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Scaling of Energy Absorption in
Composites to Enhance Survivability

ONR grant N00014-02-1-0622
PI: Z.P. Barant, Northwestern University

Objectives and Approach: The technological objective (of ONR grant N00014-02-1-0622 "Fracture
Scaling in Composites, Foams and Sandwich Structures", P.I. Z.P. Balant) is to develop the scientific basis
for designing efficient, reliable, light, affordable and terrorist-resistant structures and components of large
high-performance ships as well as miniature devices important to naval warfare. The scientific objective is
to determine the laws governing the scaling of quasibrittle or plastic failure important for large-scale
behavior of composites (especially fiber composites) and their assemblies and components (rigid foams,
sandwich structures for large ships, including hulls, decks, bulkheads, masts, protective covers, etc). The
problem of scaling is approached through a combination of analytical and numerical studies with laboratory
experiments.
Impact and Relevance to Navy: Mastery of scale effects, at present insufficient, would allow improved
designs for large ships made mostly of composites, would improve terrorist-proof design and would also
facilitate improvements of miniature devices for warfare.
Technology Transfer, Transitions: The knowledge gained in this project is being applied in a contract
(joint with I. Daniel) with FAA to ensure safety of planned large load-bearing fuselage panel of Cirrus
aircraft, and in a related PI's contract with Boeing Co. A collaboration with Prof. R. Vaziri of University of
British Columbia is yielding further applications in safety evaluations of Boeing aircraft components.

SUMMARY:
For the design and performance of large ships static under dynamic as well as static
loads, the energy absorption capability of the structure is of paramount importance. It
depends on both the strength (or load capacity) and the steepness of post-peak softening
of load versus deflection. For large quasibrittle structures, such as advanced ships built of
fiber-polymer laminates and sandwich shells, knowledge of the scaling of both properties
is of paramount importance of design, which inevitably depends on correct extrapolation
of small-scale material properties to large sizes. Five fundamental problems of the scaling
of strength and energy absorption of fiber composites and sandwich shells have been
studied and significant results have been obtained. Five fundamental problems of the
mechanics of fiber composites and sandwich shells have been studied and, for each of
them, significant new findings have been achieved:

(1) A theoretical material constitutive law for laminates, accounting for cohesive
fracture and damage localization, has been developed in the framework of the microplane
theory.

(2) A novel experimental technique has been designed in order to capture the post-peak
behavior of quasi-brittle composites; in this technique, the tensile softening behavior of a
unidirectional carbon-epoxy laminate is stabilized by means of two layers of a glass-
epoxy laminate capable of an ultimate strain larger than that of the carbon-epoxy.
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(3) Experiments on the size effect on failure loads of sandwich beams with PVC foam
core and skins made of fiber-polymer composite have been conducted.

(4) Analysis of buckling and initial postbuckling behavior of soft-core sandwich
structures, and soft-in-shear composites in general, has been analyzed.

(5) A previously unknown size effect on the type of probability distribution of strength
of quasibrittle structures failing at crack initiation, implying size effect on safety factors
in design, has been discovered and modeled theoretically.

EXTENDED SUMMARIES OF MAIN ACCOMPLISHMENTS:
(1) A complete solution of cohesive fracture and scaling model for sandwich skin

debonding due to wrinkling instability has been obtained. So far, debonding has been
analyzed by means of strength criteria or (rarely) by linear elastic fracture mechanics of
sharp cracks, but this classical approach misses the size effect, the presence has been
proven by PI's new experiments. Besides, the existing wrinkling formulas give only the
elastic critical stress, but this stress is strongly modified by fracture. Also, mutually
conflicting formulas, of unclear distinction among them, exist. These three problems
were overcome by (i) coupling stability analysis with imperfections with cohesive
fracture mechanics, characterized by finite fracture process zone in the interface, having
both strength and energy limits; by (ii) distinguishing between long-wave and short-wave
wrinkling; and by (iii) using a new asymptotic matching approach to "interpolate"
between the last two. The result is a general wrinkling formula, of far broader
applicability than the existing ones, which are included as special cases. The formula was
verified by extensive geometrically nonlinear finite element fracture simulations.

(2) The first comprehensive material model for deformation and failure of fiber-
polymer laminates has been developed, using the PI's microplane modeling approach in
which the constitutive properties are expressed in terms of stress and strain vectors acting
of a plane of generic orientation within the material ('microplane'), rather than in terms
of stress and strain tensors and their invariants. In the existing formulations, separate
disconnected models exist for elastic moduli as well as failure envelopes (such as Tsai-
Wu), and nothing exists for fracture behavior and postpeak energy absorption, which are,
therefore, ignored in design. To overcome this limitation, a nonlocal microplane
constitutive model with fiber-generated orthotropy, based on softening stress-strain
boundaries for planes of various orientations and on eigenmodes of stiffness matrix
distinguishing longitudinal and transverse softening, has been developed. The model
covers pre-peak hardening, strength envelopes and post-peak softening. The
computational algorithm and the material identification procedure have been formulated,
and theexperimental stress-strain curves, failure envelopes, fracture data have been
successfully matched. Since the existing experimental procedure could not capture, due
to postpeak instability, the post-peak softening, a new type of test-the 'stabilized
lamellar test' has been developed, in which the stress in softening of inner layer of
lamellar specimens if inferred from different total load and the measured force in the
stabilizing layer.

(3) The problem of stability of structures very weak in shear, such as the naval-type
foam-laminate sandwich plates, has been solved. Various competing formulas have been
subject to polemics for about 50 years. In small-strain situation, in which constant tangent
elastic moduli ought to apply, they gave very different results for such structures. It was



found that while the critical load occurs at small strain, the tangent elastic moduli can be
assumed to be constant for only one type of finite strain tensor, and that the type depends
on the structure form and its loading. The consequence is that some known critical load
equations, including the classical ones due to Biot as well as very recent ones, must be
revised. A further result is that sandwich buckling is imperfection sensitive in certain
important cases.

(4) The basics of the problem size effect in failure of naval type laminate-foam
sandwich shells have been solved. So far, the size effect in sandwich strength has been
unkonwn and ignored, yet the present research showed that it is significant for large
structures such as navy ships. The existence of strong size effect was, for the first time,
demonstrated by new types of scaled sandwich beam failure experiments, for both flexure
and compression. Also, the size effect for sandwich beams was, for the first time,
explained and predicted theoretically, by cohesive fracture mechanics of delamination
fractures and cross-foam fractures. As a practical design tool, simple size effect
equations for design have been developed.

(5) A previously unknown size effect on the type of probability distribution of strength
of quasibrittle structures failing at crack initiation has been discovered and modeled
theoretically. So far, the safety factors in design (about 1.5 to 2.0 for ships and aircraft)
have been considered as empirical, and size independent. This assumption, implicit in all
design so far, has been shown to be incorrect for quasibrittle failures, typical of
laminates and sandwich structures. It has been found that the probability distribution of
strength must be considered to be transitional between the Gaussian distribution (valid at
small sizes) and Weibull distribution (valid at large sizes). These distributions have very
different tails. A transitional strength distribution has been derived from nano-mechanics,
based on the stress-sensitivity of the activations energy bariers of interatomic potential
and on the Maxwell-Boltzmann distribution of atomic energies.

1. General Model for Sandwich Skin Delamination Due to Skin Wrinkling
Instability with Imperfection and Cohesive Interface Fracture

A major question in extrapolating small-scale laboratory tests to full-scale sandwich
structures is the size effect. Delamination of the skin (or facesheet) is often triggered by
wrinkling instability, which has generally been considered to be free of size effect. The
absence of size effect has been inferred from the fact that the critical stress for buckling
generally exhibits no size effect. However, this inference is valid only for the symmetry-
breaking bifurcation of equilibrium path in perfect structures. Actual sandwich structures
are always imperfect at least to some degree, and often suffer dents from impacts which
act as severe imperfections. Buckling of imperfect quasibrittle structures generally leads
to snapthrough instability which typically exhibits size effect on the nominal strength.

Delamination in sandwiches and laminate composites has traditionally been
analyzed by strength theory (either elasto-plasticity or elasticity with strength limit). This
classical theory implies no size effect. However, according recent experiments by Ba~ant
et al. [1] and Boyden et al. [2], the size effect in typical sandwich plates is transitional
between the strength theory and linear elastic fracture mechanics. Therefore, the structure
is quasibrittle, which means that the size of the fracture process zone (FPZ) cannot be



considered to be negligible to the cross section dimension of normal-size sandwich
structures. So, delamination fracture is modeled by a cohesive crack model, rather than
LEFM or strength theory.

The present study relies on numerical simulations using geometrically nonlinear
finite element analysis as well as the softening foundation model, which is an adaptation
of Winkler elastic foundation. Dimensionless variables are used to cover the entire
practical range. Both shortwave and longwave wrinkling are considered.

Softening foundation model

The analysis of delamination in sandwich structures subjected to pure bending, as shown
in Figure la, can be simplified by modeling the skin as an axially compressed beam
supported by a softening foundation consisting of independent continuously distributed
nonlinear springs Figure lb. For the mathematically analogous problem of a foundation
with bilinear elastic-plastic hardening response, the solution is available [3]. Here the
problem is solved for bilinear elastic-softening response, in which the softening
represents gradual decohesion due to a cohesive crack under the beam. The differential
equation of the problem reads

d 4W + d2 W d W d 
(2W)

F --- 2 -- dX 2

where E, is the Young's modulus of the skin, I, = t3 /12 is the moment of inertia (per unit
width) of the cross section of the skin of thickness t, P is the axial force in the beam (per
unit width), X in the coordinate in the axial direction and W(X) is the deflection (lateral
displacement) of the skin, additional to the initial deflection WO.
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Figure 1: (a) The geometry of a typical sandwich beam subjected to pure bending. (b)
The beam subjected to an axial compression force P supported by a softening foundation.
(c) The force-displacement relation of the softening foundation. (d) The deflection of the
top skin. (e) Equilibrated stress acting on the foam. (f) Equivalent height for shortwave
and (g) longwave wrinkling. (h) The finite element mesh.

Furthermore, F is the distributed lateral force (traction), defined as

F = KW oWWom/( -WO) if W <W 0  (2)

F KWoe_( if W > W0

where K is the foundation modulus (i.e., the spring stiffness of the foundation per unit
length), w0 is the displacement at which the tensile strength f, is reached (Figure Ic).

GF = fA(Wf-Wo/2) (3)
GF represents the area under the stress-displacement curve in Figure 1 c. The distributed
spring stiffness K (per unit length of the beam) may be interpreted as



KE = heq (4)

Where E, is Young's modulus of the sandwich core, and heqrepresents the equivalent (or

effective) depth of the foundation.

For shortwave wrinkling the wave length Lcr << h (h = core thickness). In that
case the core may be regarded as an infinite half space. The reason is that the alternating
tractions applied on the core by the periodically wrinkled skin (Figure le) are self-
equilibrated over a segment of length 2 Lr where L,, is the half-wavelength of the skin
buckling (Figure I f). Therefore, according to the Saint-Vernant principle, the stresses
caused by periodic wrinkling must exponentially decay to nearly zero over a distant form
the skin roughly equal to 2 L,,. Therefore, it must be possible to write

heqo = KLcr (5)

where ic is some constant and subscript 0 refers to the limit case Lcr / h - 0.
This leads to an expression for the critical axial compression force in the skin at
bifurcation (see BaMant and Grassl [4] for details) as

.2 2,2 /3

Pcr0 =2 KEJ,=k-!, (E c E,)E11t where k, =(2/3K )2r2T3 (6)

Note that this expression has the same form as derived in Hoff and Mautner [5], if
Kc = af I+Tv, with a = 0.43. Here, however, a = 0.53 is used, as determined from a single

finite element analysis.
Consider now the case of longwave wrinkling (Lr >> h), shown in Figure 1 g, and

that the sandwich beam is subjected to bending moment only (i.e. with no axial force).
Then the opposite skin is under tension and may be approximated as rigid base, with no
deflection. The transverse compressive stress in the core is now almost uniform, and

heq, = h (7)

i.e., the foundation stiffness K=E' /heq is constant (independent of the critical

wavelength). The critical compressive force in the skin at bifurcation for periodic skin
buckling (without delamination) is

PIr = 2JEJ= NE'Et3 /3h (8)
where subscript -o refers to the limit case Lr h -> o, for which the solution is exact. The
same expression was reported in Heath [6].

The transition between shortwave and longwave wrinkling is smoothly distributed
over a certain dimensionless variable

6 =heq0 Ih (9)

The shortwave bound heq = heqo must be tangentially approached for 6 -> 0, and the

longwave bound heq = heq must be an asymptote for 6- - oo.

An expression that meets all the asymptotic conditions is
heqo /heq = 4+ e-(,ý+ai42+a2') (10)

where a, = 0.24 and a2 = 0.36, as obtained by fitting to linear elastic finite element results
with the Marquardt-Levenberg algorithm for nonlinear least-squares optimization.



Formulation in Dimensionless Variables
The solution may generally be expressed as a relation among seven dimensional
variables: EsI,,K,P, W0 ,W°,Wf,x which involve 2 independent dimensions, force and

length. According to Vashy-Buckingham theorem of dimensional analysis, the number of
dimensionless variables governing the problem is 7 - 2 = 5. They may be chosen the
same as in a previous study of plastic bilinearly hardening foundation [3]:

x:X(Els/ K-'4, A2= IP(KEsls)- 2 , w=W/Wo , w:=W0 /Wo, wf=Wf/WO (11)

Substituting these equations and Eq. (2) in Eq. (1), yields the dimensionless differential
equation:

d4 w d2 w dw
dx+ 22-/--W+w =-2A d-2-T if w<l (12)

dX4 dX2
d 4 w 2 2 d 2  ew-(wI-i -2 dw
dx4 W dx2  - dx2 if w>1 (13)

where w is the dimensionless deflection. For a perfect beam (wo = 0 ), the first eigenmode
of buckling at bifurcation is determined from Eq. (12) as w = sin x, and the corresponding
load at bifurcation results in 2 = 1. A general imperfection of skin may be expressed as a
combination of all eigenmodes of buckling. The first eigenmode may be expected to have
dominant influence. Therefore, the imperfection 5 of the skin is chosen to be proportional
to the aforementioned displacement profile w = sin x of a perfect skin at first bifurcation,
i.e. w° = 5sinx. The solution of () for the elastic case (Wmax < 1), with the aforementioned
imperfection, is

W = sin x (14)

The solution will be used for deriving the size effect law.
The dimensionless variables x, w, w0 and 2 are size independent. However, ensuring

constant fracture energy (in the sense of the crack band model) requires that the
dimensionless parameter wf be considered size dependent, as obtained by inserting (3)

into (11);
= GFEC +1 (15)

f heq 2

Parameters GF, E, and f, are material properties independent of the structure size, while
heq is proportional to the structure size. Thus, the size dependence of wf can be

characterized as
1 1

Wj =-+- (16)S2

where
4~heq/lo, 1o =ECG/f 2  (17)

4 is dimensionless and 10 is known as Irwin's characteristic material length,
approximately characterizing the fracture process zone length. To simplify analysis, only
one half of the beam is modeled and symmetric deformation is assumed.

Geometrically nonlinear finite element analysis



To determine parameter a and to validate the simplified modeling of delamination by the
softening foundation model, a geometrically nonlinear finite element program (FEAP) is
used. A sandwich beam, depicted in Figure la, is considered and is modeled using the
finite element mesh in Figure 1 h. The skins are represented by beam elements taking into
account large displacements and large rotations. For the core, plane stress finite elements
based on a linearized small displacement formulation is used. The core is treated as
isotropic, and for the skin only the longitudinal elastic modulus E, needs to be considered
since the transverse and shear moduli of laminate skin are immaterial for bending and
axial deformation.

The beam is considered to be subjected to a uniform bending moment, M.
However, as long as the core thickness h is large enough for the stresses from wrinkling
to decay to nearly zero over the core thickness, the only loading that matters is the axial
force. Whether this force is produced by moment alone, or a combination of bending
moment and axial fore, is immaterial.

An elastic stress-strain relation is used for all the elements of the core except a
narrow band of elements under the skin (marked gray in Figure lh). It is known that the
delamination fracture occurs within the core very near the interface with the skin, but not
within the interface. Therefore, perfect bond between the skins and the core is enforced,
Transverse softening of the aforementioned band, which can be regarded as distributed
microcracking, simulates delamination. In the softening band, the stress-strain law is
elastic in the pre-peak, and the post-peak response follows the isotropic damage model,
which is defined as

= ( -w)Dc:e (18)
Here a- and e are the stress and strain tensors in the core, co is the damage variable, and
D, is the isotropic elastic stiffness tensor of the core, which is based on the Young's

modulus E, and the Poisson's ratio v,. The damage law is chosen so that it results in an
exponential stress-strain curve in uniaxial tension. The inelastic strains determined by the
isotropic damage model are fully reversible, i.e. the secant stiffness points toward the
origin (this reversibility would, of course, be unrealistic if crack unloading were not
nonexistent in the present simulations).
As before, only half of the beam is modeled. The loading moment M is applied at point
D (Figure lh) and is assumed to be transferred by a rigid loading platen into the upper
and lower skins. The structure is restrained in longitudinal direction at point A. The
loading is controlled by prescribing the displacement of point B. The same initial
displacement, i.e. w° = 8sinx, is prescribed for the upper skin. The imperfection amplitude
at the middle of the beam at point A is slightly increased in the same way as for the
softening foundation model, to control the place where the delamination begins.

Results and comparison of softening foundation to finite elements
The effect of the structure size on the relation between the load parameter A and the mid-
point displacement w, = w(L / 2) is shown, for three imperfection amplitudes 8 = 0.1, 1, 2, in
Figure 2a-c. As one can see, the results of the softening foundation model are in
reasonable approximate agreement with the more accurate finite element results. The
comparison shows that the size has a strong effect on the post-peak part of the load-
displacement relation. The larger the size, the less energy is dissipated in relation to the



energy dissipated by delaminating the entire skin. Furthermore, a closer examination of
the size effect on the evolution of the diagram of load versus blister length (which is the
length in the middle potion of the beam in which w >1) reveals a size effect on the
nominal strength, see Figure 2d-f. The larger the size, the smaller is Anax. Furthermore,
note that the size effect intensity depends strongly on the imperfection amplitude. A law
for this size effect is proposed next.

Size effect law for imperfection sensitive wrinkling
The size effect on the dimensionless nominal strength, 2N = 2max, shown in Figure 2g, has
a form similar to the size effect law for crack initiation in quasibrittle structures proposed
by BaMant [7,8]. This law, however, is not directly applicable since imperfections are
seen in Figure 2g to influence the size effect. Therefore, a generalized law of the form

2N(5,•=)= A ({i1 + ()l k(.)= c-d (19)

is proposed here, with constants a, b, c, d and parameters 2A and k depending on the
imperfection amplitude 8. For large sizes (ý - oc), the nominal strength is decided by

crack initiation (w = 1), and in that case Eq. (19) leads to
AN (5, o)=2 = 1/(1 + 6) (20)

For small sizes (-- 0 ), the nominal strength in (19) turns into

AN (9,0) = A.t (9)[1 + k-@-•) (21)

Parameters a, b, c, d in Eq. (19) are determined as optimal fits of numerical results using
the Marquardt-Levenberg algorithm for nonlinear least-squares optimization. First the
parameters c and d are determined from the fit of the results for the smallest size
(-= 0.001) in Figure 2g, for varying imperfections. Then the parameters a and bin Eq.
(19) are fitted fore the largest imperfection (. = 6) and varying size. The optimum values
are a=9.94, b=1.2, c=6.82, d=1.21. The size effect law in Eq. (19) using these
parameters is compared to the results of the softening foundation model in Figure 2g. The
approximation is seen to be satisfactory.
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S= 0.1, (e) 3 = 1, (f) 6 = 4. (g) Comparison of the size effect law with the nominal
strength-size relations obtained with the softening foundation model for different
imperfections.

Conclusions
1. In view of recent experiments revealing a size effect transitional between LEFM

and strength theory, the delamination fracture of laminate-foam sandwich structures must
be treated as a cohesive crack with a softening stress-separation relation characterized by
both fracture energy and tensile strength. In contrast to LEFM, no pre-existing interface
flaw needs to be considered.

2. The skin (or facesheet) can be treated as a beam on elastic foundation, provided
that the equivalent (or effective) core depth heq for which the hypothesis of uniform

transverse stress gives the correct foundation stiffness is considered to depend on the
critical wavelength Lcr of skin wrinkles; heq = core thickness h for the asymptotic case of

longwave wrinkling (Lcr,//h->), while (because of St. Venant principle) heq is

proportional to Lcr for the asymptotic case of shortwave wrinkling ( Lcr / h -- 0 ).

3. A properly formulated softening foundation model can give good agreement with
geometrically nonlinear finite element analysis of delamination fracture triggered by
wrinkling.

4. Although the nominal strength of sandwich structures failing by wrinkling-
induced delamination fracture is size independent when there is no imperfection, it
becomes strongly size dependent with increasing imperfection.

5. Introduction of proper dimensionless variables makes it possible to cover with
numerical simulations the entire practical range, and fitting the dimensionless numerical
results for cohesive delamination fracture with a formula for correct shortwave and
longwave asymptotics allows constructing an approximate size effect law for nominal
strength of arbitrarily imperfect sandwich beams subjected to uniform bending moment.

6. There is also a strong size on postpeak energy absorption by a sandwich
structure, both in presence and absence of imperfections. This is important for impact and
blast resistance.

2. Comprehensive Microplane Model for Non-Linear Behavior, Strength
Envelopes, Fracture and Postpeak Energy Absorption of Laminates

A novel microplane model has been developed to represent the energy absorption in
postpeak softening behavior of fiber composites envisaged for use in proposed large Navy ships.
This model is capable of capturing not only prepeak but also postpeak nonlinearity, particularly
the material softening due to cracking damage of laminates, which, in turn, leads to the possibility
of a comprehensive model for predicting the size effect in static failures and the energy
absorption capability under dynamic loading, such as impact, blast or shock.

The microplane model is a modification of the classical Taylor's idea conceived by Balant
and already developed for several other materials (concrete, rock, soil, polymeric foam,
polycrystalline metals). In this model, the use of tensors and their invariants is bypassed by
formulating the constitutive law as a relation between the stress and strain vectors on generic
planes in the material, called the microplanes. The responses from the microplanes of all possible
orientations are then combined according to a variational principle to obtain the response of the



macroscopic continuum. In the case of softening damage, this must be done under a kinematic
(rather than static) constraint, in which it is assumed that the strain vectors on all the microplanes
are the projections of the macroscopic strain tensor.

Compared to typical isotropic materials, a great modeling difficulty for composites is
presented by their anisotropy. In the present study, the anisotropic microplane model in a novel
way which exploits the spectral decomposition of the 6 x 6 stiffness matrix E and reads:

6

E = Z• IE, (1)
1=1

where X, are the eigenvalues of the stiffness matrix and E, define a set of orthogonal matrices
constructed from the eigenvectors of E, respectively. In the isotropic case, the spectral
decomposition exactly coincides with the volumetric-deviatoric decomposition already used in
the formulation of the microplane model for isotropic materials.

The matrices E, decompose the strain tensor (represented in Voigt's notation) into
orthogonal strain modes el = E1 c. Each strain mode can then be projected into a generic
microplane to define a set of orthogonal measures of normal and shear strains: ep, = PIE, where P!
= PEI, P is a linear operator transforming the usual continuum strains (&j) into microplane strains
(EN. eM, EL), and 6-z = [ENIEM! EL]T.

In the elastic regime the microplane stress vectors rp, = [crN r LJ]T can be computed as Or',

X , ep. In the inelastic regime, instead, the normal (cNI) and shear (crr/=[N•NM+O,/:]1/2 ) stress
components are restricted by the stain-softening boundaries:

-NbI(81)<~ONI </ a (O' ,) )(E, 0rT( ,) OrNbI (61,E') (2)

The macroscopic stress tensor can be then obtained by the Principle of Virtual Work, which
reads:

a JPT ',IdF (3)

The present formulation has been applied to the simulation of the behavior of unidirectional
laminates. Figure 3 shows the comparison between experimental (red points) and numerical
(black line) stress-strain curves of a unidirectional carbon-epoxy laminate under tension (fiber
direction on top left and transverse direction on top right), compression (bottom left), and shear
(bottom right). The agreement up to the peak is very good. In the post-peak regime, no
experimental results exist and further study will be required. In particular, a new experimental
technique able to capture the post-peak behavior of laminates is needed. It will be discussed in the
next section.
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Figure 3: Microplane model simulation of a unidirectional laminate under uniaxial loading

Figure 4 shows the comparison between the experimental (blue points) and numerical (red
line) failure envelopes obtained by applying simultaneously shear and normal stress in the
direction of the fiber (left) or shear and normal stress transversely to the fiber (right). In the figure
the very well known Tzai-Wu criterion also appears for comparison (green line).
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Figure 4: Microplane model simulation of biaxial failure envelope of a unidirectional laminate.

3. Size Effect in Failure of Sandwich Structures
Experiments have been conducted on sandwich beams of different sizes, consisting of fiber

composite skins and a vinyl foam core, in order to investigate in detail the scaling of failure loads.
The cores of all sandwich beams were made of closed cell polyvinylchloride (PVC) foam with
mass density 100 kg/cm 3. The properties of the foam were as follows: tensile elastic modulus 105
MPa, tensile strength 3.1 MPa, compressive elastic modulus 125 MPa, compressive strength 1.7
MPa, elastic shear modulus 40 MPa, and shear strength 1.4 MPa.



Three series of tests were carried out, named series I, II and III. The beams manufactured
were geometrically scaled in two dimensions, maintaining the same width b = 25.4 mm. The
thickness t of the skins too was scaled in proportion to the core depth c. The scaling ratios were
1:4:16 for series I and 1:3:9 for series II and III. For series III, the beams had no notches. For
series I and II, notches were cut in the foam as close as possible to the top or bottom skin,
respectively, but without cutting into the skin. The notches in series I and II were symmetric, cut
from both ends of the beam. The distance a of each notch tip from the support axis was equal to
core depth c. The notches were made in order to clarify the effect of large pre-existing cracks or
damage zones, and to force the fracture to develop at a certain pre-determined location,
homologous (geometrically similar) for all the sizes. The notches also helped avoiding a
conceivable Weibull-type statistical contribution to the size effect. All the beams were subjected
to three-point bending.

The skins of the test series I consisted of woven glass fiber-epoxy composite. Figure 8 (left)
shows the typical records of the load-deflection curves for all three sizes. It is obvious that, the
larger the specimen, the more brittle its response. The measured values of nominal strength

o"N = P /(bD) are plotted in Figure 8 (right). The figure shows an anomalous size effect

characterized by a positive curvature. This anomaly could be attributed to the compression in the
top skin and to the interaction of mode II fracture propagation with skin wrinkling instability in
compression.

Therefore, a second test series (series II) was carried out, with notches near the bottom skin,
which is in tension.
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Figure 5: Load-deflection curves for series I specimen (on the left) and nominal strength (on the right).
The solid curve on the right represents the prediction by modified Ba.ant's size effect law (SEL).

The skins for this series were made of a carbon-epoxy laminate. Without exception, all the
specimens failed by diagonal tensile fractures which propagated through the foam from the notch
tips (Figure 6 top). Also for this test series the largest specimens exhibited a more brittle
behavior. Figure 6 shows the load-deflection curves (bottom left) and the values of nominal
strength (bottom right).
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Figure 6: Typical failure for the specimens of series II (top). Load-deflection curves for series II
specimens (bottom left) and nominal strength (bottom right). The solid curve represents Ba.ant's SEL.

The beams of test series III were the same as in series II, except for the foam block
dimensions and the absence of notches. In the small beams, no diagonal shear fracture was
observed; rather, the failure was caused by compressive fracture of the upper skin. This mode of
failure was also observed in some medium and large beams, but in most of these beams the
interface crack branched into a diagonal tensile crack, which crossed the foam core.
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Figure 7: Load-deflection curves for series III specimen (on the left) and nominal strength (on the
right).



A significant size effect was found again, but it was not as strong as in notched beams. The
load-deflection curves for the beams of all three sizes are shown in Figure 7 (left), and the values
of nominal strength are plotted in Figure 7 (right).

The experimental results emphasize a significant size effect, which cannot be attributed to
the Weibull-type statistical size effect since, in the notched as well as unnotched beams tested, the
crack always propagated from the same location and not from a random one. Besides, the mean
nominal strength depicted in Figure 7 (right) shows a deviation from linear elastic fracture
mechanics (LEFM), which makes the use of LEFM for calculating load capacity unrealistic.

These results show, on one hand, that the common engineering practice of predicting the
load capacity of sandwich structures based upon the concept of material strength or plastic limit
analysis is incorrect and needs to be revised, and on the other hand, that failure theories with a
characteristic length, such as fracture mechanics based on the cohesive crack model, crack band
model or nonlocal damage mechanics, must be applied. This is particularly important for large
naval structures of sandwich construction.

Size Effect on Compressive Strength of Laminate-Foam Sandwich Plates

Prismatic sandwich specimens of various sizes, geometrically scaled in the ratio 1 : 2 : 4 : 8, are
subjected to eccentric axial compression and tested to failure. The sandwich core consists of a
closed-cell PVC foam, and the facesheets are woven glass-epoxy laminates, scaled by increasing
the number of plies. The test results reveal a size effect on the mean nominal strength, which is
strong enough for requiring consideration in design. The size effect observed is fitted with the
size effect law of the energetic (deterministic) size effect theory. However, because of inevitable
scatter and limited testing range, the precise form of the energetic size effect law to describe the
test results is not unambiguous. The Weibull-type statistical size effect on the mean strength is
ruled out because the specimens had small notches which caused the failure to occur in only one
place in the specimen, and also because the observed failure mode was kink band propagation,
previously shown to cause energetic size effect. Various fallacies in previous applications of
Weibull theory to composites are also pointed out.

New Experiments to Characterize Post-Peak Softening in Laminates

Preliminary tensile failure experiments have been carried out to supplement previous indirect
test evidence by directly calibrating the diverse parameters of the microplane model, in particular
the post-peak tensile softening region. A new testing method, called the lamellar test, has been
devised to stabilize the behavior of a laminate in postpeak softening (see Figure 8 for a sketch of
the experiment). The idea is to bond two stiff plates with very high strain at elastic limit to both
sides of a tensile specimen to be tested, then record the load-deflection response of this combined
specimen, and to deduce from it the stress in the laminate as the difference between the measured
overall stress and the stress carried by the bonded stabilizing plates. With a different purpose, test
data relevant to this idea have already been obtained for cross-ply laminates, for which the
stabilizing plates consisted of very stiff outer 0' layers. However, tests of the softening behavior
of a laminate loaded in the fiber direction were never carried out before.
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Figure 8 Lamellar test for postpeak behavior and load-deflection curves from which the softening law
can be extracted

The preliminary tests carried out on carbon-epoxy specimens stabilized by means of glass-epoxy
plates were not able to capture the softening region because the specimens experienced a sudden
dynamic failure immediately after reaching the peak stress in the carbon-epoxy layer (see Figure
9). This problem was caused by insufficient stiffness of the available testing machine, which was
not large enough compared to the stiffness of the specimen. Currently, several types of alloys are
considered as possible candidates to reinforce the outer glass-epoxy plates in order to stabilize the
specimen behavior in the softening regime. In that way it should be possible to measure the
complete softening curve in such tests, and obtain from it both the material fracture energy and
the material characteristic length 1.

Figure 9: One of the lamellar specimens after the test

4. Shear Buckling and Initial Postbuckling of Fiber Composites and Sandwich
Structures

The critical load of columns deflecting with significant shear deformations like sandwich
columns and composite columns is not unambiguous. Two very different theories are well
known---Engesser's theory (Engesser 1889, 1889a, 1891), in which the shear deformation is
considered to be caused by the shear force in a cross section normal to the deflection curve, and
Haringx's theory (Haringx 1942, 1948), in which the shear deformation is considered to be caused
by the shear force in a cross section that was normal to the beam axis in the original un-deflected
configuration.

In the research conducted under this grant in the preceding year, it was proven that if the
initial strains and stresses are so small that all the material remains in the linear range, a constant
tangent (or incremental) shear modulus G for the case of sandwich structures can be used only
with the Engesser-type theory, and that the Haringx-type theory is usable only if G of the core is



considered to be a linear function of the axial stress in the skins. In addition, it was shown that
finite element predictions of commercial softwares are in agreement with the critical load given
by the Engesser-type formula. The reason for this agreement is that the updating algorithm
assumes the material moduli tensor as constant with respect to the Lagrangian coordinates during
each loading step.

In the last year of study under this grant, the consequences of this previous research were
explored for the case of general homogenized orthotropic structures very soft in shear, including
layered structures that are loaded tranversely to the direction of stiffening plates, and structures
loaded in both directions of orthotropy. In addition, the initial postbuckling behavior of sandwich
and fiber composite structures has been explored to understand the effect of imperfection
sensitivity, which causes the structures to reach a maximum during loading and then to soften. It
has been discovered that structures weak in shear for certain combination of material stiffnesses
may show this type of behavior, which has to be taken into account in design.

Soft-in-Shear Fiber Composites and Layered Bodies Under Initial Biaxial Stress

First, let us recall the class of Doyle-Ericksen finite strain tensors E = (Ur - 1)/m (where m

= real parameter, I = unit tensor, and U = right-stretch tensor), which include virtually all the
strain measures ever used in the literature. The stability criteria expressed in terms of any of these
strain measures are mutually equivalent if the tangential moduli associated with different m-
values satisfy Ba~ant's (1971) relation:

Co(m) = C.k. 1+(2__ m)(SikSj. + + Si1 
8 jk +S9,S1k) (4)

where subscripts refer to Cartesian coordinates xi, i = 1, 2, 3, Cuk, = tangential moduli associated
with Green's Lagrangian strain (m = 2), and Sy = current stress (Cauchy stress).

Let us now consider the homogenized continuum in Figure 10 to deform in the plane (xi, x3)
and to be initially subjected to finite initial normal stresses S1

0 and S3° in the directions parallel
and normal to the plates or fibers (see Figure 10). A unit width in the x2 direction is considered.
The incremental displacements are given by u, and u3, while r = 0 -V/ is the shear angle where 0
= W = slope of the deflection curve. Clearly, a sandwich column is a special extreme case for
initial stresses S1

0 = 0 and S30 = -P/h < 0. The incremental second order work per unit volume is:

62W I-GY +_-L[Sb(h AB,,cos 9)+S'h(b -AC'cos v)]
2 bh 3~ 72 S

P G y 2 2 1,3 (5)

The above expression must be equal to the second order work of the homogenized
continuum (see the references for details):

152 V2+ M8-2 '1)+1 SU SOu2=+$13)+(1u33+ 3 1,3) 6
62W Gy2SOm 2 (6)

This equivalence yields:

_2(SO /SO)-2
M (s /)+1 (7)

It follows that, for small-strain incremental continuum analysis of an initially stressed
homogenized layered or fiber-reinforced medium very soft in shear, a constant small-strain shear



modulus G can be used if, and only if, the formulation corresponding to the finite strain tensor of
parameter m given by Eq. (7) is used. To be able to apply the standard finite element algorithm,
which is associated with m=2 and is used in all the commercial finite element programs at
present, the small-strain shear modulus G must be transformed, at each stage of loading,
according to Eq. (4).
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Figure 10: Fiber reinforced material biaxially loaded: a) uni-directional fiber reinforced material; b)
geometry of a representative volume element; c) Shear deformation for uni-directional reinforcement; and d)
shear deformation for orthogonal reinforcement.

Initial Postbuckling of Sandwich Structures

The initial postbuckling characteristics of sandwich structures have been explored in order to
understand the effect of imperfection sensitivity. To this end a homogenized sandwich column
has been analyzed in finite strain under the following kinematic assumption for the displacement
field:

U(X,°Z)=U(X)_Z W(X,Z) =Wo(X)+Z-dU° (8)

Where X, Z denote Lagrangian coordinates, U, W are the displacements of a 2D continuum in
directions X and Z respectively, T is the angle of rotation of the cross section, and subscript 0
refers to quantity describing the displacement of the center line of the beam. After substituting the
above expressions into the Doyle-Ericksen tensor, the potential energy can be written as:

j X-X [x -zz +zi ---d X+Pr QdX (9)

where Z,•') denotes the stress measure conjugate to the strain measure for the given value of m.

The governing equations of the initial postbuckling problem have been derived by applying
Koiter's approach, which is based on introducing a perturbation - in the expression of the
governing variables of Eq. (9) and imposing the condition of vanishing first variation of the
potential energy. After a rather long derivation, one gets a complex formula to describe the
imperfection sensitivity, which is seen to depend on the material stiffnesses, parameter m and the



boundary conditions. The results for a beam with aspect ratio L/h=5 are plotted in Figure 11 (on
the left). The figure shows that for certain values of the parameters the imperfection sensitivity
appears (white region in the figure), causing the structure to reach a maximum load less than the
bifurcation load and then soften.
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Figure 11: Region of imperfection sensitivity for a column with L/h=5 (left) and results of a finite

element analysis for a column with Uh=5, E,/E==O.045, GXIE =O. 16 (right).

In order to clarify the implications for FE analysis of sandwich structures, a column of aspect
ratio L/h=5, E,/E =O.045 and GJIExx=O.16 has been analyzed. The result of the analysis is shown
in Figure 11 (on the right). The analysis provides a maximum load that is extremely close to the
prediction of the formulas, confirming the validity of the analytical approach.

5. Revision of structural reliability concepts for quasibrittle structures taking
into account size dependence of pdf

The greatest error in design is probably caused by the safety factors, which are still largely
empirical, and any improvement is bound to bring about greater benefits than any improvements
in deterministic computational modeling. Investigations during the last year revelaed the need for
a major revision of reliability concepts used in the of quasibrittle heterogeneous structures, such
as large load-bearing fiber-composite parts for ships or aircraft.

The main phenomenon, previously unappreciated, is that the not only the mean nominal strength
of structure but also its coefficient of variation and especially the far-out pdf tail depends on
structure size, and that even the type of probability distribution depends on structure size. While
ductile failure occurs simultaneously along the failure surface and is characterized by absence of
size effect and Gaussian distribution of structural strength, quasibrittle failures propagates,
exhibits a strong size effect and follows at large sizes extreme value statistics of weakest-link
model, which leads to Weibull distribution of structural strength (provided that failure occurs at
macro-crack initiation from cracking zone).



The mechanical-statistical assessment of quasibrittle failure risk and of the size effect on safety
factors must be based on the material nano-scale. In the design of ships as well as other
structures, one must ensure an extremely low failure probability such as 10-6. How to do that has
been adequately understood only for the limiting cases of brittle or ductile structures. Developed
has been a theory to do that for the transitional class of quasibrittle structures, having brittle
constituents and characterized by nonnegligible size of material inhomogeneities. It was shown
that the probability distribution of strength of the representative volume element (RVE) of
material is governed by the Maxwell-Boltzmann distribution of atomic energies and the stress
dependence of activation energy barriers. This distribution is statistically modelled by a hierarchy
of series and parallel couplings. It consists of a broad Gaussian core having a grafted far-out
power-law tail with zero threshold and amplitude depending on temperature and load duration.
With increasing structure size, the Gaussian core shrinks and Weibull tail expands according to
the weakest-link model for a finite chain of RVEs. The model captures experimentally observed
deviations of the strength distribution from Weibull distribution, and of the mean strength scaling
law from a power law. These deviations can be exploited for verification and calibration. The
proposed theory will increase the safety of composite parts ships (as well as aircraft) and allow
designs closer to the safety margin.

To describe structural strength distribution based on the chain-of-bundles model, a composite pdf
with Weibull tails grafted on a Gaussian core is introduced. For the small-size limit, the core is
totally Gaussian, and for large-size limit totally Weibull. In between, the grafting point moves
inward and the Gaussian core shrinks with increasing size. This causes that the distance from the
mean to a point of tolerable failure probability (such as 10"7) nearly doubles as the size of
quasibrittle structure increases.
Consequently, the understrength part of the safety factor used in design should be made size
dependent. So must the Cornell and Hasofer-Lind reliability indices for FORM, which are used to
estimate failure probability of structures.
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