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ABSTRACT

Title of Thesis: Control System Design for a Flexible Arm
Li-Sheng Wang, Master of Science, 1987

Thesis directed by: Dr. P. S. Krishnaprasad
Professor
Department of Electrical Engineering

In this thesis, we study the problem of real-time control of a flexible arm. We
have investigated techniques for compensating the effects of friction and ripple torque.
New software was written to use a Metrabyte Data Acquisition and Control board
for the real time implementation. A controller-observer scheme was used together
with integral feedback. In the design of feedback gains, a newly developed package
called CONSOLE was used. After translating the continuous-time design to the
discrete-system and before implementation, a package called SIMNON was used to
do the simulation of the whole system and to explore the effect of different sampling
rates. The ex’periments done so far imply that the schemes used here are sound for

real-time control of flexible structures.
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CHAPTER |

Introduction

As noted in many papers(e.g. [19]) , light-weight low-inertia links will be widely
used in the next generation of robot manipulators. But as the inertia decreases,
some new problems will arise. For example, with a DC motor direct-drive system,
the effects of ripple torque becomes significant as the load inertia decreases. Here,
following the experiment of Frank[11}, a computer-controlled system with a light
flexible arm is studied. After illustrating the experimental setup of the whole system
(Chapter 2) and deriving the beam equations under specific assumptions (chapter 3),
certain general steps for designing a computer-controlled system are used throughout

this thesis. They are:

Develop a mathematical model.

Design a suitable controller structure with some free parameters.

By using optimization packages with simulators, e.g. CONSOLE and
MaryLin , obtain the optimized design to meet the specifications desired.
Translate the continuous-time controller to the discrete-time case.

By using a hybrid simulator, e.g. SIMNON , simulate the whole computer-

controlled system and choose a suitable sampling rate.

6. Implement the controller in the real-time system.

With this sequence of steps and some tricks in real-time programming, a
computer-controlled system can be designed successfully.

In the following chapters, the controller for a flexible arm is first designed by
CONSOLE with MaryLsn in Chapter 4 to show how to use that powerful package.
In Chapter 5, a new idea about integral control is suggested and is shown by a
simple example. The characteristics of the actuator is discussed in Chapter 6. They
include friction modeling and ripple torque in a DC brush motor system. One way to
compensate their effects has also been suggested. Chapter 7 describes the problems

which were met in implementation and ways to handle them. After discussing the

1



details of the experiment, the ideas in Chapter 5 and 6 are included in the design
of the controller for the flexible arm and implemented in the real-time system. The
experiment shows that a combination of these ideas leads to notable performance

improvement. The last chapter(8) presents the conclusions and outlines the future

work.



CHAPTER I

Experimental Setup

2.1 Environment

The system under consideration is shown in Fig. 2-1.

Flexible Beam

7

7. Servo Electronics

Accelerometer

30/

S~
Shaft

Encoder i8M P C/AT

Tachometer

Output Input
N
~N r DDAvs Filtey
Terminal
| DASH16
! Termsnal

Figure 2-1 System under Consideration

It includes:

a 1 meter flexible beam.
a DC brush motor

three sensors: position encoder, tachometer, and accelerometer.

a Metiabyte DDA06 A/D & D/A board

h @ N =
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5. a Metrabyte DASH16 A/D & D/A board
analog filters and voltage buffers

7. IBM PC/AT

By way of A/D and D/A converter and digital I/O, the software on IBM
PC/AT can then control the system according to some specific control laws. The
details about the implementation will be discussed in Chapter 7. In the next section,

the computer-to-motor model (without flexible beam) will be established.

2.2 Computer-to-Motor Model

The system block diagram from computer output to motor position may be

modeled as in Fig. 2-2.

ulkT] u
ZoH K

1/R. = K, o—e1/] 1/s|—>9—1/s|———

Computer Side Motor Side

Fig. 2-2 Block Diagram of the Computer-to-Motor System

with the blocks:

ZoH : Zero-Order Hold

K : Power Amplifier Gain

R, : Motor Armature Resistance
Ky : Motor Back EMF Constant
K¢ : Motor Torque Constant

J : Inertia



By the input u[kT] from IBM PC/AT, the motor can be controlled in some specific

way. The state equation of the whole system can be represented as

Ji(t) = T(t)

K,
= 2V
- —K;Zf{bw(t) + ’gf‘u(t) (2.1)

6(t) = w(t) (2.2)

In order to get the actual values of the motor parameters, it is necessary to set
up an experiment for identifying them. Our approach of determining the motor back
emf constant (K}) is to use another drive (e.g. a tachometer) to drive the motor
and measuring the voltage across the motor armature (i.e. let the motor be run as
a generator.) Then K, is the ratio of the voltage and the angular velocity. The
angular velocity may be measured by the position encoder and the time counter on
the DASH16 board.

After K, has been found, the motor torque constant K; can be calculated by

the formula, as discussed in [8], corresponding to the specific unit,
K¢ (with the unit of Ib — in/amp) = 8.844 K, (with the unit of Volt/rad/sec)

From the experiment, these parameters are (nominal value), respectively,

K = 6.02

Ky = 2.443 (Volt/rad/sec)
K, = 21.62 (lb-in/amp)
R, = 336 (0)

J : depends on the load of the motor
This model will be used in Chapter § and 6 to demonstrate the usefulness of

some compensators.



CHAPTER Il

Mathematical Modeling

In this chapter, the mathematical modeling of the flexible arm will be dis-
cussed. After introducing some basic principles in the mechanics and the calculus of

variations, three different beam equations are derived.

3.1 Basic Principles

First of all, Hamilton’s principle is introduced.

Hamilton’s Principle

Assume all forces (besides the constraint forces) are derivable from a generalized
scalar potential (may be a function of coordinates, velocities, and time), i.e. the
system is monogenic. Then, the motion of the system from time t; to ¢3 is such
that the line integral o

I= Ldt,

t
where L =T — V where L is the Lagrangian, T is the kinetic energy, and V is the

potential energy, has a stationary value for the correct path of the motion, i.e. the
variation of I 6
§I=6 . L(g1y-++yqnsG1s+-+1Gn,t) dt = 0. (3.1)
I
Here, “stationary” means that the integral J has the same value (to within the
first-order infinitesimal) as that integral taken along all neighboring paths.

It can be shown [14] that Lagrange’s Equations

ﬂ—iﬂ=0 t=1...,n

for mechanics of systems of particles imply Hamilton’s principle, and, conversely,
under the assumption that the system constraint is holonomic (e.g. rigid body),

Hamilton’s principle also implies the Lagrange’s equation.

6



Next, some basic facts in the calculus of variations are introduced. The proofs

of these lemmas can be found in [15].

Lemma 3.1
If z,, z2(> z,) are constants and G(z) is continuous for 2, < z < z,, and if

./:, n(z)G(z)dz=0

3

for every choice of the continuously differentiable function n(z) for which 5(z,;) =
n(z2) =0, then
G(z)=0, Vz, < z < z3.

The above lemma can be extended to the case of double integral.

Lemma 3.2

If D is a domain of the z-y plane and

//D 7(z,y)G(z,y) dzdy =0
for every continuously differentiable function  such that

n(z,y) =0 V(z,y) € 3D (boundary of D)

then
G(z,y) =0, V(z,y)€D.

Using the above lemmas, the condition for the extremum of some integrals can be
derived. For example, the Euler-Lagrange Differential Equation can be derived by
explicitly computing the variation 61 and invoking lemmas 3.1 and 3.2.

For the case of one independent parameter with one variable, the necessary
condition for the extremum of I, where

ta
I= f(t, Y y') dts

Y

—_—— ——=0. (3.2)



If there are two independent parameters, the necessary condition for the extremum

of I, with now

I=/Lf(z,t.v,y=.v.:)d=dt.

where y,4 = g{ and y = %‘“ (this convention will be used in the subsequent sections,
the comma is reserved for the case where there is an index with a variable), is

af o af aaf _
dy 0zdy, Otdy: =0. (3.3)

In general, for the n—fold integral

I=/.../ T(ZireeerTns Wy Wiayseer s Wz, ) 4210+ dZn,
D

the necessary condition is

‘33‘5;_,55;"'""5?,.3_\”—':0' (3.4)

For the case of multiple variables with one independent parameter, the neces-

sary condition for the extremum of the integral

ta
I= \ f(t,.‘t;,...,zn,il,...,in)dt
1
is A
af daof _ .
95 doz 0, fors=1,...,n. (3.5)

Similar condition can be derived for the case of several independent parameters.
Based on these observations, the equations of a beam can be derived as in the

following sections.

8.2 Euler-Bernoulli Beam Equation

Several beam equations will be discussed in the following sections based
on different assumptions. First, we consider the so-called Euler-Bernoulli Beam
Eguation. Since it introduces a way to derive the motion equation, as will be used
in the next two sections, the details are included here as a comparison.

The beam can be modeled as in Fig. 3-1.



Figure 3-1 Approximate Beam Model

where w = w(z,t) is the deflection from the nominal curve and ! is the length of the

beam. This is essentially the clamped-free case with the boundary condition

w(0,t) =0
% oy =o.
%}(z,t) ~o.
%;%(z,t) ~o.

For this case, the potential energy and kinetic energy can be found by
1 ’
V=2 /o Elw.,?dz
1 i
T=- / pldz
2Jo

where E is Young’s modulus, I is the inertia of the cross section. Forming L =T-V,

and applying Hamilton’s principle, the integral
ta tay pl 1
Ldt = / / - (pu')2 - EIw,,,’) dz dt
t; t;JO 2
should have a stationary point. Let
. 1, .2 2
f(w) w.sz) = E (Pw - EIw.sz ) ’
since f depends explicitly on w .., the previous necessary conditions derived cannot

1= [ S, w00 dsdt,

let W(z,t) = w(z,t) + en(z,t), where

be applied. Consider

n(z,t) =0, V(z,t) € 8D (boundary of D),

9



We denote
I(e) = / J(W,W,.)dzdt,
D

which implies

.%(:l _ /f,, [af(W.W.zz) aav:f N 8!(‘;‘;‘;?:.“) avg:,] iz, (38)

Since .
W = u(z,t) + en(z,t)

W,zz = w,:z(zy t) + fﬂ.zz(z’ t)’

dI(‘) // [ aw,,""] dz dt.

In order to have the variation be zero, i.e. 1“‘51[30 = 0, we need

o d’(‘)l.so— // [ ' ] dzdt
_// —ndzdt+// - n,,dzdt

we have

(3.7)

By the Green’s Formula,

//( et )"”y=-f/ ('a—G'+£)dzdy+/ n(Gdy — Fdz).

Let G = %, F =0, we have

/./ 3.{,31"’ dt = /f ;gfd dt+/ n-——dz (3.8)

Since n(z,t) = 0 on 3D, which implies the second term on the left hand side of
Eq. 3.2 is zero, we get

.// g:{;?;t'd’d‘ // :tgfdzdt (3.9)

By another form of Green’s Formula

dn oG
G— dd—// dzd / (G ——) .
/./p oy azzy+ 8D az "oz dy
10



Figure 3-2 Another Beam Model

Let G = 3%%, and with the boundary conditions for n(z,t), we get

af 8%y
// w,.. 9 U= f/ Taes 5o

By plugging Eq. 3.3 and Eq. 3.4 in Eq. 3.1, we derive

] iyt ] o3
/,/ [62:2 aw aatgf] dz dt.

By the basic lemma 3-2, we should have

9? _8f o4f

oz? 3w,“ ot ow

Since we already have

af _
o ~Elw .,
af _ .
E it

by plugging the above equations in Eq. 3.12, the equation

Mtw w

ozt +p8t’ =0

ErI

has been derived.

8.3 Discretized Beam Equation

(3.10)

(3.11)

(3.12)

(3.13)

Next, we are going to derive another equation also illustrating the motion of the

beam. Now the model of beam is shown in Fig. 3.2. The beam is mounted (hinged)

on a rotational hub.

11



Now the large scale motion of beam is taken into account, where @ is the angle of
the shadow beam, y is the bending deflection from the shadow beam, and z is the
distance from the root to a certain point. With the parameters as defined before,

the kinetic energy and potential energy can be now computed as

4

1
T= l/ p(z0 + g)*dz
2Jo

! l i )
= %/; pzidz 02+/° pzf/fiz 0+ %/o pyldz. (3.14)

A

{
v=1 / Ely .22dz + Tuxt
2/

where ¢,z = gij . Since now the beam is rotating through an angle @, there should
be some external torque, i.e. Toxt and assume that §T ¢y = —766.

Here the discretization method will be used in representing y, i.e. assume
”n
v=>)_ a(t)di(z).
=1
It is essentially a finite approximation of n modes. Thus,

y= i:éi(t)tﬁi(z)

|=l

_5_1] Zq.(t)tﬁ. zz(z);

=1
where ¢ se = %’ﬁi . By plugging y and y . into the equation (3.14),
r

2
T=3 / pz’dz 6% + f szq.(tM.(z) dz 6+ = / (Eq.(t)«t.(:))
V= "/ El (Z%(t)¢1 :z(z)) dz + Toxs.

s=1

\

(3.15).
Letting L =T — V, by Hamilton’s principle,
ta .
(] Ldt = 0.

13
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Since L = L(t,ﬂ,é,ql,...,q,.,q';,...,q',,), this is case of one parameter, multiple

variables case. Thus the formula (3.5) can be used, i.e.

oL _ daL _
80 dt 9§
8L d 4L . (3.16)
~a—q-:-—-§5q7‘-=o, forz=l,...,n.
Since

oL,_,

80 — '

aL /' 24 7 /'

—= d 0+ .i id

Py ; prdzx ; pzz‘:qfﬁ z

oL /’

— S — EI 19,22 'zzd

3a; A (2‘;9¢. )¢J. z

aL ! . !
%4, = A P-’E¢jdzﬂ+/o P(g didi)9jdz,

by plugging them in Eq. (3.16), we get
1 . i
/ pxidzf + Z/ pxdidzgs =1
o . Jo

l I {
Z( /O El$:,ee$iresdzgi + /o p¢,-¢,-dza.~) = - [ pagsacd, j=1,....n
R [0
(3.17)

If Eq. 3.17 is put into the state-space form, e.g. m§+ kg = b7, then it is exactly the

same equation as derived in [16] .

3.4 Geometrically Exact Beam Equation

Another model, the so-called geometrically ezact model for the plane motion of
the beam will be derived as follows. It takes account of the shear deformation as well
as the flexure deformation in the motion. Now the motion of the beam can be drawn
as in Fig. 3-3, where {é;,I = 1,2,3} is the reference coordinates with és = ¢; x é;,
{t1, 1 = 1,2,3} is the deformed coordinates with £5 = f; x #;, X is a point on the
beam in the reference configuration and £ is the point where the X has been moved

to.

13



o w»>

|
w>r

()
X T———a,

Figure 3-3 Exact Beam Model

X and % can be represented in the form as, with different coordinates,

X = Xlél + Xzéz
£ = go(X1,t) + Xais

(3.18)

= [X1 + ul(Xl,t)] é1 + [ug(Xl,t)] é2 + ngz.

where @o(Xi,t) is the line of centroid of the beam, and the axis transformation is

fl =
2
‘3 = 53.
and
X, ox, »
at, _ 88 .

X, -~ Cax; v
So the derivative of # can be found as

é = &0 + Xzéz
(%

and .

I3 =53
= (4

14

= —sin 0é; + cos #é;

cosfé, + sin bé;

(3.19)

o, .

5 =
8{2 -
5 ="t

1 — 0X;co88)é; + (i3 — 6X28in 0)é,.

24+ ul)+0°X3 — 20X, (i) cos 0 + 4z sin 6).



The kinetic energy of the system can be then computed as
l ! - 2
=5 [ oldirax:
0
1Y e iren o
= E'/c;/"‘ p [('u1 +u3) +0°X; — 20X,(¢1cosd + ¢z sin 0)] dX.dX,
=i
1! 3 2% (42 442 L o
2/, ( L 2)(uf +43) + ( " pX3dX,)0
5 =N

§ .
- 2(‘/.. pX2dX,)0(iy cosd + tigsin 0)] X,
5

Assume that the beam is symmetric, the integral f _%, pX2dX; =0. Let
>

A

3
A,=/_h pdX,, and
kN

g‘ 2
I,,=/_~ pX2dX,.
=5

Then, Eq. 3.13 is reduced to

11, ez :
T= -2_./(; [A,(uf+u§)+[,02] dX;.

Next, the potential energy will be constructed. First, the strain field is introduced.

When the beam undergoes large strains, the strain field can be defined as

a é 9¢o -1
T=ax, T8 (3.20)

= (1+ uy,, — cos0)é; + (vz,, — sin §)é,.

(v1,z really means that g)lg; , for the reason of simplicity, the simpler notation will be
used here as well as in the subsequent discussions.) Then, relative to the coordinate
system {i;}, from Eq. 3.16, this field can be written as
4 = (14 uy,5 — cos #)(cos 8, — 8in bf3) + (uz,. — sin #)(sin 0¢, + cos £2)
= (cos + uy,zco80 + uz . sind — l)f; + (-8inf — uy . 8inf + %2,z €OS 0)?2.
Now the axial strain I'; and shearing strain I'; are defined as, respectively,
'y =cos0+uy cos0 +uz .sinf —1
(3.21)

2 =—s5sinf — vy, .8in0 + uz - cosdh.

15



Let EA be the axial stiffness, GA, be the shear stiffiness, and EI be the flexural

stiffness, then the potential energy can be written as
1
V= % fo (EAT? + GAT2 + EI0.2) dX; — Taxs — Toxs (£)6(0, 1) (3.22)

where I, is the potential energy of the external loading acting on the beam and
Text (t)és is the applied torque at the axis of rotation és of the beam. Now we assume

that there is no external loading, i.e. II,x; = 0. Then, the lagrangian L can be found

as
L=T-V
' ! 22 13 1 §2 1 2 2 2 Text
=/o [EAp(ul +4f) + 51,6 - S(EAT} + GATS + B16,%) + =5 9] X,
(3.23)
Hamilton’s principle requires that f:l’ L dt to be stationary. Let
f(xl,t’ ul'uz'o’ '.‘1"22'0', "'1.29“1.:’0.2)
1 . 1., 1 T
= 2 4,(i] + @) + 31,0 - 2 (BAT] + GAT] + EI02) + =30,

Then, it is the case of three dependent variables with two independent parameters.
By the formula from the calculus of variations, analogous to Eq. 3.3, the equations

are

(8f _ 8 af _23f _,

a‘ul 6X1 aul,, at 6121

of 9 df _d8f _,
8X1 8uz,, at aug

af o8 of 99df

L 3 08X, 00, dtas
The only thing left is to find the partial differentiations and then plug into Eq. 3.24.
We have

(3.24)

Q
e
©

(o,

aul
af
aul,,

of _ ., .
L E—E—A’ul.

thus, by the first equation in Eq. 3.24,

A

=—-FEAT cosf+GA,T'2sin 8 2 ny

Apil + nl” - 0- (3.25)

16



From

( 8f _
auz -
a
) 8u: = —EAT, sin0 — GA.T3cos0 2 ny
E
of -
{ 5"—2 = A,uz.
we get
Apﬁz +nz.=0. (3.26)
From
af . .
25 = EAT;sin8 + GA,Tzcos8 + vy ;(EATsin6 + GA,T'; cos §)
+ug z(—EAT)cosf + GA,I';sinf) + T'lxt
Tcxt
{ = —nz — U1zn2 T U2,z +
af
3. ~-EIf ;
af .
T 1,0,
the third equation can be obtained as
- T,
I,,0 + (1 + ul',)ﬂg - Ug,zN1 — EIO,,, = ;xt . (3.27)

From Eq. 3.25, 3.26, 3.27, the governing equation can be then written in the matrix

form,

A, 0 (1] !.21 ni,z 0
0 A, Of |d|+ ns,z =| 0 |. (3.28
(¢} 0 Ip 0 (1 + ux.;)nz — U%2,zM1 — EIO,,, I“n

This is the geometrically exact beam equation for the planer motion of a flexible arm.

If the assumption of It = 0 in Eq. 3.22 is changed to
i
) ) / (1";! -0és + fi - ¢o) dX;
o

with .
m

r’h(X;,t)é;
7—‘1 = ﬁl(Xl,t)ﬁ + ﬂ'2(Xiht)‘é2’
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and T,x, = O is assumed, then, by the same derivation method, the beam equation
is exactly the same with in [17] .

Although this beam equation is quite realistic, for the reason that it is too
complicated, it is not used in the following chapters. The beam-hub model used later

is essentially borrowed from [11] , and is experimentally determined.
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CHAPTER IV

CONSOLE Design

4.1 Introduction

Optimization-based design is an effective means to solve design problems with
constraints. Although there is a number of sophisticated methods in the field of
optimal control to fulfill this purpose, few among them take the advantages of
recent powerful optimization algorithms and numerical CAD package in doing the
design. DELIGHT .Marylin[13] is such an optimization tool for designing linear time
invariant control systems. It is however cumbersome to use and to maintain. Another
optimization package called CONSOLE has been recently developed. It mainly
consists of two programs: CONVERT and SOLVE, and can be connected with any
simulators designed by the user, e.g. MaryLin (a simulator for linear time-invariant
control systems.) With the help of CONSOLE , the designer can automatically
adjust certain controller parameters to meet some specific requirements without

getting involved in the details of optimal control theory.

The details of how to use CONSOLE and how CONSOLE works can be
found in the CONSOLE manual [10]. The next section will give an example of how
to design a controller for the flexible arm by using CONSOLE with the simulator

MaryLsin .

4.2 Designing a Controller for the Flexible Arm

The flexible arm described in Chapter 2 has been identified as a linear time-

invariant system[11] and its transfer function from hub position to tip acceleration

19



is modeled as

+ 2.1s + 1]
9 5) " 2r x 9.5
s 2(0.11)s s? 2(0.02)s

(21r <116 l)[(27r x 9)? torxe T ][(27r x 20.6)3 ¥ 2w x 206

0.125s(
H(s) = (27 x

+1)

In order to reach the states by the three sensors, position encoder, tachometer,

accelerometer, the above transfer function can be decomposed as

0.134[ o> 2 . ?ﬁ +1]
2454 (197 )? 1r 0.383s2
H(s) =
a( + 1) [ +0228 l][ + 0.04s + ] 1
\.q,._/ (181r)3 8« (41.21!')2 41.27 acceleration
motor ~
beam
The state space representation of the system is thus the following:
r£,1 [ -17618 1 0 O 0 0 F 0 T
2 -20015.2 0 1 0 15035.99 0 0
zs | _ —224975.8 0 0 1 1795004.1 0 z+ 0 "
Z4| ~ | -535721287 O O O 53572128.7 O ]
z5 0 0 0O 0 1 0
| Z¢ . L 0 0 0O 0 -7.29 [ 17.96
nl_[ 1 0 0 o},
ya] = | -999.6 -0.89470.0507 © 762 73 o

where y, is the tip position, y; is the tip acceleration.

“The state feedback controller is chosen to attain the requirements, i.e. u =
—Kz + v, where v is the reference input. Thus, there are six design parameters in
this problem. Listing 4-1 shows the problem description file which will be read by
CONVERT.

Listing 4-1 Problem Description File

PI = 3.141502653
Ri = 1/(0*2+PI)
R2 = 1/(20.622+P))
R3 = 1/(D.522¢P])

design_parameter ki init=8.234030068e+400 vari=1.43e0
design_parameter k2 init=-1.58345004¢-01 varisQe-2
design_parameter k3 init=-1.570000261¢-03 vari=8.4e-4
design_parameter k4 init=2.387056666e-5 vari=1.7e-b

20



design_parameter kb6 init=4 . 0B0030087el varisd, 34el

design_parameter k6 init=5.863e-1 varis=2e-1

functional_objective "over-shoot"
for t from 0 to 3 by .01
minimize {
double Ytr():
return Ytr{"i",t);

good_curve = {
i2( t <= 1. ) return 1.08;
else return 1.02;
}
bad_curve = {
i2( ¢t <= 1. ) return 1.15;
else return 1.06;
)
functional_objective "settling"
for t from 0.6 to 3 by .01
maximize {
double Ytr();
return Ytr("i" t);
}
good_curve = {
it( ¢t <= 0.8 ) return 0.9;
else return 0.99;
}
bad_curve = {
ift( t <= 0.8 ) return 0.85;

else return 0.05;
}
objective "steadystate"
minimize {

double Ytr():
return fabs{ Ytr{"i",6.0)-1 );
}

good_value = 0

bad_value = 1e¢-8

functional _constraint "max-accel” hard
for t from 0 to 3 by .01
{
double Ytr();
return Ytr("2",t);

}

<=

good_curve = { return 10; }

bad_curve = { return 11; )
functional_constraint “max-accel" hard

for t from O to 3 by .01

{

dounble Ytr();
return Ytr(va",t);

o=

good_curve = { return -10; }

bad_curve = { return ~11; }
functional _constraint "control" hard

for t from 0 to 3 by .01

{

21
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import k1 k2 k3 k4 k5 k6
double Ytr():
return fabs( 1-(k1sYtr("3",t) +k2eYtr (4" ,t) +k3sYtr ("6",t) +kdsYtr( 6", ¢)
+XBSYEr ("T",t) +k6sYLr ("8, t) ));
} <=
good_curve = {
return 4;
)}
bad_curve = {
return b;

}

The desired position profile is shown as in Fig. 4-1, and is set by the first two

objectives.

Figure 4-1 Desired Position Profile

Since the control signal (voltage across the motor) can not be too large, the
constraint for it is set by the functional constraint named “control”. The constraint
for the tip acceleration is set by the other two functional constraints to limit the tip
acceleration in certain range.

Listing 4-2 gives the system description which will be read by MaryLin and
linked with SOLVE. It is a straightforward translation from the state representation
of the system as in Eq. 4.1. The feedback gains were included in the A matrix. The
reference input now is set by Ut.

Listing 4-2 System Description File

PI = 3.1415026

G =0.125

9+24+P1

20.64+2+P1

9.6522+P1

G/ (0.383 + 2.124)

- d
(7]
T aan
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w
[
RN N RN AROED

0.04*R2+0.22+R1
R1sR1+0.0088+R2+R1+R2+R2
0.22+4R2+R2+R1+0.04+R2+R1isRY
R2s+R2+R1isR1
RisR2+R1+R2/(R34+R3)
2+B2+R3

B2+R3+R3
(A1+A1-A2)+0.383%R4
~A1+0.383+R4

0.383+R4

B2s0.383*R4
4+*PIs1.16+2.134

systom_size Ninputs=i Nstates=6 Noutputs=8
readmatrix A

-A1 1 0 0 0
-A2 o 1 0 B2
-A3 0 0 i B3
-Ad o 0 0 B4
0 0 o 0 0
-b6+k1 ~bBsk2 -bB8sk3 -b8sk4 -b6#*kb
readmatrix B

0

]

0

0

0

be

readmatrix C

1 0 ] 0 ]
C1 c2 c3 0 C4
1 0 ] ] 0

0 1 0 (] 0
0 0 1 (] ]
(o] 0 0 1 0
0 0 (] 0 i

] (4] 0 0 (]
readmatriz Ut

1

system description file to optimize the system performance subject to the changing

The CONSOLE tandem works as follows: CONVERT reads the problem
description file and SOLVE then calls the simulator MaryLin which reads the

of design parameters.

parameters were obtained as given in Listing 4-3. The pcomd (performance comb)

output is also given there. It shows how close each of the constraints or objectives is

The initial guess of the design parameters is chosen in the same way as in [11].

By interacting with SOLVE for several iterations, the final values of the design

to their corresponding good and bad value.
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Listing 4-3 Designed Value of Design Parameters and Pcomb Output

Name Value Yariation wrt O Prev Iter=30
| 3§ 8.234044+00 1.40+00
k2 -1.583450-01 ©.0e-02
k3 -1.57000e-03 8.4e-04
) 2.38706e-06 1.7e-0B
kb 4.089040+01 4.3e+01
k6 5.86300e-01 2.00-01

Pcomb (Iter= 30) (Phase 2) (eps= 1.000e+00) (NAX_COST_BOFT= 0.9341)

SPECIFICATION PRESENT CGOOD (] B BAD

01 steadystat 6.72¢-06 0.00e+00 s=s=szczzazscasssss | 1.00e-04
FO1 over-shoot 1.00e+00 1.01e+00 s 1.100+00
Fo2 I.ttlin‘ 0.01e-01 ©.00e-01 tussasasaszaassnnxnsns=s O, 50e-01
FC1 max-accel 2.71e¢+00 1.00e+01 <-- | | 1.10e+01
FC2 max-accel <-8.71e-01 -1.008¢01 €---~cececccccecennrcccccccancca - =1.100+01
FC3 control 1.03¢+00 4.00e+00 <-~ | | $.00e+00

The plots of tip position and control signal are shown in Fig. 4-2 and Fig. 4-
3, respectively. With this design, the control law can be then implemented in the

real-time system. The details of the implementation will be described in Chapter 7.

Functiopal Objective over-shoot
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Figure 4-2 Plot of Tip Position
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Figure 4-3 Plot of Control Signal
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CHAPTER V

Integral Control

5.1 Introduction

In order to compensate steady state errors, we use a scheme based on integral
control. The system is augmented with an artificial state which will be used in the
integral feedback. This chapter will investigate some properties of the augmented

system and how to use this idea in the control of a motor.

5.2 The Augmented System (SISO Case)

The general SISO(single-input-single-output) system can be modeled as

z= Az +bu
{ (5.1)

y=cz+du
where '

A:nxn, binxl,e:lxn, d:1x1.

The idea is to use the integral of the output as part of the feedback. The control law

may be written as
u=—Kx—Kx/y+v (5.2)

where v is the reference input.
The integral term is accounted for by a new state 2. Append to Eq. 5.1 the
equation

£=pz+my. (5.3)

Then for p = 0, the new state z is exactly m [y. Therefore, the control law in
Eq. 5.2 is exactly
u=—-Kz—'-K-—IZ+U (5'4)
m
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The integral control problem is thus transformed into a state-feedback control

problem with an augmented state z.

The new systemn may be written as

Z=Az+bu
Z2=pz+my
y=cz+du

where p, m are scalars. By plugging y into 2,
2 = pz + mez + mdu,
and the augmented system can be represented as
z A 0]z b
[2]= [ S0 ]

y=|[c 0] [:]-&-d:;

(5.5)

Following a discussion of the properties of the augmented system, we will

present the controller design using state feedback for this new system.

5.3 Some Properties of The Augmented System (SISO Case)

This section will investigate some properties of the new system (5.5). Obviously,

if the original system (5.1) is stable, then the augmented system (5.5) is stable

when p < 0. For the controllability and observability of the augmented system, the

following two propositions give the necessary and sufficient condition.

Proposition 5.1

Assume the original system (5.1) is controllable, and let its transfer function h(s) to
be -:—%%}. Then the augmented system (5.5), with m # 0, is controllable if and only

if p is not a root of g(s).
Proof

By the PBH rank test for controllability(9], first form the matrix

Q=[sI-4A }]
=[OI—A 0 b]

-mec 8—p md
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The system (5.5) is controllable if and only if @ is of full rank for all s.
For s # p, the last row is independent of the other rows, since the original

system is controllable, thus @ is of full rank. For the case of s = p,

Q is of full rank
[ pl - A

b . .
—me md]ls nonsingular,

pIl-A b
-mc wmd

det ];éo,

det(pI — A){mec(pI — A)~ b+ md} #0,
ma(p)h(p) # 0,

mgq(p) # 0,

p is not a root of g(s).

[ A

QED 1

As for the property of observability of the augmented system, if the matrix
sl — A sl - A 0
R= [ } =| —-mec s8-p
¢ c 0
is formed, then for 8 = p, it will never be of full rank. However if we revise the

augmented system to be observed as
z
y=[c 1][%]+du, (5.6)

then since the state z is artificial, it can always be observed. It is easy to get the new
output from the old one. With this new revised system, the following proposition

gives the condition for preserving observability.

Proposition 5.2

Assume the original system (5.1) is observable. The revised augmented system with

output (5.6) is observable if and only if p — m is not an eigenvalue of matrix A.
Proof
As before, by the PBH rank test for the observability with

s[- A 0
R=| -mc s-p
c 1
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For s =p,
sI-A O
R=| -me 0
c 1

Obviously, R is of full rank when the original system is observable. For & # p, by

the elementary row operations, R is equivalent to

sl - A 0
R~|(-m+p-38)c O
L 1

Thus, for R to be of full rank,

[ sl - A

(—m+p— a)c] must be of full rank for all s # p

For —m + p — 8 # 0, it is directly implied. For —m + p — 8 = 0, we should consider

the matrix I
[(p - ":)) - A] to be of full rank

[(p — m)I — A] must be nonsingular,
det [(p — m)I - A] #0,
a(p —m) £0,

p — m is not a root of a(s).

IS

i.e. p — m is not an eigenvalue of matrix A.

QED 1§

5.4 Designing the Controller with CONSOLE

The feedback gains K,K, as well as the augmented state parameters m,p,
can be designed by using CONSOLE . Simply declare the state parameter p, m and
the feedback gain K, K; as the design parameters, with the simulator MaryLsn .
The optimization process in CONSOLE is used to get a best design in some sense.
The conditions for stability, controllability, observability can be set as constraints.
Next, a simple example will be given to illustrating this method. The application to

the flexible arm control will be described later.
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Example

A motor system can be modeled as

. KK, K,

Jio = —tU — :
“TRTTREY (5.7)
=w.

Let z; = #, and z; = w, the state-space representation of the whole system may be

written as .
51 0 1 ] [z;] 0
. | = ‘ + U
[zz] [0 —Jﬁfku £2] Lf{‘.‘
y=[1 0] [zz]-
By adding the augmented state equation 2 = —pz + my (note that in order to

preserve the positiveness of p, a minus sign included), the augmented system is

£ 0 1 0 z 0
z22|=1]0 _.—IRL:‘K 0 z2 | + %{-}?(.‘ U
z m 0 -p z 0
)
y=[1 0 1]]|=z;
z

The transfer function of the original system is
KK,
JR,

K,
s(s + _—-JR.K;,)

H(s) =

Thus, by the Proposition 5-1 and 5-2, —p — m cannot be 0 or —H%I and there is
no constraint for p.

The controller is chosen as U = —K,z; — K3z — K3z + V. By letting m,
p, K1, K3, Ks be the design parameters, CONSOLE can be used to design the
system. Listing 5- 1 shows the input file to CONSOLE .

Listing 5-1 Input File to CONSOLE for Integral Control

/%*+ Integral Control Problem: problem description file s/
Kt = 21.62

Kb = 2.443

Ra = 33.8

J=0.1
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design_parameter K1 init=8.38833 varis3
design_parameter K2 inite-1.61266e-1 vari=0.09
design_parameter K3 init=-1.37716e1 vari=g
design_parameter m init=1.33830e1 varis=f
design_parameter p init=2.49271e1 min=0.01 varisi0
/+%%  Noet the engineering specification s»e/
functional_objective "over"

for t from O to 2 by 0.006

minimize { double Ytr();

return Ytr(1,t): )
good_curve = { $f( t <= 0.6 ) return 1.1

else return 1.01; }
bad_curve = { if( t <= 0.5 ) return 1.5;

else return 1.06;: }
functional_objective "under” :
for t from 0.4 to 2 by 0.006
maximize { double Ytr();
return Ytr(i,t); }
good_curve = { 1f( t <= 0.6 ) return 0.90;

else return 0.99; }
bad_curve = { if( t <= 0.6 ) return 0.85;
else return 0.06; )

constraint "observ" hard
{ import m p Kt Ra Kb J
return fabs( (-p-m)e¢(-p-m)+Kt*(-p-m)/(I*Ra*Kb) );
} »>= good_value=i
bad_value =0.0001

s#388 GBystem Description File for integral control #ssss
K=¢g¢

Kt = 21.62

Kb = 2.443

Ra = 33.8

J=0.1

G=K+ Kt/ (J* Ra)

system_size Ninputs=1 Nstates=3 Noutputs=i

readmatrix A

0 b § 0
~G+K1 =Kt/ (J*Ras*Kb) -GsK2 ~-G#K3
n 0 -p
readmatrix B

0

G

0

readmatrix C

1 0 4]

readmatrix Ut

1

The constraint “observ” is set for satisfying the condition of —p — m, i.e.
K
~p—m)+ = x(—p-—m
(-p—m)"+ 555, X (-p-m) #0.

After several iterations, CONSOLE gets the designed parameters that meet
the specifications. The position output § plot from CONSOLE is shown in Fig. 5-1.
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Figure 5-1 CONSOLE Plot

Listing 5-2 shows the pcomb result and the final values of design parameters.

Listing 5-2 Pcomb and Desired Design Parameters from CONSOLE

Pcomb(Iter=0)PRESENT GOOD (] B BAD
FO1 over 1.01¢400 1.010400 mununssmus| | 1.06e+00
F02 under 0.90e-01 90.00e-01 . 0.50e-01
Ci obsery 1.37e+03 1.00e400 €--====cesccccccccccccnccccunn 1.00e-04
<0>

design parameter(s) for iteration O

Name Value

K1 8.38833¢+00
K2 -1.6126550-01
KS «1.37716e+01
»n 1.33830e+01
P 2.40271e+01

This controller will be implemented in the real-time system with the flexible
arm removed. Since there are already two sensors: position encoder and tachometer,

the only state needed to be reconstructed is z. In s-domain, from Eq. 5.3,

Z(s) = ;-'I-;Y(.) (5.8)
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By the straight-forward sampling of Eq. 5.8, the discrete-time system is

1

m1-—ePh

where ¢ is the forward shift operator and h is the sampling period. Then, with the
velocity form[2], the state z can be found by

z[kh] = e~P* z[(k — 1)h] + %(1 — e ?)y[(k - 1)h].

In order to have an idea of how the controller works in the discrete form, the
simulation package SIMNON is used to simulate the whole system: the continuous-
time plant with a discrete-time controller. The sampling rate of the system can
also be decided. Listing 5-3 is the input file for SIMNON . System CMOTOR is
the plant, DMOTOR is used to reconstruct the state z and compute the feedback,
MOTORCON sets up the connection between the plant and the controller.

Listing 5-3 Input File to SIMNON for Integral Control

continuous system CMOTOR
"Continuous-Time linear system for the motor
INPUT u

OUTPUT y1 y2

state x1 x2

DER dx1 dx2

dx1=0%x1+1sx2+0%*u
dx2=0*+x1-Kt/(J*Ra*Kb) *x2+K*Kt/ (JsRa) *u
y=cisxiec*x2

yi=x1

ya=x2

K:6

Kt:21.62

Kb:2.443

J:0.1

Ra:33.6

cl:1

€2:0

END

discrete system DNOTOR
"Discrete-Time Integral Feedback
INPUT yr y1 y2

OUTPUT u

state §

nev ni

time t

tsamp ts

u=yr-(kisyi+k2+y2+k3+1)
ni=exp(-psh)+i+m*(1-exp(-p*h))*y1/p
ts=t+h

k1:8.45158
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X32:-1.14006e-1
K$:-1.4280601
p:32.63678e1
®:1.3762601
h:0.006

END

connecting system motorcon

"Connection for simulation of the motor system and integral controller
time ¢

yr[dmotor]s1

yi[dmotor]=yi [cmotor]

y2[dmotor]=y2[cmotor]

ulcmotor]=u[dmotor)

END

The simulation result for the sampling time 0.005 sec is shown in Fig. §-
2. When we increase the sampling time beyond 0.5 sec, the performance will be

deteriorate. Thus the sampling rate cannot fall below 2 Hz.

0. - 1.25 - 2.5 i 3.75 ) S.
Figure 5-2 SIMNON Simulation Plot for h=0.005

With the motor system described in Chapter 2, the controller is implemented
on the IBM PC/AT. The implementation result is shown in Fig. 5-3.

Due to the existence of ripple torque, this plot does not quite match the

simulation result obtained from SIMNON . This problem will be discussed and
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Figure 5-3 Implementation Result for h=0.005

solved later (Chapter 6) .
i
This simple example illustrates that the integral controller can be used to
control a system. The main reason of using an integral feedback is to remove the
steady state error. By the way just illustrated, it has another feature of adding more
freedom (design parameters) in doing the design. This idea will be used later in

designing a controller for the flexible arm.
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CHAPTER VI

Identification of Actuator Characteristics

6.1 Introduction

The characteristics of an actuator (motor) in a robotics system affect the
performance of a controller design in a significant way. Among the many aspects
of a realistic system, there are two items of significance: friction and ripple torque.
This chapter concerned with these two effects and show how to compensate for their
influence.

In the extensive investigations of friction, Walrath[l) modeled the gimbal

bearing friction as, in Dahl’s model,

Ty + rfl-d? = (sgn w)T,, (6.1)

where Ty is the total friction, T, is the stiction friction(a constant), and 7 is a
parameter to be estimated. On the other hand, Canudas(3] took the viscous friction
into consideration. Here, a compromised model is set up and the experiment shows

that this new model is more realistic.

6.2 Friction and Ripple Torque Modeling

6.2.1 Friction
There are essentially three kinds of frictions existing in a motor system: stiction
friction, Coulomb friction, and viscous friction. The stiction friction and Coulomb

friction can be taken together as bearing friction and may be modeled as in Fig. 6-1.

On the other hand, the viscous friction is coming from the motion of the drive.

It is proportional to the angular velocity and can be modelled as in Fig. 6-2.
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Fig. 6-1 Model of Bearing Friction

T'A

Fig. 6-2 Model of Viscous Friction

From these models, we may expect that the bearing friction will be dominant at
low speed, and viscous friction will be dominant at high speed. Thus, by combining

these effects, we may model the total friction as a relation of the curve as in Fig. 6-3.

The total friction torque Ty can be then represented as

m={aolh 1a30 2
where a; and a3z are functions of w, 8; and B; are stiction frictions for w > 0
and w < O, respectively. In Section 6.3, the experiment is carried out to identify the
parameters a and B and it is shown that the model (6.2) we described is a realistic

one.

6.2.2 Ripple Torque

Due to the limitation of the number of magnetic poles in the motor, the

37



T:

/_\

Fig. 6-3 Model of Total Friction

magnetic field is not uniform. The torque constant thus depends on the angular
position of the rotor. So a periodic torque known as ripple torque exists in all
permanent magnet DC motors. It will affect the system performance especially in
the case of direct-drive systems. By moving the base of the motor for one revolution,
one can feel the torque fluctuations. Now this problem will be investigated.

Due to the existence of the back emf constant, the motor itself is a stable system.
The stea.df state velocity should be constant when we input a constant current. But
the experiment shows that it is never a constant, instead, it is a periodic function of
position. Fig. 6-4 is a plot of velocity vs. position at the steady state when we input

a constant voltage.

When the velocity is low, the experiment shows this curve is almost a sinusoidal

function. Therefore, the ripple torque can be modeled as
T, = xsin[a(0 + Oosraet)]- (.3)

where x, a, O.q,e¢ are to be estimated.

8.3 Experiment

6.3.1 Motor Model with Friction and Ripple Torque

With the friction and ripple torque model discussed in the previous sections,
the block diagram of the whole system is shown in Fig. 6-5, which is revised from
Fig. 2-2.
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Figure 6-5 Block Diagram of the Whole System

a, B, k, a, O.q,.t 2s defined before, and T, is the ripple torque.
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From Eq. 2.1, the state equation of the whole system can be represented as

Jo(t) = T(2)
K‘V(t) —aw(t) - B+ T,(0) -

KB i+ LEC

6(t) = w(t) (6.2)

u(t) — B + xsin[a(0 + Oomaat)] (6.1)

6.3.2 Friction

If we assume that there is no ripple torque, the equation is

b +a]w

Then, at steady state, with the constant input u(t) = @,

w(t) - @ and w(t) —0.

Thus,

_[K,K,, KK,

R.

Therefore, by measuring the average velocity at steady state (this take out the effect

+ ]a+ - 8.

of the ripple torque), a can be computed as

KKg
@' R,

This estimated « is in fact the slope of the shaded line L shown in Fig. 6-5. It is

—ﬂ) KgKb

a= (6.3)

not the slope of the tangent line of the Ty—w curve.

Since the parameter § is exactly the stiction friction of the motor, it can be
measured directly by applying a small voltage across the motor while the motor does
not move. Record the maximum value of voltage which moves the motor; then 8

can be obtained.

6.3.3 Ripple Torque

If there is no ripple torque, with constant input, the steady state value of

the velocity should be a constant. But the experiment shows that the steady state
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velocity is a sinusoidal function of position. By measuring the peak value, frequency,

and shift value, the velocity can be written as
w=o (1 + x'sin [a(0 + 005.,g)]) (6.4)

Take the Laplace Transform of Eq. 6.1, without the ripple torque term, one can get

_ KK KK.U 8
sJW(s) = - 7t a]W(s) + R
By some algebraic manipulation, we reduce this to
KKU-R,8]|1 1
W)= —— " |~ —
(¢) KKy +aR, [a x.x.+an.]
8+ —Jr.

Taking the inverse Laplace Transform, one can get the step response of the velocity

w(t) as
_ KKU - R,p ~KsKptaRe
wlt) = Fierane [MO - e T IR )]
where h(t) is a unit step function. Thus, as ¢t — oo,
KKU-R,p
“() = KK 7 ok
and
o= KK.U - R,
" K(Ky+aR,

By the formula Eq. 6.4, taking ripple torque into account, we have

w(8) =@ (1+ «'sin[a(8 + Oofiset)])

_KKU-RB (.
- KgKb-{-aR‘ (1+~ sln[a’(0+oofftet)])
1 KK _ |
= oy ( &‘U—ﬂ) (1+ &'sin[a(0 + Oogeat)])
1 {KK,
= — U _ﬂ+
K. Kz
it +al R (I;Ktu-ﬁ),;’gin[a(0+o°5m)]
L d o

Ripple T;;;nc Term

Therefore, the ripple torque

T, = sin [a(0 + 9oﬂ-et)]
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can be found by
KK,

x=nr'( 7

U -§) (6.5)

x can be thus obtained by &' and (%U - ﬂ).

6.4 Data Analysis

6.4.1 Friction

First, the parameter § was measured. It is essentially the stiction friction of
motor. Because of the existence of the ripple torque, it is also a function of position.
By averaging the voltages for starting the motor at different positions, f can be

obtained as
1 =1.7334 (Volt) forw >0

B2 =1.14 (Volt) forw <O
In order to take out the effect of ripple torque, the average value of velocity is
also computed. Using the shaft encoder and the time counter on the DASH16 board,

the average velocity can be obtained. Table 6.1 lists the experimental data and the

calculated values of a.

Here a is computed by

K: K
R,

K,
E:(V—ﬁ)-

1
o= —
@

For the reason of different scale, this is different from Eq. 6.3. The output voltage &
is changed to the input voltage to motor V. In fact, there is a gain between them,
but due to the reason that there is some offset voltage in the amplifier from @ to V,
the latter is more suitable here.

The relationship between the velocity and a(in the unit of Ib — sn/rad/sec) is
plotted in Figure 6-6.

For the reason talked before, a measured is not the tangent slope of the Ty-w
curve. The actual Ty—w curve can be reconstructed by plotting (w,aw + ) in the

z-y plane. It is shown in the Fig. 6-7.
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Input Voltage Displacement Time Interval Velocity
(Volt) (rad.) (sec) (rad/sec) @
2.75 0.4249 0.5869 0.724 -0.6508
4.23 0.78386 0.5864 1.3367 -0.3703
5.71 1.135 0.58736 1.932 -0.2477
7.19 1.4757 0.586 2.51824 -0.177
8.61 1.8208 0.5882 3.0956 -0.1296
11.63 1.9896 0.4685 4.2467 -0.0721
14.59 2.5372 0.4689 5.4109 -0.043
17.55 2.324 0.353 6.5835 -0.026
20.5 2.7197 0.3529 7.7068 -0.005
23.5 3.11398 0.3512 8.904 0.0011
26.4 2.9406 0.2928 10 6.0153
29.4 2.637 0.2348 11.16 0.02324
32.4 2.901 0.2354 12.36 0.0245
-3.06 -0.514 0.589 -0.873 -0.1569
-4.54 -0.869 0.589 -1.478 -0.0912
-6.04 -1.2087 0.589 -2.052 -0.0354
-7.51 -1.547 0.5881 -2.6305 -0.0137
-9 -1.883 0.589 -3.198 0.0096
-11.95 -2.052 0.4713 -4.5354 0.0256
-13.42 -2.32 0.4712 -4.923 0.033
-14.90 -1.948 0.3535 -5.51 0.035
-17.85 -2.353 0.3535 -6.656 0.043
-20.8 -2.765 0.3535 -7.822 0.045
-23.8 -3.18 0.3535 -8.996 0.0489
-26.7 -3.581 0.3534 -10.148 0.0489
-29.7 -2.663 0.2358 -11.293 0.0554
-32.6 -2.938 0.2357 -12.465 0.0521

Table 6-1 Experiment Data for the Calculation of

From the above plot, it is clear that the expected model (Figure 6.3) exactly
matches the experimental result. From the values of « and 8, the exact model of

friction can be found and used in the compensation scheme.
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Figure 6-7 Reconstructed Ty~w Curve

6.4.2 Ripple Torque

In Section 6.4.1, the experiment for 8 actually gives us an idea about the ripple

torque. In order to get the whole structure of it, experiments with other inputs are
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also done.
By using the tachometer, the peak value of the velocity can be found. Figure 6-

4 is an example of the profile of velocity with respect to the position. As illustrated

in Section 6.3.2, first the x’ in Eq. 6.5 is calculated by the formula

, high peak value — low peak value
K =
2 - nominal velocity

Table 6-2 presents the experiment data for the ripple torque.

Input Voltage Velocity (rad/sec) ,
(Volt) High Low Nominal *
0.1807 0.885 0.16 0.523 0.693
0.205 0.905 0.25 0.578 0.567
0.254 1.025 0.385 0.7 0.457
0.498 1.485 1.07 1.277 0.163
0.742 2.02 1.665 1.8425 0.096
1.23 3.1 2.82 2.96 0.047
1.719 4.2 3.95 4.07 0.031
2.207 5.355 5.09 5.22 0.025
2.695 6.46 6.16 6.31 0.024
3.183 7.635 7.375 7.505 0.017
3.672 8.7505 8.435 8.595 0.019
4.16 9.9 9.63 9.765 0.014
4.648 11.055 10.75 10.9 0.014
5.137 12.195 11.885 12.04 0.013

Table 6-2 Experimental Data for the Ripple Torque

Figure 6-8 shows the relationship between x’ and (KRK‘—‘U ~pB) (asin Eq. 6.5) .

Assume

n'=c,(KRIf‘U-ﬁ)°’,

which implies

logx' =logey + €2 log(I;If'U - B).
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By the linear regression method with the data log ' and log(’—‘;{—f&U -8), a1, ¢z

can be found as

¢; = 0.0516

63=—l

ie.
KK,

-1
rouldald

x' =0.0516(
8o,
(—I%.I&U - 8)x’ =0.0516

This matches the expected formula Eq. 6.5. Thus the parameter x of the ripple

torque is

x = 0.0516

Since there is some time delay between the data retrieved from the position
encoder and the tachometer, the peak point shown in the velocity profile has been

shifted. Thus the §-profile is used to specify the offset value. It is found that

ooﬁ..g = 1-509 (l'ad.)
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By plotting the velocity profile for a revolution, the period of ripple torque is
found to be 41. Therefore, the model for the ripple torque is, finally,

Tiipple = 0.0516 sin [41(8 + 1.509)].

6.5 Compensation Scheme
With the analysis and discussion in the previous sections, now the compensator

for their effects will be established.

6.5.1 Friction Compensation

The friction in a motor system may be modelled as in Fig. 6-3 as described
before. Due to the fact that nonlinear functions take a lot of time in computing, an
approximate piecewise linear model for the friction is chosen as

nmw+p1, w>w;
aqw+ b, w>w>0
Ty=40, w=0;
aw — P2, 0> w2 ws;
Tw — B2, w3 > w;

where
a,a2,ws < 01

ﬂ1$ﬂ21ﬂi’ﬂ;’7h72’wl > o,
are all constant. The profile of this friction model with respect to velocity is shown

in Fig. 6-9. The friction torque first decreases and then increases. It means that, at
first, the Coulomb friction dominates and after the critical point, the viscous friction

dominates.

By using the feedback

in the original model
Jo=KJ-Ty

where the Ty is the true friction, the overall state equation will be
Jo = K+ (Ty - Ty).
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Figure 6-9 Approximated Model for Friction

Thus, if the model is “good” enough, i.e. f‘; = Ty, then
Jw = Keu, where u is the current input.

In order to show that the above friction compensator works well, a velocity tracking
problem is attacked. In the following, an algorithm for speed control is first
illustrated, then the compensator will be included in that algorithm. The experiment
shows that this compensator makes the system response faster.

Considering the motor system described in Sec. 2.2, the state equation is

KK,
R,

Let w, be the reference input (velocity proﬁle), the set-point-on-I-only controller [2]

Jir(t) =

Ut) - u(t) (6.15)

is used as .
Ut) =K, {—w + TL/ [we(7) — w(7)] d‘r} . (6.16)
s JO
Plug the above expression for U(t) into the Eq. 6.15, to get
Jo(t) = — (K’;:K’ + Rﬁ‘“) wft) + KT f e (7) = w(r)] dr.
Taking the derivative of both sides,

KKK KKK
J&.':(t)=—( R:’+Rﬁ‘“>' Bt

Furthermore, taking the Laplace Transform, one can get

KK:K;,K,-*—K; KK;K, _ KKK,
REK W)= %,

- lwe(8) - w(2)].

[J 8+ W, (s).
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Thus, the transfer function from w, to w can be written as

_ R, T;
G(s) = 7ot 3 KKK, + Ki KKK,
}2¢}(b }2¢1¥

With this continuous linear system and letting K,, T; be design parameters,
CONSOLE may be used to do the design (tuning the gains.)

Appendix B lists the input file for CONSOLE in this problem. Instead of
using the time-domain representation, the frequency-domain representation (transfer
function) is used in the system description file.

The values of design parameters and the Pcomb output are shown below.

Name Value Variation wrt O Prev Iter=0
Kp 1.07312¢+400 1.0e+00
Ti 2.03349¢-01 1.0e+00

Pcomb (Iter= O0) (Phase 2) (eps= 1.000e+00) (NAX_COST_BOFT= 0.807208)

SPECIFICATION  PRESENT  GOOD G B BAD
FO1 spesd 1.00e+00 1.010+00 ====xums | | 1.06¢+00
F02 undershoot 0.17e-01 0.00e-01 | _ szxzzsazszsss=us O, 00¢-01

The step response of the closed-loop system plotted by CONSOLE is shown
in Fig. 6-10.
After getting these parameters, the next thing is to translate the controller into

discrete-time. The s~domain equation, from Eq. 6.16,
K,
U(e) = KW (s) + 72 [We(s) - W ()]
may be transformed into

u[kh] = — K ,w[kh] + —I;Tf’q b

(wr[ich] — w]ih])

by using Euler Approximation in the integral part. In order to avoid the windup

(integrator saturation) problem (2], the velocity form is chosen in getting the control

T2 {wnl(k — 18] — wl(k - 1)h])

ulkh] = u[(k — 1)h] — K, {w[kh] — w[(k — 1)b]} +
with u[0] = 0.
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Figure 6-10 Step Response of the Velocity Tracking System

Then SIMNON is used to simulate the whole system. The input file for it
is also listed in Appendix B. By choosing the sampling time to be 0.002 sec, the

simulation plot is shown in Fig. 6-11.

Next step is doing the implementation. The real-time program was written in C
language. Fig. 6-12 gives the experimental comparison of controllers with and without
friction compensation. The sampling period is 0.002 sec (i.e. for each iteration.) The

scheme with the friction compensator really improves the performance.

6.5.2 Ripple Torque Compensation

From Sec. 6.4.3, the ripple torque T, can be modelled as
T, = 0.0516 sin[41(0 + 1.509)].

Thus, by using the compensator

u(t) = v(t) - If;(‘ (0.0516 sin[41(8 + 1.509)])

in Tq. 6.4, the ripple torque can be reduced.
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Figure 6-11 Simulation by SIMNON for the Velocity Tracking Problem

But due to the computing time between getting data from the position encoder
and issuing the control signal, there is a computational delay[18] . In order to handle
this problem, it is necessary to measure the computing time accurately. In Sec. 7.2,
the computing times for some functions in Microsoft C have been compared. Based
on that discussion, the code may be “optimized” in the sense of shortest computing
time. The compensator is thus implemented on the IBM PC in a Microsoft C program

as shown below.

sine = sin( 41 * (posdata[i] + time * veldata[i] - offset) );
Volt[i] = motref - k ¢ sine;

motinp = Volt[i] » 204.8 + 2006;

dda6( motinp );

Here time is the measured time period between obtaining position data and sending
the control signal. Fig. 6-13 shows the plot of velocity-vs-position after compensation.
Compared with Fig. 6.4, it shows that the ripple torque problem can be solved using

explicit compensation.

Since the effect of ripple torque is reduced as the load inertia increases, for a
heavy arm, it can be neglected. But for a light-weight arm, as in our case, it should

be properly compensated for. Sec. 7.3 will include the compensator in the control of
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a flexible arm. The various constants are to be re-estimated in the new environment.

52



After Ripple COn
1.508 e Lk L.
. 1 1 T 1 RS B B B B B BT |

WM
L 1 |

-
1
1.998 T
-
Ji .l..-" .." :"'..'." '....-'-.“'l ."‘,
. ' ‘I . ‘.‘ ". I,‘ %

—rd <

8.750

PR |
1 ]

- ‘,' '_. ‘- "
0.500 il
0.0¢e 8.18

o = offset -1.1 g =-keld
Figure 6-13 Velocity vs Position Profile after Ripple Torque Compensator

s
S o .l
A A S TS IS T I SR I |
LI ERERI R T1<,ﬁT

.08 8,320  0.43% 8.5
Pos

.
T

53



CHAPTER VI

Implementation

7.1 Hardware

7.1.1 D/A and A/D Converter
The D/A(digital-to-analog) converter chosen in the experiment is the DDA06
board manufactured by Metrabyte Company. DDAO6 is an analog/digital I/O

expansion board for the IBM PC. It provides six channels of 12 bit analog output
and 24 lines of digital I/O. The 8255 programmable peripheral interface chip is used
for digital I/O and can be operated in any mode (straight I/O, strobed I/O, and
bidirectional I/O). In this experiment, one D/A channel is used to send a voltage
signal (+10/-10 Volt) to motor servo electronics and 16 lines of digital I/O are used
to get the 12 bit data from the position encoder. The I/O operations of DDAO6 are

essentially the port (address) manipulations. The function

dda6( data )

int data;

{
int baseddal, chan;
int xh, x1;
baseddat = 768;
xh = data/2566;
xl = data - xh * 266;
outp( basedda8, xl1);
outp( basedda6+i, xh);
return;

)4
sends a voltage through DDAO6 by an integer between -2048 and 2047, where
basedda6 is the base address of DDA0O6 board. The lines
outp( baseddat+15, Oxbe );
/+%ess  Input position data wesse/
pa = inp( basedda6+12 );

pb = inp( basedda6+13 );
posdata = ((pbs266+pa) >> 4)+3.141602653 / 2048;

set the operation mode 1 for the 8255 chip and read position data (from the shaft
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encoder) in the unit of rad.

Another of Metrabyte’s products, DASH16 is used as the A/D (analog-to-
digital) converter. It provides eight differential channels each with a 12 bit successive
approximation converter with a 25 us conversion time, a 3 channel programmable
interval timer (INTEL8253), and some other features (see [6]). In our experiment,
two analog signals ranging over +10 to —10 (Volt) from the tachometer and the
accelerometer are converted to integer numbers ranging over +2047/-2048 by the two
channels in DASH16. The timer on DASH16 is used to set the sampling period for
the control loop. With the software written by manufacturer and the interface which
will be discussed later, the DASH16 board can be easily used in the programming.
The following is a subroutine of initializing the DASH16 board and also the counter
inside it.

initdie()
{

mode = O;

d16io[0] = basedis;

diéiof1] = 7;

d16i0(2] = 1;

flag = 0;

dashi8( émode, d16io, flag ):

i2( £lag > O ) error( flag, mode );
/#s%es  Betup the Counter O #s#sss/

outp( based16+10, 2); /* Bet the Ci=1 CO=0Q s/
mode = 10;

d16io[0] = 2; /*» Configuration 2 s/

flag = O;

dashi6( &mode, di6io, &flag ):

if ( flag > 0 ) error( flag, mode );

mode = 13;

digiol0] = 4; /* V¥rite OP2 = 1 s/
dashi6( kmode, d16io , &flag ):

if ( flag > 0 ) error( flag, mode );

7.1.2 Handshaking

In order to set up the connection between the programmable peripheral

interface 8255 residing on the DDAO6 board and the encoder, it is necessary to

set up a handshaking scheme. The strategy is as follows.

1. Program sends a RD (ReaD) signal to 8255. (e.g. by the inp() function call
in C) .

2. 8255 sets the IBF (Input Buffer Full) to be low and also send a BICTS (Blnary
Clear To Send) signal to the encoder.
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3. After receiving BICTS from 8255, encoder sends a BISTROBE (Blnary
STROBE) signal to 8255 and sets the STB (STroBe) of 8255 to be high and
then loads data into 8255

4. 8255 sends the data to the variable in the program and drives the IBF to high,
and also STB.

The operation mode 1 (strobed I/O) of 8255 is used. The configuration between
8255 and the encoder servo electronics is shown in Fig. 7-1. The timing between those
signals is shown in Fig. 7-2. With this scheme, the program can get the shaft encoder
data without any error. '

PPI 8255 Encoder

Servo Electronics
Control Word

|
|
|
|
|
!
PAD-PAT :
STE |
PoLE .
PCs
IBF | PAO-7<
RD _ |
| PBO—7<:
|
BISTRO
| t—o<H BE
PBO-PB? : |
ST | ] ) | BICTS
PC1 — |
PC2
IBF | |
RD_ ! |
! |

Figure 7-1 Configuration between Encoder and PP18255

7.1.3 Low-Pass Filter

Since there is high frequency noise coming from the aﬁalog sensors, i.e. the
tachometer and the accelerometer, it is necessary use low-pass filters. On the other
hand, because the differential signals from the sensors do not have the same ground

with the DASH16 board, it is also necessary to design a voltage follower (buffer) for
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the differential signal. The circuit diagram for the filter and the buffer is shown in
Fig. 7-3. The potentiometer is used to adjust the offset value of the amplifiers.
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Figure 7-3 Low-pass Filter and Voltage Follower

The cutoff frequency is

1
2+ 7 » 10000 + 0.018 » 10—¢

= 884 (Hz)

From the experiment, it is found that the errors from the sensors reduced from +11

bits to £3 bits.
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7.2 Software

7.2.1 Interface between DASH16 and C language
For the DASH16 board, there is a software package DASH16.0BJ designed by

the manufacturer which is originally written in BASIC. In order to use it within a C

program, two problems have to be solved:

1) The Microsoft-C compiler automatically adds an underscore “.” before any
function call when it generates the object code for a C routine. For BASIC,
there is no such addition.

2) The way to process the argument of a function is different. For C, the arguments

are pushed into a stack from left to right, but for Basic, the order is from right

to left.

Thus it is necessary to write an Assembly language subroutine to set up the
connection. The C programs then call the assembly routine, and the assembly routine

calls the object code DASH16.0BJ.

The following List 7-1 is the listing of the assembly interface code. It includes
a named “.dash16” function which calls the function “dash16.”

List 7-1 Listing of Interface Assembly Code

TITLE interface
_TEXT SEGMENT BYTE PUBLIC °'CODE’

_TEXT ENDS

-DATA  SEGMENT WORD PUBLIC °*DATA’
-DATA  ENDS

CONST SEGMENT WORD PUBLIC °‘CONST’
CONST  ENDS

-BSS SEGMENT WORD PUBLIC °BSS’
-B68 ENDS

DGROUP GROUP CONST, _BSS, _DATA
ASSUNE CS: _TEXT, DS§: DGROUP, B§: DGROUP, ES: DGROUP
EXTRN DASH16:FAR
TEXT  SEGNENT
PUBLIC _dashi8
-dash16 PROC NEAR
push bp
mov bp, sp
Ior ax, 8x
mov ax, [bpe+d]
push ax
mov ax, [bp+6]
push ax
mov ax, [bp+8]
push ax
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call DASH16

mov sp, bp
pop bp
ret
-dash16 ENDP
TEXT ENDS

END

7.2.2 Computing Time

In a real-time system, the computing time is crucial in design. In order to

have some idea of how much time is spent in evaluating some specific functions,

the computing time for them has been estimated by using the timer counter on

the DASH16 board. Table 7.1 gives the computing time for some commands in C

language. It reveals some basic facts in real-time computing.

Integer Operations Time (us) | Floating Point Operations Time (us)

Assignment Assignment

Constant 2.1 Constant 47.5

Variable small Variable 8
Addition(+) Addition(+)

Constant 0.1 Constant 0.5

Variable 0.4 Variable 9
Maultiplication(x ) Multiplication( x )

Constant 0.1 Constant 0.5

Variable 0.6 Variable 10
Shift(>>) 0.4 Functions
Modulus(%) 0.6 printf() 66500
Bitwise AND(&) 0.3 sin() 874
Bitwise Exclusive OR(") 0.3 asin() 603
Functions sinh() 801

sizeof() 2.2 pow() 971

abs() 19.4 fabs() 35
Port I/O exp() 600

outp() 17 log() 539

sqrt() 187

Table 7.1 Computing Time for some C Function
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Except for the assignment command, the time used for variable operations is
much more than for constant operations. So use constant operation if possible.
If the assignment command is desired for constant, e.g. T = 0.012, it is
better to define that constant by another variable outside the control loop, e.g.
S = 0.012, then use T = S in the control loop.

I/O functions cost a considerable penalty in time. Avoid them in the control

loop in any case.
Integer operations always take very little time. Use them rather than floating

point operations whenever possible. -

These “facts of life” should be kept in mind in the real-time programming.

7.3 Controller Implementation for a Flexible Arm

Following the insights of Chapter 6, an integral controller-observer scheme was

implemented for control of the flexible arm, with the system described in Section 2.1.

The design procedure, as illustrated in the Chapter 1, is as follows,

(1)
(2)
(3)
(4)
(5)
(6)

designing the state-integral feedback gain by using CONSOLE
translating the continuous-time design to discrete-time
designing a discrete-time observer

simulating the whole system using SIMNON

implementing the scheme in real-time system

adding the compensator for friction and ripple torque

Besides the step (3), which exactly follows the discussion in [11], each step will

be described in the following sections.

7.3.1 Designing the state-integral feedback gain by using CONSOLE
As discussed in Sec. 4.2 and Chapter 5, CONSOLE is used to design the

feedback gain from each state of the system and the integral of the plant output.

In order to preserve the controllability and observability properties, the conditions

in Proposition 5-1 and 5-2 should be satisfied. Since here an observer is used to

reconstruct the states, these constraints are important. Appendix C lists the input

file for CONSOLE . The constraints named “control” and “observ” are used for the

purpose mentioned above.



The gains designed from CONSOLE and Pcomb output are listed as follows.

Name Yalue Variation wrt 0 Prev Iter=0
ki 8.23404e+00 1.4e+00
k2 =1.68345e-01 ©.0e-02
k3 =1.670000-03 B.40-04
k4 2.38700e-056 1.7e-05
kb 4.080040+01 4.3e+01
) 3] 5.85300e-01 2.0e-01
X7 -2.38686e-08 1.0e-08
»n 1.21241e+01 §5.0e+00
P 1.07714e+01 38.0e+01

Pcomb (Iter= ©) (Phase 2) (eps= 1.000e+00) (NAX_COST_SOFT= 0.034643)

BPECIFICATION PRESENT GOOD G B BAD

01 steadystat ©6.63e-08 0.00e+00 =====z=zx=z=s | 1.00e-04
F01 over-shoot 1.00¢+00 1.01e+00 = == = «| 1.100+00
Fol settling 90.01e-01 0.00e-01 fsxxzxrcEssex == ©.50e-01
C1 observi 1.07¢400 1.00e-02 --~=<=-cc-cccccceccccraccnccncn= 1.00e-04
€2 observ2 1.02¢+00 1.00e-02 €-====cvrwccccccncncccrcccncconce- 1.00e-04
C3 observs 6.160-01 1.00e-02 €-~-=recve-cncccrcccccoccrecacecne 1.00e-04
C4 controli T7.040+00 1.000-03 €~~=eveccvccccccccccecccrcocnccce 1.00e-04
FC1 max-accel 2.71e+00 1.00e+01 <-- | I | 1.10e+01
FC2 max-accel -~6.710-01 ~1.00e¢0] €=~-=evoc-ecrccnc-cnccccnccncccnna ~1.10e+01
FC3 control 1.03e+00 4.00e+00 <-~ } | 5.00e+00

The simulation of the continuous system with those gains is shown in Fig. 7-5.
Functional Objective over-shoot

x10°
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41A4J111111L41|1:11.1114;:100

1 2 3

Figure 7-5 Simulation of the Flexible Arm System from CONSOLE
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-
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7.3.2 Translating the Continuous-time Design to Discrete-time

A linear time-invariant state equation may be written as
2= Az + Bu
y=Cz
This continuous-time equation can be translated to discrete-time as
z[(k + 1)h] = &z[kh] + T'u[kh]
y[kh] = Cz[kh]

where
& = exp(Ah)

A
T'= / exp(Ar)dr B
o]

In finding the exponential of a matrix, many methods can be used. Since just one
computation is needed here, the most straightforward way is chosen, i.e. the series

expansion of it,

Azhz Aahs
Q—I+Ah+T+ 3 +oen,
By using a simple routine in MACSYMA as
noloop:100;
EXPA:ident (N) ;
AH:1dent(N);
for 1:1 step 1 thru noloop do
(AH:heA . AH/4,
EXPA :EXPA+AH
):
EXPA;
® can be computed as accurately as we need.
Similarly, I' may be obtained from
A 2.2 3,3
I‘=/ U+ar+ 2 AT L yarB
o 2! 3!
ABh?® A2BAS
= Bh + 20 + 3 + oo
Also, a routine in MACSYMA of the form
noloop:100;
Gamma :h+B;
AB:h+B;

for 1:1 step 1 thru noloop do
(AB:h*A.AB/(1+1),
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Gamma :Camma+AB
):

may be used to compute I'.
Other packages, such as MATLAB, CC, have also been tried and we have found
that the method used here is the more reliable one.

In translating the feedback law
u=—-Kz+ Kj / y

to discrete-time, the same structure used in Sec. 5.4 is chosen here for the integral

part. For the state feedback part, the formula in [2] is used as
= h

K=K[I+(A- BK)E].
Thus, the discrete feedback law is as

ukh] = — Kz[kh] 4+ K;z[kh]
with the formula for 2z

z[kh] = e~Ph2[(k — 1)b] + %(1 — e™P)z,[(k — 1)h],

since z; is exactly the tip position.

7.3.3 Simulating the Whole System by Using SIMNON

The structure

Plant Controller

discrete-time continuous-time

|
!
|
|
I
.
:
!
!
|
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is used to do the simulation with SIMNON , where the plant is the continuous
system and controller includes the discrete-time observer and the feedback law. The
input system description file for SIMNON is listed in Appendix C. With the sampling
rate of 100 Hz, the tip position profile is shown in Fig. 7-6.

1.3

0. ’ 0.75 . 1.5 ) 2.25 o 3.

Figure 7-6 Simulation with the Whole System from SIMNON

By choosing different sampling rate with SIMNON , it shows that the sampling rate
cannot be below 50 Hz. Needless to say, for different sampling rates, the discrete-

time observer used is different.

7.3.4 Implementing the Scheme in Real-time System

The controller discussed before has been implemented in the real-time system
with the controller residing in an IBM PC/AT. The whole system is shown in Fig. 2-
1. Some key points used in the real-time programming have been discussed before.
One other thing need to be noted is that, for the reason that the saturation problem
in the D/A converter and amplifier, a saturator is used to the input signal to the

observer [18] as

v high = 2000;
u_lov = -2000;



12 ( u_force < u_lov ) u_force = u_low;
else if( u_force > u_high ) u_force = u_high;

else H

With the software written in Microsoft C (the code is listed in Appendix D),
the hub position profile from the shaft encoder is shown in Fig. 7-7.

Fipple Qopp (step. 4 \ntyl 0}12)

e
120
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‘17_77"-']‘4 ‘
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"1 7
;
|
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s r'S
-4 ... -:_
& J'.
! I
-9 ’ B e B SRR e e 'H;'f“"+
8 100 200 369 490 500
_ iter
0 - gain: @

Figure 7-7 Hub Position Profile ffom Position Encoder

7.3.5 Adding the Compensator for Friction and Ripple Torque

The compensators for friction and ripple torque have also been added to the
controller. The new model for ripple torque (since the load inertia has changed with

the addition of the arm), is now
T, = 0.18sin [41(6 - 0.62)].

Fig. 7-8 shows the performance of the integral control with the ripple torque

compensator. Since that compensator will add as well as reduce the speed during
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the motion, the rise time was not changed much. But, when the beam settles down,

the settling time and the steady-state error are both reduced much.

After Ripple Conp (step: 4 with cot12)

128

[}

15

"y ©

B 10 260 300 %8 500
. iten
O = gain) 0.2 offset: 1l

Figure 7-8 Hub Position Profile after Compensation for Ripple Torque

The friction with the flexible arm attached can be modeled as

0.02w + 40, w > 1.12;
-0.115w + 59, 1.122w > 0;
Ty=40, w=0;
-0.5w ~ 41, 0> w2 —1.04;
0.021w — 30, —-1.04 > w;

Fig. 7-9 shows the performance of the integral controller with both compensators.
The improvement is quite evident. The rise time is reduced from 0.6 sec to 0.4 sec

and there is almost no overshoot.

The experimental results shows that the characteristics of the actuator are
really important in the design of the controller of a robot, especially as in our case,

a direct-drive low-inertia system.
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Figure 7-9 Hub Position Profile after Compensation for Both Characteristics
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CHAPTER VIl

Conclusion

Our work demonstrates that the integration of the ideas in Chapter 4, 5, and 6
leads to striking improvement in controller performance. These ideas can be carried
over to other situations to design good motion controllers. Our work also shows
that the investigation of the characteristics of the actuator is important. Every
drive system should include compensators for nonlinearities such as ripple torque
and friction.

Although the geometrically exact mathematical model derived in Chapter 3
was not used in doing the design here, it paves the way in the future to analyze it
and design a suitable controller for it. This is definitely a challenging task. In fact,
it has been started. The idea of modeling the beam as a chain of rigid bodies has
been suggested and tried. This can be regarded as an approximation of the exact
beamn model. The existence and uniqueness properties of the exact equation should
also be studied.

Another interesting idea is to use piezoelectric material, such as PVF;, to
increase the beam damping by active control and make it more robust. Because of
the distributed structure of the film, the exact beam equation should be used. This

is also a next step to consider for experimentation.
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Appendix A

Microsoft C Program Listing of the Integral Controller
for a Motor System

/‘Ot.“.."‘0‘..0““““‘."“"““‘.“.““““"“/
/* integral control of the motor system s/
/‘t‘“‘l“t‘t‘t‘“‘t““i“‘t““““““““0““““/
#include <process.h>

#include <conio.h>

s¢include <stdlib.h>

#include <stdio.h>

#include <math.h>

extern int dashi6();

extern int ddaé();

extern void exit();

main{ arge, argv )
int argc;
char sargv(l;

int mode, basedi6=784, d161i0[5], f1ag, loadcntO;
int basedda8=768, pa, pb, ddabofst=2006;

int mot_inp, posref, noloop, noiter;

int 4, §:

double position[1500], z[1500];

double veldata, posdata, postole, posofst;
double uf, cur_force, vforce;

double velgain, diBGofst, D_A, A_D, velfkgn;
double contfdbk, u_force, p, m, h, exphp, zy;

/#ss%+ Initialization of dashi® sauss/
initd16();

/+ss#s  Btart Execution *ssss/
dda6( ddaBofst );
printf (" Start execution\n");
mot_inp = ddaBofst;
dda6( mot_inp ):
print2(" Input step size ( 10 or less ) ");
escant ("Xd", &posref );
printf( * Input no of iterations " );
scanf (*%4", dmoiter );

/sssss  Input initial position data essse/
pa = inp( basedda8+12 );
pb = inp( baseddateis );
posofst = ((pb = 256 ¢ pa) >> 4) + 3.14156026 / 2048;
/essss  Initialization of the loop essss/
noloop = 1000;
posdata = 0;
veldata = 0;
h = 0.006;
P = 26.3678;
m = 13.7526;
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exphp = exp( -~ hep );
zy = m ¢ (1 - exphp) / p;

/esess  Btart the loop esses/
for( 4 = 0; 1 < noiter; 1+¢ ) {
z[0] = 0;
position[0] = 0;
for( § = 1;: j < noloop; je+ ) {
/+%% Load Counter O ./
mode = 11;
d1610(0] = B00; /* Load Counter O 1000 s/
dash168( &mode, d18io , &flag );
i2 ( flag > 0 ) error( flag, mode ):
cur_force = posref;
/e%sse  Input velocity sesss/
mode = 1;
d168io0[0] = 0;
d16i0(1] = 0;
dash16( &mode, di6io, &flag ):
if( flag > 0 ) error( flag, mode );
mode = 3;
dashi16( &mode, d16io, &flag );
if2( flag > 0 ) error( flag, mode );
veldata = d161i0[0] * 2.425 / 204.8;
/#sess  Input position data sssss/
pa = inp( basedda6+12 );
pb = inp( baseddat+13 );
posdata = ((pbe266+pa) >> 4)+3.1415026/2048-posofst;
position(j] = posdata;
/essss  Computing the artificial state sssss/
z2[j] = exphp * 2[j-1] + zy * position[j-1];
/%ssss  Computing the feedback valus #sses/
contfdbk = B.45168%posdata-0.140605+4veldata-14.2806+2[4];
u_force = cur_force - contfdbk;
uf = u_force ¢ 204.8;
if( uf > 2040 ) uf = 2040;
if( uf < -2040 ) uf = -2040;
mot_inp = uf + 2048;
dda6( mot_inp );

mode = 12;
d41610[0] = 1; /* Latch before read s/
dash16( dmode, d16io0, &flag ):
if ( f1ag > 0 ) error( flag, mode );
vhile( di16i0[1] > 10 ) {
Bode = 12;
d16i0{0] = §;
dash16( &mode, d18i0, &flag ):
i2 ( flag > 0 ) error( flag, mode );
}
)}

posref = -posref;

[essss  The End sssss/
dda6( ddabofst );
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Appendix B

Input File for CONSOLE and SIMNON
in the Speed Control Study

/tt.t“t“‘l##““‘*‘*“‘3““#“"t‘ttttttttttttttl#t““tt““‘

Problem Description File for CONSOLE
"“““"““‘t“‘#““"‘#“t‘.““““‘t#."‘.‘l““““#t“./
deslign_parameter Kp 4init=1.,07312¢+00
design_parameter Ti 1init=2.03340e-01
/% Neet the engineering specification #/
functional_objective "speed"

for t from O to 1 by 0.001

minimize {

double Ytr();
return Ytr("z",t); }
good_curve = {
if£( t <= 0.6 ) return 1.1;
else return 1.01; }
bad_curve = {
if( t <= 0.6 ) return 1.2;
else return 1.06; }
functional_objective "undershoot"
for t from 0.4 to 1 by 0.001
maximize {
double Ytr();
return Ytr("z" t); }
good_curve = {
if( t <= 0.5 ) return 0.90;
else return 0.00; }
bad_curve = {
i2( t <= 0.5 ) return 0.85;
else return 0.95; }

SELRRBLRRRRRLSRIRRLRIRARRR21IRR2 000040

$# GSystem Description File for CONSOLE

SRERRL2REB422282 222208022280 02000000088

K=2¢

Kt = 21.62

Kb = 2.443

Ra = 33.8

J=0.1

subsystem plant = [ (0) K+Kt¢Kp/(RasTi): \
(2) J, (KsKtsKbeKp+Kt)/(RasKb), K+Kt*Kp/(RasTi) ]

external_input us=i

external_output z

¢ FSet up the plant

connection plant_input = u

connection z = plant_output

NHANENANNNHHHNNEHHEITHNINI NN

*  Input File for BINNON

NN IR

continuous system CSPEED

73



*  Coantinuous-Time linear system for the motor speed control
input u

output y

state x

der dx
dx=-Kt/(J+*RasKb) sx+K+Kt/ (J*Ra)*u
y=x

youts=x

K:6

Kt:21.62

Kb:2.443

J:0.1

Ra:33.6

END

discrete system DSPEED
"Discrete-Time PI Feedback for the motor speed control
input yr y

output u

state 1 }§

nev ni nj

time t

tsamp ts

u=i
ni=i-Kp*(y-§)+(Kp*h/Ti) s (yr-§)
nj=y

ta=t+h

Kp:1.07312

T1:2.03340e-1

h:0.002

END

centinuous system CSPEED
"Continuous-Time linear system for the motor speed control
input u

output y

state X

der dx
dx=-Kt/(J+Ra*Kb)sx+K*Kt/(J*Ra) *u
y=x

yout=x

K:8

Kt:21.62

Kb:2.443

J:0.1

Ra:33.8

END
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Appendix C

Input File to CONSOLE and SIMNON
for Integral Control of the Flexible Arm

/.“““‘.‘“O".‘l"“‘t““““‘“““ttt““‘#““““.

Input file for CONSOLE: specification description file
L Y I T YTy T I Y Vs
PI = 3.1415026
Ri = 1/(0+2+PI)
R2 = 1/(20.6+2+PI)
R3 = 1/(0.5*2+PI)
design_parameter ki1 init=8.2301F vari=1.43e-1
design_parameter k2 init=-2.786527e-01 vari=0.0e-3
design_parameter k3 init=-2.23363e-04 vari=8.4e-b
design_parameter k4 init=-3.564e-6 vari=1.Te-b
design_parameter kb init=-5.7870e1 vari=4d.34ei
design_parameter k8 init=5,70548e-1 vari=0.fe-1
design_parameter k7 init=0.02761e-1 varisie-2
design_parameter m init=1.03611e2 vari=iel
design_parameter p init=2.3886Be1 vari=1e0 min=0.1
functional_objective "over-short"
for t from O to 2 by .0006
minimize {
double Ytr();
return Ytr(1,t)/0.15664;}
good_curve = {
i2( t <= 0.8 ) return 1.06;
else return 1.006; }
bad_curve = {
12( t <= 0.8 ) return 1.1;
else return 1.01; )

functional_objective "settling"

for t from 0.5 to 2 by .0006
maximize {

double Ytr():;

return Ytr(1,t)/0.16664; )}
good_curve = {

i2( ¢t <= 0.6 ) return 0.9;

else return 0.999; )
bad_curve = {

i2( t <= 0.6 ) return 0.85;

else retura 0.90; )

objective "steadystate"
minimize {
double Ytr();
return fabs( Ytr(1,100.0)-0.15664 ); }
good_value = O
bad_value = |

functional _constraint "max-accel"™ hard
for t from 0 to 2 by .006

75



{ double Ytr():
return Ytr(3,t); }
<= good_curve = { return 10; }
bad_curve = { returan 11; )

functional_constraint "max-accel"” hard
for t from 0 to 3 by .00B
{ doudble Ytr():
return Ytr(2.t): }
>=  good_curve = { return -10; }
bad_curve = { return -11; }

functional_constraint "control" hard
for t from O to 2 by .002
{ import ki k2 k3 k4 kb kO k7
double Ytr();
return fabs( 1-(kisYtr(3,t)+k2sYtr(4,t)+k3*Ytr(5,t)+k4sYtr(6,t)
+kBaYtr(7,t) +k6+Ytr(B8,t) +k7+Ytr(9,t))); }
<= good_curve = { return 6; )}
bad_curve = { return 6; )

constraint "observi" hard
{ import m p Ri
return fabs({ (-p-m)*(-p-m)*R1#R1¢0.22*R1s (-p-m)+1 );
} »>= good_value=i
bad_value =0.01

constraint "observa" hard
{ import m p R2
return fabs( (-p-m)*(-p-m)*R2+R2+0.04*R2+(-p-m)+1 );
} >= good_valuesi
bad_value =0.01

constraint “observ3" hard
{ import m p R3
return fabs( R3+(-p-m)+1 );
} »>= good_value=t
bad_value =0.01

constraint "controli" hard
{ import p B3
return fabs( -pspe+psR3*R3+2.14R3+p+p-p );
} >=  good_value=1
bad_value =0.01

sss8s88 Input file for CONSOLE: system description file ##3##
K=6.02

Kb=2.443
PI = 3.1416020
G = 0.128
R1 = 9e2eP]
- R2 = 20.642*P1
R3 = 0 .5e¢3+PI
R4 = Kb*G/(0.383+K)
Al = 0.04%R2+0.32+R1
A2 = R1+R1+0.0088+R2¢R1+R2+R2
A3 = 0.22+R2+R2+*R1+0.04+R2+R1sR1
A4 = R2+R2+R1*R1
B2 = RisR2*R1+R2/(R3#R3)
B3 = 2+B2+R3
B4 = B2¢R34R3
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(A1*A1-A2)%0.383sR4
-A1+0.3834R4
0.383sR4
B3+0.383+R4
2+PI+1.16+K/Kb

Q
w
nasaen

system_size Ninputs=1 Nstates=7 Noutputs=0D
readmatrix A

-A1 1 0 0 o] 0 0
-A2 0 1 O B2 0 0

-A3 0 0 b § B3 ] 0
-Ad 0 0 0 B4 0 0
0 0 0 0 0 1 0
-b6#*ki ~b82k2 -bG6*k3 -bBsk4d -b6skb ~-7.20-bBsk8 -bOsk7
m*R4 0 0 o] ] 0 -p
readmatrix B

(]

0

o

[+)

0

be

(o]

readmatrix C

R4 0 0 4] 0 0 0

C1 c2 Cc3 4] cé o} (o]

1 0 (] (4] B ¢ ] (] 0

] 1 ] 0 0 0 ]

0 0 1 ] 0 0 0

0 (4] 0 i 0 0 (]

0 0 0 o 1 0 0

0 0 0 0 0 1 ]

0 0 0 0 0 0 1

readmatrix Ut
1

TSI NE A QS T ET R RO TR PR RN RO HE R ON R I TR IR RN R L RE OO TR TSN NN I R R P RO O RO R RE DO RO O ORI HT RN TR RS TI O Y

®  Input file for SIMNON: Plant
UMMM NI NI IR TSR TP I T R O SR NRRe 0P
continuous system CFXINT
"Continuous-Time linear system for the flexible arm
input u

output yi y2 y$

state x1 x2 23 x4 x5 x6

DER dxi dx2 dx3 dr4 dxb6 dx6
dxi=aiisxieallsx2
dxZ=a21%x1+223%x3+226+xb
dx3=a31+x1+a34+x4+a36%xb
dx4=a4dlsxi+adbsxb

dx5=a50+x6

dx8=a86sx6+b6su

y=cisxi

yi=xb

ya=x6
y3=c31sx1+c324x2+c33%x3+c35+xb
a11:-17.6180513008

al2:1

a21:-20015.2222665682156
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ald3:1
2356:16036.98801734764
231:~224076.7T773142842
ad4:1
235:1796004.060181633
a41:-635672128.68060316
245:563572128.68060316
ab6:1

266:~-7.20
b6:17.060187838166190
¢1:0.15365685656
c31:-000.506160481782567
¢32:-0.8937063813023268
¢33:0.06072674418604661
c356:762.7267177404406
end

winune Input File for BEIMNON: Controller Hunnn
discrete system DFXARN

"Discrete-Time controller-observer for the flexibla arm
INPUT u

OUTPUT v y1 y2 y3

state x1 x2 x3 x4 x6 x6

nev nxi nx2 nx3 nx4 nxb nx6

time ¢t

tsamp ts
nxi=aiisxi+eal2*x2+a13+x3+a14*x4+215¢x6+216+x6+bisy
nxd=321%x1+a22+x2+223+x3+224*x4+a25+x5+226+x6+b2sy
nx3=a31sxi+a33*x3+a33*x3+234%x4+236*x5+236*x6+b3*y
nxd=adisxi+ad2*x2+ad3*x3+a44+x4+24bsxb+a46+x6+bdsvy
nxb=abbsxb+ab6+x8+bbsy

nxG=a86sx8+bl»v
veyref-k1+x1-k2+x2-k3+x3-k4*x4-kE+x5-k68+x6 "Feedback lav
yi=xb

ya=x6

y3=c31¢x1+4c32+x24c332x3+c36%xb

tasst+h

211:0.04233420400369036

212:0.0062887067265673081
213:3.0683181902470788e-05
014:1.441024766083601e-07

216:0.87606638674786606

216:0.0028338615832832856

a21:-142.524116824618

222:0.15313056474427612

223:0.008087937001501664
024:4.2223572357165648e-06

026:188.04103831260212

226:0.904032022000872356

231:-3540.7304608102681

232:~16.6624526501023

233:0.0473082638713215

234:0.000873081509827604

235:10608.46077632089

236:04.065008066750798

241:-336004.22756302042

ad2:-2125.912528886066

a43:-7.7246078560376001

244:0.0708380681541863

246:381166.0406393609

046:2238.08116014823
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abb:1
ab56:0.000644108260074846
266:0.9206937047660644
b1:0.0001086674562163263
b2:0.04678203172620013
$3:4.821345333602120
©4:124.2241266603102
b6:0.000766666882664156T4
b6:0.1402006476678602
¢31:-1150.653162308412
¢32:-1.038843885404808
¢33:0.06886122410646139
¢36:884.88630045605624
k1:30.362131612704567
k2:-0.164423261516544564
k3:-0.001473703749971624
k4:-6.848483626764808e~06
k6:-27.60063360001406
k6:0.5208171671200313
h:0.01

uref:1

END

wun Connecting File: Interface between Controller and Plant "¢
CONNECTING BYSTEN fxintcon
yidif=y1i[cfxint]-y1[dfxint]
y2dif=y2[cfxint] -y2 [dfzxint]
y3dif=y3[cfxint]-y3 [dfxint]
uldfxint]=v[dfxint]+11sy1dif+12+y2di2+13+y3dit
ulefxint]=v[dfxint]

11:10.16

12:.76

13:0.086

END
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Appendix D

Microsoft C Program Listing of the Integral Controller-Observer
for the Flexible Arm

#include <process.h>
#include <conio.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
extern int dashié();
extern int ddaé();
extern void exit();
extern int abs();
extern FILE sfopen();
extern int fprintf();

int mode, basedi6=784, di16io{6], flag:
int baseddad=768, pa, pb, ddaGofst=2005;
int zero=0, one=i, three=3, sleven=i1i, four=4, twvelve=12;

main()

FILE s»fpil, »fp2, »fp3, sfp4, fpb, +fp6;

char #comma = ",%;

int mot_inp, nodemo, noloop;

int 1, §;

int loopcount, loopofst;

double pos_ref, vel, pos, accel, ou_force;

double uf, cur_force, acceldif, posdif, veldif, accelst;
double velofst, accelofst, posofst;

double st1, st2, st3, st4d, sth, st6;

float posplot[600], velplot[600], accelplot([800], state5[600];
float state8{600], stateaccel[600];

double nextsti, nextst2, nextst3, nextstd, nextsth, nextst6;
double 2[1000], m, h, p, =y, exphp:

double contfdbk=0, u_force, u_tmp, sum, accelgain, velstgain;
double offset(), riptorq, ripgain, ripofst, time;

double Tf, wpos, wneg, vof, alphal, alpha2, gammai, gamma2;
double u_low, u high;

/e%ees  Initialization of dashié sesas/
initd16();

[esses Open Files ssins/

12( (fp1 = fopen( "itglpos.plo”, “w" )) == NULL ) {
fprintf( stderr, "couldn't open file itgl2.plo\a" );
exit( 1 );

3}

/esess  Compute the offset value for velocity and accelaration sssess/
velofst = offset( O, 2.4326 );
accelofst = offset( 4, 1.0 );
printf ("tach offset: X1f accel offset: X1f\n", velofst,accelofst);
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[entas

Jesess  Etart Execution sssss/

printf (" Etart execution\n");

mot_inp = ddabofst;
é83a6( mot_1np ):

tire = 0.003;

ripgain = 0.190 » 204.8;
ripofst = 13.5;

wvpos = 24b;

wneg = -220; /+ 1.31 = 204.
wof = 0.03 s 204.8;

alphal = -0.1;

gammal = 0.03;

alpha2 = -0.06;

gammal = 0.021;

printf (" Input step size ( 6 or less)

scanf ("{1£", &pos_ref );

i2( fabs( pos_ref ) > 6 ) pos.refs=h;

printf(" Hov many demos *)
scant ("¥%4", &nodemo );

8 s/

printf( "No of Demos : Xd\n", nodemo );

u_high = 2000;

u_low = ~2000;

cur_force = 0;

outp( baseddat+16, Oxbe );
m = 1,20263e1;

P = 1.07204e1;

h=0.01;

exphp = exp( -h*p );

zy = m ¢ (1 - exphp) / p:
noloop = 500;

loopcount = 1000;
loopofst = 18;

Initialization of the

loop sessse/

stl = gt2 = gt3 = gtd = gtb =» gt6 = O;

/+%sss  Btart the loop eeses/

for( 1 = 0; 4 < nodemo; 1¢++ ) {

z[0] = 0;
for( § = 0; § < moloop:

/* Load Counter 0 = loopcount &/

mode = gleven;
d1610[0] = loopcount;

dash16( &mode, 416i0 , &flag ):

Joe ) (

")

i2 ( flag > 0 ) error( 2lag, mode );

/eeses 25 Bz Filter

otooi/

A

cur_force = 0.0681 & pos_ref ¢ 0.30 s cur_force;

/esess  Input wvelocity
mode = one;

sevss/

4161i0[1] = 416i0[0] = xero;

Qashi6( &mode, d16ic, &flag );
12( f1ag > O ) error( flag, mode );

mode = three:

dashi6( dmode, d16i0. &flag );
1f( flag > 0 ) error( flag, mode );

vel = d16i0[0] ¢ 2.425 - velofst;

81

/s

2.425/204.8 o/



CURRICULUM VITAE

Name : Li-Sheng Wang.

Permanent adress : 4319 Rowalt Drive Apt. 201
College Park, Maryland 20740.

Degree and date to be conferred : Master of Science, 1987.
Date of birth : November 25, 1961.
Place of birth : Keelung, Taiwan, R.O.C.

Secondary education : Chenkuo Senior High School, 1979.
Taipei, Taiwan, R.O.C.

Collegiate institutions attended:  Dates Degree Date of Degree
National Taiwan University Aug., 1979 B.S. June, 1983.
University of Maryland Aug., 1985 M.S. Aug., 1987.

Major : Electrical Engineering.



/+sss%  Input acceleration #ssss/

mode = one;

di16io[1) = d1610[0] = four;

dashi18( &mode, di16io, &flag ):

i12( flag > 0 ) error( flag, mode );

mode = three;

dashi16( &mode, d16io, &flag ):

i1f2( flag > 0 ) error( flag, mode );
accel = d16i0[0] - accelofst; /¢ 1/204.8 o/

/#%ss¢  Input position data #ssss/
pa = inp( basedda8+12 );
pb = inp( baseddateis );
pos = ((pb*256+pa) >> 4)+0.3141502663; /+P1/10+/

/#s+s¢  Compute the ripple torque ss#es/
riptorq=ripgain*sin(0.2002% (pos-ripofst+timesvel));
/* 0.2002 = 41/204.8 s/

/*%ss¢  Computing the feedback value s=ses/
contfdbk = 1.83087645e1 * stl - 1.08849454e-1 * st2
-2.28869e-3 * st3 + 1.471506e-5 » st4
+1.906874666e1 ¢ stb + 7.3760066e-1 * st6
-2.30013e-7 * 2[j];
u_tmp = cur_force * 204.8 - contfdbk;

/%%  compute the friction compensation feedback #»s/
iz ( vel > wpos ) Tf = gammai*vel+39;
else 12( wpos >=vel &ivel > wof ) Tf = alphaisvel+bD;
else 12( vof >=vel &ivel >= -wof ) {

i2( u_tmp > 2.5 ) T = BO;
else if( u_tmp < -2.5 ) Tf = -40;
else Tt = 0;
}
else 12( -vof >vel &kvel >= wneg ) Tf = alphal+vel-40;
else TL = gammal+vel-29;
/+ 59 = 0,288+204.8 40.14 = 0.106+204.8 s/
u_force = u_tmp - riptorq + TZ;
uf = -u_force;
i2( uf > 2040 ) uf = 2040;
if( uf < -2040 ) uf = -2040;
mot_inp = uf + 2005;
dda8( mot_inp ):

posdif = pos + stb;
posplot[j] = pos;
veldif = ~vel ¢ st6;
accelst = 0.22 * (-0.00561606e2#8t1-0.8037063814*st2
¢+ 5.0726744186e-2*8t3 + 7.6272671774e2 % sth);
acceldif = -accel - accelst;

/* add the saturator to the input of observer =/

12( u_force < u_lovw ) u_force = u_lov;
olse 12( u_force > u_ high ) u_force = u_high;
else H

ou_force = u_force - (10.16 ¢ posdif ¢ 0.76 * veldis
+ 0.06 ¢ acceldif):;

nextstl = 4.2334203834¢-2 * st1 + 6.288706731e~3 * st2

+ 3.068318103883e-5 * #t3 + 1.44102475336e-7 » st4
¢+ 8.76663857161e-1 * sth + 2.8338515678573e-3 » sté
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nextstl =

nextstd =

nextstd =

nextsts = sth + 9.
nextstf =

+ 1.260668¢-4 * ou_force;

-1.42624110002 * st1 + 1.653130647262¢~1 s st2

+ 6.087937066e-3 ¢ ot3 ¢ 4.22235723666e-b * std

+ 1.880410332e2 ¢ sth ¢+ 0.040320216434e~-1 ¢ sté8

+ 5.31156024e-2 * ou_force;

-3.640739462643 » ptl - 1.665245256e1 » at2

+ 0.47308254e-1 * st3 ¢+ 0.87308151e-3 + std

+ 1.0650846077627¢4 * sth + ©.405500866862¢1 » sté
+ 5.60356400404 = ou_force;

~3.3000422778e5 * stl -~ 2.12601253e3 = st2

= T7.724607845 * st3 ¢+ 0.708380682e~1 ¢ std

+ 3.8116604088453e¢5 ¢ oth ¢ 2,238081140e3 ¢ sté

+ 1.4412007e2 * ou_forcs;
64410826e-3*8t6+8.7667073413e-4 * ou_force;
9.20693704767e-1 & st6 + 1.7321161212¢-1 * ou_force;

z[j+1] = exphp * z[j] + zy » st1 s 0.1324468;

stl = nextsti;

st2 = nextst2;

st3 = nextsts;
st4 = nextstd;
sth = nextsth;
st6 = nextsté;

mode = twelve;
d1610[0] = one; /* Latch before read #/
dashi6( &mode, d18io, &flag ):

it ( flag

> 0 ) error( flag, mode );

vhile( di6io[1) > loopofst ) {
/* Reading Counter 0 s/

mode =

tvelve;

d1610[0] = one; /% Latch before read s/
dash16( &mode, d168i0, &flag );

it ( flag > 0 ) error( flag, mode );

}

}

pos_ref = -pos_ref;

[essns The End
ddas( 2006 );

sesss/

printf (End of loop\n"):
for( § = 0; § < noloop; j*++ )

fprintf( fp1,

"%d¥%s%X1f\n", §, comma, posplot[jl);

printf ("The Ends.\n");
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