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Abstract

Title of Thesis: A Hybrid Control Strategy for Path Plan-
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The primary focus is on providing a formal basis for behavior-based robotics
using techniques that have been successful in control-based approaches for
steering and stabilizing robots that are subject to nonholonomic constraints.
In particular, behaviors for robots are formalized in terms of kinetic state ma-
chines, a motion description language and the interaction of the kinetic state
machine with information coming in from (limited range) sensors. This al-

lows us to create a mathematical basis for discussing these systems, including



techniques for integrating sets of behaviors. In addition we suggest optimal-
ity criteria for comparing both atomic and compound behaviors in various
environments. A hybrid architecture for the implementation of path planners
that use the motion description language is presented. The design and imple-
mentation of a planner for path planning and examples of obstacle avoidance

with nonholonomic robots are discussed.
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Chapter 1

Introduction

Traditional robot motion planning and obstacle avoidance concentrated on
determining a path in the presence of holonomic or integrable, equality and
inequality constraints on the configuration space. In the works of [1] dy-
namic path planning algorithms are suggested which use sensory information
to generate paths assuming no a priori information on the size and shape of
the obstacles. In [2] a graph search algorithm is presented to find obstacle
free paths for a known environment.

On the other hand in the work of [3, 4, 5] we see a different approach
to the holonomic motion planning problem using potential functions. The
idea behind the approach in [5] was to associate signed charges with the goal,
robot and obstacles and then generate a gradient field whose integral curves

would steer the robot towards the goal which is constructed to be the global



minimum of the aggregate potential. Among the problems encountered in
these approaches were those of undesirable local minima and cycles, when
one considers intersecting obstacles.

To solve the problem of obstacle avoidance, in recent years we have seen
significant research in Al in the areas of reactive control, one form of which
is behavior based robotics. Unlike earlier systems which relied a great deal
on knowledge representation, reactive systems rely on the direct coupling of
sensory information and actuators. We see some examples of reactive planning
systems in [6] where Brooks uses “task achieving behaviors” as the primary
decomposition of the problem of autonomous navigation. He introduces the
concept of subsumption architecture which is essentially a structured and
layered set of behaviors with increasing levels of competence. Each layer is
composed of augmented finite state machines. Other approaches along similar
lines are seen in [7, 8] where a motor schema based approach is suggested for
obstacle avoidance and path planning.

In practice however most robotic systems include constraints that are not
holonomic. The kinematic constraints cannot be reduced to equivalent con-
straints on the configuration variables i.e. constraints cannot be integrated
to give constraints which are explicit functions of position variables. A few
examples of such systems are, models of a front wheel drive car, dextrous ma-

nipulation or assembly with robotic hands, attitude control of a satellite e.t.c.



Steering and stabilization of systems subject to nonholonomic constraints are
being studied extensively. It is well known that these drift free completely
nonholonomic systems, where the number of controls is less than the number
of states, are controllable. Papers [9, 10, 11, 12] presented analytical tools
based on Lie algebras to generate control sequences to steer these systems.
As these nonholonomic, drift free systems do not satisfy Brockett’s necessary
condition for smooth stabilization [13], these systems cannot be stabilized by
using smooth time-invariant state feedback. This motivated the design of
piecewise smooth feedback controllers {14], time-varying periodic controllers
[15] and explicit control design to generate time-varying stabilizable control
laws [16]. While most of the above research on steering and stabilization of
nonholonomic systems assumes an obstacle-free world, we note that the prob-
lem of autonomous path planning and obstacle avoidance with nonholonomic
robots is a nontrivial one. Traditional planners assume that arbitrary motion
is permitted, and hence they cannot be applied to nonholonomic robots as they
result in nonfeasible paths, i.e. trajectories that do not satisfy the constraints
on the configuration variables. This motivates the need for a hybrid control
strategy that integrates features of traditional planners and reactive systems
with techniques that have been successful for control based approaches. In
[17, 18, 19] possible solutions to solve this problem are presented.

In this thesis we present a path planner to solve the problem of real-time



obstacle avoidance and path planning with nonholonomic robots. Unlike ear-
lier approaches the planner integrates features of reactive planning systems
with modern control theory approaches to steer and stabilize nonholonomic
robots. Planning is restricted to the two dimensional domain. The plan-
ner assumes that the robot has limited range sensors and information of the
coordinates of the goal and its own coordinates at any instant of time. No
restrictions are placed on the size and shape of the obstacles. As the first
step towards the design of the planner we introduce a formal language for
motion planning in which we model the robot as a kinetic state machine. The
language enables us to define and reinterpret some of the existing notions of
“behaviors”, “plans” etc. We then introduce a hybrid control strategy that is
motivated by the hierarchical and distributed nature of neuromuscular con-
trol. Planning is done at two levels - global and local. For local planning
obstacle free (non)feasible paths are generated using potential functions as-
suming that the robot is a point robot. A feasible path is then generated that
obeys the constraints in the configuration variables. As feasible trajectories
are only approximations to the trajectories generated using potential func-
tions collision with obstacles while tracing the feasible trajectory is avoided
by encoded sensor information in the kinetic sate machine. In addition this
information is also present in a lower level feedback loop while the robot is in

motion. At a global level heuristics, along with the world map generated while



the robot is en route to the goal, are used to solve the problem of cycles en-
countered by using potential functions and also to improve the “performance”
of the planner in situations where the same or similar tasks may have to be
repeated.

The thesis is organized as follows. In chapter 2 we discuss some issues re-
lated to the controllability and steering of nonholonomic systems with specific
reference to a cart with a two wheel drive and a car. We also review some of
the recent work done in feedback stabilization of nonholonomic systems. In
chapter 3 we introduce the notion of a kinetic state machine and attempt to
formalize the notion of behaviors and plans for obstacle avoidance. In chap-
ter 4 we present a new control architecture that integrates the features of
behavior-based control systems and modern control theory. We also present
an algorithm for obstacle avoidance and present some results from the sim-
ulations performed to test the algorithms. Details on the simulator are also

provided. Chapter 5 is the conclusion and discusses some of the future work.



Chapter 2

Controllability and Feedback
Stabilization of Nonholonomic

Systems

A mobile robot, whose instantaneous configuration is completely determined
by a set of generalized co-ordinates in the configuration space, is often sub-
ject to multiple constraints including geometric constraints and kinematic
constraints. Kinematic constraints are expressed as relations between gener-
alized coordinates and their time derivatives. If these constraints are explicitly
integrable giving the form a;(z) = k; for some constant k;, where z denotes
generalized coordinates, then the motion of the system is restricted to a level
surface of a; and the constraints are called “holonomic”. In many mechani-

cal systems it may not be possible to write the kinematic constraints as an



algebraic equality on the configuration space, i.e. the constraints may not be
integrable. Such constraints are called “nonholonomic” and in this chapter we
will review some properties related to the controllability and feedback stabi-
lization [9, 10] of these nonholonomic systems. We assume that the reader is
familiar with concepts such as manifolds and vectorfields (see [20] for a good

exposition of these concepts).

2.1 Nonholonomic Constraints

Let us consider a mechanical system whose configuration space is an n- di-
mensional connected simply connected manifold M. Let us represent each
configuration of the system by an n-dimensional vector x = (z1, 2, - 2,)
where 1, zq, - - - Z,, are the generalized coordinates of the configuration space.
Let the open set 2 C R™ be the set of all possible configurations of the
system represented in the local-coordinates and let the motion of the sys-
tem be represented by a smooth time function z(t). The tangent vector to
the trajectory at the point z is represented by & = (&;(¢), Z2(t), - - -, Zn(t))
where #1(t),L2(t), -, L,(t) are the generalized velocities. We now consider
two kinds of constraints that the system could be subject to.

1. Classical Geometric Constraints - These are analytical relations between

the generalized coordinates. If the mechanical system is subject to m such



constraints, then there exists an m-dimensional vector function ¥(z) : Q —
R™ such that ¥(z) = 0, Vz € Q. If the Jacobian matrix of ¥(z) has full rank,
then the constraints are independent and m generalized coordinates may be
eliminated and n — m coordinates are sufficient to describe the system.

2. Kinematic Constraints - These constraints are represented by relations
between generalized co-ordinates and their velocities, written in matrix from

as

Al(z)i =0 (2.1)

where
A(z) = (ar(2), a2(2), - -~ ax(2))
and a;7,--a;T are smooth n-dimensional covector fields on M. In the rest
of the discussion we assume that associated geometric constraints have been
eliminated and (2.1) represents the system with m independent constraints.
Let A be a smooth nonsingular distribution that annihilates the codistri-

bution given by the covector fields a;7, - -a;7 i.e.

A = span{by, b, -+, by}, m=n—k (2.2)

where by, b2, - - -, b, are a set of m = n — k smooth vector fields, that satisfy

the relation

a;T(z)b(z) =0, Vz€Q, j=1,---k,i=1,---m.



Let B(z) be the full rank matrix made up of the vector function b;(z) i.e.

B(z) = (bi(z), - - bm(z)). Now (2.1) may be expressed as
€ A(z) or € Im(B(z)) (2.3)

Along the trajectories of the system, equation (2.3) implies the existence of a

vector time function u(t) € R™ for all ¢ such that
& = B(z)u(t) (2.4)

where B(z) is the full rank matrix as defined above. Equation (2.4) implies
that for any initial condition z(0) and any time function u(t) the solution of
z(t) of (2.4) will satisfy (2.1).

Hence the system as defined by (2.4) can be viewed as a control system
with an n-dimensional state space representation of a nonholonomic system
with state xz(t) and control u(t). Systems of the form (2.4) are referred to as
drift free systems and have some nice properties due to their symmetry, e.g.
any trajectory can be followed in either direction by changing the sign of the

control.

2.2 Controllability of Nonholonomic Systems

We now address the issue of controllability of systems defined by (2.4) i.e.

T=bi(x)ur + - bp()um z € R, ueR™



We are interested in determining conditions for the existence of controls
u: [0,T] —» R™, T > 0 that steer the system from any given initial state
z, = z(0) to 25 = 2(T) where z,,2; € Q. Controllability of (2.4) can be
characterized in terms of the Lie algebra generated by the vector fields b;.

The Lie bracket of two vector fields b; and b; is defined as

0b; ob;

We now define A as the involutive closure of the distribution of A (as
defined in (2.2 )) under Lie bracketing. Then the conditions for controllability

are given by Chow’s theorem.

Theorem 1 (Chow) [10] If A () = R" for each x € Q then the system

(2.4) is controllable.

A useful interpretation of Chow’s theorem can be obtained by using the
following characterization of the Lie bracket. Let ¢{ : 2 C R® — R"™ denote
the flow of a vector field for a time t. Consider the sequence of flows shown

in the Fig 2.1. The net motion satisfies

¢:9 0 ¢ 0 ¢f 0 ¢l (20) = €¥[f, g] + o(€?)

In other words if we can move in every direction using Lie bracket motion

the system is controllable.

10
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Figure 2.1: Lie bracket motion

2.2.1 Equations of Motion for the Robotic Cart

Let (z,y) € R? denote the position of the robot w.r.t. some inertial frame and
6 € S! (see Fig. 2.2) denote the orientation of the robot relative to the z-axis.
Hence the configuration space of the robot is @ = R% x S*. Let wy,wy € R
denote the angular velocities of the wheels . Hence the kinematic equations

of the cart are

vg = & = Z{wy+wy)cosfd = wujcosf
vy = § = Z(wytwy)sind = wusinf (2.6)
é = %(wl—wg) = Ug
where
U1 % g w1
w| |55

11



. X
Figure 2.2: Robotic Cart
Rewriting (2.6) as
z cos(6) 0
2cart ] = sm(0) urt| 0 |u2

0 0 1
This system 3, is a drift free system and is of the form (2.4). We see that

{b1, ba, [b1,b2]} spans R? and hence the system is controllable.

2.2.2 Equations of Motion for a Front-Wheel Drive

Car

Let (z,y) € R? denote the position of the front wheel drive car w.r.t. to some

inertial frame, 8 € S' denote the orientation of the car relative to the z axis

12



Figure 2.3: Car-like Robot

and let ¢ € S denote the steering angle (see Fig 2.3). Hence the configuration
space of the car is Q = R2 x S x S!. The constraints for the front and rear

wheels are

Esin(d — ¢) — ycos(d — ¢) =0
i(m—lcose)sinO—i( —lsin@) cosf =0
dt dt"Y B

Let v € R the heading velocity, and ¢ € R the steering velocity, be the inputs

to the system. The kinematic equations of the car written in the state variable

13



form are

anr : =

¢

cos(f — o)
sin(f — ¢)

-1 .
T sin¢

0

v+

1

¢ (2.7)

This system }_,, is a drift free system and is of the form (2.4). We see that

{b1, b, [b1, ba], [b1, [b1, b2]]} spans R* and hence the system is controllable .

2.3 Steering of Controllable Systems

One of the solutions suggested to steer these systems is driving them by peri-

odic functions [10]. For example consider the system 3., that was discussed

in the previous section. Note that this system is exactly the same as the

unicycle [12]. Now once again modifying the input to

U1
U2
and relabeling the states (z; = z,
T
Ty

T3

= wuycosf

zo =0, z3 = y) we have

= ’U2

= wygtanaxs

(2.8)

Since the states z1 and x5 are independently controlled by inputs v, and v, we

can steer z; and z, to the desired values. This may cause z3 to drift. To steer

14



x3 to its desired value we choose v; = asin(wt) and vy = fcos(wt). Solving

for £; we have

Z3 = tan(g sin ) sin 0d6 (2.9)

Observe that the value of z3 after -25” advances by

1 = B . .
/ tan(;sm&)asmﬂdt?

21 Jx
Hence « , 3, and w can be selected appropriately to steer z3 to the desired

value.

2.4 State Feedback Control

In this section we discuss the existence of smooth pure state feedback control
to stabilize of the form (2.4). The discussion is essentially a review of some
aspects of papers [9, 13].

A pure state feedback control law is defined as a smooth mapping
u: Q=R u— u(z)

with the additional condition that 4(0) = 0. The application of this feedback

law to (2.4) results in closed loop dynamics of the form
& = B(z)u(z)

which has the origin as the equilibrium point.

15



From the previous discussion of controllability of (2.4) we know that there
exists a control law that will drive the system to the origin, but this does not
ensure the existence of a smooth pure state feedback law that will asymp-
totically stabilize the origin. In fact there exists no pure state feedback law
that asymptotically stabilizes the origin. Before we state a proof to show that
there exists no pure state feedback to stabilize the origin we state (without
proof) the necessary condition for feedback stabilization given by Brockett

[13)

Theorem 2 (Brockett) Let & = f(z,u) be given with f(zy,0) = 0 and
f(.,.) continuously differentiable in a neighborhood of (z9,0). A necessary
condition for the existence of a continuously differentiable control law that
makes (x9,0) asymptotically stable is that:

(1) the linearized system should have no uncontrollable modes associated
with eigenvalues whose real parts are positive.

(ii) there ezists a neighborhood N of (xo,0) such that for each £ € N there
ezists a control ug(.) defined on [0, 00) such that this control steers the solution
of t = f(z,ug) fromz =§ att =0 to z = zo at t = oo.

(#i) the mapping v : Q x R™ — R™ defined by v : (z,u) = f(z,u) should

be onto an open set containing 0.

Corollary 1 Given a nonholonomic system of the form (2.4) there does not

16



exist a smooth pure state feedback law of the form u; = u(x) - uy = u(z),

that makes the equilibrium point x = 0 asymptotically stable.

Proof: From the smoothness in A(x), as defined in (2.1), and the indepen-
dence of the constraints, we know that there exists a neighborhood V; of the
origin in ", such that a given a set of m rows of A(z) are independent on
Vo. Without loss of generality, we assume that the first m rows of A(z) are

independent on Vy, and we partition A(z) as follows

Alz) = (2.10)

where A;(z) is a square matrix on V.
Let V; be a neighborhood in ™, containing the origin, and let ¥ be the

cartesian product of V; and V;. Consider the mapping
(z,u) = g(z,u) = B(z)u (2.11)

and denote as W, the image of V by this mapping g. The for any o belonging

to W, 3 z such that o € Im(B(z)) and therefore
AT (z)oy + ATy(2)02 = 0 (2.12)

where o is partitioned in a m-subvector o; and a (n — m)-subvector 0. This
implies that any ¢ , with ¢; not equal to zero and o, equal to zero, does not

belong to W, and therefore that W, the image of the open set V, is not in the

17



open neighborhood of the origin. The result then follows from Theorem 2(ii3)

(Brockett’s necessary condition for the existence of smooth feedback) O
Theorem 3 [9] With the smooth feedback control law
u(z) = ~BT(z)x

the equilibrium point x = 0 of the closed loop system is globally marginally
stable. Precisely:

a) the state z(t) is bounded as follows for all t : ||z(t)|| < ||z(0)]

b) the state x(t) converges to the invariant set U:

U = {z| - BT (z)z = 0}

Proof. Consider the Lyapunov function V(z) = zz”

V(z) = —2¢TB(z)BT (z)x <0

along the trajectories of the closed loop system. O
Example: Consider the robotic cart given by (2.6). The feedback law
Uy, = —xcosh — ysinf
u, = —0
stabilizes the system to the invariant set U = {z = 0,y = k € R, = 0}.
Fig 2.4 shows the trajectories of the system with the above feedback law.
In path planning problems in many situations, e.g. wall tracing, we are

interested in case where the system converges to trajectories parallel to the

18
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Figure 2.4: State Feedback Stabilization

the boundaries of the obstacles. With an appropriate change of coordinates
in the case of a car-like robot, this problem reduces to finding a control law
that drives the system to the set U = {z; € R,zo = 0,23 = 0,24 = 0}. We
suggest a control law and an algorithm to steer a car like robot (2.13 - 2.16)
(which is simply (2.7) with new variables) to the invariant set U. Before we
design the control law consider consider the system described by (2.15) and

(2.16)

1 = cos(z3 — ZTa)Uy (2.13)

Ty = sin(zs — z4)us (2.14)

19



by = o) (2.15)

Ga = ug (2.16)
Proposition 1 With the smooth feedback law:
up = ki, Uy = kosin(xs — x4), ki, ky € RY (2.17)
the origin of closed loop system of (2.15), (2.16) is asymptotically stable.
Proof: Let D = {—7 < 23 < 7,—7/2 < —@pmin < T4 < Pmag < +7/2}.
Consider the function V' : D — R defined by

Viz)=a /w4 sinydy + b sinZ(x—‘%;—x—Q
0

Along trajectories of the closed loop system

V(z) = asin(z4)2q + 2bsin (zs g 24) cos (zs ; 24) %(333 — I4)

k
= akysin(z4) sin(zs — z4) + gsin(acg - :174)(—71 sin(z4) — ko sin(zz — x4))

(aky — Ekl) sin(z,) sin(z3 — 24) — —;—kQ sin?(z3 — 74)

2l

Choose a = %}-; b = ko then

. 12
V(z) = %sin2(x3 — T4)

20



Let S be the set of points where V (x) = 0. Hence S = {3, 24|z3—24 = 0}.

Let us assume that z(t) is a trajectory that belongs to S for all t.

k
= I3 — Ty = -2 sin(ac4) — ]{}2 sin(a:g — .’L‘4) =0

l
=>24=0,223=0

Thus the only solution that can stay in S is the trivial solution and hence it
follows from La Salle’s Invariance Principle that the origin is asymptotically
stable. O

Since (z3,z4) = (0,0) is an asymptotically stable equilibrium point, by
continuity there exists a ball By = {z3,24 € S|V(z3,24) < 6} such that

||z3 — x4 is small and the system can be approximated by

T3 = —kizg
(2.18)
Ty = ka(zs — T4)
Written as a second order system is of the form
. . ko
J+ky+—y=0 (2.19)

L}
which is the equation of a damped oscillator. Hence we can choose k; and k,
and obtain a desired rate of convergence. Note that once in By, k2 determines
the rate of convergence, but k; determines the rate at which the states enter
B;s. Fig. 2.5 show the plots of the inputs and states for the same initial

conditions and different values of £, and ks.
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Now observe that with the given feedback law (2.14) and (2.16) have the

same RHS and hence

22(t) = 7(0) + :—;x4(t) _ %m(m (2.20)

Since the closed loop system (2.15 - 2.16) is asymptotically stable,

Hrgoalt) =0
hence,
: ky
Jim z2(t) = z2(0) — Em(O) (2.21)

Observing that the state x4 can be steered directly by control u, and we
have the freedom to choose the gains k; and ks, we can steer the car to the
invariant set U = {z; € R, 2, = 0,23 = 0,24 = 0}.

Steering algorithm

(i). Depending on the initial condition z5(0) and z4(0), and desired conver-
gence rates choose gains k; and ks.

(ii). Apply the control law u; = 0,us = ¢,c € R for time ¢t = (mz(O)% -
z4(0))/c.

(iii). Apply the control law (2.17).

Observe that since we have the freedom to choose the gains in practical appli-
cations the closed loop control can be turned off in some finite time. Fig. 2.6

and Fig 2.7 show the application of the control algorithm.
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Chapter 3

Behavior Based Reactive Planning

Systems

In chapter 2 we discussed some control laws for steering and stabilizing drift
free nonholonomic systems. The control laws discussed assumed that no ob-
stacles are present. Modeling obstacles as constraints in the configuration
space and then designing control laws can be a fairly complex problem. Ear-
lier approaches used simple open loop control laws or “behaviors” such as
move or turn in a reactive way to steer these robots. Unlike earlier systems
which relied a great deal on knowledge representation, reactive systems, rely
on the direct coupling of sensory information and actuators. We see some
examples of reactive planning systems in [6] where Brooks uses “task achiev-
ing behaviors” as the primary decomposition of the problem of autonomous

navigation. He introduces the concept of a subsumption architecture which is
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essentially a structured and layered set of behaviors with increasing levels of
competence. Each layer is characterized by augmented finite state machines
[6]. But having had a better understanding of the properties of nonholonomic
systems, as in chapter 2, one would like to exploit the underlying geometry
along with real time sensor information for path planning and obstacle avoid-
ance. Hence there is a need for a language that can capture and integrate
features of modern control theory and reactive planning systems. Motivated
by [21, 22] in this chapter we describe a formal language for path planning
and obstacle avoidance. The language also gives us the means to formalize,

» 43

concepts such as “behavior”, “plan” etc. used in the path planning literature.

3.1 Kinetic State Machines

We treat a robot as a kinetic state machine [21] which can be thought of as a
continuous analog of a finite automaton. Kinetic state machines are governed

by differential equations of the form

&= bi(z)u; y=h(z)eRP (3.1)

where
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U; - RtExR - R

ty®) — wy()

Further b; is a vector field in R".
We now define the atoms of the motion language as triples of the form

(U,€,T) where

where u; is as defined earlier,

£ ® — {0,1}
s(t) — &(s(1))
is a boolean function, T € R* and s(-) : [0,7] — R* is a k dimensional
signal that represents the state of the & sensors and £ can be interpreted as
an interrupt to the system which is activated in a case of emergency, e.g. the
robot crashes into an obstacle, or gets too close to an obstacle. Let us denote
t, 0 <t < T as the time at which the interrupt was received i.e. £ changes
state from 1 to 0.

If at time ¢, the kinetic state machine receives an input atom (U, £, T') the

state will evolve governed by the differential equation (3.1), as
i =B@)U, Vt, to<t< to+min[t,T)

. If the kinetic state machine receives an input string (Uy, &1, 1) - - - (Un, &n, Tn)
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then the state z will evolve according to

i = B(z)Uy, to<t< to+min[h,T).
(3.2)
i = B(x)U,, to+minft,Ti)+- - +minfty_y, Th1]
<t< to+ -+ minft,, T,).
Hence we may denote a kinetic state machine as a seven-tuple (U, X', Y, S, B, h, &),

where

U = (C®(R*T x RP); R™) is an input (control) space,

X = R is the state space,

Y = R? is an output space,

S C R* is the sensor signal space,

B is an R"*™ matrix (constraints matrix),

h: X — Y maps the state space to the output space and

£ :8 — {0,1} maps the sensor signal to the set {0,1}.

Definition: Given an atom, (U, ¢, T), define (aU,&,8T), a € R,8 € RT as
the corresponding scaled atom and denote it as (o, 5)(U,&, T).

Definition: An alphabet ¥ is a finite set of atoms, i.e (U, T) triples.
Thus ¥ = {(Uy,&1,t1), -+, (Un, &n, tn)} for some finite n or equivalently ¥ =
{01, - - - 0.} where o; denotes the triple (U;, &, T;), such that o; # (o, 8)(0;) o €

R,eRtandi=1,--n, j=1---n.
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Definition: An extended alphabet X, is the set of scaled atoms, i.e (aU, &, 5T)
triples derived from the alphabet ..

Definition: A language £* (X}) is defined as the set of all strings over the
fixed alphabet ¥ (extended alphabet %.).

Definition: A behavior  is an element of the extended language X}. For
example given an alphabet ¥ = {o1,02} a behavior 7 could be the string
(a1, B1)o1(ag, B2)oa(as, B3)0.

Remark: To account for constraints one might limit behaviors to lie in a
sublanguage B C ¥}. This will be explored in future work.

To simplify notation we denote the scaled atom (1, 1)o; simply by o;.
Definition: The length of a behavior denoted by || is the number of atoms
(or scaled atoms) in the behavior.

Definition: The duration T () of a behavior

= (ala ﬁl)(Ula §1;T1) e (am /Bn)(Unangn)

executed beginning at time ¢, is the sum of the time intervals for which each

of the atoms in the behavior was executed. That is,
T(r) = to + min[ty, SiT] - - - + minftn, 6o T (3.3)

Definition : Given a kinetic state machine and a world-model, a plan I is
defined as an ordered sequence of behaviors, which when executed is guaran-

teed to achieve the given goal. For example a plan I' = {m3m 7, - - -} could be
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generated from a given language where each behavior is executed in the order

in which they appear in the plan. The length of a plan, |I'| = 3>, |m;|. The

n

duration of the plan is given by T(I") = Y%, T'(m;). In a particular context

there may be more than one plan that achieves a given goal.

Remark: Since each atom when executed by a kinetic sate machine, combines
in general both open-loop and feedback controls, one could argue that our
definition of behavior captures the essence of behavior (say in movement) in
biology, as well as the sense in which the term isused by Brooks [6].

Given a nonholonomic robot, an environment and a certain task, some
important questions that arise are -
(i) How does one choose an alphabet ¥, or even a more elementary question -
does there exist a ¥ which can be used to generate behaviors and hence plans
to achieve the required goal ?
(ii) Given an alphabet set of behaviors is infinite. For practical reasons one
might want to work with a finite subset of behaviors. How does one choose
such a finite subset of behaviors ?

(iii) As there may be more than one plan that steers the robot to the goal
one might be interested in formulating some notions of performance (optimal-

ity) to plans ?
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Proposition 2 Given an obstacle-free environment and a kinetic state ma-
chine that is governed by the differential equation

m
&= b(x)u; v € R, ueR™ (3.4)
—~

such that the control Lie algebra (i.e. the vector space spanned at any point
by all the Lie brackets of the vector fields b;) has rank n, then there ezists an
alphabet ¥(2%) which can be used to generate behaviors and hence plans to

steer the system from a given initial state z, to a final state ;.

Proof: (i) From Chow’s theorem we know that if the control Lie Algebra has
rank n then the system is controllable. This implies there there exist controls
u: [0,T] = R™, T > 0 that steer the system from any initial state z,(0) to
any final state z¢(T').
A simple alphabet that can be used to generate behaviors consists of m triples
of the form (U, 1,1), -+, (Un,1,1) @ € R, B € R+ where

U, =(1,0,0,0,---,0)

U2= (071,0’0""70)
(]

Un = (0,0,0,---,0,1)

Example 1. Consider the problem of path planning with a unicycle, with a

single sensor, that wanders around in a given environment without colliding
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into obstacles (analogous to the idea of the zeroth level of competence in
Brooks [6] ). Let us assume the task of the robot (unicycle) in this case is to
wander till it senses an obstacle. If it senses an obstacle it avoids the obstacle
and continues to wander around. We now formulate and solve this problem
treating the unicycle with its sensor as a kinetic state machine and find a plan
that solves the problem. The differential equations governing the kinetic state

machine are

£ = wvicosf (3.5)
y = vsind (3.6)
9 = v, (3.7)

where (z,y) € R? denotes the position of the unicycle w.r.t some inertial
frame, § € S! denotes the orientation of the unicycle relative to the hori-
zontal axis, v; and vq, the velocity of the unicycle and the angular velocity
respectively are the inputs to the kinetic state machine . To solve this problem

let us consider the following atoms:

o1 = (U1, &, T1) where

U, = (1,0)

1 ifp>10
&=

0 ifp<10
T € (0,00)
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where p is the distance between the robot and the obstacle that is returned

by the sensor.

09 = (UQ,fQ,TQ) where

U, =(0,1)
0 ifp>10
o=
1 ifp<10
T € (0, 00)
o3 = (Us, &3, T3) where
Us = (0,1)
§&=1
T; € (0, 00)

Let & € [Qmin, ¥maz] and B € [0, 00].

now consider the following behaviors

= (0‘%,511)([]1,51,1)

Mo = (a%a%)(U%f% 1)
T3 = (azls’ﬂzla)(U&&i: 1)

Based on the equations of this robot, the behavior 7 is interpreted as “move
forward” with a velocity of ! units/sec for 8] seconds and behaviors 7 and

73 can be interpreted as “turn” with a velocity of of deg/sec for maximum

34



of B! seconds i.e., turn right by a maximum of 3 degrees, unless interrupted.
As explained earlier the atoms of each behavior will only execute as long as

their respective £ functions are 1 and the time of execution is less than T.

ut,u2
<
I

I 1
-2k
4 09— ul
—- u2
.6.
o 50 100 150 200

time

Figure 3.1: Trajectory and Inputs Generated by the Plan

Consider the following plan ' = ((5,100)m; (—1,90)m3)" i.e.

I'= {(Oli, /511)7"1 (a:{’7 :Bio’)ﬂ-ii (a%a 1311)7‘-1 (CM?, /8?)7T3 " }

If this plan is executed in the environment as shown in the Fig. 3.1 observe
that the robot will move forward for time #, < 100 when &; will interrupt it.
The execution of behavior 7; is inhibited, behavior 73 is picked up from the
queue and is executed. As £ = 1 in the entire interval ¢ € [£,90] the robot
will then turn clockwise by 90 degrees and then it will move forward (execute

behavior ;). But again after some finite time wall W2 (see Fig. 3.1) will
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cause {; = 0 and hence interrupt the move forward behviour. Behavior 73
is executed as earlier i.e. the robot turns clockwise by 90 degrees, and now
continues to move forward. If it does not detect an obstacle at the end of
100 seconds since it started moving forward, it will stop turn clockwise by 90
degrees and continue to repeat its behavior.

Now consider the plan T = ((50, 2)7m;(—20, 5)ms)*. If this plan is executed
in the same environment (see Fig. 3.2) observe that while executing the “move
forward’ i.e. m, in the time interval 0 < ¢ < 2 the robot realizes that the
obstacle is at a distance less than 10 units from it and hence &; interrupts
the “move forward ” and the robot begins to execute “turn right”. Due to
the choice of the interrupt function & robot will now switch between “turn
right” and and “move forward” (a condition reffered to as chattering) and
trace a trajectory as shown in the figure. Hence depending on the choice of
the alphabet one can generate different plans to achieve the same task.

The question of how to generate a plan given an alphabet and a kinetic
state machine, is an open one and it largely depends on the task. In the
next chapter we describe a path planner for nonholonomic robots. Before we
discuss the features of the planner we introduce some more definitions that

help formalize measures to evaluate the performance of a plan.
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Figure 3.2: Trajectory and Inputs Generated by the Plan

3.2 Performance Measure of a Plan

To generate a plan to steer a system from a give initial state zy to a final
state z; requires complete a priori information of the world, which is not
always the case in most instances of path planning. If we assume that the
system does not have complete a prior: information about the world W then
the planning system has to generate a sequence of plans based on the limited
information about W that it has which when concatenated will achieve the
required goal. We call these plans that are generated on limited information
to achieve some subgoal as Partial Plans I'’. The plan to steer the system
from a given initial state z, to a final state z is then determined after the
system has reached the final state and is: I' = I'}’T'5? - - - T',,? where I';? is the

partial plan consisting of only those behaviors that have been executed for

37



t>0.

Remark: As the partial plan is generated with limited information of the
world, all the behaviors generated by the partial plan may not be executed
in real time. For example let us consider a partial plan I'” = {m3mmy - - - 7, }.
Let us assume that the behavior 7, is interrupted by &, at #. Now as by the
definition of the plan behavior 74 will begin to execute. But if & = £, the
behavior w4 will not be executed.

The length of a plan is given by |[I'| = 3%, |m;| and the time of execution of
the plan is given by T'(T') = ¥, T(m;).

Now that we have these formal definitions we can start defining the per-
formance of an algorithm that uses these behaviors and analyze some earlier
algorithms for nonholonomic motion planning.

Given an algorithm that generates a plan I' we define a measure of per-

formance O(T') of the plan as

o(T) = T(T) + /T (3.8)

where 7 is a normalizing factor having the units of time.

Observe that the performance of a plan implicitly depends on the kinetic
state machine, which determines the choice of the behavior 7.

Defining a performance measure for a path planner is a rather difficult task

as it is largely dependent on the goal the robot has to achieve. Some path
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planners use the total time to achieve the goal as a measure of the performance
of the system. In many situations one might be interested in not only the
time but also on the smoothness of the path traversed or the number of times
switching between different controls was necessary. For example consider the
task of parallel parking of a car. One might be able to achieve the goal by
using only open loop controls but switching between them at regular intervals,
hence possibly reducing the time to achieve the goal but compromising on the
smoothness of the path. On the other hand if one uses a time dependent
feedback law, the same task could be possibly achieved by moving along a
smooth trajectory but this time taking a longer time to achieve the goal.
This indicates a trade off between the two strategies which is captured by the
performance measure defined by (3.8).

We now define the optimal performance of a plan as

O(D) optimat = min{T () + 7|T}. (3.9)

Here the minimization is performed over the subset of plans defined by the
subset of behaviors. Depending on the kinetic state machine and the choice
of the planner one can now place bounds on the optimal performance and
hence compare the performance of different planners given the same language
or that of the planner given a new language. This is illustrated in the example

given below.
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Example 2: Consider the problem of steering the unicycle from a given initial
location 2, to zy. The equations of the unicycle are given in example 1. Let us
assume that the language consist of the following atoms. oy = (U1, £1,1), 03 =
(Us, €2,1) where Uy, &, Uy, & are as defined in example 1. Let o € [—5,45]
and g € (0, 00)

Let us also assume that the planner did not have complete information
about the world and had to generate n partial plans to achieve the goal.
Each partial plan consists of steering the unicycle from z; to z; (see Fig 3.3)
such that there are no obstacles in some small neighborhood of the the line
segment joining these two locations. Let us further make an assumption that
the planner uses o; € [1,—1] as the scaling factor while generating partial
plans.

From the kinematic equations of the unicycle we know that a simple partial
plan to steer a unicycle from z; = (;,y;, 0;) to z; = (x;,y;, 8;) would be :

(i) turn by (0., — 65,

(ii) move by a distance d; and

(iii) finally turn by (67 — 6.,,),
where z;2; is the vector joining 2; and z;, d; = |||, and 6,,;; is the orien-
tation of the vector w.r.t. to the x-axis.

We can rewrite this simple algorithm as a partial plan derived from the
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Figure 3.3: Partial Plan Generation

language using the behaviors m; = 07 and m, = 05 .

I?; = {(6:1/abs(0i1), 0:1)(02), (1, di)(01), (Bie/abs(0i2), Oi2)(02)}

where 6;;and 0,5 are the angles of the two turns as described above of the ith

partial plan. Hence the plan to steer the system from 2, to 2y is given by
= {Ir"I?%...-I?,}

Given a plan we now illustrate how bounds can be placed on the optimal
performance based on the knowledge of the kinetic state machine and the
language.

Let dmer = maz ||z;z;||. But since the planner uses ¢; € [-1,1]

T(Fpi)maa: S 2m + dma:z: + 2T
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= A7 + dyez

SInce

e .. <3

max
0 <O(T) < 3n+n(4r + dmgs)

But since we are using only open loop controls we know from the kinematics of
the system that given an inital state z, and a final state z; both the behaviors
(o, B;)o; and (koy, B;/k)o; would steer the kinetic state machine from the
intial state to the final state, we could replace (a;, 3;)o; by (koy, Bi/k)o:.
Hence from our assumption that the planner uses only o; € [—1,1] and

observing that if in our language «o; € [—5, 5] it implies that

n(47 + dpnas) .

5 an

0 < @(P)optimal <

Having placed bounds on a plan generated by one set of behaviors we can
now compare the performance of another set of behaviors (may be one using

periodic functions to steer the robot) against these bounds.
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Chapter 4

Path Planning and Obstacle

Avoidance

We have seen in the earlier chapters that path planning for nonholonomic
systems with (time dependent) state feedback involves both open loop and
closed-loop controls. This motivates the need for an intelligent trade off be-
tween closed loop and open loop control for tasks of path planning and obstacle
avoidance. In chapter 3 we developed a formal language for planning which
integrates features of modern control theory and behavior based planning as
discussed in chapter 3. In this chapter we present an architecture for real time
implementation of the language and a general purpose algorithm for obstacle
avoidance with nonholonomic robots. The specific details of the algorithm are
described using a robot that is designed along the lines of a unicycle and/or

a car with a front wheel used for steering and driving purposes. The equa-
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tions of motion and closed loop feedback laws that were described in chapter
2 are used where explanation using an example is required for a better under-
standing. The algorithm makes certain assumptions on the world, and certain
pragmatic assumptions about the sensing capabilities of the robot which are
consistent with many real-time applications using mobile robots. In the rest
of this chapter, plans, partial plans, behaviors and atoms are used in the sense

as defined in chapter 3.

4.1 Control Strategy

As we seek to incorporate higher levels of autonomy in robots, the need for
hierarchical and distributed control schemes that have a biological analog
becomes apparent. Based on our current knowledge of the organization of the
mamalian motor systems we might consider segments of the limbs as kinetic
state machines, with motor commands to the muscles and tendons and sensor
information (that enters into a low level feedback at the spinal level) as inputs
to the machine. Motivated by the hierarchical structure of neuromuscular
control [23] and observing that the low level spinal reflex control runs faster
(loop delays of about 30ms) than the high level feedback loop (100-200 ms
delays), we present a control scheme (see Fig. 4.1), to generate and execute

plans to achieve a given task.
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45



The lowest level (the kinetic state machine with sensors and (U, £, T) in-
puts) could be interpreted as a low level feedback controller operating at the
spinal level. The planner could be interpreted as the higher end of the nervous
system (cortex + memory..) where sensory information has been processed
to generate goal related trajectory information. The distributed nature of the
control becomes apparent when one observes that once a plan has been gener-
ated each level and even various modules at the same level (e.g. cleanup and
plan in Fig 4.1) continue to execute independently. As explained in chapter
3, if the kinetic state machine receives an input (U;, &, T;) it evolves according
to equation 3.2. Interpret T; as a timer whose output is 1 (active high) while
t < T; and is 0 (active low) if t > T;. As explained earlier £(s(t)) is a boolean
function that returns an interrupt (active low) to the system when conditions
defined by £(s(t)) are satisfied. Hence the functioning of the AND gates in
the kinetic state machine can be interpreted as follows - if either the robot
receives an interrupt or ¢t > 7;, the input to gate Il is an active low and hence
the input to the kinetic state machine is inhibited i.e. the current behavior is
stopped and the next behviour in the queue is executed.

It is assumed that the robot has no knowledge about the shapes of the
obstacles. Planning is restricted to the two dimensional cartesian space. The

plan generated consists of an ordered sequence of partial plans each of which

is generated based on the limited local information that the robot has. As
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obstacles are encountered en route to the goal the world map is updated,
and a new path to the goal is again planned using the new information now
available to the planner. As the partial plans are generated based on local
information the paths initially generated are locally optimal (in the sense of
chapter 3). As the knowledge of the environment increases the performance of
the system begins to improve. Inaccuracies in the plan due to incorrect sensor
information do not pose any problem because sensor information is present in
the low level feedback loop at run time i.e. while the plan is being executed.

The environment is represented as a network of free-space regions.

4.2 Navigation Task Composition

The task of navigation and obstacle avoidance can be decomposed into a
number of subtasks each being executed at a certain level in the control ar-

chitecture. Refer to Fig. 4.2 for a diagram of task decomposition.

| Execute Plan }4—{ Generate Plan I‘—{ World Update P—iﬁad sensors ’

Cleanup

World Model

| Evolution of KSM H Update plan | I Local World |

Figure 4.2: Navigation Task Decomposition

Read sensors involves reading the distance information returned by the
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sensors and determining the the largest obstacle free disk centered around the
robot such that the trajectories that lie in this disk are guaranteed not to
intersect with the boundaries of the obstacle. In the implementation of the
control strategy the sensors are read continuously and distance information
and poyq (the radius of the obstacle free disk) are updated into a global variable
which is used to update the world and is also used by execute plan as an
input to the interrupt function £.

Since the environment is represented as a network of free-space regions,
update world involves periodic addition of nodes to the network. In the
actual implementation of the planner we differentiate between the local world
and the global world. The local world is represented as a linked list of inter-
secting obstacle-free disks, each of which is added to the list in the order they
were visited over some finite interval of time. Each node (see Fig. 4.3) con-

tains information regarding the sensor distance information and p,s4. Partial

Struct legal_highway

float sensor{10], /* array with distance information of each IR * /
rho_ofd, /* radius of obstacle free disk */
center [2], / * X, y, coordinates of the obstacke free disk * /

struct legal_highway * next_ofd,
* prev_ofd;

Figure 4.3: Representation of the World

plans use this information regarding the obstacle-free disks to generate be-

48



haviors that steer the robot to the boundary of the disk. After the complete
or partial execution of the partial plan, the robot generates the next partial
plan based on the sensor information available at that instant. Note that even
though the sensors are continuously being monitored, a new node is added to
the list only when a new partial plan needs to be generated. Hence as shown
in Fig. 4.4 the world is updated at time instances corresponding to the points

A, B, C and so on.

Obstacle D Obsatacle

FP

Figure 4.4: World Update

Generate Plan/Partial Plan - This involves the interpretation of the
sensor information, and language to generate a sequence of behaviors that will
steer the robot from its current location to a desired location. If a partial plan
is being generated the desired location lies on the boundary of the obstacle

free disk. The generation of plans/partial plans is discussed in further detail
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in section 4.3.

In the implementation of the planner, the data structure of a plan (see Fig.
4.5) is a linked list of atoms, each atom being represented by a structure that
has information regarding the scaling factors (e, 8), the interrupt function
&, the maximum time of execution of the kinetic state machine, the inputs
(controls) and a pointer to the kinetic state machine. As mentioned earlier
it is possible that while executing a partial plan only some of the behaviors
may be executed as planned, some may be executed only for a fraction of the
the intended execution time and others may not be executed at all. Update
Plan updates the fields of each atom of the partial plan after it has completed

its execution.
Struct plan
{

float max_exec_time, /* maximum time of execution */
act_exec_time, /* actual time for which atom was executed * /
alpha, beta, / * scaling factors associated with the atom * /
*(*control )(); /*Input U to the differential equation * /

int  * (interrupt) (); /* interrupt function associated with the atom */

void * (KSM) (); / * equations of motions of the robot * /

struct plan * next_plan,
* prev_plan;
}

Figure 4.5: Representation of a Plan

Execute Plan involves decomposing these plans into atoms and letting
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the kinetic state machine evolve accordingly. It involves a continuous scan
of the sensor information as £(s(t)) requires run time sensor information to
inhibit the evolution of the kinetic state machine.

As the local world is a list of nodes, each of which is added to the list
as the robot generates partial plans it is possible that while generating a
plan the robot may have to revisit a node, and hence introducing redundant
information into the world. Cleanup keeps track of these redundancies in the
map and deletes/adds nodes in the list. It also uses the local map information
available and builds a graph model of the world map which can be later
searched using standard algorithms like A* to generate optimal paths to nodes
on the graph. This module is currently in its implementaion stages.

In the rest of the discussion we restrict ourselves to obstacle avoidance and
path planning with a unicycle and/or a front wheel drive cart, equipped with

a finite number of infrared sensors that return distance information.

4.3 Partial Plan Generation

As mentioned earlier a partial plan should consist of behaviors that steer the
robot in these obstacle free disks such that the trajectories do not leave the
disk, hence avoiding obstacles, and the direction of travel should be such that

the net effect of the partial plan is to steer the robot towards the goal in a
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global sense. We would also like to generate plans that have nearly optimal
performance, where the performance measure is as defined in chapter 2. Hence
assuming that for the given language there exists more that one behavior to
steer the robot to the given subgoal, the planner now has an additional task of
choosing the behavior that yields a close to optimal performance. This could
be done either by generating all possible partial plans and then choosing the
one with an optimal performance or making the decision based on a set of
rules which depend on the interpretation of the environment. For example, it
is intuitively clear that to steer a car in an obstacle-free disk of small radius
using pure open loop controls would result in a significantly large number of
switching between controls and hence resulting in a path of high complexity.
In this situation one could view complexity as the number of turns the robot
has to make. Before we go into the actual details of plan generation we
introduce some definitions and assumptions that we make about the robot

and the world.

4.3.1 Assumptions and Definitions

Assumptions:
(i) At any given time the robot has information about its current coordinates

and the coordinates of the goal. It has no a priori information on the location
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Figure 4.6: Location and Calibration of IR sensors

and shape of the obstacles. No constraints are imposed on the size and shape
of the obstacles.

(ii) Location and calibration of sensors on the robots: For purposes of obstacle
detection, ranging and mapping, the robots are provided with infrared/ultrasonic
sensors located as shown in the Fig 4.6. Bump sensors are located along the
body of the robot. Optical encoders mounted on the motors provide position
and velocity feedback. The infrared sensors are classified as S’ if they are
located in the eye, as S%yq, if they are located along the sides or as S’y if
they are located at the rear of the robot (see Fig. 4.6). The sensors return
distance information and we shall refer to the distance information returned

as p'eye OF P'voay depending on which sensor detects an object along its line
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of sight. The sensors are calibrated such that the maximum range of each
of these sensors is on the boundary of a circle of radius R,,., centered at C.
The sensors located at the rear of the robot are normally turned off and are
turned on only when the robot is reversing. While reversing they function in
a manner similar to those of the eye.
Definition : Obstacle free disk Borp(C, posq) is defined as a disk of radius
pofd (Pofa < Rmes) centered at C (see Fig. 4.6) such that there are no
obstacles in this ball, i.e. porg = min[p’e,,, Pyoq,), i =1,..n. j = 1l..n. Any
trajectory that lies within this ball does not intersect the boundaries of any
obstacle
As the distance between the robot and the obstacles decreases, due to the
nonholonomic constraints steering might become more difficult and the plan-
ner might need to adopt a different control scheme to steer the robot. Let
Rert < Rmas denote the radius of the ball centered at C such that the planner
needs to use a different set of controls to steer the robot from z, to xy € dpof4.
In the actual implementation of the planner we place a threshold on the
radius of the obstacle free disk and have a rule according to which if porg < Rere
then we use closed loop controls to steer the robot. Hence the problem of
generating partial plans reduces to (i) planning in an obstacle free disk with
Pofd > Rery and (ii) planning in an obstacle free disk such that p,rq < Rere.

Each of the cases is discussed in the following subsections.
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4.3.2 Planning in the Obstacle Free Disk

To find the best direction of travel in this case we use the approach of potential
functions. As in the earlier work on path planning with potential functions the
idea behind our construction is based on electrostatic field theory - charges of
the same sign repel and charges of the opposite sign attract in accordance with
Coulomb’s law. Hence we assign a positive charge distribution to the obstacles
and the mobile robot and a negative charge distribution to the goal and assign
an artificial potential function to the robot. We use the resultant gradient field
only to determine the scaling factors and x5 € Op,sq, the circumference of the
obstacle free disk, as the integral curves may not result in feasible trajectories.
The idea is to construct a vector field which will give the best direction of travel
based on the location of the obstacles and the goal. The robot is approximated
by a point robot and sensors can detect only points on the boundaries of the
obstacles that lie in their line of vision, we treat obstacles as point charges
and assign charges to them depending on which sensor detects them. The
sum total of both the attractive and repulsive forces is used to determine the
bounds on the velocities and hence the bounds on the scaling factors. We also
assign weights to the forces due to the goal

Let /\ieye, )\jbody be charges associated with points on the boundaries of

the obstacle/goal detected by the sensors on the robot. Depending on which
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sensor detects them we assign them values as follows:

(1) Mbody > 0 if pPyp4, < Rmaz

(i) Neye > Moogy > 0 if oy < Rpnas

Observe that the length of the shortest feasible path to move to a configuration
that lies in the cone of the eye is less that the length of the shortest feasible
path to a configuration that lies at the same euclidean distance along (near)
the body. The choice of )\ieye > )\jbody ensures that if an obstacle is detected
at the same euclidean distance by Sieye and Sjbody the change in trajectory
required due to an obstacle detected at a distance p’,,, is more than that
required if an obstacle is detected at p7y,q,.

We associate subgoals (negative charges) when no obstacle is detected by a
sensor in the eye to suggest a possible free path in the direction of motion.
(i) Neye < 0if piye = Ringg

(iv) The gradient field associated with the obstacles is given by

n

Vfabs = (Z )\ieyevfieye 4 Z )\jbodyvfibody)

i=1 i=1

The gradient field associated with the goal is

Vs = IV fobsllug

Xrobot =X .
u, = —rebet=Xgeal)  where X, 0 and Xgoa € R? are the coordinates of the
9 ||(Xrobot"Xgoal)||

(point) robot and the goal respectively. where

36



The resultant gradient field is given by:

F =0 XNeye VY + D Nipoay V fi2%) + Vi,

i=1 i=1

e

Tk The intersection of this

and the best direction of travel is given by the
vector with the boundary of the obstacle free disk determines the final location

to which the robot has to be steered.

Observe that in the obstacle free disk the resultant gradient field has only one

equilibrium point, the center of the obstacle free disk and it occurs when

V.f obs

< T Uy >= —1
I £obsll” ™

In such a situation we disturb the location of the goal by a small amount.

Having calculated the location on the boundary of the disk to which the robot

has to be steered we use control laws similar to those discussed in chapter 2

to steer the robot.

4.3.3 Tracing Boundaries of Obstacles

Planning in B(C, R.:) is now a closed loop planning strategy which essentially
results in a trace behavior that traces the boundaries of the obstacles. An
example of the closed loop control is given in chapter 2. Given the limited

sensor and world information it is probable that the direction of trace may
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have been wrong. Hence we use a heuristic function f(z) = D(Xrobots Xgoat),
the euclidean distance between X, .,; and Xgoal as an estimate of how far the
robot has strayed from the goal. Trace the boundary as long as f < f, where
[fs is the euclidean distance D(X,opot, Xgoas), at the instant when the trace
behavior was started. If f > f, then retrace path and trace the boundary of
the obstacle in the opposite direction. If terminal conditions (trace until you
find a corner) for trace are not met set f, = 2f, and repeat.

Remark: Retracing a path under this framework is a rather simple task.
Observing that the system is a drift free system, retracing involves executing

the past n partial plans in a reverse order with (—«) scaling factor.

4.4 Path Execution

Once the plans/partial plans have been generated, these plans have to be exe-
cuted. The general algorithm for path execution is shown in Figure 4.7. Plan
execution involves decomposition of the plan into behaviors and further into
atoms. The kinetic state machine is allowed to evolve as explained in Chapter
3, equation 3.2. We would like to mention here that we use two levels of in-
terrupts in the implementation of the path execution module. While a partial
plan is being executed if a low level interrupt is received the execution of that

particular atom is inhibited and the actual time of execution of the atom is
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updated for future use and the next atom in the partial plan is executed. On
the other hand if a higer level interrupt is received the execution of the partial
plan itself is inhibited and a new partial plan is generated.

Fig. 4.7 and Fig.4.8 show some of the paths generated by the planner using
method described in section 4.3.2. It should be pointed out here that the
obstacle-free disks generated by the planner violate the definition as stated in
section 4.3.2, but this is because in the simulator we have used only sensors of
the eye to generate obstacle-free disks. These obstacles that are not detected
by the sensors may be thought of as being the blind spots of the robot. It
is important to note that while the plan is being executed the sensor are
being continuously scanned and are present in a low level feedback loop hence

preventing any collisions with obstacles.

4.5 Learning and World Model Update Al-

gorithm

Once the robot has explored the environment using limited range sensors, it
is natural to expect the robot to generate plans of a better performance if it
has to repeat the same task or move to goal that lie in the explore regions.

We suggest a “learning algorithm” that improves the performance of a plan

59



- Obstacles

N
Q\) Obstacle free disks

Figure 4.7: Paths Generated by the Planner
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Figure 4.8: Paths Generated by the Planner
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to bring it closer to optimal. The main features of the algorithm are discussed
below.

As described in section 4.3, the plan to steer a robot consists of a sequence
of partial plans, where each partial plan steers the robot in some obstacle free
disk of radius p,f4. In the rest of the section let us denote each of the obstacle
free disk which were used to generate the ith partial plan as B; and the ith
partial plan as I'?. Once the plan has been generated the planner makes the
following observations. Further let us assume that n such partial plans were
generated.

(). B, Cc Bj, ¢t =1,---n,j = 1,---n (i.e. B; is contained in Bj;) then
obviously B; contains redundant information. Thus if B; C B;,; the partial
plan I'?, that steers the robot form C; to C;y1, where C; is the center of the
obstacle free disk, and partial plan I'},; that steers the robot form Cjy to
C;,2 can be replaced by a partial plan f‘f that steers the robot from C; to
Ciya. Since B; C Byy, it is obvious that ©(T%) < ©(T¥T%,,)

(ii). Observe that since C;4; lies on the boundary of C;, we are guaranteed
the existence of a trivial nonfeasible trajectory (the straight line joining C;
with C;5) that lies entirely in B; |J B;1; i.e. the obstacle free area enclosed by
these two intersecting obstacle free disks. Hence if there exists a partial plan
f‘f that generates feasible trajectory that can track this nonfeasible trajectory

and lie entirely in B; B;,1 such that ©(T%) < ©(I*I%,,) we can replace
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[PT2,, by [

(iii) After the execution of (i) and (ii) we now have partial plans that steer
the robot from C; to Ciyj, j € {2,-+-n} such that the trajectory lies entirely
in U B;. The planner now explores the possibility of finding (non)feasible
trajectories from C; to Ciyj1k,J € 2,---n,k = 1,---,n such that these trajec-
tories lie entirely in U/ *B; and the performance of the plan that generates
this trajectory is better than the earlier one. In Fig. 4.9 we give an example
of an algorithm to explore the possibility of a trivial (non)feasible trajectory.
Fig. 4.10 and Fig. 4.11 show paths generated by the planner after it has gained
partial knowledge of the world it has explored in its first attempt to reach the
goal. It clearly shows an improvement in the performance of the planner
as the length of the plan is nearly a third of the plan generated in the first
attempt.

Remarks: (i). One should note that generating plans of better performance
does not necessarily imply that |T?| < |T?| where I is the new plan but could
simply imply choosing the right scaling factors e, § such that T'(T?) < T(I'?).
(ii). One need not restrict the generation on nonfeasible trajectories to straight
line segments, but could instead use arc or even curves that best fit the centers

of these obstacle free disks.
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learn_update ()

k=1;
while (k!=n)
{

for(i=n;i>k;i-)
in_disk_flag=1;
/* C (.) isthe coordinates of the center of an obstacle free disk */

L;L,=eqn_line (C(i),C(k)) /*equation of the line joining the
C(iyandC (k) ™/
for(j=i;j>k;-j)
{
if (L, LNB (C(j)==0)/"ie.if L;L, does not intersect the
obstacle free ball centered at C(j) */

{
in_disk_flag=0;
break ;
}
}
if( in_disk_flag == 1)
{

generate_partial_plan (C (k) ,C (i) );

/ * if there exists a path that passes through all the obstacle free
disks B, to B, then generate a partial plan to steer the robot
fromC(k)toC (i)™*/

break ;

Figure 4.9: Learning and Plan Update Algorithm
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O Obstacle free disk
Path generated after robot has partial
knowledge of its environment.

Figure 4.10: Plan Generated after Gaining Partial Knowledge of the World
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Figure 4.11: Plan Generated after Gaining Partial Knowledge of the World
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Chapter 5

Conclusions and Future Directions

In this thesis an attempt was made to bring together aspects of motion plan-
ning with robots as seen by researchers in the communities of reactive planning

and control theory. Some of the conclusions are:

e An investigation into the strengths and drawbacks of the approaches
adopted by these two communities to solve the problem of autonomous
motion planning suggests that a hybrid strategy that integrates features

of both might provide a better solution.

e Since many robotic systems include constraints that are not holonomic,
reducing the robot to a point and then designing planning and naviga-
tion systems for such robots is not always possible. A complete under-
standing of the constraints and related issues (controllability, feedback

stabilization) is required to design control laws to steer these systems
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along feasible trajectories. Depending on the world in which the robot is
navigating in many situations it might be helpful to switch from steering
using analytical tools based on Lie algebras to planning that relies on

the direct coupling of sensory information and actuators.

To capture features of continuous and discrete time control strategies,
an interface is required and this interface is provided via the motion de-
scription language suggested in chapter 3. The language serves as a tool
to generate control laws or “behaviors” that integrate real time sensor
information with continuous time control laws. The language provides a
framework to encode and compare various control strategies (piecewise

continuous feedback laws, reactive planning) for path planning.

As we seek higher levels of autonomy in robots the need for a hierarchical
and distributed control schemes that have a biological analog becomes
apparent. The architecture presented in chapter 4 is in part inspired by

some understanding of the mamalian motor system.

Though steering and stabilization of systems subject to nonholonomic
constraints have been studied extensively, many of the steering algo-
rithms and feedback laws suggested cannot be applied for real time ap-
plications. To implement control strategies on nonholonomic robots for

real time applications the design of controllers that can generate control

68



sequences that result in “nice trajectories” is essential.

Future research directions should include:

e Continuing the formalization of behavior-based robotics. This should
include expanding the concept of the motion description language to
include multiple kinetic state machines and communication protocols

between kinetic state machines.

e Design of analytical tools based on Lie algebras for real time control of

nonholonomic robots.

e Explore the possibilities of using adaptive neural nets to generate intel-
ligent behaviors for path planning with moving obstacles, increasing the
levels of parallelism in the control strategy for more efficient real time

planning and include error recovery strategies.

e continued development of the simulator for testing the integration of
control and reactive techniques in complex (moving and/or movable

obstacles) problems.
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