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A Comparative Study for Orthogonal Subspace
Projection and Constrained
Energy Minimization

Qian Dy Member, IEEEHsuan RenMember, IEEEand Chein-I ChangSenior Member, IEEE

Abstract—In this letter, we conduct a comparative study and them have been successfully applied to hyperspectral image de-
investigate the relationship between two well-known techniques tection and classification because of their effectiveness and sim-
in hyperspectral image detection and classification: orthogonal plicity. Despite the fact that these two approaches require dif-

subspace projection (OSP) and constrained energy minimization e . .
(CEM). It is shown that they are closely related and essentially ferent levels of knowledge, it is interesting to find that they are

equivalent provided that the noise is white with large SNR. Based indeed closely related, which is to be explored in this letter.
on this relationship, the performance of OSP can be improved via ~ The OSP is based on the linear mixture model, which says a

data-whitening and noise-whitening processes. hyperspectral pixel vectarof size K x 1 with K spectral bands

Index Terms—Classification, constrained energy minimization Can be represented as
(CEM), detection, hyperspectral imagery, orthogonal subspace

projection (OSP). r=Sa+n Q)
whereS = [s1,s9,...,5s,] iS @K x p signature matrix
. INTRODUCTION with  endmembers, and; is the ith endmember signature;
INEAR UNMIXING has been widely used for hyperspece = [a1, a2, ..., a,]" is ap x 1 abundance fraction vector

tral image detection and classification [1]-[9]. It models #here thetth elementy; represents the abundance fractios,of
hyperspectral image pixel to be a linear mixture of a set of finiffesent in that pixely is a K x 1 vector that can be interpreted
image endmembers that are assumed in the image data. TReMoise term or model error. For the OSP, the signature matrix
the detection and classification is performed by unmixing the in (1) is further divided into two parts, desired signature
pixel and finding the respective abundance fractions of the@kinterestd and undesired signature matix. Without loss
endmembers present in the pixel. Several approaches have Kdeggenerality, we assuma is the first endmember signature
studied in the past, such as singular value decomposition [2]; ahd U is formed by the rest of signatures[ - -s,], i.e.,
subspace projection [9], maximum likelihood (ML) [10], etcS = [dU]. Then, (1) can be rewritten as
The relationship between ML and subspace projection was in-
vestigated in [10]-[12] where ML-based linear unmixing was

shown to be equivalent to the orthogonal subspace projectigfere, , is the abundance fraction of the desired signadre
(OSP)-based linear unmixing, provided that the noise in tla%daU isa(p — 1) x 1 abundance fraction vector of the unde-
linear mixing model is white Gaussian noise. Unfortunately; .4 signatures ilJ anda = (aqay). Under the white-noise

such linear unmixing methods require the complete kn°W|edQ§sumption, the OSP classifier projecRssp was derived as
of the image endmembers. On many practical occasions,

taining this prior knowledge may not be realistic. In order to

resolve this issue, a method, referred to as Constrained Energy Posp = P%Jd (3)

Minimization (CEM) was developed in [13] where the only re-

quired knowledge is the desired image endmember rather theimereP = 1 — U (UTU)_1 UT is the orthogonal comple-

the entire set of image endmembers. The relationship betwerant projector that maps data onto a subspace orthogonal to the

CEM and linear unmixing was recently studied in [14]. Theyndesired signaturesd. Here I denotes & x K identity ma-

also are investigated as matched filter detector in [15]. Both wix. According to [10] and [11], when the OSP is implemented
as an abundance estimator a constant tédfiP{;d)~* should

be included to account for estimation accuracy. Then (3) be-
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filter output energy is minimized subject to a constraintimposedhereD is another positive-definitd x N matrix, andC is
by desired signature of interedt It does not assume the linearan M x N matrix. A~! can be calculated by

mixture model or any noise characteristics. Let the filter be spec- .

ified by the coefficientsw = [wy, ws, ..., wx]’. Then, the A"'=B-BC(D+C"BC)  CTB. (10)
filter output for the inputr; is expressed by; = w”r;. The

average output energy is given by Comparing (8) with (9),A, B, C, andD correspond tR,.,

R.!, d, anda;Z, respectively. Therefore

1 < 1<
E :a ; Y = P ; wirirlw R,'=R_'-R_d (052 + dTanld)_l dTR_!
q _p-1 —19.2 2 4 Tp—-1 1\~ Tp-1
T ( 1 5 m?) w = wRow ) R, - R.'da (1+a3d"R.!d)" d"R, (11)
7= andw, is defined as
whereR, = (1/¢) 37, rr] = (rr”) is the data sample cor- _ _ p_1
relation matrix. Here{-) denotes sample average over all pixels™ ° r 1
andg is the total number of pixels in the image. An optimal filter = [Rr_nld - R.'daj (14 a3d"Ry'd) dTR;ld] .
w should be the one that minimizésin (5) subject to the con- (12)
straintw”d = 1. The solution of this constrained problem is
[13] The terma? (14 a3dTR;!d) 1 dTR:!din (12) is a scalar,
1 so it can be moved to the front of the teRy,'d next to it. Then
wopm = (d"R,'d) R, 'd. (6)  (12) becomes

Using (6), a CEM-based filter can be designed to detectthe dg; _pgp-14

sired targetl while minimizing the filter output energy caused ’ B _ 1 3 3

by unknown signal sources. = [led — a3 (1+a3d"R'd) dTledled}
The CEM generally outperforms the OSP in terms of elimi- 1. 5 2 1T -1\ =1 1T 1 1

nating unidentified signal source and suppressing noise, butit [1 “d (1 +ogd Ry d) 4" R, d] Rid

has a poor generalization property since it is very sensitive to — (1+ a(zidTRr_nld)—l R-ld. (13)

the knowledge of the desired signatdresed in (6). This is be-

cause a pixel with slightly different signature from the desire8Substituting the result in (13) into (12) and (6) and noticing

signatured may be considered as undesired or unknown, there3 (1 + o3d”R!d) “'is a scalar

fore, will be eliminated. One way to mitigate this problem is to

find a good representative dfbased on a large number of sam- weew = (d"Ry'd) ! R 'd
ples. However, in some cases, a large number of samples may - o T 1=l 141"
not be available. Another way is to use only part of eigenvalues = [d (1 +agd” Ry, d) R, d}

and eigenvectors dR, to calculateR ! as did in [16]. But a
problem associated with it is how to determine the number of .
eigenvalues and eigenvectors to be used. In this letter, we further = (d"Ry'd) Rg'd. (14)
investigate the relationship between the OSP and CEM, which | ) .

may help us to better understand the strengths and weaknedsagise is white,Ry, in (8) becomes
of both techniques and under what conditions they can perform

well.

(14 a2d"R;}d) T R

Ry = UR,, UT + R, = UR,, U7 + %1 (15)

whereR,,, = (ayuaf}). Using the matrix lemma again, and
Il. RELATIONSHIP BETWEEN OSPAND CEM assuming that is small enough compared to the undesired
Assume the sample mean is removed. ket= Uay +n.  SignaturedJ, R can be computed as

Then (2) becomes -
@) Ry =0 21— 07U Ry} +072UTU) ' U o2

r=daq+m. ) —o72[I-U(o*Rz} + UTU) ' U7
If (aqad;) = 0, R, can be represented as [17] ~o~2P. (16)
T
R, =a3dd" + R (8) Plugging the result of (16) into (14) gives

whereR,,, = (mm7) is the sample correlation matrix af. 1

 (ATR-1N"1R-19 _ (ATR-14) 1p-1
The following matrix inversion lemma [18] is used to calcu- * C°M ~ (d"R; d),l Ri'd=(d'R;'d) R;'d
late R in (8). ~ (d"P{d)  Pgd = Posp. 17)
Lemma: Let A andB be two positive-definited/ x M ma- _ o
trices related by Equation (17) implies that the OSP and the CEM are essen-

tially the same filter as long as the noise is white and as long
A=B'+CcD'C” (9) as its variance is negligible compared to the signals, i.e., SNR
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Fig. 1. HYDICE image scene used in the experiment. (a) Image scene. (b) Panel arrangement.

is sufficiently high, which is generally true in hyperspectral imB. Noise Whitening

agery. The assumption about the white noise may not be true in prac-

tice. And the noise in the whitened data generally is not white.
lll. PERFORMANCEIMPROVEMENT FOROSP A noise-whitening process is needed via noise estimation. The

The relationship between OSP and CEM derived in Sectionpise variance can be estimated by exploiting the interband cor-
can be used to improve the performance of OSP. In Sectiorf¢fation such as residual-based estimation [19] and the intra/in-
{aqal) = 0is assumed, and white noise with large SNR is réerband correlation such as linear regression model-based pre-
quired. In this section, we will show that if these two conditiondiction [20]. A noise covariance matrix can be estimated using

are satisfied, the performance of OSP can be improved. ~ heighborhood difference method [21] and Laplacian operator
[22]. We find that an accurate estimate of band-to-band noise
A. Data Whitening correlation is generally difficult to achieve. So here we only es-

: : . imate noise varian n nstr iagonal noi varian
When applying the OSP to classify each class, its corrte- ate noise variance and construct a diagonal noise covariance

i X . . . . matrix using the method in [20] because of its relative efficiency
sponding signature if = [dU] is treated asl while making T . . : L
. T ) and simplicity. After the estimated noise covariance matrix is
the restp — 1 signatures abJ. So(aqaf;) = 0 for each pair of

. 2 2 2 H
d : U meansR,, = (aa’) is a diagonal matrix. According to constr_ucted ax, = dl_ag {_U{‘ g T iy} nOlSe can
[10] and [11] the abundance estimation using the OSP operdi§rWhitened by applying.,. " “r to all the pixels.

in (4) can be expressed as

IV. EXPERIMENT
1

a=(S"s) sr. (18)  The data used in the experiments is the Hyperspectral Dig-
) ital Imagery Collection Experiment (HYDICE) data. The image
SoRq can be approximated as scene of size 64 64 shown in Fig. 1(a) was collected in Mary-
. . land in 1995 from the flight altitude of 10000 ft with approx-
Ra ~ <ddT> = <(STS) Srr’s” (87s) > imately 1.5 m GSD. Removing bands with low SNR results in
Ty —1 T e e —1 169 data dimensions. There are 15 panels present in the image
= (S S) SRS (S S) : (19) scene, which are arranged in ax53 matrix. Each element in

. . . . ) . this matrix is denoted by;; with row indexed byi and column
If R, is whitened to be the identity matrix and the signatures |fqaxed byj. The three panels in the same row were made from

S are orthogonal to each other, .687S)" =T, thenRa =1 the same material and are of size<®3, 2 x 2, and 1x 1 re-
is a diagonal matrix. spectively, and they are considered as a single class. The ground
The whitening ofR, can be achieved by generating a dataruth map is provided in Fig. 1(b) and shows the precise spatial
whitening operatoP,, as locations of panel pixels where the black pixels are referred to
. Ry as panel center pixels, and white pixels are considered as panel
P,=V, "V} (20) pixels mixed with background pixels. The panels in each row

are in a same class and the signatures of these five panel classes

Then, R, can be whitened by applyinB7,r to all the pixels. are very similar. In addition to the panel signatures, two back-
Here,V; andV, are eigenvector and eigenvalue matriceBRpf ground signatures were also generated from the grass field and
respectively. They can be determined by eigendecompositigge line to the left of the panels.
R, = V1V,oVT, whereVy = [vi, ..., vk, ..., vg| With vy, The classification results using OSP and CEM are shown in
being thekth eigenvector an¥'; is a diagonal matrix with the Figs. 2 and 3. CEM provided a better result because it correctly
kth diagonal item\;, being thekth eigenvalue corresponding todetected the five panel classes and successfully eliminated
Vi, i.e,, Vo =diag {A1, ..., Ak, ..., Ak} background noise. The result of OSP contained larger number

As for the orthogonality among the signaturesSn the of background pixels. It was improved after noise whitening,
Gram-Schmidt orthogonaliztion process can be used. Butit Bg shown in Fig. 4, where the improvement was obvious
comes null when signature subspac&Xbih Py is constructed when classifying the panels in rows 1, 4, and 5 in terms of
usingU (UTU)flUT. So in practice the orthogonalization isbetter background signature elimination. This is because the
unnecessatry. OSP makes white-noise assumption, and the noise-whitening
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Fig. 2. Classification result of CEM. (Left to right) P1, P2, P3, P4, P5.

Fig. 3. Classification result of OSP. (Left to right) P1, P2, P3, P4, P5.

Fig. 4. Classification result of OSP after noise whitening (from left to right: P1, P2, P3, P4, P5).

Fig. 5. The classification result of OSP after data whitening. (Left to right) P1, P2, P3, P4, P5.

Fig. 6. Classification result of OSP after data whitening and noise whitening. (Left to right) P1, P2, P3, P4, P5.

process should be able to improve its performance. Fig. 5The images shown in Figs. 2—6 are grayscale images with
shows the result of OSP after data whitening. The improvemehe pixel gray level corresponding to the abundance fractions
was significant and the result was comparable to that of CEM a specific endmember. In order to make a quantitative
in Fig. 2. Fig. 6 presents the result of OSP after data whiteniegmparison, we converted them to binary images by using the
followed by a noise-whitening process. The difference betwe80% of the maximal abundance fraction as cut-off threshold.
Figs. 5 and 6 is inappreciable. This may be because the nolsble | lists the number of correctly detected pixé\g,
correlation was greatly reduced by the data-whitening proceasd false-alarm pixelsVy using the CEM in Fig. 2, the
Using the noise estimate method in Section IlI-B, we founadriginal OSP in Fig. 3, the improved OSP in Fig. 4 with the
that the noise variance in 161 out of 169 bands were closenoise-whitening process only (OSP-M1), the improved OSP in
unity. So in this experiment, the noise-whitening process badeéig. 5 with the data-whitening process only (OSP-M2) and the
on the noise estimation technique in Section 11I-B could namnproved OSP with the data-whitening process followed by the
further improve the performance after the data was whitenednoise-whitening process (OSP-M3). The CEM could detect the
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TALLY OF THE NUMBER OF PIXELS DETECTI;rDAENLEFLLSE-ALARMED USING DIFFERENT METHODS
CEM OSsp OSP-M1 OSP-M2 OSP-M3
N Np Nr Np Ng Np Ng Np Ng Np Ng
P1 3 2 0 1 232 2 0 2 0 2 0
P2 4 3 0 4 2693 4 315 3 0 3 0
P3 4 3 0 4 57 4 5 3 0 3 0
P4 4 3 0 4 2274 | 4 28 3 0 3 0
P5 4 3 0 4 1191 3 4 3 0 3 0
Total | 19 14 17 17 14 14

14 out of 19 panel pixels without false alarm. The result of OSPs]
contained large false-alarm rate, which means the panels could
not be classified correctly as shown in Fig. 3. The OSP-M1
greatly reduced the false-alarm rates while detecting the 17
out of 19 panel pixels. The OSP-M2 significantly improved [7]
the performance of the OSP and provided the same results as
CEM. No further improvement was provided by the OSP-M3
in this experiment. (8]
This experiment demonstrates that either a noise-whitening
process and a data-whitening process can bring about improves]
ment to the performance of OSP. But the improvement from the
noise-whitening process is limited by the accuracy of the noise
estimate. [10]

V. CONCLUSION [11]

The relationship between OSP and CEM is investigated. It
has been shown that when the noise is white with large SNR}2]
the OSP and the CEM perform very closely. In this case, they
can be considered essentially the same filter. Based on this re-
lationship, the performance of OSP can be improved througfi3]
data-whitening and noise-whitening processes. Future research
will focus on a more effective technique to estimate the noisgy
covariance matrix to be used in the noise-whitening process.
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