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Abstract—In this letter, we conduct a comparative study and
investigate the relationship between two well-known techniques
in hyperspectral image detection and classification: orthogonal
subspace projection (OSP) and constrained energy minimization
(CEM). It is shown that they are closely related and essentially
equivalent provided that the noise is white with large SNR. Based
on this relationship, the performance of OSP can be improved via
data-whitening and noise-whitening processes.

Index Terms—Classification, constrained energy minimization
(CEM), detection, hyperspectral imagery, orthogonal subspace
projection (OSP).

I. INTRODUCTION

L INEAR UNMIXING has been widely used for hyperspec-
tral image detection and classification [1]–[9]. It models a

hyperspectral image pixel to be a linear mixture of a set of finite
image endmembers that are assumed in the image data. Then,
the detection and classification is performed by unmixing the
pixel and finding the respective abundance fractions of these
endmembers present in the pixel. Several approaches have been
studied in the past, such as singular value decomposition [2],
subspace projection [9], maximum likelihood (ML) [10], etc.
The relationship between ML and subspace projection was in-
vestigated in [10]–[12] where ML-based linear unmixing was
shown to be equivalent to the orthogonal subspace projection
(OSP)-based linear unmixing, provided that the noise in the
linear mixing model is white Gaussian noise. Unfortunately,
such linear unmixing methods require the complete knowledge
of the image endmembers. On many practical occasions, ob-
taining this prior knowledge may not be realistic. In order to
resolve this issue, a method, referred to as Constrained Energy
Minimization (CEM) was developed in [13] where the only re-
quired knowledge is the desired image endmember rather than
the entire set of image endmembers. The relationship between
CEM and linear unmixing was recently studied in [14]. They
also are investigated as matched filter detector in [15]. Both of
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them have been successfully applied to hyperspectral image de-
tection and classification because of their effectiveness and sim-
plicity. Despite the fact that these two approaches require dif-
ferent levels of knowledge, it is interesting to find that they are
indeed closely related, which is to be explored in this letter.

The OSP is based on the linear mixture model, which says a
hyperspectral pixel vectorof size with spectral bands
can be represented as

(1)

where is a signature matrix
with endmembers, and is the th endmember signature;

is a abundance fraction vector
where theth element represents the abundance fraction of
present in that pixel; is a vector that can be interpreted
as noise term or model error. For the OSP, the signature matrix

in (1) is further divided into two parts, desired signature
of interest and undesired signature matrix. Without loss
of generality, we assume is the first endmember signature

, and is formed by the rest of signatures [ ], i.e.,
. Then, (1) can be rewritten as

(2)

where is the abundance fraction of the desired signature,
and is a abundance fraction vector of the unde-
sired signatures in and . Under the white-noise
assumption, the OSP classifier projector was derived as
[9]

(3)

where is the orthogonal comple-
ment projector that maps data onto a subspace orthogonal to the
undesired signatures in. Here, denotes a identity ma-
trix. According to [10] and [11], when the OSP is implemented
as an abundance estimator a constant term, should
be included to account for estimation accuracy. Then (3) be-
comes

(4)

In some situations we may be only interested in a certain ob-
ject present in an unknown image scene and only its spectral
signature is available. CEM was developed for such case. It de-
signs a finite-impulse response filter in such a manner that the
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filter output energy is minimized subject to a constraint imposed
by desired signature of interest. It does not assume the linear
mixture model or any noise characteristics. Let the filter be spec-
ified by the coefficients . Then, the
filter output for the input is expressed by . The
average output energy is given by

(5)

where is the data sample cor-
relation matrix. Here, denotes sample average over all pixels
and is the total number of pixels in the image. An optimal filter

should be the one that minimizesin (5) subject to the con-
straint . The solution of this constrained problem is
[13]

(6)

Using (6), a CEM-based filter can be designed to detect the de-
sired target while minimizing the filter output energy caused
by unknown signal sources.

The CEM generally outperforms the OSP in terms of elimi-
nating unidentified signal source and suppressing noise, but it
has a poor generalization property since it is very sensitive to
the knowledge of the desired signatureused in (6). This is be-
cause a pixel with slightly different signature from the desired
signature may be considered as undesired or unknown, there-
fore, will be eliminated. One way to mitigate this problem is to
find a good representative ofbased on a large number of sam-
ples. However, in some cases, a large number of samples may
not be available. Another way is to use only part of eigenvalues
and eigenvectors of to calculate as did in [16]. But a
problem associated with it is how to determine the number of
eigenvalues and eigenvectors to be used. In this letter, we further
investigate the relationship between the OSP and CEM, which
may help us to better understand the strengths and weaknesses
of both techniques and under what conditions they can perform
well.

II. RELATIONSHIP BETWEEN OSPAND CEM

Assume the sample mean is removed. Let .
Then (2) becomes

(7)

If , can be represented as [17]

(8)

where is the sample correlation matrix of .
The following matrix inversion lemma [18] is used to calcu-

late in (8).
Lemma: Let and be two positive-definite ma-

trices related by

(9)

where is another positive-definite matrix, and is
an matrix. can be calculated by

(10)

Comparing (8) with (9), , , , and correspond to ,
, , and , respectively. Therefore

(11)

and is defined as

(12)

The term in (12) is a scalar,
so it can be moved to the front of the term next to it. Then
(12) becomes

(13)

Substituting the result in (13) into (12) and (6) and noticing
is a scalar

(14)

If noise is white, in (8) becomes

(15)

where . Using the matrix lemma again, and
assuming that is small enough compared to the undesired
signatures , can be computed as

(16)

Plugging the result of (16) into (14) gives

(17)

Equation (17) implies that the OSP and the CEM are essen-
tially the same filter as long as the noise is white and as long
as its variance is negligible compared to the signals, i.e., SNR
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(a) (b)

Fig. 1. HYDICE image scene used in the experiment. (a) Image scene. (b) Panel arrangement.

is sufficiently high, which is generally true in hyperspectral im-
agery.

III. PERFORMANCEIMPROVEMENT FOROSP

The relationship between OSP and CEM derived in Section II
can be used to improve the performance of OSP. In Section II

is assumed, and white noise with large SNR is re-
quired. In this section, we will show that if these two conditions
are satisfied, the performance of OSP can be improved.

A. Data Whitening

When applying the OSP to classify each class, its corre-
sponding signature in is treated as while making
the rest signatures as . So for each pair of

means is a diagonal matrix. According to
[10] and [11] the abundance estimation using the OSP operator
in (4) can be expressed as

(18)

So can be approximated as

(19)

If is whitened to be the identity matrix and the signatures in
are orthogonal to each other, i.e., , then

is a diagonal matrix.
The whitening of can be achieved by generating a data-

whitening operator as

(20)

Then, can be whitened by applying to all the pixels.
Here, and are eigenvector and eigenvalue matrices of
respectively. They can be determined by eigendecomposition

, where with
being the th eigenvector and is a diagonal matrix with the

th diagonal item being the th eigenvalue corresponding to
, i.e., .
As for the orthogonality among the signatures in, the

Gram–Schmidt orthogonaliztion process can be used. But it be-
comes null when signature subspace ofin is constructed
using . So in practice the orthogonalization is
unnecessary.

B. Noise Whitening

The assumption about the white noise may not be true in prac-
tice. And the noise in the whitened data generally is not white.
A noise-whitening process is needed via noise estimation. The
noise variance can be estimated by exploiting the interband cor-
relation such as residual-based estimation [19] and the intra/in-
terband correlation such as linear regression model-based pre-
diction [20]. A noise covariance matrix can be estimated using
neighborhood difference method [21] and Laplacian operator
[22]. We find that an accurate estimate of band-to-band noise
correlation is generally difficult to achieve. So here we only es-
timate noise variance and construct a diagonal noise covariance
matrix using the method in [20] because of its relative efficiency
and simplicity. After the estimated noise covariance matrix is
constructed as , noise can

be whitened by applying to all the pixels.

IV. EXPERIMENT

The data used in the experiments is the Hyperspectral Dig-
ital Imagery Collection Experiment (HYDICE) data. The image
scene of size 64 64 shown in Fig. 1(a) was collected in Mary-
land in 1995 from the flight altitude of 10 000 ft with approx-
imately 1.5 m GSD. Removing bands with low SNR results in
169 data dimensions. There are 15 panels present in the image
scene, which are arranged in a 53 matrix. Each element in
this matrix is denoted by with row indexed by and column
indexed by . The three panels in the same row were made from
the same material and are of size 33, 2 2, and 1 1 re-
spectively, and they are considered as a single class. The ground
truth map is provided in Fig. 1(b) and shows the precise spatial
locations of panel pixels where the black pixels are referred to
as panel center pixels, and white pixels are considered as panel
pixels mixed with background pixels. The panels in each row
are in a same class and the signatures of these five panel classes
are very similar. In addition to the panel signatures, two back-
ground signatures were also generated from the grass field and
tree line to the left of the panels.

The classification results using OSP and CEM are shown in
Figs. 2 and 3. CEM provided a better result because it correctly
detected the five panel classes and successfully eliminated
background noise. The result of OSP contained larger number
of background pixels. It was improved after noise whitening,
as shown in Fig. 4, where the improvement was obvious
when classifying the panels in rows 1, 4, and 5 in terms of
better background signature elimination. This is because the
OSP makes white-noise assumption, and the noise-whitening



1528 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003

Fig. 2. Classification result of CEM. (Left to right) P1, P2, P3, P4, P5.

Fig. 3. Classification result of OSP. (Left to right) P1, P2, P3, P4, P5.

Fig. 4. Classification result of OSP after noise whitening (from left to right: P1, P2, P3, P4, P5).

Fig. 5. The classification result of OSP after data whitening. (Left to right) P1, P2, P3, P4, P5.

Fig. 6. Classification result of OSP after data whitening and noise whitening. (Left to right) P1, P2, P3, P4, P5.

process should be able to improve its performance. Fig. 5
shows the result of OSP after data whitening. The improvement
was significant and the result was comparable to that of CEM
in Fig. 2. Fig. 6 presents the result of OSP after data whitening
followed by a noise-whitening process. The difference between
Figs. 5 and 6 is inappreciable. This may be because the noise
correlation was greatly reduced by the data-whitening process.
Using the noise estimate method in Section III-B, we found
that the noise variance in 161 out of 169 bands were close to
unity. So in this experiment, the noise-whitening process based
on the noise estimation technique in Section III-B could not
further improve the performance after the data was whitened.

The images shown in Figs. 2–6 are grayscale images with
the pixel gray level corresponding to the abundance fractions
of a specific endmember. In order to make a quantitative
comparison, we converted them to binary images by using the
50% of the maximal abundance fraction as cut-off threshold.
Table I lists the number of correctly detected pixels
and false-alarm pixels using the CEM in Fig. 2, the
original OSP in Fig. 3, the improved OSP in Fig. 4 with the
noise-whitening process only (OSP-M1), the improved OSP in
Fig. 5 with the data-whitening process only (OSP-M2) and the
improved OSP with the data-whitening process followed by the
noise-whitening process (OSP-M3). The CEM could detect the
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TABLE I
TALLY OF THE NUMBER OF PIXELS DETECTED AND FALSE-ALARMED USING DIFFERENTMETHODS

14 out of 19 panel pixels without false alarm. The result of OSP
contained large false-alarm rate, which means the panels could
not be classified correctly as shown in Fig. 3. The OSP-M1
greatly reduced the false-alarm rates while detecting the 17
out of 19 panel pixels. The OSP-M2 significantly improved
the performance of the OSP and provided the same results as
CEM. No further improvement was provided by the OSP-M3
in this experiment.

This experiment demonstrates that either a noise-whitening
process and a data-whitening process can bring about improve-
ment to the performance of OSP. But the improvement from the
noise-whitening process is limited by the accuracy of the noise
estimate.

V. CONCLUSION

The relationship between OSP and CEM is investigated. It
has been shown that when the noise is white with large SNR,
the OSP and the CEM perform very closely. In this case, they
can be considered essentially the same filter. Based on this re-
lationship, the performance of OSP can be improved through
data-whitening and noise-whitening processes. Future research
will focus on a more effective technique to estimate the noise
covariance matrix to be used in the noise-whitening process.
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