore, McMullen also computed the drag forces as a function of Reynolds number 

using a frequency domain technique.  The change from a steady to an unsteady wake is 

marked by a gradual decrease in the viscous drag coefficient as well as the total drag 

throughout the laminar flow regime (Henderson 1995, 2103). A plot comparing the 

values obtained by Henderson, McMullen, and the harmonic balance method is found in 

Figure 12.  The results from the harmonic balance method are very similar to those 

obtained by both Henderson and McMullen.  It is noted that the mean drag coefficients 
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are relatively constant with respect to Reynolds number as compared to the lift 

coefficients.  Therefore, the harmonic balance method is further validated as a valuable 

tool for predicting the forces on a cylinder. 
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Figure 12.  Comparison of Mean Coefficient of Drag versus Reynolds Number Data 
with Henderson and McMullen for Laminar Vortex Shedding 

 
3.2  CYLINDER WITH PRESCRIBED MOTION 
 
 Next, the cylinder is forced to oscillate at a specified amplitude and frequency.  In 

this case, there is a range of frequencies over which the shedding frequency will “lock-

in” to the frequency of the vibrating cylinder.  This synchronization effect was first 

observed by Bishop and Hassan and later measured by Koopman at low Reynolds 

numbers (Koopman 1967, 508).  Cylinder vibration with frequencies near the shedding 

frequency can influence both the pattern and the phasing of vortices.  Outside of this 
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region, the cylinder will oscillate at a frequency close to that of the stationary shedding 

frequency.  Forced oscillations were achieved experimentally by using a shaking 

mechanism to generate a controlled motion at a range of amplitudes and Strouhal 

frequencies.  Therefore, as the driving frequency is increased, two distinct behaviors are 

observed, inside and outside of the so-called lock-in regime.   

Technique Used to Determine Bounds of Lock-In Region 

 To investigate this phenomenon numerically, the same HB solution methodology 

was used but with the cylinder vibrating in the transverse direction at a prescribed 

frequency.  Koopman experimentally determined the lock-in region for Reynolds 

numbers of 100 and 200.  In a first attempt to replicate the data, the code was run at a 

Reynolds number of 150 with a fixed amplitude for many different Strouhal numbers, 

and the solution residual was noted for each case.  The solution residual within the lock-

in region will converge to machine zero.  Outside of this region, two distinct frequencies 

are observed experimentally; however the current HB method can only handle one 

frequency.  Thus in the region where two frequencies are expected to be present, the 

current numerical method fails to converge.  Extension of the HB method to treat two or 

more frequencies is possible and is the subject of current research.  Figure 13 shows this 

behavior for two different Strouhal numbers, one inside and one outside of the 

synchronization region.   
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Figure 13.  Behavior of Solution Residual In and Out of the Lock-in Region 

 
Therefore, by repeating this procedure for various amplitudes, it was possible to establish 

an estimate of the left and right bounds on the lock-in region based on the HB solution 

behavior.  However, it is difficult to determine the exact left and right bounds of the lock-

in region due to the inability of the HB method to accurately determine the frequencies 

outside of the lock-in region where the cylinder is shedding at a different frequency than 

it is vibrating.  Therefore, there is some subjectivity in assessing what constitutes a fully 

converged solution within the lock-in region. 

 Initially, a mesh size of 129x65 was used with a mesh boundary radius of forty 

diameters measured from the cylinder’s center.  A comparison between Blevins’ data and 

the results obtained by the HB method is shown in Figure 14.  The dimensionless 

amplitude is plotted versus the ratio of the frequency of the vibrating cylinder to the 

stationary shedding frequency.  From the plot, it can be seen that there is good agreement 
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up to an oscillation amplitude of 0.05.  However, above this amplitude, the HB solution 

begins to deviate greatly from the experimental values.  This discrepancy may be due to 

the use of a coarse mesh, a large mesh boundary, or the code’s limitation of the use of 

only 3 harmonics.  As a result, a number of changes were made to achieve better 

agreement with Blevins’ experimental data.        
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Figure 14.  Demonstration of Lock-in Phenomenon 

Effect of Mesh Refinement 

 The initial improvements involved utilization of finer meshes and a smaller mesh 

boundary.  Both a 193x97 and a 257x129 mesh were considered as well as a mesh 

boundary of 20 times the diameter of the cylinder (20D) instead of 40D.  Table 1 shows 

the results obtained from the mesh refinement study for dimensionless amplitude of 0.10.  

As can be seen, the use of a finer mesh improves the results at an amplitude of 0.10 but 
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there is still a significant difference in the bounds.  Therefore, a further refinement is 

required to achieve better accuracy at higher vibratory amplitudes.     

Addition of Filter to Reduce Far Field Boundary Effects 

 Due to the constraints of using the HB method with a large grid domain, the 

previous code limited the user to only three harmonics.  In an attempt to avoid this 

problem, a subroutine was added to act as a filter for the HB method.  The filter was 

designed to zero out the higher harmonics as you go farther and farther out in the domain, 

away from the cylinder where the wake effects are small.  Therefore, it is possible to use 

as many as seven harmonics to achieve a more accurate solution.  By examining Table 1, 

the results show that adding up to seven harmonics greatly improves the estimate of the 

left bound of the lock-in region and showed a slight improvement in the right bound.  In 

addition, the results from the 193x97 mesh were added to Figure 20 to demonstrate the 

new bounds.  Therefore, the filter was a valuable tool because it gave a way to study the 

effect of adding more harmonics to the solution.   It was found that the use of more 

harmonics resulted in a better approximation to the experimental values obtained by 

Blevins.  However, mesh size had only a small effect on the bounds of the lock-in region.       

      Left Bound Right Bound 
Mesh Size Re h/D Radius NH f/fN f/fN 

129x65 100 0.10 20 3 0.7656 1.1016 
193x97 100 0.10 20 3 0.7656 1.1016 
257x129 100 0.10 20 3 0.7891 1.1094 
193x97 100 0.10 20 7 0.8438 1.1094 

Experimental 100 0.10 - - 0.875 1.1284 
129x65 150 0.10 40 3 0.7708 1.0972 

Table 1.  Effect of Mesh and Harmonic Refinement on Modeling Blevin’s 
Experimental Lock-in Region for Re = 100 

 
 

 



F49620-03-1-0204  Final Report 

Duke University Page 39 March 2006 

Unsteady Lift for Prescribed Motion 

 In addition to determining the lock-in region, the unsteady lift was calculated.  

Tanida, et al. experimentally measured this quantity in a towing tank with 30 mm 

diameter test cylinders in which the lift and drag forces are sensed by strain gauges 

(Tanida 1973, 773). Oil was used as the fluid because it allows the unsteady aerodynamic 

forces on the oscillating cylinder to be measured with reasonable accuracy (Tanida 1973, 

771).  The study was conducted at a Reynolds number of 80 and a non-dimensional 

amplitude of 0.14.  Once again, the HB method was used at these conditions and 

compared with the experimental data.  A plot of the results can be found in Figure 16.  

The HB method shows remarkable agreement with the experimental results of Tanida, et 

al.  The stability of the cylinder oscillation is dependent on the component of the 

unsteady lift force that is in phase with the oscillating velocity (Tanida 1973, 774).  

Therefore, the cylinder will be unstable if the imaginary part of the unsteady lift 

coefficient is greater than zero, which is characteristic of negative aerodynamic damping.   

Real and Imaginary Part of the Unsteady Lift 

 The real and imaginary components of the lift coefficient are plotted below.  The 

plot of the imaginary component shows the system is stable for St = 0.1000 to St = 

0.1300 and then becomes unstable throughout the rest of the lock-in region.  The stability 

of the system is determined by assuming harmonic motion in which  

 tt
L

ti
LL

IR eeCeCC ωωω −− == ||||  (33) 

where a negative value indicates a stable solution and a positive value gives an 

exponentially growing term which causes instability.  A sensitivity study was conducted 

to determine the effect of including more and more harmonics.  There does not appear to 
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be a substantial benefit to keeping more than two harmonics in the HB solution for the 

parameter range studied here.   
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Figure 15.  Magnitude of the Real Part of the Unsteady Lift Coefficient versus 
Strouhal Number for a Single Cylinder Oscillating Transversely (h/D = 0.14) 
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Figure 16.  Magnitude of the Imaginary Part of the Unsteady Lift Coefficient versus 

Strouhal Number for a Single Cylinder Oscillating Transversely (h/D = 0.14) 
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Amplitude of the Unsteady Lift 

 In addition, a plot of the amplitude of the unsteady lift coefficient was 

constructed.  By examining the plot in Figure 17, the amplitude appears to steadily 

increase throughout the lock-in region until a peak displacement is reached.  When 

compared to the stationary cylinder case, nearly the same CL value is obtained for Re = 

80.  In addition, the cylinder was also forced to oscillate at half the vibratory amplitude, 

i.e. h/D = 0.07 and it was discovered that lock-in region became smaller but the 

amplitude of the lift coefficient fell on the same curve as the h=0.14 case.  The cylinder 

was also forced to vibrate at higher amplitudes and the lift coefficient actually decreased 

(see Figure 18).  Therefore, cylinder motion does not dramatically affect the lift 

coefficient for oscillation amplitudes up to about h/D = 0.40.  Therefore, the lift 

coefficient appears to be relatively independent of the prescribed amplitude when the 

cylinder is driven at an amplitude of approximately 10 percent or less of the cylinder’s 

diameter and for higher vibratory amplitudes, the lift coefficient decreases.  This has 

important implications for the study of non-synchronous vibrations of turbomachinery 

blades because it may not be necessary to couple the NSV fluid dynamic solution with 

blade motion for sufficiently small blade amplitudes, which is a much easier 

computation.  
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Figure 17.  Amplitude of the Unsteady Lift versus Strouhal Number for a Reynolds 

Number of 80 and a Mesh Size of 129x65 with a Radius of 20 
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Figure 18.  Effect of Oscillation Amplitude on the Magnitude of the Unsteady Lift 
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Phase Shift as a Function of Strouhal Number 

Another important characteristic of the lock-in region is the phase angle as a 

function of the Strouhal number within the lock-in region.  The phase angle is a measure 

of the phase difference between the displacement of the cylinder and the lift force.  By 

examining Figure 18 below, the cylinder lift undergoes an abrupt 180 degrees phase shift 

between the shedding and the cylinder motion at about a Strouhal number of 0.1500.  For 

a Reynolds number of about 80, the stationary cylinder shedding frequency was found to 

be about St = 0.1450 using the HB method. Therefore, it appears that this 180 degrees 

phase shift occurs as the cylinder vibration frequency passes through the natural shedding 

frequency.  This could be explained by Zdravkovich’s physical observation of the flow 

behind the cylinder.  By examining the flow over an oscillating cylinder, it is noted that 

the vortices tend to shed when the cylinder is near its maximum displacement (Blevins 

1990, 56).  Zdravkovich found that for frequencies below the natural shedding frequency, 

the vortex is shed from the side opposite that experiencing its maximum displacement.  

However, for frequencies above the shedding frequency, the vortex is shed from the same 

side as the max displacement (Sarpkaya 2003, 64).  Therefore, the phase shift may be due 

in part to a switch in the timing of the shedding of the vortices.  The stability of the 

system is consistent with the plot of the imaginary coefficient of lift.  A phase shift of 

zero degrees refers to the condition in which the force and displacement are in-phase and 

no work is being done.   



F49620-03-1-0204  Final Report 

Duke University Page 44 March 2006 

-100

-80

-60

-40

-20

0

20

40

60

80

100

0.0900 0.1100 0.1300 0.1500 0.1700 0.1900

Strouhal Number, St

Ph
as

e 
A

ng
le

 o
f C

L 
(d

eg
)

HB Method (NH = 5) HB Method (NH = 2) HB Method (NH = 7)

St =0.1000 St = 0.1700

 
Figure 19.  Phase Angle Between the Lift and Displacement Within the Lock-In 

Region 
 
Aerodynamic Damping 

In addition, the aerodynamic damping was also calculated.  Aerodynamic 

damping is a result of fluid forces acting on the structure.  As can be seen from Figure 19, 

the damping becomes increasingly negative until it reaches a minimum value and then 

starts to increase again.  A negative aerodynamic damping results in a net energy input to 

the cylinder vibration.  The most unstable damping coefficient occurs at a Strouhal 

number of 0.1600 which coincides with the point for which maximum work is being 

done.   
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Figure 20.  Aerodynamic Damping in the Lock-in Region as a Function of Strouhal 

Number 
 

Therefore, by examining the amplitude, phase angle, and damping coefficient within the 

lock-in region, various flow characteristics were deduced.  Specifically, the stability of 

the flow, the frequency for which the maximum response occurs, and the behavior at the 

endpoints of the lock-in region were found and compared with the physics of the flow 

behind a cylinder. 

Mean Cylinder Drag for Prescribed Motion 

 In addition to the fluctuating lift forces on the cylinder, the mean drag was also 

calculated as a function of Strouhal number.  Figure 20 shows the results obtained by the 

HB method as compared to the experimental results of Tanida.  By examining the plot, it 

can be seen that the drag coefficient steadily increases within the lock-in region until it 

reaches a maximum around CD0 = 1.63 at St = 0.1650 for the HB method.  On the other 

hand, Tanida’s results indicate a maximum value of CD0 = 1.87 at St = 0.1500.  However, 
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despite this discrepancy, the overall trend appears to be the same and the HB method 

shows relatively good agreement with Tanida’s experimental data.  Therefore, the HB 

method is also capable of determining the drag forces on a cylinder when it is subjected 

to a prescribed motion. 
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Figure 21.  Comparison of the Mean Coefficient of Drag versus Strouhal Number 

Within the Lock-in Region 
 

3.3  ELASTICALLY MOUNTED CYLINDER 
 
 Finally, it is important to determine the response characteristics of a vortex-

excited spring supported cylinder in the stable, laminar flow regime.  In this case, as the 

flow velocity is increased or decreased, the shedding frequency can approach the natural 

frequency of the structure.  At a critical velocity, the shedding frequency will lock-in to 

the structure frequency (Blevins 1973, 21).  In the synchronization region, resonant 

oscillation conditions can occur and produce large amplitude responses.  Therefore, by 

determining the interaction between the flow oscillations and the cylinder motion, it will 
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be possible to predict the cylinder oscillation frequency and the resultant cylinder 

amplitude.         

Aeroelastic Cylinder Model 

 This cylinder aeroelastic “lock-in” problem is modeled by a single degree of 

freedom spring-mass-damper system excited by a transverse lift force expressed as L′, the 

lift per unit span.  A schematic of this system can be seen in Figure 22.  As can be seen, 

the cylinder is mounted on a linear spring of stiffness of k and a structural damping 

coefficient of d.  The external force on the cylinder is represented by the unsteady lift 

generated by the trailing vortices.   The governing equation that describes this system is: 

  LDsCUkh
dt
dhd

dt
hdm ′∞∞=++ ρ

2
1

2

2

 (34) 

where m is the mass of the cylinder, d is the damping coefficient, k is the cylinder spring 

stiffness, ρ∞ is the fluid density, U∞ is the fluid velocity, D is the cylinder diameter, s is 

the cylinder span, CL′ is the cylinder lift coefficient, and h is the transverse displacement 

of the cylinder. 

 
Figure 22.  One-Degree-of-Freedom Model of a Vortex-Excited Cylinder 
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Next, one can assume simple harmonic motion so h and CL’ can be represented as  

  tjehh ω
1= , tj

LL eCC ω
1

=′  (35) 

As a result of this substitution, equation (38) becomes: 

  0
2
1)( 2

1
2 =−++− ′∞∞ LDsCUhkdjm ρωω  (36) 

  
Non-Dimensional Parameters 

 In practice, it is more common to study the non-dimensionalized form of this 

equation because it reduces the number of parameters and also, makes it easier to 

compare with experimental results.  As a result, some new dimensionless parameters 

should be introduced.  The first parameter is the natural frequency of the system, which is 

independent of any initial excitations.  It is expressed as     

  
m
k

=0ω  (37) 

Another parameter of interest related to the natural frequency is the damping factor.  This 

value characterizes the energy dissipated by the cylinder as it vibrates.  It is described by 

the following equation: 

  
02 ω

ζ
m
d

=  (38) 

Another factor controlling the fluid-structure interaction is the mass ratio.  It is the ratio 

of the mass of the cylinder to the mass of the fluid displaced by the cylinder.  It provides 

a measure of the buoyancy effects and the inertia of the model as compared to the fluid 

(Blevins 1973, 7).  It is given by: 

  
sD

m
m 2
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=
πρ

µ  (39)  
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It is also common to define a non-dimensional vertical displacement coordinate.  

Therefore, the plunge coordinate can be divided by a characteristic length such as the 

diameter of the cylinder.  The new coordinate is defined as: 

  
D
h

h 1
1 =′  (40)  

The final parameter represents a ratio of the fluid frequency to the structural frequency 

and is given by: 

  2
0

2
Dω

πν∞=Κ  (41)   

Using all these dimensionless parameters, the governing equation can be greatly 

simplified.  In general, the final equation can be written as: 
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By separating this equation into its real and imaginary parts, a system of two equations is 

produced.  Thomas, et al. initially demonstrated this method in 2002 (Thomas, Dowell, 

and Hall 2002, 645).  These equations can be solved simultaneously for the two 

unknowns, Reynolds number and Strouhal number, for a specified h1′.  The nominal 

residual of the real and imaginary parts can then be written in the following form: 
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where L is a vector of the unknown variables, Re and St.   
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Application of Newton-Raphson Technique 

 The Newton-Raphson technique is then used to solve for the correct combination 

of Reynolds number and Strouhal number for which the residual goes to zero.  The 

Newton-Raphson technique is an efficient and stable way to quickly solve the system of 

equations (Thomas, Dowell, and Hall 2002, 645).  The method requires the user to 

choose an initial value for Reynolds number and Strouhal number.  The method then uses 

the HB solver to determine the real and imaginary parts of the unsteady lift coefficient.  

Next, the Reynolds number is perturbed by a small amount and the change in the forces 

with respect to Reynolds number is evaluated.  The procedure is repeated for the Strouhal 

number.  In vector notation, this procedure can be expressed as:   
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where 
Re∂
∂R and 

St
R

∂
∂ are given by the following relations, 
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for small values of ε.  The resulting values can be put into matrix form and then the 

inverse is taken.  This quantity is then multiplied by the original solution and subtracted 

from the initial guess of the Strouhal number and Reynolds number.  Therefore, this is an 

iterative process and can be written as: 
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This gives a new update for Re and St and the process is repeated until the solution 

converges.  This technique is advantageous because it only requires a few iterations to 

achieve convergence.  

 Preliminary results by Jeffrey P. Thomas show that this is a viable method for 

predicting the Strouhal number and Reynolds number of the self-excited cylinder for a 

range of Reynolds numbers.  A plot of these results is shown below in Figure 22.   

 
Figure 23.  Cylinder Oscillation Amplitude versus Reynolds Number with Varying 

Mesh Sizes and Comparison with the Experimental Data (Thomas 2004) 
 

An interesting feature of this figure is the fact that there are two different amplitudes 

obtained for one Reynolds number, which is not possible to obtain experimentally.  This 

may be explained by the fact that two solutions are present – a stable and an unstable one.  

Therefore, the experiment will not capture the unstable solution and will jump directly to 

the stable one.  In addition, a plot of the Strouhal number as a function of Reynolds 
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number was constructed for frequencies within the lock-in region.  The results show that 

the HB method predicts the relationship between Reynolds number and Strouhal number 

fairly well within the lock-in region.  Therefore, the HB method can be coupled with a 

Newton-Raphson solver to accurately model the aeroelastic cylinder case. 
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Figure 24.  Comparison of Relationship Between Reynolds Number and Strouhal 
Number for Aeroelastic Case 

 
Experimental Procedure and Results 
 
 To validate these results, the solution was compared with those obtained 

experimentally by Anagnostopoulos and Bearman.  They conducted their experiment in a 

water channel by mounting a 1.6 mm diameter circular cylinder on two steel springs on a 

horizontal shaft (Anagnostopoulos and Bearman 1992, 41).  Using the experimental 

parameter values given for the natural frequency, the damping factor and the mass ratio 

and calculating Κ from given measurements, a direct comparison can be made.  

Anagnostopoulos and Bearman examined Reynolds numbers in and out of the lock-in 

region.  As predicted, they found that at a Reynolds number before lock-in, the vortices 
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were shed at the Strouhal frequency but the cylinder was oscillating at a different 

frequency so two frequencies were present in the system (Anagnostopoulos and Bearman 

1992, 43).  However, when the Re was increased to 104, the cylinder oscillation 

frequency synchronized with the shedding frequency and the amplitude of the cylinder 

oscillations greatly increased.  They found that the maximum oscillation amplitude 

occurred near the middle of the lock-in region (Anagnostopoulos and Bearman 1992, 47). 

When the Reynolds number was increased further to a value of about 126, the shedding 

becomes unlocked once again.  Therefore, by integrating the Newton-Raphson technique 

into the HB solver, a solution for the cylinder self-excited aeroelastic problem has been 

obtained and compared with Anagnostopoulos’ experimental data.          

3.4  TWO-DIMENSIONAL AIRFOIL (C1 CASE) 

Having verified that the technique can accurately predict the shedding frequency 

for flow about a cylinder, we next considered a flow instability about a two-dimensional 

airfoil section of a modern compressor blade (C1) operated at an off-design condition.  

First, a time domain version of the flow solver was generated and the unsteady normal 

force on the blade was determined as a function of time (see Figure 25).  It is noted that 

the amplitude has converged at 50 time steps / iteration.  This was then FFT’ed to 

determine the frequency content with the results shown in Figure 25 (right side).   
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Figure 25.  Time Domain Solution and Fourier Transform of Time Solutions for 

Three Different Timesteps/Period (IBPA = 0) 
 

To verify this frequency, the results were then compared with those obtained 

using the HB method.  The blade geometry as well as the Mach contours for the steady 

case is shown in Figure 26.  First, a “steady” flow solution was obtained.  Figure 27 

shows that the solution residual does not approach zero.  Instead, the residual oscillates.  

This oscillation is an indication of an underlying physical flow instability.  However, 

because the steady flow solver uses local time stepping and multi-grid acceleration, we 

cannot infer the frequency of the physical instability from this calculation. 
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Figure 26.   Mach contours for the Steady Solver for 2-D Flow About C1 

Compressor Blade 
 

 

Figure 27. Convergence History of Steady Flow Computation for 2-D Flow About 
C1 Compressor Blade 

 
Next, the nonlinear harmonic balance solver was used to compute the physical 

frequency with interblade phase angle of zero degrees.  The procedure is to search for the 
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frequency that allows the harmonic balance flow solver to converge to a zero residual.  

Figure 28 shows the solution residual of the harmonic balance solver as a function of 

frequency for the zero interblade phase angle case.  Note that a frequency of about 1250 

Hz, the residual (for five harmonics) drops dramatically to zero, indicating that this is the 

frequency of the flow instability.  Note the very narrow trough in the residual curve in 

Figure 28, complicating the search for the correct frequency.  An alternative procedure is 

to search for the frequency that produces a constant phase in a global quantity such as the 

first harmonic of the lift using the same method as described above for the cylinder.  

Figure 29 (left side) shows the phase change per iteration of the harmonic balance flow 

solver when the convergence reaches a steady state.  In this case, the phase change is 

nearly linear with frequency.  This makes interpolation to the correct frequency a simple 

matter, and requires many fewer calculations.     

 

Figure 28. Residual of Harmonic Balance Solver (2D C1 Blade, IBPA = 0) 
 

 As can be seen in Figure 29, there is excellent agreement between the FFT’ed 

time domain results and the HB method frequencies.  However, it appears that the HB 

method over predicts the amplitude of the first harmonic force coefficient and under 
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predicts the second harmonic.  The higher harmonic amplitudes show good agreement.  

Therefore, the HB method is a very effective tool for determining the NSV frequency but 

does not accurately predict the amplitude for the first and second harmonics for this 2-D 

test case.   

 

 
Figure 29.  2D C1 Case: HB Frequency Comparison with Time Domain Solution  

(IBPA = 0) 
 
3.5  THREE-DIMENSIONAL CASES 

 Next, the HB methodology was applied to three-dimensional real world 

turbomachinery blade applications.  Based on input from industry, NSV was encountered 

in experimental rig testing for two of the three test cases.  In particular, the study 

examined a modern first stage compressor rotor blade (C1), a modern first stage fan blade 

(H1), and a modern fan vane blade (H2).  Although NSV was not encountered for the H1 

case, an analysis was performed to show that NSV is not predicted.   

C1 CASE 

The first case studied was a compressor rig test where the first stage modern 

compressor blades encountered NSV.  For this test, there were 35 rotor blades and 56 
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inlet guide vanes (IGV’s).  Complete details of the study can be found in Kielb’s paper 

entitled, “Blade Excitation by Aerodynamic Instabilities – A Compressor Blade Study” 

and are summarized below.  The stage 1 blades are observed to experience a significant 

first torsion mode (1T) response at lower speed that shifts to a second torsion mode (2T) 

response at somewhat higher speed.  Figure 30 shows a typical plot of blade response 

frequency and amplitude versus rotational speed.  The vertical lines at fixed values of 

rotor speed and frequency are a measure of blade response amplitude at that frequency.  

The response at low speed is moderate separated flow vibration (SFV) response of the 

first flex (1F) and 1T modes.  SFV is a broadband buffeting response of the blades.  This 

SFV 1F response is followed at higher speeds by a significant NSV, which excites the 1T 

mode to a high level of response. This response switches from a higher frequency (2661 

Hz) excitation to a lower frequency (2600 Hz) excitation at a somewhat higher speed. As 

the speed increases, the response switches to a 2T mode excitation.  The NSV excitation 

of the 1T mode exists from approximately 12700 to 12880 rpm.       
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Figure 30. Strain Gage Response of First-Stage Rotor Blades of Compressor Rig 

 
Unsteady pressure was also measured on the compressor casing at numerous axial and 

circumferential locations.  Example data from a pressure transducer (located aft of the 

rotor 1 blades near the stage 1 vanes) is shown in Figure 31.  Significant response at 

frequencies of 3516 Hz and 3662 Hz was observed at all axial and circumferential 

measurement locations.   
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Figure 31.  Casing Unsteady Pressure Measurements 

First, the unsteady CFD code, TURBO, (Chen & Briley (2001)), was used to 

investigate the NSV observed in the rig test.  A single row, five passage, mesh modeled 

one-seventh of the rotor circumference. The mesh, consisting of 188 axial, 56 radial, and 

280 circumferential grid points, contained approximately three million grid points.  Using 

TURBO, the analysis took about six months to run on a single processor.  The local 

unsteady static pressures from the periodic CFD solution were investigated at many 

locations on the blade surface near the blade tip. This is shown in Figure 32, where the 

unsteady static pressures in passage three, near the leading edge on the pressure side, are 

presented.  As can be seen, the unsteady pressure content at 2365 Hz and 4370 Hz is 

much greater than that at the vane passing frequency.  The predicted NSV frequency 

(2365 Hz) is approximately 9% lower than that measured in the rig test.  The TURBO 

results show that NSV are primarily a coupled, suction side vortex unsteadiness (near 

75% span) and tip flow instability.  
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Figure 32.  Unsteady Static Pressure Near Tip Pressure Side Near Leading Edge 

In an attempt to replicate these results, similar conditions were used and the 

analysis was performed using Duke University’s time domain and HB computational 

methods.  The blade was excited at approximately 2.6 Khz.  A time domain CFD 

analyses was conducted using the running clearance of 0.020 in., zero interblade phase 

angle, and pexit/pexitCAFD = 1.000 where CAFD is the exit pressure for which NSV was 

encountered in the experiment.  An NSV frequency of 2.9 Khz was predicted (see Figure 

33).  We next used our harmonic balance method on this case.   HB solution stability 

problems were encountered when running at the NSV speed.  The phase change per 

iteration of the unsteady torque is shown in Figure 34 for five assumed frequencies with 

the same conditions as the time domain case.   As can be seen the phase change reaches a 

constant value for 2.5 and 2.6 KHz.  For 2.6 and 2.75 KHz the phase change does not 

converge to a constant value.  This is likely because the fluid dynamic instability contains 

multiple (irrational) frequencies.    
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Figure 33.  3D C1 Case: FFT of Time Domain Solution (IBPA = 0, running 
clearance, pexit/pexitCAFD = 1.000) 

 

 

Figure 34.  3D C1 Case: Phase Change Per Iteration (IBPA = 0, 0.020 in. Running 
Tip Clearance, pexit/pexit,exp = 1.000) 

 
 For this study, a 0.020 inch tip clearance was used in accordance with the 

experimental data and computational data obtained from TURBO.  Due to the limitations 

of the HB method as discussed above, only the time domain results are presented for the 

running clearance case.  The two main design parameters that were varied were the back 

pressure and the tip clearance.  For the 0.020 inch case, two frequencies are present.  

However, one of the frequencies happens to be very low.  In Figures 35 and 36, an FFT 

of the time domain results for the blade torque is presented for back pressures of 1.015 
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and 1.020.  Figure 36 demonstrates the results in the 0-100 Hz range, where a very low 

frequency component is present in the solution.   Furthermore, the time domain results for 

the mass flow rates for back pressures of 1.010, 1.015, 1.020 are presented in Figure 37 

and compared with the results obtained experimentally (CAFD) and using TURBO.  It is 

noted that the flow is steady for pexit/pexitCAFD = 1.010.  Finally, Figure 38 shows the time 

history results for various back pressures for the running tip clearance case.   

 
Figure 35.  FFT of Blade Torque for Two Different Back Pressures (0.020 in. 

Running Tip Clearance) 
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Figure 36.  FFT of Blade Torque for Two Different Back Pressures (0.020 in. 

Running Tip Clearance) in Low Frequency Region 
 

 
Figure 37.  Time Domain Solution Mass Flow Rates for Different Back Pressures 

(0.020 in. Running Tip Clearance) 
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Figure 38.  Time History of Blade Torque for Various Back Pressures (0.020 in. 

Running Tip Clearance) 
 

 Due to the limitations of the HB method to only handle one irrational frequency, a 

tight tip clearance case was also examined.  Figure 39 shows time histories of blade 

torque for the tight tip clearance for two different back pressures and Figure 40 shows the 

FFT's of the time-domain solutions along with a HB result.  As can be seen, HB shows 

good agreement for the lower back pressure case since there appears to be only a single 

frequency, and higher harmonics thereof, present in the time domain solution.  However, 

the higher back pressure case has two distinct, irrational frequencies (beats) present, and 

HB can only handle one fundamental frequency and its harmonics.  A summary of the 

NSV frequency results obtained can be found in Table 2.  Some possible solutions to 

overcome the HB method’s inability to handle more than one fundamental frequency are 

to extend the HB method to handle multiple irrational frequencies, use enforced motion 

to cause “lock-in” to the blade frequency, or use the aeroelastic solution to cause “lock-
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in” to the non-linear flutter frequency (very near the blade frequency).  All of these 

options are the subject of current research study. 

                                                    Clearance 
   Running (0.020 in.) Tight (0.002 in.) 
   Time Domain HB Time Domain HB 
 PR = 1.000 No NSV No NSV f = 2000 Hz f = 2000 Hz 

PR
 

PR = 1.015 f1 = 2650 Hz, f2 = 50 Hz X f1= 3200 Hz, f2 = 3750 Hz f1 = 3200 Hz, f2 = 3750 Hz 
 PR = 1.020 f1 = 2850 Hz, Low freq. X ----------------- ----------------- 
      

Table 2.  Summary of Time Domain and HB Results for Both the Running and 
Tight Tip Clearances for Three Different Pressure Ratios 

 

 
Figure 39.  Time History of the Blade Torque for Two Different Back Pressures 

(0.002 in. Tight Tip Clearance) 
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Figure 40.  FFT of Blade Torque Compared with Harmonic Balance Solution (0.002 

in. Tight Tip Clearance) 
 

H1 CASE 

Next, a study was conducted for a first stage modern fan blade (known as H1) that 

encountered flutter and not NSV.   The GUIde Consortium members asked that an 

analysis be conducted to show that NSV is not predicted.   As a result, both Euler and NS 

steady and unsteady analyses were performed.  The steady analysis showed no signs of 

NSV.  A linear flutter analysis was then conducted with the results compared to time 

domain results (TURBO) and is shown in Figure 41.  There is reasonable agreement 

between the time and frequency domain results.  The latest efforts involved reducing the 

back pressure to produce negative aerodynamic damping. 
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Figure 41.  Time Domain and HB Results for Damping as a Function of Nodal 

Diameter for the H1 Case 
 

H2 CASE 
 

The final case that was studied was a modern fan vane blade known as the H2 

case.  This blade encountered NSV in experimental rig testing.  An analysis was 

performed with TURBO and it showed good agreement with the experimental data.  

Since there is no clearance on a vane blade, this was thought to be a good test case for the 

HB method.  However, the same problems were encountered as in the C1 case.  Multiple 

irrational frequencies were present and the current HB method can only handle one 

fundamental frequency and its harmonics.  Therefore, this case is still under 

investigation.   

4. SUMMARY AND CONCLUSIONS 

 In recent years, new aeromechanical problems have been encountered in 

turbomachinery.  In particular, non-synchronous vibrations in turbine blades have been 
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observed by many engine companies and occur as a result of a fluid dynamic instability 

such as shedding.  If the oscillations become large enough, blade fatigue and failure can 

occur.  It is difficult to predict because there is little knowledge of the phenomenon.  As a 

result, there is a strong motivation to develop a fast computational method to be able to 

understand this behavior in the design stage.   

 For this study, many test cases were examined.  As an initial demonstration of the 

method, the flow over a cylinder was investigated.  This serves as a useful test case for 

modeling NSV because it is a well-studied phenomenon and a significant amount of 

experimental data is available.  Next, this technique was extended to study the flow over 

a two-dimensional airfoil.  In particular, we studied the 2D C1 case.  Finally, the 

harmonic balance method was extended to three-dimensional cases from industry and 

compared with existing time domain solutions and experimental data.  In particular, it 

was applied to the C1 case (a front compressor blade), the H1 case (a fan blade), and the 

H2 case (a fan vane).  Therefore, there are numerous test cases available to test the 

harmonic balance method and establish it as a valuable design tool for future use by 

engine manufacturers.     

 The numerical approach involved the use of a two-dimensional nonlinear Navier-

Stokes unsteady harmonic balance method developed by Hall, et al.  One of the major 

advantages of this method is that it requires one to two orders of magnitude less 

computational time than conventional time marching CFD techniques.  In addition, a 

unique phase error method was developed to determine the precise NSV frequency in 

only a few harmonic solution computations. 
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 Next, the HB method was applied to the 2D C1 case from industry as well as the 

3D C1, H1, and H2 cases.  Preliminary results showed good agreement for the 2D case 

and promising results from the 3D cases.  For the 3D C1 case, two main design 

parameters were varied – the tip clearance and the back pressure.  Using the running tip 

clearance of 0.020 in., two irrational frequencies are present in the solution so the current 

HB method could not be used.  However, time domain simulations were performed to 

determine the NSV frequency for three different back pressures.  In an attempt to justify 

the merits of the HB method, a tighter tip clearance of 0.002 in. was studied.  The HB 

method showed good agreement with the time domain results for the case of PR = 1.000 

because only a single frequency and its harmonics were present for this case.  Therefore, 

current research is focused on the following three methods to solve for the NSV 

frequency.  One solution is to extend the HB method to handle multiple irrational 

frequencies.  Other solutions are to use enforced motion to cause “lock-in” to the blade 

frequency or the aeroelastic solution to cause “lock-in” to the non-linear flutter frequency 

(very near the blade frequency) as was done in the study of the cylinder.   

In addition, the H1 and H2 cases were studied.  For the H1 case, the steady 

analysis showed no signs of NSV.  A linear flutter analysis was then conducted and the 

results were compared to time domain results (TURBO).  Reasonable agreement was 

achieved between the time and frequency domain results.  The latest research efforts have 

involved reducing the back pressure to produce negative aerodynamic damping.  Similar 

to the C1 case, the H2 case encountered multiple irrational frequencies present in the 

solution.  Since the current HB method can only handle one fundamental frequency and 
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its harmonics, the methods described above are being implemented.   This case is still 

under investigation. 

 Therefore, the harmonic balance method has been established as a viable tool to 

solve highly nonlinear unsteady shedding flow over turbine blades, the ultimate goal of 

the research effort.  The results are consistent with those obtained by TURBO, a high 

fidelity computational tool.  In addition, the HB method is able to predict both the NSV 

frequency and amplitude for the cylinder case and the 2-D C1 airfoil case but only for 

some 3-D flows.  This is due to the presence of multiple NSV frequencies, which the 

current HB method cannot handle.  Research is underway to address this problem and 

possible solution techniques are presented above.   This method is a valuable design tool 

because the frequency can be added to the Campbell diagram to identify regions where 

the vortex shedding frequency may interact with the blade natural frequencies.  

Furthermore, it will allow engineers to better understand NSV behavior and to predict its 

occurrence in the design stage for flow over turbine engine blades.              
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