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A fast parallel iterative method is proposed for the solution of

linear systems arizing from Finite Element discretization of the time

harmonic acoustics of coupled fluid-solid systems in fluid pressure and solid

displacement formulation. The method generalizes the FETI-H method

for the Helmholtz equation to elastic scattering. The fluid and the solid

domains are decomposed into non-overlapping subdomains. Continuity of

the solution enforced by Lagrange multipliers. The system is augmented

by duplicating the degrees of freedom on the wet interface. The original

degrees of freedom are then eliminated and the resulting system is solved

by the GCR method preconditioned by a subspace correction. In each

iteration, the method requires the solution of one independent acoustic

problem per subdomain, and the solution of a coarse problem with several

degrees of freedom per subdomain. Computational results show that the

method is scalable with the problem size, frequency, and the number of

subdomains. The number of iterations was mostly about same as the

number of iterations of the FETI-H method for the related Helmholtz

problem with Neumann boundary condition instead of elastic scatterer.

Convergence is explained from the spectrum of the iteration operator.

Key Words: Lagrange multipliers, domain decomposition, iterative substructuring, elastic
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1. INTRODUCTION

The method of Finite Element Tearing and Interconnecting (FETI) was proposed
by Farhat and Roux [11] for solving linearized elasticity problems. The FETI

1This work has been submitted to Academic Press for possible publication. Copyright may be
transferred without notice, after which this version may no longer be accessible.
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2 JAN MANDEL

method consists of decomposing the domain into non-overlapping subdomains.
Lagrange multipliers are used to enforce that the values of the degrees of freedom
coincide on the interfaces between the subdomains interfaces. All original degrees
of freedom are then eliminated, leaving a dual system for the Lagrange multipliers,
which is solved by preconditioned conjugate gradients. For details, further
developments, and theoretical analysis of the FETI method for positive definite
problems, see [1, 4, 5, 9, 10, 13, 14, 16, 17, 18, 20, 21] and references therein.

Variants of the FETI method for the Helmholtz equation of scattering, were
proposed by De La Bourdonnaye et al. [3], Farhat et al. [6, 7, 8], and further
developed by Tezaur et al. [22]. In this paper, we present an extension of the
method of [7, 8], called FETI-H, to the case of an elastic scatterer.

The paper is organized as follows. In Section 2, we state the boundary
value problem of coupled fluid-solid acoustics. Section 3 reviews the variational
formulation and Finite Element discretization. The discrete equations are put in
a substructured form in Section 4, which leads to the iterative method, presented in
Section 5. Section 6 contains computational results. An explanation of some of the
convergence properties of the method from the spectrum of the iteration operator
is given in Section 7. Section 8 is the conclusion.

2. THE SCATTERING PROBLEM
We consider an acoustic scattering problem with an elastic scatterer completely

immersed in a fluid. Let Ω and Ωe be bounded domains in <n, = 2, 3, Ωe ⊂ Ω,
and let Ωf = Ω \ Ωe. Let ν denote the exterior normal. Let ∂Ω be decomposed
disjoint subsets, ∂Ω = Γd ∪ Γn ∪ Γa. The domain Ωf is filled with a fluid. The
acoustic pressure at time t is assumed to be of the form Re peiωt, where p is complex
amplitude independent of t. The amplitude p is governed by the Helmholtz equation

∆p+ k2p = 0 in Ωf , (1)

with the boundary conditions

p = p0 on Γd,
∂p

∂ν
= 0 on Γn,

∂p

∂ν
+ ikp = 0 on Γa, (2)

where k = ω/cf is the wave number and cf is the speed of sound in the fluid.
The boundary conditions (2) model excitation, sound hard boundary, and outgoing
boundary, respectively. The amplitude of the displacement u of the elastic body
occupying the domain Ωe satisfies the elastodynamic equation

∇ · τ + ω2ρeu = 0 in Ωe, (3)

where τ is the stress tensor and ρe is the density of the solid. For simplicity, we
consider an isotropic homogeneous material with

τ = λI(∇ · u) + 2µe(u), eij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

), (4)

where λ and µ are the Lamé coefficients of the solid.
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Let Γ = ∂Ωe be the wet interface. On Γ, the fluid pressure and the solid
displacement satisfy

ν · u =
1

ρfω2

∂p

∂ν
, ν · τ · ν = −p, ν × τ · ν = 0, (5)

where ρf is the fluid density. The interface conditions (5) model the continuity
of normal displacement, the balance of normal forces, and zero tangential tension,
respectively, cf., e.g., [23].

3. VARIATIONAL FORM AND DISCRETIZATION
We use the following standard variational form and discretization by conforming

elements, cf., e.g., [19]. Define the spaces Vf = {q ∈ H1(Ωf ) | q = 0 on Γd},
Ve = (H1(Ωe))n, where H1 is the Sobolev space of generalized functions with
square integrable generalized first derivatives. Assuming that p0 on Γd is extended
to a function in H1(Ωf ), multiplying equation (1) by a test function q ∈ Vf ,
equation (3) by a test function u ∈ Ve, and integrating by parts, we obtain the
following variational form of (1) – (5): Find p such that p − p0 ∈ Vf , and u ∈ Ve
such that for all q ∈ Vf and all v ∈ Ve,

−
∫

Ωf

∇p∇q + k2

∫
Ωf

pq − ik
∫
Γa

pq − ω2

∫
Γ

ρf (ν · u)q = 0,

−
∫
Ωe

(
λ(∇ · u)(∇ · v) + 2µe(u) : e(v)

)
+ ω2

∫
Ωe

ρeu · v −
∫
Γ

p(ν · v) = 0.

Proceeding as usual in the Finite Element method [2], we replace Vf and Ve with
conforming finite element spaces and obtain the algebraic system[

−Kf + k2Mf − ikGf −ρfω2T
−T∗ −Ke + ω2Me

] [
p
u

]
=
[

r
0

]
. (6)

In the coupled system (6), p and u are the vectors of the (values of) degrees of
freedom of p and u, i.e., p and u are the finite element interpolations of p and u,
respectively. The matrix blocks in (6) are defined by

p∗Kfq =
∫

Ωf

∇p · ∇q, p∗Mfq =
∫

Ωf

pq,

p∗Gfq =
∫
Γa

pq, u∗Kev =
∫
Ωe

(
λ(∇ · u)(∇ · v) + 2µe(u) : e(v)

)
,

u∗Mev =
∫
Ωe

ρe(u · v), p∗Tv =
∫
Γ

p(ν · v).
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4. SUBSTRUCTURED DISCRETE EQUATIONS
The fluid and solid domains are decomposed into nonoverlapping subdomains

that consist of union of elements,

Ωf =
Nf⋃
s=1

Ω
s

e, Ωe =
Ne⋃
s=1

Ω
s

e. (7)

The vectors of degrees of freedom corresponding to Ωsf and Ωse are denoted by ps

and us, respectively.
The subdomain matrices are defined by subassembly,

ps∗Ks
fq =

∫
Ωs
f

∇p · ∇q, ps∗Ms
fq

s =
∫

Ωs
f

pq,

ps∗Gs
fq

s =
∫

∂Ωs
f
∩Γa

pq, us∗Ks
ev
s =

∫
Ωse

λ(∇ · u)(∇ · v) + 2µe(u) : e(v),

us∗Ms
ev =

∫
Ωse

ρe(u · v), pr∗Trsvs =
∫

∂Ωr
f
∩∂Ωse

p(ν · v).

We will use vectors consisting of all subdomain degrees of freedom,

p̂ =

 p1

...
pNf

 , û =

 u1

...
uNe

 ,
and the corresponding partitioned matrices,

K̂f = diag(Ks
f ) =


K1
f . . . 0

...
. . .

...
0 . . . KNf

f

 , K̂e = diag(Ks
e) =

 K1
e . . . 0

...
. . .

...
0 . . . KNe

e

 .
The matrices M̂f , Ĝf , and M̂e defined similarly, and

T̂ = (Trs)rs =

 T11 . . . T1,Ne

...
. . .

...
TNf ,1 . . . TNf ,Ne

 .
Let Nf and Ne be the matrices with 0, 1 entries of the global to local maps
corresponding to the decompositions of Ωf and Ωe, respectively, cf., (7), so that

Kf = N∗fK̂fNf , Ke = N∗eK̂eNe.

Let Bf = (B1
f , . . . ,B

Nf
f ) and Be = (B1

e, . . . ,B
Ne
e ) be matrices with entries 0,±1

such that the conditions Bf p̂ = 0 and Beû = 0 express the constraint that the
values of the same degrees of freedom on two different subdomains coincide, that
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is,

Bf p̂ = 0 ⇐⇒ p̂ = Nfp for some p (8)

Beû = 0 ⇐⇒ û = Neu for some u. (9)

Multiplying the second equation in (6) by ω2ρf to symmetrize the off-diagonal
block and introducing Lagrange multipliers λf and λe for the constraints Bfp = 0
and Beu = 0, we get the system of linear equations in block form,

−K̂f + k2M̂f − ikĜ −ω2ρf T̂ B∗f 0
−ω2ρf T̂∗ ω2ρf (−K̂e + ω2M̂e) 0 B∗e

Bf 0 0 0
0 Be 0 0




p̂
û
λf
λe

 =


r̂
0
0
0

 , (10)

where N∗r̂ = r. The system (10) is equivalent to (6) in the following sense.

Lemma 4.1. If (p̂, û, λf , λe) is a solution of (10), then p̂ = Nfp and û = Neu,
where (p,u) solves (6). Conversely, if (p,u) is a solution of (6), then there exist
λf and λe such that (p̂, û, λf , λe) is a solution of (10).

Proof. To simplify notation, write (6) as N∗ŜNx = N∗b̂ and (10) as
Ŝx̂ + B∗λ = b̂, Bx̂ = 0. Then (8), (9) become Null B = Range N.

Suppose that Ŝx̂ + B∗λ = b̂ and Bx̂ = 0. From the second equation and
Null B = Range N, it follows that there is x such that x̂ = Nx. Multiplying
the first equation by N∗ and using the fact that N∗B∗ = (BN)∗ = 0, we obtain
N∗ŜNx = N∗b̂.

Conversely, suppose that N∗ŜNx = N∗b̂. Let x̂ = Nx. Then Bx̂ = 0, and

Ŝx̂− b̂ ∈ Null N∗ = (Range N)⊥ = (Null B)⊥ = Range B∗,

hence Ŝx− b̂ = B∗λ for some λ.

Note that symmetry of the system or the existence of a Lagrangean functional
are not needed.

We will want to eventually eliminate the variables p̂ and û. Because the matrices
−K̂f+k2M̂f and −K̂e+ω2M̂e are typically close to singular due to near-resonance,
we replace them by regularized matrices

Âf = −K̂f + k2M̂f + ikĜf + R̂f ,

Âe = −K̂e + ω2M̂e + R̂e,

where the regularization matrices are given by

R̂f = diag(Rs
f ), ps∗Rs

fq
s = ik

Nf∑
t=1
t6=s

σstf

∫
∂Ωs

f
∩∂Ωt

f

pq,

R̂e = diag(Rs
e), us∗Rs

ev
s = iωρe

Ne∑
t=1
t6=s

σste

∫
∂Ωse∩∂Ωte

(n · u)(n · v),
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where σstf ∈ {0,±1}, σstf = −σtsf , and σste = {0,±1}, σste = −σtse .
It is shown in [6] that if for a given s, all σstf ≥ 0 or all σstf ≤ 0 with some

σstf 6= 0, then Âs
f is invertible. The case of solid subdomains is similar. For details

on strategies for choosing σstf to guarantee this, see [6]. In our computations, we
simply choose σstf = +1 if s > t, σstf = −1 if s < t, and similarly for σste .

Because

N∗fRfNf = 0, N∗eReNe = 0,

the system (10) is equivalent to
Âf −ω2ρf T̂ B∗f 0

−ω2ρf T̂∗ ω2ρfÂe 0 B∗e
Bf 0 0 0
0 Be 0 0




p̂
û
λf
λe

 =


r̂
0
0
0

 (11)

Since the value of T̂û depends on the values of û on Γ only, we have

T̂û = T̂JeûΓ, ûΓ = J∗eû,

where Ĵe is the matrix of the operator of embedding a subvector that corresponds
to degrees of freedom on Γ into û by adding zero entries. Similarly,

T̂∗p̂ = T̂∗Jf p̂Γ, p̂Γ = J∗f p̂.

Therefore, we obtain the augmented system equivalent to (11),

Âf 0 B∗f 0 0 −ω2ρf T̂Je
0 ω2ρfÂe 0 B∗e −ω2ρf T̂∗Jf 0

Bf 0 0 0 0 0
0 Be 0 0 0 0
J∗f 0 0 0 −I 0
0 J∗e 0 0 0 −I





p̂
û
λf
λe
p̂Γ

ûΓ


=



r̂
0
0
0
0
0


(12)

Because the variables in a coupled system typically have vastly different scales,
we use symmetric diagonal scaling to get the scaled system

Ãf 0 B̃∗f 0 0 −T̃Je
0 Ãe 0 B̃∗e −T̃∗Jf 0

B̃f 0 0 0 0 0
0 B̃e 0 0 0 0
J∗f 0 0 0 −I 0
0 J∗e 0 0 0 −I





p̃
ũ
λ̃f
λ̃e
p̃Γ

ũΓ


=



r̃
0
0
0
0
0


, (13)

where the matrices and the vectors scale as

Ãf = DfÂfDf , Ãe = ω2ρfDeÂeDe, T̃ = ω2ρfDf T̂De, (14)

B̃f = EfBfDf , B̃e = EeBeDe, r̃ = Df r̂, (15)

p̂ = Df p̃, û = Deũ, λf = Df λ̃f , λe = Deλ̃e. (16)
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The scaling matrices Df , De, Ef , and Ee, are diagonal. We have chosen scaling
matrices with positive diagonal entries such that the absolute values of the diagonal
entries of Ãf and Ãe are one and the `2 norms of the columns of B̃e and B̃f are
one. Other, perhaps better, scaling choices are of course possible.

The proposed method consists of eliminating the variables p̂ and û from the
augmented system (13) and solving the resulting reduced system by Generalized
Conjugate Residuals, with preconditioning by projection on a coarse space with few
degrees of freedom per subdomain.

Computing p̃ and ũ from the first two equations in (13) gives

p̃ = Ã−1
f (r̃− B̃∗f λ̃f + T̃JeũΓ) (17)

ũ = Ã−1
e (−B̃∗eλ̃e + T̃∗Jf p̃Γ) (18)

Substituting p̃ and ũ from (17), (18) into the rest of the equations in (13), we
obtain the reduced system

Fx = b, (19)

where

F =


B̃fÃ−1

f B̃∗f 0 0 −B̃fÃ−1
f T̃Je

0 B̃eÃ−1
e B̃e −B̃eÃ−1

e T̃∗Jf
−J∗fÃ

−1
f B̃∗f 0 −I J∗fÃ

−1
f T̃Je

0 −JeÃ−1
e B̃e JeÃ−1

e T̃∗Jf −I

 , (20)

and

x =


λf
λe
p̃Γ

ũΓ

 , b =


B̃fÃ−1

f r̃
0

−J∗fÃ
−1
f r̃

0

 .
In equation (20), the first diagonal block B̃fÃ−1

f B̃∗f is exactly same as in
the FETI-H method for the Helmholtz equation. The second diagonal block
B̃fÃ−1

f B̃∗f is the analogue of FETI-H for the elastodynamic problem. FETI-H
is known to converge fast, so one can expect that on the subspace defined by
the coarse correction (cf., Section 5 below), these two diagonal blocks will be well
conditioned. The off-diagonal blocks all contain the inverse of Af , resp. Ae,
which are discretizations of differential operators. Hence, the off-diagonal blocks
are discretizations of compact operators, and the structure of the equation (19)
resembles discretization of a Fredholm integral equation of the second kind, which
is well conditioned because its eigenvalues cluster about a point different from zero.
Such clustering is indeed observed computationally, cf., Section 7 below.

Evaluating the matrix vector product Fx requires the solution of one independent
problem per subdomain, because

F


λf
λe
p̃Γ

ũΓ

 =


−B̃f q̃
−B̃eṽ

J∗f q̃− p̃Γ

J∗eṽ − ũΓ

 , where

{
q̃ = Ã−1

f (−B̃∗f λ̃f + T̃JeũΓ),
ṽ = Ã−1

e (−B̃∗eλ̃e + T̃∗Jf p̃Γ).



8 JAN MANDEL

5. ITERATIVE SOLUTION

The present method consists of solving the linear system (19) by the Generalized
Conjugate Residual (GCR) method [12] preconditioned by a subspace correction.
GCR is mathematically equivalent to GMRES and easier to program, but less
numerically stable. Because the number of iterations was small, GCR was sufficient
for our purposes.

Let Q be a matrix with the same number of rows as F and linearly independent
columns. The columns of Q form the basis of the coarse space. We wish to enforce
the condition that the residual is orthogonal to the coarse space,

Q∗(Fx− b) = 0, (21)

by adding a correction from the coarse space in each iteration. Define the correction
operator C by

C(v,b) = v + Qw, Q∗(F(v + Qw)− b) = 0.

We first make make sure that the initial approximation satisfies (21): If v is given,
the initial approximation is x(0) = C(v,b). The system (19) is then solved by the
GCR method with left preconditioning by the action of the projection P, given by

Pv = C(v, 0) = (I−Q(Q∗FQ)−1Q∗F)v.

Equivalently, the GCR method is applied to the preconditioned system

PFx = Pb. (22)

In step m, the GCR method computes x(m) by adding to x(m−1) a linear
combination of preconditioned residuals P(Fx(k)−b), k = 0, . . . ,m−1, so that the
`2 norm of the residual ‖P(Fx(m) −b)‖ is minimal. Because Q∗FP = 0, it follows
that the iterates run in a subspace,

Q∗F(x(m) − x(0)) = 0,

hence, from the selection of x(0),

Q∗(Fx(m) − b) = 0.

We choose the matrix Q of the form

Q =


DfBfdiag(Ys

f )s 0 0 0
0 DeBediag(Ys

e)s 0 0
0 0 DfJ∗fdiag(Zsf )s 0
0 0 0 DeJ∗ediag(Zse)s

 .
For a fluid subdomain Ωsf , we choose Ys

f as the matrix of columns that are discrete
representations of plane waves in a small number of equally distributed directions,
or discrete representation of the constant function. For a solid subdomain Ωse, the
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FIG. 1. Model 2D Problem

Ωf

Γn

Γn

Γd ΓaΓ Ωe

columns of Ys
e are discrete representations of plane pressure and shear waves, or

of rigid body motions. The matrices Zsf and Zse are chosen in the same way as Ys
f

and Ys
e, with possibly different selection of the number of directions and selection

of constant or rigid body modes. Some of the matrices Ys
f , Ys

e, Zse, or Ys
e may be

void.

6. COMPUTATIONAL RESULTS
We consider a model 2D problem with a scatterer in the center a waveguide, cf.,

Fig. 1. The fluid domain Ωf is a square with side 1m, filled with water with density
ρf = 1000 kgm−3 and speed of sound cf = 1500ms−1. The scatterer is a square
in the center o the fluid domain, with side 0.2m, and consisting of aluminum with
dnsity ρe = 2700 kgm−3 and Lamé elasticity coefficients λ = 5.5263.1010N m−2,
µ = 2.595.1010N m−2.

For numerical stability, the rows of the matrices Be, Bf , and the columns of Q
were orthogonalized. The number of reduced variables reported in the tables is the
number of the Lagrange multipliers to enforce the linearly independent constraints.
The number of coarse degrees of freedom is the size of the basis of the columns of
the matrix Q.

The fluid domain and the solid domain are discretized by bilinear square elements
on a uniform mesh with meshsize h. Both domains are divided independently into
m by n subdomains by dividing their horizontal sides into m intervals of the same
length and the vertical sides into n intervals of the same length. The iterations
were stopped when the relative residual in the `2 norm of the reduced and scaled
system (19) was less than 10−6.

The numerical results for the model problem are summarized in Tables 1 to 3.
The lines in the tables are organized in groups. The first line in the group is
the result for the FETI-H method with Neumann condition instead of the elastic
scatterer. The following lines are for the elastic scatterer, and they show the number
of iterations for increasing the number of coarse space functions, that is, the columns
of Q. In all cases, the constant function is included in the coarse space for the fluid
and the rigid body modes are included in the coarse space for the solid, both for
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TABLE 1

Decreasing mesh size and wavelength, 1 solid subdomain

Problem description Coarse directions Number of

Subdomains Multipliers Wet interf. degrees of freedom

h k Fluid Solid Fl. Sol. Fl. Sol. Orig. Red. Coarse Iter.

1/40 10 4x4 rigid 4 1632 240 63 11

1/40 10 4x4 1x1 4 0 0 0 1794 312 63 18

1/40 10 4x4 1x1 4 0 4 0 1794 312 86 13

1/80 20 4x4 rigid 4 6336 464 63 20

1/80 20 4x4 1x1 4 0 0 0 6914 600 63 24

1/80 20 4x4 1x1 4 0 4 0 6914 600 86 20

1/160 40 4x4 rigid 4 24960 912 63 52

1/160 40 4x4 1x1 4 0 0 0 27138 1176 63 64

1/160 40 4x4 1x1 4 0 4 0 27138 1176 86 55

1/160 40 4x4 rigid 8 24960 912 102 20

1/160 40 4x4 1x1 8 0 4 0 27138 1176 125 21

1/160 40 4x4 1x1 8 4 4 4 27138 1176 126 22

TABLE 2

Increasing number of solid subdomains

Problem description Coarse directions Number of

Subdomains Multipliers Wet interf. degrees of freedom

h k Fluid Solid Fl. Sol. Fl. Sol. Orig. Red. Coarse Iter.

1/250 20 4x4 rigid 4 60600 1416 63 32

1/250 20 4x4 1x1 4 0 0 0 65802 1824 63 37

1/250 20 4x4 1x1 4 0 4 0 65802 1824 86 32

1/250 20 4x4 rigid 4 60600 1416 63 32

1/250 20 4x4 2x2 4 0 0 0 65802 2034 72 48

1/250 20 4x4 2x2 4 0 4 0 65802 2034 100 42

1/250 20 4x4 rigid 4 60600 1416 63 32

1/250 20 4x4 3x3 4 0 0 0 65802 1824 63 37

1/250 20 4x4 3x3 4 0 4 0 65802 1824 86 32

1/250 20 4x4 rigid 8 60600 1416 102 26

1/250 20 4x4 1x1 8 0 4 0 65802 1824 125 27

1/250 20 4x4 1x1 8 4 4 4 65802 1824 126 27

1/250 20 4x4 rigid 8 60600 1416 102 26

1/250 20 4x4 2x2 8 0 4 0 65802 2034 139 39

1/250 20 4x4 2x2 8 4 4 4 65802 2034 148 36

1/250 20 4x4 rigid 8 60600 1416 102 26

1/250 20 4x4 3x3 8 0 4 0 65802 1824 125 27

1/250 20 4x4 3x3 8 4 4 4 65802 1824 126 27
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TABLE 3

Increasing number of fluid and solid subdomains

Problem description Coarse directions Number of

Subdomains Multipliers Wet interf. degrees of freedom

h k Fluid Solid Fl. Sol. Fl. Sol. Orig. Red. Coarse Iter.

1/315 32 3x3 rigid 4 96012 1268 32 45

1/315 32 3x3 1x1 4 0 0 0 104204 1776 32 56

1/315 32 3x3 1x1 4 0 4 0 104204 1776 40 51

1/315 32 5x5 rigid 4 96012 2292 96 45

1/315 32 5x5 3x3 4 0 0 0 104204 2804 96 57

1/315 32 5x5 3x3 4 0 4 0 104204 2804 111 46

1/315 32 3x3 rigid 8 96012 1268 52 27

1/315 32 3x3 1x1 8 0 4 0 104204 1776 60 34

1/315 32 3x3 1x1 8 4 4 4 104204 1776 61 34

1/315 32 5x5 rigid 8 96012 2292 156 28

1/315 32 5x5 3x3 8 0 4 0 104204 2804 171 31

1/315 32 5x5 3x3 8 4 4 4 104204 2804 172 31

the multipliers and for the wet interface. The prototype implementation was done
in MATLAB, hence we do not report timings.

Table 1 shows that the method is scalable when the frequency is increased and the
mesh is correspondingly refined. Since there is only one solid subdomain, the effect
of increasing the coarse space for the solid and for the wet interface was minor. The
results in Table 2 show that the number of iterations does not increase when the
scattered is decomposed into increasing number of subdomains. Finally, Table 3
shows the number of iterations does not grow when a fixed problem is decomposed
into a growing number of both fluid and solid subdomains.

7. SPECTRUM OF THE ITERATION OPERATOR
Convergence of the method can be explained by an analysis of the spectrum of

the iteration operator. From well-known properties of Krylov space methods [12], it
follows that in m iterations, the residual is reduced by the factor of at least Cr(m),
where

r(m) = min
deg(p)=m
p(0)=1

max
λ∈σ(PF)
λ 6=0

|p(λ)|.

Here, the minimum is taken over complex polynomials and the maximum over
eigenvalues of PF.

Figures 2 and 3 show one representative case of the spectrum of the iteration
operator PF from (22) for Neumann boundary condition on the scatterer, and for
the elastic scatterer, respectively. The problem setting was h = 1/40, k = 10, 4× 4
fluid subdomains and, for Figure 3, 2× 2 solid subdomains. The coarse space had
4 directions for fluid waves, both for the multipliers and for the wet interface.

The figures show that in both cases, the spectrum is clustered around a point
other than the origin. For the coupled problem, there are few more eigenvalues near
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FIG. 2. Spectrum of the FETI-H iteration operator
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FIG. 3. Spectrum of the iteration operator for coupled problem
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the origin and some clustered around −1. Because the eigenvalues are clustered
around a point different from zero, a polynomial with a low value of r(m) exists,
and convergence is fast. The effect of adding the elastic scatterer shows in few extra
eigenvalues close to the cluster and a minor change in other eigenvalues.

The change in the spectrum can be heuristically explained as follows, cf., also
the remarks at the end of Section 5. The last two by two diagonal block (with
−I on the diagonal) in (20) is a discretization of a Fredholm integral equation of
the second kind, with eigenvalues clustered around −1. The influence of the other
off-diagonal blocks is relatively weak. The FETI-H method already has eigenvalues
around −1, so the overall effect of adding the elastic scatterer on the spectrum of
the iteration operator is small.

8. CONCLUSION

We have presented a new fast substructuring method for coupled fluid-solid
acoustic problems. The computational results indicate that the method is scalable
with respect to mesh size, frequency, and the number of subdomains. The growth
of the number of iterations can be controlled by increasing the size of the coarse
space. Numerical calculation of the spectrum of the iteration operator suggests
that the fast convergence is due to clustering of the spectrum. In most cases, the
resulting number of iterations is same or slightly larger than for the FETI-H method
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for the same problem with the Neumann boundary condition instead of an elastic
scatterer.

Performance study of the method for realistic problems, 3D computations,
parallel implementation, and theoretical analysis will be reported elsewhere.
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