
.NET Security: Lessons Learned and Missed from Java
University of Virginia Computer Science Technical Report 2004-29

Nathanael Paul David Evans

University of Virginia
Department of Computer Science

[nate, evans]@cs.virginia.edu

Abstract
Many systems execute untrusted programs in virtual machines (VMs) to limit their access to system
resources. Sun introduced the Java VM in 1995, primarily intended as a lightweight platform for
execution of untrusted code inside web pages. More recently, Microsoft developed the .NET platform
with similar goals. Both platforms share many design and implementation properties, but there are key
differences between Java and .NET that have an impact on their security. This paper examines how
.NET’s design avoids vulnerabilities and limitations discovered in Java and discusses lessons learned
(and missed) from Java’s experience with security.

Keywords: virtual machine security, .NET security, Java security.

Note: This technical report is an extended version of a paper in the 20th Annual Computer Security
Applications Conference (ACSAC 2004).

1. Introduction

Java and .NET are both platforms for executing untrusted programs with security restrictions. Each
platform uses a virtual machine to enforce policies on executing programs.

The term Java is used to refer to both a high-level programming language and a platform. We use Java to
refer to the platform consisting of everything used to execute the Java class containing Java virtual
machine language code (JVML, also known as “Java bytecodes”) in the left part of Figure 1 except the
operating system and the protected resource. A Java archive file (JAR) encapsulates Java classes and
may also contain other resources such as a digital signature or pictures. Java was designed primarily to
provide a trusted environment for executing small programs embedded in web pages known as applets.

The .NET platform includes the .NET part of the figure involved in executing an assembly except for the
operating system and the protected resource. A .NET assembly, analogous to Java’s JAR file, is an
executable or dynamically linked library containing Microsoft intermediate language instructions (MSIL),
some metadata about the assembly, and some optional resources. .NET differentiates between managed
(safe) and unmanaged (unsafe) code. Since a security policy cannot be enforced on unmanaged code, we
only consider managed code.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
.NET Security: Lessons Learned and Missed from Java

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

Both Java and .NET have large trusted computing bases (TCBs) allowing many possible points of failure.
The TCB includes everything in Figure 1 except for the external untrusted program (the Java class or
.NET assembly). In Java, a flaw in the bytecode verifier, class loader, JVM or underlying operating
system can be exploited to violate security properties. With .NET, a flaw in the policy manager, class
loader, JIT verifier, CLR, or underlying operating system can be exploited to violate security properties.
The size of the TCB makes it infeasible to make formal claims about the overall security of either
platform; instead, we can analyze individual components using the assumption that other components (in
particular, the underlying operating system) behave correctly.

The JVML or MSIL code may be generated by a compiler from source code written in a high-level
program such as Java or C#, but these files can be created in other ways. Although high-level
programming languages may provide certain security properties, there is no way to ensure that delivered
JVML or MSIL code was generated from source code in a particular language with a trusted compiler.
Hence, the only security provided against untrusted code is what the platform provides. This paper does
not consider the relative merits of the Java and C# programming languages but only compares the security
properties of the two execution platforms.

Since the Java platform was introduced in 1995, Java’s security model has evolved to incorporate
additional security mechanisms including code signing and increasingly flexible policies. When specific
implementation issues are considered, we address the current standard implementations of each platform:
the Java 2 Software Development Kit 1.4.2 and the .NET Framework 1.1.

Previous works, including Pilipchuk’s article [24], have compared security mechanisms and features in
Java and .NET from an operational perspective. In this paper, we consider how they differ from the
perspective of what has and has not been learned from experience with Java security vulnerabilities.
Table 1 summarizes security vulnerabilities reported in Java over the past 8 years. Hopwood [10],
Princeton’s Secure Internet Programming team [4, 36, 37] and McGraw and Felten [18] identified several
vulnerabilities in early Java implementations.

Java VM

Operating System

Protected Resource

ClassLoader
Security

exception

Security
exception

Verify
Exception

JAR Assembly

PolicyManager

Verifier

ClassLoader

JIT VerifierVerify
Exception

CLR

Operating System

Protected Resource

Security
exception

Java .NET

Figure 1. Architecture Overview

 3

The general lessons to be learned from experience with Java are not new. All of them go back at least to
Saltzer and Schroeder’s classic paper [25], and none should be surprising to security analysts. In
particular: economy of mechanism, least privilege, and fail-safe defaults are design principles that
enhance security, but can often conflict with other goals including usability and complexity. The concrete
experience with Java shows how failure to apply these well known principles has lead to vulnerabilities in
a specific, security-critical system. The primary contributions of this paper are: 1) an illustration of how
the history of Java security vulnerabilities reveal failures to follow established security principles; 2) an
identification of how .NET’s security mechanisms have addressed the vulnerabilities and limitations of
Java; and 3) a discussion on how differences in the design of .NET and Java are likely to impact their
security properties.

Both Java and .NET use a combination of static analysis and dynamic checking to enforce policies on
executing programs. The bytecode verifier in Java and the just-in-time (JIT) verifier in .NET statically
verify some low-level code properties necessary (but not sufficient) for type safety, memory safety and
control flow safety before allowing programs to execute. Other properties must be checked dynamically
to ensure low-level code safety. Section 2 describes how Java and .NET guarantee low-level code safety
properties. Five of the 42 Java platform security vulnerabilities in the Common Vulnerabilities and
Exposures (CVE) database [3], and four of the earlier vulnerabilities [30], are directly attributed to flaws
in implementations of the Java bytecode verifier.

Programs that pass the verifier are executed in the Java virtual machine (JVM) or .NET Common
Language Runtime (CLR). Both virtual machines use a reference monitor to mediate access to protected
system resources. Section 3 describes how policies are defined in Java and .NET. Section 4 details how a

Table 1 Java Security Vulnerabilities.
Vulnerabilities reported in Java platform in CVE database [3] and Sun’s web site [30, 33].
Instances of the form CVE-YEAR-NUMB are CVE entries; CAN-YEAR-NUMB are CVE
candidates. See the appendix for details on the vulnerabilities and classifications.

Category Count Instances

API bugs 10
CVE-2000-0676, CVE-2000-0711, CAN-2000-0563, CVE-2002-0865,
CVE-2002-0866, CVE-2002-1260, CAN-2002-1293, CAN-2002-1290,
CAN-2002-1288, CAN-2002-0979

Verification 9 http://java.sun.com/sfaq/chronology.html (4), CVE-1999-0141,
CVE-1999-0440, CVE-2000-0327, CVE-2002-0076, CAN-2003-0111

Class loading 8 http://java.sun.com/sfaq/chronology.html (4), CAN-2000-1117,
CAN-2002-1287, CAN-2003-0896, CAN-2004-0723

Other or unknown 5 CVE-1999-0766, CVE-2001-1008, CVE-2002-1257,CAN-2002-1286,
CVE-2002-1325

Html tags 4 CAN-2001-0068, CAN-2002-1258, CAN-2002-1295, CAN-2002-1291
Missing policy checks 2 CVE-1999-0142, CVE-1999-1262
Configuration 2 CVE-2000-0162, CAN-2002-0058

DoS attacks (crash) 4 CVE-2002-0867, CAN-2002-1289, CAN-2003-0525, CAN-2004-0651
DoS attacks
(consumption)

1 CAN-2002-1292

 4

particular policy is associated with a resource action. Section 5 describes how the JVM and CLR enforce
policies on executions.

2. Low-Level Code Safety

Low-level code safety comprises the properties of code that make it type, memory, and control-flow safe.
Without these properties, applications could circumvent nearly all high-level security mechanisms [38].
The primary lesson learned from Java’s experience with low-level code safety goes back to one of the
earliest security principles: keep things simple.

Type safety ensures that objects of a given type will be used in a way that is appropriate for that type. In
particular, type safety prevents a non-pointer from being dereferenced to access memory. Without type
safety, a program could construct an integer value that corresponds to a target address, and then use it as a
pointer to reference an arbitrary location in memory. Memory safety ensures that a program cannot
access memory outside of properly allocated objects. Buffer overflow attacks violate memory safety by
overwriting other data by writing beyond the allocated storage [1]. Control safety ensures that all jumps
are to valid addresses. Without control safety, a program could jump directly to system code fragments or
injected code, thereby bypassing security checks.

Java and .NET achieve low-level code safety through static verification and run-time checks. In typical
Java implementations, static verification is done by the Java bytecode verifier at load time. An entire
class is verified before it is executed in the virtual machine. In .NET, parts of the verification are done as
part of the JIT compilation. All code must pass the verifier, however, before it is permitted to execute.

2.1 Verification

The first step in the verification process is the validation of the file format of the code [5, 17]. The file is
checked according to the Java class file or .NET PE/COFF file specifications [17, 20]. Following the
verification of the file format, the verifier also checks some static rules to ensure that the objects,
methods, and classes are well formed.

Next, the verifier simulates each instruction along each potential execution path to check for type and
other violations. Since JVML and MSIL are stack-based languages, executions are simulated by
modeling the state of the stack while tracking information about each instruction to help ensure low-level
code safety. Verification fails if a type violation could occur, or a stack operation could cause underflow
or overflow. In addition, control flow safety is ensured by checking that all branch instructions target
valid locations.

The general problem of verifying type safety is undecidable [23], so certain assumptions must be made to
make verification tractable. Both verifiers are conservative: if a program passes verification it is
guaranteed to satisfy prescribed safety properties; however, programs exist that are type safe but fail
verification. A more sophisticated verifier could accept more of the safe programs (still rejecting all
unsafe programs), but increasing the complexity of the verifier is likely to introduce additional
vulnerabilities.

Code passing the verifier is permitted to run in the virtual machine, but additional runtime checks are
needed that could not be checked statically. Runtime checks are required to ensure that array stores and
fetches are within the allocated bounds, elements stored into array have the correct type (because of
covariant typing of arrays in both JVML and MSIL this cannot be checked statically [2]), and down cast
objects are of the correct type.

 5

A bug in the Java bytecode verifier or Microsoft’s JIT verifier can be exploited by a hostile program to
circumvent all security measures, so complexity in the verifier should be avoided whenever possible.

The JVML and MSIL verifiers are both relatively small, but complex, programs. Sun’s 1.4.2 verifier [11]
is 4077 lines of code (not including code for checking the file format). For .NET, we examined Rotor, the
shared source code that is a beta version of Microsoft’s implementation of the ECMA CLI standard [28].
The JIT verifier in the production .NET release is either very similar or identical to the Rotor verifier [16].
Rotor’s integrated verifier and JIT compiler total about 9400 lines, roughly 4300 of which are needed for
verification.

2.2 Instruction Sets

Since the verifier’s complexity is directly tied to the instruction set of the virtual machine, examining the
instruction sets provides some measure of the verifier’s complexity. Each platform uses about 200
opcodes, but some important differences in their instruction sets impact the complexity of their verifiers.
This section considers the differences between the JVML and MSIL instruction sets from the perspective
of how complex it is to verify low-level code safety properties.

Table 2 summarizes the instruction sets for each platform. One obvious difference between the instruc-
tion sets is that JVML has separate versions of instructions for each type, whereas .NET uses a single
instruction to perform the same operation on different types. For example, Java has four different add
instructions depending on the type of the data (iadd adds integers, fadd adds floats, etc.) where .NET has
one instruction that works on different types. Using generic instructions to perform an operation with
multiple types instead of just two types makes verification slightly more difficult, but means that .NET
has more instruction opcodes available for other purposes. .NET uses some of these instructions to
provide overflow and unsigned versions of the arithmetic operations. The overflow versions of arithmetic
operations throw exceptions if the calculation overflows, enabling applications to better handle overflows
and avoid security vulnerabilities related to arithmetic overflows (such as the Snort TCP Stream
Reassembly Integer Overflow Vulnerability reported in [26]).

Function Calls. Complex, multi-purpose instructions further increase verification complexity. For
example, the invokespecial instruction in JVML serves three purposes: calling a superclass method,

Table 2 Instruction Sets Comparison
 JVML MSIL

Type Total Examples Total Examples
arithmetic 36 iadd, fadd, ladd, iand 21 add, add_ovf, xor
stack 11 pop, dup2, swap 2 pop, dup
compare 21 ifeq, ifnull, if_icmpeq 29 ceq, beq, brfalse
load 51 Ldc, iload, iaload 65 Ldarg, ldftn, ldstr
store 33 istore,lstore_1, castore 27 Starg, stloc_s, stelem_R8
type
conversions 15 i2f, d2i, l2d 33 conv_i2, conv_ovf_u8, conv_u2

method calls 4
invokevirtual, invokestatic,
invokespecial, invokeinterface 3 callvirt, call, calli

object creation 4
new, newarrary, anewarray,
multianewarray 2 newobj, newarr

exceptions 3 athrow, jsr, ret 5
leave, leave_s, rethrow,
endfilter, endfinally

 6

invoking a private method, and invoking an initialization method. The multiple uses of this instruction
make it difficult to verify correctly. Sun’s verifier uses 260 lines to verify the invokespecial instruction
(counting major methods used for verification). A 2001 verifier bug involving the invokespecial
instruction [31] affected many implementations of the JVM, and could be exploited to violate type safety
[14].

.NET has two main instructions for calling methods: call and callvirt (another MSIL calling instruction,
calli, is used for calling functions indirectly through a pointer to native code). The call instruction is
similar to Java’s invokespecial and invokestatic instructions. The callvirt instruction is similar to Java’s
invokeinterface and invokevirtual instructions. The main difference between the call and callvirt
instructions is how the target address is computed. The address of a call is known at link-time while
callvirt determines the method to call based on the runtime type of the calling object. Combining Java’s
four different calling instructions into two instructions may make it easier for a compiler writer [19], but
given Java’s history of trouble it may have been better to have several single-purpose call instructions
rather than a few instructions with multiple functions. The call, and callvirt instructions each have their
own method for JIT compilation and verification totaling approximately 200 lines in the Rotor
implementation.

To efficiently support tail recursion, the MSIL call instructions may also be preceded by a tail prefix
which is treated as a special case by the verifier [5]. The tail prefix reuses the same activation record on
the stack instead of creating a new record every time a call is made. About 250 extra lines are required
for verification and compilation of the tail prefix including the extra lines needed to deal with call, calli,
and callvirt. It is too soon to judge whether the performance advantages of supporting tail outweigh the
additional security risks associated with the added complexity.

Object Creation. Sometimes complex instructions are better than using many separate instructions. For
example, a Java program creates a new object by using new to allocate memory for the new object, dup to
place an additional reference to the newly created object on the stack, and then invokespecial to call the
object’s initializing constructor. After returning from the constructor, a reference to the (now initialized)
object is on top of the stack because of dup. In MSIL, the single newobj instruction calls a constructor,
creating and initializing a new object in one step. This sacrifices flexibility, but verification of newobj is
much easier than Java’s sequence of instructions since the verifier knows that the object is initialized as
soon the instruction is executed.

A Java verifier must check that any new object is initialized before use [15]. In cases where the new, dup
and invokespecial instructions are separated by instructions, this can pose problems for the verifier.
Microsoft and Netscape’s Java verifiers have both had vulnerabilities related to improper object
initialization. The Microsoft verifier bug involved calling a constructor within an exception handler
inside a child class [14]. Once the code called the constructor from inside the child class, the parent class
constructor would be called to create a ClassLoader object, but the child class had not been given
permission to instantiate a class loader. The resulting exception was caught by the exception handler in
the constructor of the child class, and initialization was incorrectly assumed to have completed.

Exception Handling. Java’s exception handling instructions impose additional complexity compared to
MSIL’s simpler approach. The JVML instruction jsr is used to implement the Java programming
language try-finally construct that transfers execution to a finally block [17] and is one of the most
complex instructions to verify. To jump to a finally block, control transfers to an offset from the address of
the jsr instruction, and the return address of the next instruction after the jsr instruction is pushed onto the
stack. The main problem is the use of the operand stack to store the return address since this makes an
attractive target for an attacker who may try to insert a different address while fooling the verifier. With

 7

the return address on the operand stack, more difficulty exists in a finally block’s verification in the
multiple ways one could execute a finally block: a jsr called after execution of the try clause, a jsr used
upon a break/continue within the try clause, or a return executed within the try block.

Several vulnerabilities have been found in Java verifiers due to the complexity of the jsr instruction. One
relating to subroutines in exception handling was found in 1999 in the Microsoft JVM [14]. To exploit
this flaw, two return addresses are placed on top of the stack using different jsr instructions. Next, a swap
instruction is executed. The verifier failed to account for the change of return addresses on the stack
(ignoring the swap since the return addresses are of the same type). The switched return address is used
by the ret instruction to return to the instruction that is now referenced by the address. The verifier
continues to verify the method as if the swap had not executed, thus breaking type safety.

.NET avoids the complexity associated with Java’s jsr instruction by providing a simpler instruction. The
leave instruction used to exit a try or catch clause clears the operand stack and uses information stored in
an exception handling clause for control flow.

Summary. We tested .NET to check that the verifier was behaving correctly according to the ECMA
specification and attempted to carry out exploits that have previously worked on the Java verifier, but
were unable to construct any successful exploits. Of course, this does not mean that there are no
exploitable bugs in the .NET platform, but it is encouraging that none have been reported to date. .NET’s
designers avoided many of the pitfalls in early Java implementations benefiting from Java’s history of
problems with exception handling, creating objects, and calling methods. The MSIL instruction set
design simplifies the verification process by avoiding instructions similar to the most complex
instructions to verify in JVML.

3. Defining Policies

Low-level code safety mechanisms prevent hostile applets from circumventing the high-level code safety
mechanisms, but security depends on high-level mechanisms to enforce a policy on program executions.
A policy specifies what actions code may perform. If a program attempts an action contrary to the policy,
a security exception is raised.

3.1 Permissions

The amount of control possible over system resources depends on the available permissions. Java and
.NET provide similar permissions [21, 29] as summarized in Table 3. However, some differences exist
because of the OS environment or the design of the platform. For example, Java must provide
permissions that protect some resources that are not exposed in .NET including the SecurityManager and
AccessControlContext (see Section 6). Java’s exposed objects used in enforcement of policy can be set to
null introducing security problems. .NET provides similar mechanisms, but their design and functionality
differ. For instance, AppDomains emulate the behavior of AccessControlContext, but the main difference
is the AppDomain cannot be used to gain otherwise ungranted permissions. The SecurityManager cannot
be overridden or inherited, but it provides methods to work with the policy. .NET has additional
mechanisms to work with static permissions called attributes. These attributes allow an assembly to
specify: minimum set of needed permissions, optional set of needed permissions, and refused
permissions. These attributes are similar to the run-time methods Assert(), Deny(), and PermitOnly() (see
Section 5.2).

 8

Neither platform supports complete mediation: only actions associated with a predefined permission are
checked. Further, there is no support to restrict the amount of a resource that is consumed, so many
denial-of-service attacks are possible without circumventing the security policy. These limitations are
serious [12], but more complete mediation is possible through the reference monitoring framework only
by significantly reducing performance. However, Sun plans to provide support for restricting resource
consumption in the future [34]. Richer policy expression and efficient enforcement is an active research
area [6, 7, 36].

3.2 Policies

Policies associate sets of permissions with executions. In Java, policies are defined by specifying the
permissions granted in a policy file based on properties of an execution: the origin of the code, the digital
code signers (if any), and the principal executing the code. Java’s policies are also affected by a system-
wide properties file, java.security, which specifies paths to other policy files, a source of randomness for
the random number generator, and other important properties.

A Java policy file contains a list of grant entries. Each entry specifies a context that determines when the
grant applies and lists a set of granted permissions in that context. The context may specify the code
signers (a list of names, all of whom signed the code for the context to apply), the code origin (code base
URL), and one or more principals (on whose behalf the code is executing). If no principals are listed, the
context applies to all principals.

Table 3 Example Permissions

Resource Java .NET
File System Read/write/execute/delete files Read/write/append/path discovery.

Can protect the path itself
Network Accept/connect/listen/resolve a

host at an optional port range
Accept/connect to a host or IP address, port
number, and a transport protocol

Display show an applet-created window
without warning, read display

Access based on two-level window hierarchy

System
Clipboard

Read/write to clipboard Read/write with ability to control input

System
Properties

Read/write java specific
properties

Read/write environment variables

Database Set the logging stream Allow blank passwords. Control access to SQL
server databases

Printer Queue print jobs Safe printing is restricting printing to restricted
dialog boxes. No or unrestricted printing as well

Platform
Specific

Play/record through audio
devices, protect Kerberos
services, access login
configuration

Read/write/create/delete registry keys or values,
protect storage associated with a user, performance
counters

 9

Java is installed with one system-wide policy file, but a user can augment this policy with her own policy
file. The granted permission set is the union of the permissions granted in all the policy files. This is
dangerous since it means more permissions are granted than those that appear in the user’s policy file.
Further, it means a user can make the policy less restrictive than the system policy, but cannot make the
policy more restrictive. Java users may not exclude permissions a system administrator allows unless
they are able to edit java.security, the Policy implementation, or the policy file granting the unwanted
permissions.

.NET provides policy definition mechanisms that overcome these limitations by providing flexible, multi-
level policies, but at the cost of greater complexity. A .NET policy is specified by a group of policy
levels: Enterprise (intended for the system administrator), Machine (machine administrator), User, and
Application Domain (AppDomain). The permissions granted to an assembly are the intersection of the
permissions granted at the four policy levels. .NET’s policies grant permissions based on evidences
within an assembly (see Section 4.2). The AppDomain policy is created at run-time, and there is no
associated configuration file for this policy level. If no AppDomain exists at run-time, then the policy is
the intersection of the Enterprise, Machine, and User policy levels. .NET’s policy levels are similar to
Java having a system-wide policy file and a user policy file, however they are much more flexible.
Importantly, in .NET the final permission set granted is the intersection of all policy levels, whereas in
Java it is the union [9].

Typical users will execute code found on untrusted web sites, so the Internet default policy is extremely
important to protect users and resources. Java’s default policy allows an untrusted process to read some
environment properties (e.g., JVM version, Java vendor), stop its own threads, listen to unprivileged
ports, and connect to the originating host. All other controlled actions, such as file I/O, opening sockets
(except to the originating host), and audio operations are forbidden. The default Java policy disallows the
most security critical operations, but does not prevent untrusted applets from annoying the user. Many
examples of disruptive applets exist, such as one that stops and kills all current and future applets and
another one that consumes the CPU [12, 18].

The .NET default permissions are given by the intersection of the four policy levels expressed in three
separate files (AppDomains exist only at runtime). At runtime, the CLR looks for the three XML policy
files representing the Enterprise, Machine, and User policy levels. By default, .NET allows all code to
have all the permissions in the Enterprise and User policy levels, and the Machine policy level’s granted
permissions determines the resulting permission set. The default policy grants permissions based on the
zone evidence. Local code is given full trust along with any strong-named Microsoft or ECMA
assemblies. Code from the local intranet is granted many permissions including printing, code execution,
asserting granted permissions (see Section 5.2), and reading the username. Internet assemblies are given
the Internet permission set which includes the ability to connect to the originating host, execute (itself),
open file dialogs, print through a restricted dialog box, and use its own clipboard. The trusted zone will
receive the Internet permission set. No permissions are granted to the restricted zone. These defaults are
more consistent with the principle of fail-safe defaults than Java’s defaults. But their strictness may en-
courage users to assign too many code sources to more trusted zones.

4. Associating Policies with Code

Since programs with different trust levels may run in the same VM, VMs need secure mechanisms for
determining which policy should be enforced for each access to a controlled resource. The ability to
assign different policies to different code within the same VM follows the principle of least privilege:
every module (class or assembly) can be assigned the minimum permissions needed to do its job. Section
4.1 explains how granted permissions are associated with code. Section 4.2 describes how code

 10

properties determine which policy should be applied. There are important differences in how Java and
.NET accomplish this. Java‘s initial design was a simple model where code was either completely trusted
or untrusted, and all untrusted code ran with the same permissions. Later versions of Java extended this
model, but were constrained by the need to maintain backwards compatibility with aspects of the original
design. .NET was designed with a richer security model in mind from the start, so it incorporates an
extensible policy mechanism in a consistent way.

4.1 Code Permissions

Both Java and .NET support two types of permissions: static and dynamic. Static permissions are known
and granted at load time. Dynamic permissions are unknown until runtime.

When Java loads a class, an instance of the abstract class, ClassLoader, is responsible for creating the
association between the loaded class and its protection domain. These static permissions are associated
with the class at runtime through a protection domain (PD). Each Java class will be mapped to one PD,
and each PD encapsulates a set of permissions. A PD is determined based on the principal running the
code, the code’s signers, and the code’s origin. If two classes share the same context (principal, signers
and origin), they will be assigned to the same PD, since their set of permissions will be the same. Prior to
J2SE 1.4, permissions were assigned statically at load time by default, but dynamic security permissions
have been supported since J2SE 1.4 [32]. This provides more flexibility, but increases complexity and
makes reasoning about security policies difficult.

To assign static permissions at load time in Java, a class loader will assign permissions to a PD based on
properties of the code and its source, and the loaded class will be associated with that single PD for the
duration of the class’ lifetime [32, 17]. Several flaws have been reported in Java’s class loading
mechanisms, including eight documented from [33] and [3] (see Table 1).

The Java 2 SDK 1.4 introduced dynamic policies, but this design had to overcome the initial design that
assumes static permissions. The original ProtectionDomain constructor statically assigned read-only
permissions based only on the CodeSource, but this design makes it difficult to introduce dynamic
permissions. Some classloaders assign permissions statically with this original constructor (e.g.,
AppletClassLoader). However, using the Policy class in addition to a different PD constructor provides a
solution for a dynamic policy. Java 2 added a new ProtectionDomain constructor that takes additional
ClassLoader and Principal[] parameters. The associated permissions to the newly created PD will be the
parameter set of read-only permissions plus the Policy provided dynamic permissions based upon the
additional parameters. This increased complexity gives more flexibility to developers, but some
unexpected results could occur in the security policy. For example, a possible problem to this backwards
compatibility is that the Policy implementation will not be consulted if the original ProtectionDomain
constructor is used to statically assign the permissions. In this situation, a user may unexpectedly gain
static permissions that are not specified in the dynamic policy. Classloaders are normally responsible for
granting static permissions, and the default Java installation uses only system classloaders to assign
permissions statically. If however, a user ever uses a custom classloader or a system classloader for a
custom use, the resulting policy should be scrutinized to make sure no unwanted permissions are granted.

.NET uses a similar approach to associate permission sets with assemblies. The role of the ClassLoader
in Java is divided between the PolicyManager and ClassLoader in .NET. The PolicyManager first
resolves the granted permission set [13, p. 173-175], and the initial policy design supports both static and
dynamic permissions (see Section 5). Then the CLR stores the permissions in a cached runtime object
before passing the code on to the ClassLoader which loads the class. Since .NET was designed with
dynamic policies in mind from the beginning, it supports them in a simpler, more coherent way.

 11

4.2 Code Attributes

Both Java and .NET grant permissions based on attributes of the executing code. The expressiveness of
policies is limited by the code attributes used to determine which permissions to grant.

The JavaVM examines the CodeSource and Principal and grants permissions based on the values found in
these objects. The CodeSource is used to determine the location or origin of the code and signing
certificates (if used), and the Principal represents the entity executing the code. The associated PD of a
class encapsulates these objects along with the ClassLoader and static permissions granted at load time.
To extend the default policy implementation, the Policy class may need to be rewritten, or a different
SecurityManager may need to be implemented. It is questionable if this level of extensibility is actually a
good idea—it introduces significant security risks, but the benefits in practice are unclear. Problems with
class loading were found in early Java implementations [4], and continue to plague Java today. In one
recent classloader vulnerability (CAN-2003-0896 in Table 1), arbitrary code could be executed by
skipping a call to a SecurityManager method. The corresponding code characteristics in .NET are known
as evidences. .NET’s PolicyManager uses two types of evidences, host evidences and assembly
evidences, to determine the permissions granted to an assembly. Assembly evidences are ignored by
default. Evidences include the site of origin, zone (corresponding to Internet Explorer zones), publisher
(X.509 certificate) and strong name (a cryptographic code signature). .NET’s design incorporates the
ability to extend not only the permissions that may be granted, but also to add new evidences as well.
Any serializable class can be used as evidence [8].

Java and .NET both provide complex policy resolution mechanisms and a bug in the policy resolution
could open a significant security hole. There are difficult issues to consider in introducing new
permissions including XML serialization, and declarative/imperative testing of a new permission (see
Section 5) [13, p. 534-544]. Although .NET does not provide the same level of extensibility as Java in
the policy implementation, a developer creating a new permission must still be careful to avoid errors.

4.3 Bootstrapping

Both platforms need some way of bootstrapping to install the initial classes and loading mechanisms.
Java 1.0 used a trusted file path that gave full trust to any class stored on the path. Code on the system
CLASSPATH was fully trusted, so problems occurred when untrusted code could be installed on the
CLASSPATH [10]. Java 2 treats code found on the CLASSPATH as any other code, but maintains back-
wards compatibility by using the bootclasspath to identify completely trusted code necessary to bootstrap
the class loader. Hence, the same risks identified with installing untrustworthy code on the CLASSPATH
now apply to the bootclasspath. Having exceptions based on the location of code is not a good idea,
since an attacker who can modify the trusted path or trick a web browser into storing code in a location on
the trusted path will be able to execute a program with full permissions.

.NET uses full-trust assemblies to break the recursive loading of policies since all referenced assemblies
must also be loaded [13, p. 112]. .NET did not completely abandon the notion of a trusted path, but it has
added some security. .NET uses a global assembly cache (GAC) where assemblies in this cache are
signed and then shared among different assemblies. The GAC acts as a trusted repository, similar to the
bootclasspath in that an assembly within the GAC will be fully trusted [21]. To speed up loading, a GAC
assembly’s strong name (or signature) is checked when the assembly is added to the GAC, not when the
assembly is loaded. If an attacker can modify an assembly in the GAC, then the attacker may have full
control of the machine. Sometimes fully trusted assemblies across all policy levels are needed; for
example, the default assemblies used for policy resolution that are fully trusted by default.

 12

As an illustration, the .NET default policy trusts all signed Microsoft assemblies, and this is checked by
examining the strong name evidence of each assembly. If all four policy levels fully trust signed
Microsoft assemblies, then any assembly from Microsoft is fully trusted on that machine.

5. Enforcement

Policy enforcement is chiefly done at run-time by the virtual machine. Unlike Java, .NET can perform
some policy enforcement statically. It allows the programmer to specify static or dynamic policy
enforcement. Declarative security permissions are statically known and contained within the assembly
manifest. Imperative security permissions are compiled to MSIL and evaluated at run-time. The
declarative permissions can be class-wide or method-wide and can be used for some actions that cannot
be expressed using imperative permissions. When run-time information is needed to evaluate a request
(e.g., a filename), imperative permissions must be used.

Run-time enforcement mechanisms share many similarities across the two platforms. In Java, the
SecurityManager checks code permissions. Programmers can implement SecurityManager subtypes to
customize security checking, and programs with sufficient permission can change the security manager.
This makes it especially easy to exploit a type safety break in Java, since the security manager can be set
to null to turn off all access control. .NET’s design does not allow programmers to implement their own
SecurityManager class, but the reduced flexibility provides stronger security.

5.1 Checking Permissions

When a Java program attempts a restricted operation, the called Java API method first calls the
SecurityManager’s appropriate checkPermission method which calls the AccessController to determine if
the necessary permission is granted. When deciding to grant a permission to execute a requested action,
the AccessController checks that the current executing thread has the needed permission.

The 10 API bugs in Table 1 illustrate the difficulty in implementing permission checks correctly. Many
of these vulnerabilities involve an API method that allows access to a protected resource without the
necessary security checks. CVE-2000-0676 and CVE-2000-0711 both bypass calls using SecurityManager
by exploiting the java.net.ServerSocket and netscape.net.URLInputStream classes. Another flaw, CAN-2000-
0563, used browser redirection to gain sensitive data in java.net.URLConnection. Two vulnerabilities,
CAN-2002-0866 and CAN-2002-1260, involve bugs in the Java Database Connectivity (JDBC) classes
with the former allowing an attacker to execute any local Dynamic Link Library (DLL) through a JDBC
constructor and the latter allowing access to a database through a JDBC API call. CAN-2002-1290 and
CAN-2002-1293 were bugs in Microsoft’s JVM that exposed interfaces to the INativeServices and
CabCracker classes allowing access to the clipboard or local file system respectively. CAN-2002-0865,
CAN-2002-0979 and CAN-2002-1288 exposed various resources including XML interfaces, logging, and
directory information.

Java’s AccessController must not only verify that the current stack frame has the required permission, but
also that the calling stack frames do. In this way, previously called methods cannot gain privileges by
calling higher privileged code. Since every method belongs to a class and a class to a PD, each stack
frame’s permissions are checked through the associated PD in addition to any dynamic permissions
granted by the policy. If any stack frame has not been granted the permission for the requested access,
then the request will be denied by throwing an exception. The AccessController accomplishes permission
checks by calling a method to indirectly return an object encapsulating the current PDs on the stack (i.e.,
current context) and then checking those PDs’ permissions. The act of gathering the current permissions
from each stack frame is called a stack walk.

 13

.NET performs a similar stack walk with Frame objects representing the frames on the stack. To support
multiple languages (including type unsafe languages like C++), the stack has frames that are managed
and unmanaged. The managed frames are frames that are verified for type safety while the unmanaged
frames have no safety guarantees. As the stack is traversed, the managed code’s permissions are checked
with a security object contained in each JIT-compiled method on the stack [27].

5.2 Modifying the Stack Walk

In both platforms, programmers can modify the stack walk. This should be done to enforce the principle
of least privilege by explicitly denying permissions to called methods.

A Java program can modify the stack walk to deny certain permissions past a specific stack frame or to
simply stop checking permissions at a specific point. If a method invokes doPrivileged (PrivilegedAction),
the stack walk will not look at any frames further up the call stack. Attacks have occurred where the
caller gains access to some protected resource by calling code that has higher privileges which indirectly
provides access to that resource (for example, CAN-2002-1288). To deny permissions to a method in
Java, a method can invoke doPrivileged (PrivilegedAction, AccessControlContext). This creates a new
context that is the same as the stack’s current execution context without the denied permissions. The
stack walk will then use this context to check permissions. However, using doPrivileged can cause
problems when null is passed as the AccessControlContext object. This removes the stack frame from any
more security decisions and introduces scoping problems when implemented with an inner class [18, 29].

.NET has extended Java’s stack walk design with the Permission methods PermitOnly(), Assert(), and
Deny(). A stack walk is done when a demand() call is made, similar to Java’s checkPermission(). .NET
provides slightly better interfaces for the programmer to alter the stack walk since many of the
mechanisms involve only one method call after constructing the specified permissions. Calling the
PermitOnly() method means a stack walk will continue only if the permission is granted. After a Deny()
call, if any of the specified permissions are requested an exception is thrown to terminate the stack walk.
Assert() terminates the stack walk successfully if the current stack frame has the asserted permission.

Although stack inspection is complex in both models, .NET’s added flexibility using these new
Permission methods can be used to help programmers improve security by writing code that does not
expose protected resources unnecessarily.

6. Conclusion

Java and .NET have similar security goals and mechanisms. .NET’s design benefited from past
experience with Java. Examples of this cleaner design include the MSIL instruction set, code access
security evidences, and the policy configuration. .NET has been able to shield the developer from some
of the complexity through their new architecture.

Where Java evolved from an initial platform with limited security capabilities, .NET incorporated more
security capability into its original design. With age and new features, much of the legacy code of Java
still remains for backwards compatibility including the possibility of a null SecurityManager, and the
absolute trust of classes on the bootclasspath. Hence, in several areas .NET has security advantages over
Java because of its simpler and cleaner design.

Most of the lessons to learn from Java’s vulnerabilities echo Saltzer and Schroeder’s classic principles,
especially economy of mechanism, least privilege and fail-safe defaults. Of course, Java’s designers were
aware of these principles, even though in hindsight it seems clear there were occasions where they could

 14

(and should) have been followed more closely than they were. Some areas of design present conflicts
between security and other design goals including fail-safe defaults vs. usability and least privilege vs.
usability and complexity. For example, the initial stack walk introduced in Java has evolved to a more
complex stack walk in both architectures to enable developers limit privileges. In addition, both
platforms default policies could be more restrictive to improve security, but restrictive policies hinder the
execution of programs. .NET’s use of multi-level policies with multiple principals provides another
example of showing the principles of least privilege and fail-safe defaults in contention with usability and
complexity.

Several of the specific complexities that proved to be problematic in Java have been avoided in the .NET
design, although .NET introduced new complexities of its own. Despite .NET’s design certainly not
being perfect, it does provide encouraging evidence that system designers can learn from past security
vulnerabilities and develop more secure systems. We have no doubts, however, that system designers
will continue to relearn these principles for many years to come.

Acknowledgements

This work was funded in part by the National Science Foundation (through grants NSF CAREER CCR-
0092945 and NSF ITR EIA-0205327) and DARPA (SRS FA8750-04-2-0246). The authors thank Jane
Prey, Elizabeth Strunk for help with the title, and the anonymous reviewers for their helpful comments.

References

[1] AlephOne. Smashing the stack for fun and Profit. Phrack, 7(49), Nov. 1996.
[2] W. R. Cook. A Proposal for Making Eiffel Type-safe. Third European Conference on Object-

Oriented Programming (ECOOP). July 1989.
[3] Common Vulnerabilities and Exposures. Java Vulnerability Search Results (version 20040901).

1 September 2004. http://www.cve.mitre.org/
[4] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java security: From HotJava to Netscape and

Beyond. IEEE Symposium on Security and Privacy. May 1996.
[5] ECMA International. Standard ECMA-335: Common Language Infrastructure (Second Edition)

December 2002. http://www.ecma-international.org/ publications/standards/Ecma-335.htm
[6] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement. Ph.D.

thesis, Cornell University Department of Computer Science. (Technical Report 2003-1916). 2003.
[7] David Evans and Andrew Twyman. Policy-Directed Code Safety. IEEE Symposium on Security

and Privacy. May 1999.
[8] Adam Freeman and Alan Jones. Programming .NET Security. O’Reilly, June 2003.
[9] Li Gong, Gary Ellison and Mary Dageforde. Inside Java 2 Platform Security (Second Edition). Sun

Microsystems, June 2003.
[10] David Hopwood. Java Security Bug (applets can load native methods). Risks Forum, March 1996.
[11] IBM Corporation. Jikes Research Virtual Machine. http://www-124.ibm.com/developerworks/

oss/jikesrvm/
[12] Mark LaDue. A Collection of Increasingly Hostile Applets. http://www.cigital.com/hostile-applets/
[13] Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi Martin, Kevin T. Price. .NET Framework Security.

Addison-Wesley, April 2002.
[14] Last Stage of Delirium Research Group. Java and Virtual Machine Security Vulnerabilities and their

Exploitation Techniques. http://www.lsd-pl.net/ documents/javasecurity-1.0.0.pdf
[15] Xavier Leroy. Java Bytecode Verification: An Overview. Springer Verlag Computer Aided

Verification: 2101, pp. 265-285, 2001.

 15

[16] Mark Lewin. Email communication, Jan. 2004.
[17] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification, 2nd edition. Addison-

Wesley, April 1999.
[18] Gary McGraw and Edward W. Felten. Securing Java. John Wiley and Sons, January 1999.
[19] Erik Meijer and John Gough. Technical Overview of the Common Language Runtime.

http://research.microsoft.com/~emeijer/Papers/CLR.pdf
[20] Microsoft Corporation. Microsoft Portable Executable and Common Object File Format

Specification. http://www.microsoft.com/whdc/hwdev/download/ hardware/pecoff.pdf
[21] Microsoft Corporation. Security Briefs: Strong Names and Security in the .NET Framework.

http://msdn.microsoft.com/netframework/?pull=/library/ en-us/dnnetsec/html/strongNames.asp
[22] Nathanael Paul and David Evans. .NET Security: Lessons Learned and Missed from Java (extended

version of this paper). UVA Computer Science Technical Report, September 2004.
[23] Benjamin C. Pierce. Bounded quantification is undecidable. ACM SIGPLAN Symposium on

Principles of Programming Languages (POPL), January 1992.
[24] Denis Pilipchuk. Java vs. .NET Security. http://www.onjava.com/pub/a/onjava/2003/11/26/javavsdotnet.html
[25] Jerome Saltzer and Michael Schroeder. The Protection of Information in Computer Systems. Fourth

ACM Symposium on Operating System Principles, October 1973. (Revised version in
Communications of the ACM, July 1974.

[26] Snort TCP Stream Reassembly Integer Overflow Vulnerability.
http://www.securityfocus.com/advisories/ 5294

[27] Daivd Stutz, Ted Neward and Geoff Shilling. Shared Source CLI Essentials. O’Reilly, March 2003.
[28] David Stutz. The Microsoft Shared Source CLI Implementation. http://msdn.microsoft.com/library/

default.asp?url=/library/en-us/Dndotnet/html/ mssharsourcecli.asp
[29] Sun Microsystems. Permissions in the Java 2 SDK. http://java.sun.com/j2se/1.4.2/docs/guide/

security/permissions.html
[30] Sun Microsystems. Chronology of Security-Related Bugs and Issues. November 2002.

http://java.sun.com/sfaq/chronology.html
[31] Sun Microsystems. Sun Security Bulletins Article 218. http://sunsolve.com/pub-cgi/retrieve.pl?

doctype=coll&doc= secbull/218&type=0&nav=sec.sba
[32] Sun Microsystems. Java 2 Platform, Standard Edition: 1.4.2 API Specification. 2003.

http://java.sun.com/j2se/1.4.2/docs/api/
[33] Sun Microsystems. Sun Alert Notifications. http://sunsolve.sun.com/pub-cgi/search.pl,category:

security java
[34] Sun Microsystems. Java Security Architecture

http://java.sun.com/j2se/1.5.0/docs/guide/security/spec/security-spec.doc8.html
[35] David Walker. A Type System for Expressive Security Policies. ACM SIGPLAN Symposium on Principles

of Programming Languages (POPL), January 2000.
[36] Dan Wallach, Dirk Balfanz, Drew Dean, Edward Felten. Extensible Security Architectures for Java.

Symposium on Operating Systems Principles, October 1997.
[37] Dan Wallach and Edward Felten. Understanding Java Stack Inspection. IEEE Symposium on

Security and Privacy, May 1998.
[38] Frank Yellin. Low Level Security in Java. 4th International WWW Conference, December 1995.

 16

Appendix: Classification of Vulnerabilities

API Vulnerabilities

CVE-2000-0676 An applet could exploit netscape.net.URLConnection and
netscape.net.URLInputStream to read/write local filesystem.

CVE-2000-0711 The java.net.ServerSocket class allowed any applet to accept network
connections.

CAN-2000-0563 Mac OS Java allows an applet to connect to any machine through a
vulnerability in the java.net.URLConnection.

CVE-2002-0865 A Microsoft XML class allows remote execution of unsafe code.
CVE-2002-0866 A vulnerability in a JDBC class allows remote execution of DLLs.

CVE-2002-1260 A Microsoft vulnerability allowed a malicious person to read and write to a
database through a vulnerability in the JDBC API.

CAN-2002-1293 A Microsoft class, com.ms.vm.loader.CabCracker, exposes a method in its
API that should not have had public access.

CAN-2002-1290 The Microsoft Java class, INativeServices, can be used to read/write the
clipboard.

CAN-2002-1288 Microsoft’s getAbsolutePath() in the File class allows any applet to find read
path information.

CAN-2002-0979 The System.out.println() method in the Microsoft JVM can be used output to a
known path.

Verifier

Sun Chronology [30] The UW Kimera team reports another verifier bug (June 23, 1997).
Sun Chronology [30] Sohr finds type safety attack on verifier.
Sun Chronology [30] UW finds verifier bug in JDK 1.1.1 (May 16, 1997).
Sun Chronology [30] Sun finds a verifier bug internally and releases fix (March 1997).

CVE-1999-0141 Sun responds (Security Bulletin #00134) to reported verifier bug by Princeton
(March 1996).

CVE-1999-0440 The bytecode verifier allows applets to execute unverified code.
CVE-2000-0327 Sohr finds another bug where illegal type casts are allowed by verifier.
CVE-2002-0076 Sun Security Bulletin #00218 notes a verifier bug (March 2002).
CAN-2003-0111 Microsoft Java VM allows an applet to execute arbitrary code.

 17

Classloader

Sun Chronology [30] Sun internally finds a potential security vulnerability in class loading.

Sun Chronology [30] The JDK 1.2 fixed a classloader bug present in JDK 1.2 beta found by
Princeton researchers [http://www.cs.princeton.edu/sip/history/].

Sun Chronology [30] Another Princeton classloader attack allowing applets to create and use
custom classloaders.

Sun Chronology [30] Hopwood’s bug in the classloader that can be exploited to load illegal
bytecode.

CAN-2000-1117 Lotus Notes Client R5’s getSystemResource() in java.lang.ClassLoader
allows an applet to verify existence of files on a remote machine.

CAN-2002-1287 Stack overflow in Classloader.loadClass()
[http://marc.theaimsgroup.com/?l=ntbugtraq&m=103684360031565&w=2]

CAN-2003-0896 Execute arbitrary class through sun.applet.AppletClassLoader loadClass()

CAN-2004-0723
Privacy compromise through covert channels using two applets that share a
common classloader
[http://marc.theaimsgroup.com/?l=bugtraq&m=108948405808522&w=2].

HTML Tags

CAN-2001-0068 Mac Java VM bug through a parameter to the <APPLET> tag.

CAN-2002-1258 Microsoft Java VM <APPLET> tag vulnerability.

CAN-2002-1295
Additional vulnerabilities in the Microsoft Java VM <APPLET> tag can be
used to execute a DOS attack and possibly other types of attacks.

CAN-2002-1291
Another Microsoft Java VM vulnerability in the <APPLET> tag using a
specific CODEBASE parameter.

Missing Policy Checks

CVE-1999-0142 This DNS attack, first described by [4], violates the policy that an applet can
communicate only with the originating machine.

CVE-1999-1262 A Netscape Java VM bug allows an applet to communicate with any machine.

Configuration Errors

CVE-2000-0162
Default system class path is set up incorrectly in certain versions of the
Microsoft Java VM. [http://support.microsoft.com/default.aspx?scid=kb;en-
us;253562&sd=tech]

CAN-2002-0058 Only affects systems that use Internet Explorer with a proxy server.

 18

DoS Attacks that Crash VM

CVE-2002-0867 Vulnerability in JDBC class allows a remote attacker to crash Internet
Explorer.

CAN-2002-1289 Microsoft Java VM’s com.ms.awt.peer.INativeServices allows DoS attacks
and possibly remote execution of code.

CAN-2003-0525 Windows NT and the IBM Java VM java.io.getCanonicalPath() crash
when parsing long file names.

CAN-2004-0651 Sun’s Java VM has an unspecified DoS attack.

DoS Attacks that Consumer Resource

CAN-2002-1292 Microsoft’s com.ms.security.StandardSecurityManager allows a remote
DoS attack by adding to the list of banned Java applets.

Other or Unclassified

CVE-1999-0766, CVE-2001-1008, CVE-2002-1257,CAN-2002-1286, CVE-2002-1325.

