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CHAPTER I
INTRODUCTION

Consider a production system composed of many processing stages (servers)
through which the material (jobs) must pass in some prespecified order. The per-
formance of such a system is impaired by variations in servers behavior due either
to failures or to fluctuations in service times. The effects of these variations can
be mitigated by using intermediate storage spaces (buffers) between the servers.
However, because of physical limitations on buffer spaces and variations in the ser-
vice times, the flow of jobs through the system may get blocked. Queueing systems
with blocking have a wider applicability in that they can also be used to model
computer systems, telecommunication networks and distributed systems, to name
a few applications.

This thesis is devoted to various analytical and algorithmic issues for tandem
queueing systems with blocking. The blocking systems considered here are com-
posed of a series arrangement of service stations with finite intermediate buffers
between these stations. A typical tandem configuration is shown in Figure 1.1.1.
At each station some work is performed on a job which is then passed on to the
next station and finally ejected from the last station. It is assumed here that a sin-
gle server which operates according to the FCFS (first-come-first -served) queueing

discipline is in attendance at each station.

—[(E o F Jo— - —[En J®—

Figure 1.1.1

The literature considers two distinct blocking policies for transfer lines with
finite buffers. Let S be one of the servers in Figure 1.1.1. Under the first policy,
called immediate blocking, at a time of service completion, the server S is blocked
if the downstream buffer becomes full due to this service completion; the server

S remains blocked until the congestion is reduced downstream, at which time it
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resumes service and begins to process its next job (if any). Under the second policy,
called non-immediate blocking, the server S is blocked at a service completion time
if the job that has just completed service cannot proceed to the next buffer due
to congestion. When the congestion is reduced downstream, this job proceeds to
the next buffer without receiving any further service at server S, and the server S
resumes service and begins processing its next job (if any). As noted in Altiok and
Stidham [4], these two blocking policies are not equivalent in the sense that the
solution of the system under one policy cannot be obtained from the solution of
the system (with possibly different parameter values) under the other policy, and
therefore cannot be reduced to each other, except when N=2,

Queueing networks with blocking are typically very difficult to analyze, and
closed form results at steady state (or otherwise) are usually not available, except
in tandem models with two exponential servers and a finite intermediate buffer.
This model is probably the simplest configuration of an open queueing network
with blocking. A rigorous Markovian analysis of this system was performed in
the pioneering work of Hunt [36], who upon enumerating the different possible
states in which the system can exist, did set up and solve the equations for the
state probabilities in statistical equilibrium. Since then, queueing networks with
blocking have been studied by researchers from different research communities. To
fix the terminology, a brief classification of the blocking systems discussed in the
literature is provided in the Appendix, where an annotated bibliography of some
of these papers has been compiled. A basic assumption that was made in all the
models studied in the surveyed literature is that the last stage is never blocked, i.
e., there is always space available for a job whose service has been completed at the

last server. Three classes of systems have been studied:

(i) Systems without failures : In this class, the service stations in Figure 1.1.1
are attended by reliable servers. As long as there is a part to process and the server is
not blocked, it can always give service according to some known service distribution.
Authors like Altiok [2], Clarke [19,20], Foster and Perros [25], Hildebrand [32,33],
Hunt [36], Konheim and Reiser [40], Latouche and Neuts [45], Lavenberg [46], Neuts
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[54,57], Perros and Altiok [63] and Pinedo and Wolf [64] allow an infinite capacity
input buffer upstream of the first server and assume jobs to arrive according to some
statistical pattern. Others, like Hatcher [31], Hillier and Boling [34], Knott [40],
Muth [51,52] and Rao [66], assume that there is an inexhaustible supply of jobs to
the first server, and so the first server is never starved. In most of the models studied
in the literature, servers are assumed to have exponentially distributed service times.
Exceptions are Hiller and Boling [34] which allow Erlang distributions, and Muth

[61,52] and Rao [66] who postulate more general service time distributions.

(ii) Systems subject to failures : The service stations are attended by unreli-
able servers, i. e., servers subject to failures which are non-deterministic in both
occurence and duration. This class of models can be further divided into two sub-
classes according to the assumptions imposed on the service times.

(ii.a) Deterministic processing times : The service times are assumed to be
deterministic while both the failure and repair times of the servers are allowed to
be random. All the models discussed in the literature postulate that the first server
is never starved, and that the duration of up and down times are geometrically
distributed. Relevant papers include the work of Artamonov [6], Buzacott [15,16],
Buzacott and Hanifin [17], Freeman [24], Gershwin and Ammar [27], Gershwin and
Schick [28], Ignall and Silver [37], Masso and Smith [48], Muth and Yeralan [53],
Ohmi [60], Okamura and Yamashina [61], Sheskin [68], Soyster, Schmidt and Rohrer
[69] and Wijngaard [76].

(ii.b) Random processing times : Service times as well as the failure and repair
times are random, as the case in the work of Buzacott [16], and Gershwin and
Berman [28]. In both papers, the failure and repair times and the service times
were assumed to be exponentially distributed. Only two stages were considered

with the assumption that the first server is never starved.

(iii) Flow models : In this class of models, jobs are not treated as discrete items
but rather as a continuous fluid. This model was considered in papers by Buzacott

and Hanifin [17] and Wijngaard [76], where the servers were subject to failures with
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deterministic service times as in class ii.a.

To the author’s knowledge, the ezact closed-form solution of the joint queue
length distribution at steady-state has not yet been reported in the literature, and
this even in the simplest of models under exponential assumptions. One of the
contributions of this thesis is to identify a class of two node tandem systems with
blocking for which the joint queue length distribution at steady-state can be ob-
tained in closed-form.

In this thesis attention is given to the analytical aspects of various models of
two node tandem systems. Although two node blocking systems may not constitute
very realistic models for many real life systems, these simple systems could serve as
building blocks for approximating general tandem queueing systems with blocking.
Indeed, many approximation schemes developed for general tandem queueing sys-
tems, e.g., Altiok [1], Brandwajn and Jow [13], Hillier and Boling [34] and Sheskin
[67], to name a few, are based on decomposition and tsolation algorithms that re-
duce the problem to one of simultaneously solving several simple systems which are
special cases of the models studied here. Such ideas clearly motivate a careful study
of the general two node tandem systems with blocking, with a view towards pro-
viding exact analytical results so as to enhance existing and future approximation
‘schemes.

The focus of the work reported here is on models which are in classes (i) and
(ii.a). As a rule, the models presented here adopt immediate blocking and include
servers with phase type (PH-type) service distributions. For the benefit of the
unfamiliar reader, Chapter II includes a brief introduction to PH-type distributions.
With the exception of the model discussed in Chapter V where an an arrival process
to the first buffer in Figure 1.1.1 is considered, the system is assumed saturated in
that the input queue in Figure 1.1.1 contains, at all times, an infinite supply of jobs,
so that the first node server is never starved. In all cases, it is assumed that the
server in the last node is never blocked.

In Chapter III, a two node tandem system with an intermediate buffer of finite

capacity is analyzed when both servers have PH-type service distributions. Although
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the discussion focuses on the discrete-time formulation, results for the continuous-
time model are also presented. A system state process is introduced and its proba-
bilistic structure is carefully described. In contrast with the continuous-time model,
the discrete-time formulation may give rise to a non-irreducible Markov chain. Nec-
essary and sufficient conditions for its irreducibility are given, and its ergodic and
transient states are identified in terms of the parameters defining the service dis-
tributions. Moreover, the steady state probabilities of the system states are shown
to have a matriz geometric form and closed form expressions are obtained for the
quantities of interest. The effect of reversing the order of the servers is discussed and
it is observed that in statistical equilibrium the probability of finding ¢ customers
in the buffer in one case coincides with finding K — ¢ customers in the case when
the order of the servers is changed, K being the buffer capacity. The results are

illustrated through numerical examples on some well-known PH-type distributions.

In Chapter IV, the general model of Chapter III is specialized to the case
where one of the servers is geometric. The discussion focuses on the situation where
the first and second node servers have geometric and PH-type service distributions,
respectively. The case when the order of the servers is reversed is only briefly
discussed, as the results follow from the discussion in Chapter III. A system state
process is introduced and its probabilistic structure is carefully described. For this
special case, it is shown that the steady state probability vector is always unique
and a complete characterization of the system states is given by identifying the
irreducible and transient states of the underlying Markov chain. Explicit expressions
for the steady state probabilities are obtained and attempts are made to give an
expression for the average system throughput, in order to study its behavior as a
function of the intermediate buffer capacity. The continuous-time formulation of
the model is also briefly discussed and similar results are obtained. The discussion
on this particular model concludes by applying the results to some specific PH-type

distributions.

In Chapter V, a two node system with PH-type servers at both nodes (as in

Chapter III) is considered by relaxing the assumption that the first node server
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is never starved to capture the situation of a Bernoulli arrival stream to a finite
capacity queue in front of the first node server. A system state is defined and the
probabilistic structure of the corresponding process is described. Neccessary and
sufficient conditions for the irreducibility of the Markov chain are obtained in terms
of the system parameters. It is shown that the steady state probability vector
is always unique, and can be obtained in closed form by grouping the states in
pairs. The joint queue length distribution at steady state is then easily obtained as
entries of the steady state probability vector of these auxilary states. Although the
discussion focuses on the discrete-time formulation, the continuous-time model is

also discussed and the irreducibility of the corresponding Markov process is shown.

In Chapter VI, unreliable servers with PH-type up and down time distributions
are considered. The effective service time distributions of such servers are repre-
sented by PH-distributions of higher order. Although the results of Chapter III do
not directly apply the exact same methodology can be used. Specifically, when the
idling servers are subject to failure, the transition probabilities among the bound-
ary states are explicitly written and a matriz geometric solution is derived for the
steady state probabilities through calculations similar to the ones given in previous
chapters. The case when only operational servers can fail is obtained as a special

case of this discussion. The results are illustrated by several numerical examples.

Finally, in Chapter VII an iterative approximation scheme that uses the two
node system as a building block is presented for solving general tandem queueing
systems with finite capacity intermediate buffers and PH-type servers. Since the
algorithm is based on a two node system it is applicable for both immediate and
nonimmediate blocking since these two blocking policies can be reduced to each
other for two node systems as mentioned earlier. However only immediate block-
ing is considered here. The approximation algorithm gives results in the form of
marginal probability distribution of the number of jobs in each queue of the tandem
configuration so that the line throughput can be computed. In view of the results
derived in Chapter VI, this approximation scheme also applies to failure type servers

with PH-type service and repair distributions. The algorithm is presented and its
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accuracy tested through numerical examples both for continuous and discrete-time
systems, under both types of blocking. Comparison of the results against simu-
lations indicate reasonable accuracy even in the presence of significant blocking.

Program listings are available from the author upon request.



CHAPTER I1
MOTIVATION AND BACKGROUND

I1.1. Motivation :

The work reported in this thesis aims at understanding the effect of blocking on
system performance through a detailed study of two node tandem models. Although
blocking systems with only two or three nodes may not be realistic models for most
applications, they can be thought out as building blocks for approximating general
queueing networks subject to blocking. In this section, a few examples are given as
to how several authors have used such simple models to approximate more general
tandem queueing systems.

The first example is borrowed from Brandwajn and Jow {13], where the solution
of a two node system is used as a building block for an approximate analysis of
systems of tandem queues with blocking. Reliable and exponential servers with load
dependent service rates were considered. The method uses the notion of equivalence
to produce approximations to the joint queue length probability distributions for
pairs of neighboring servers and to various performance measures for individual
servers. The proposed method is applicable to both types of blocking since they are
equivalent for two node systems.

The second example is from Hillier and Boling {34], who consider a general
tandem manufacturing system with a single exponential server at each node and
finite intermediate buffers between the nodes. They develop an efficient algorithm
to compute the steady state output rate via single node analysis. The effective
mean arrival rate and the effective mean service rate at a particular node are ob-
tained by considering the remainder of the system as a black boz which generates

input to this particular node and accepts the output of this particular node. Each
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node can therefore be viewed as a single server queueing model with Poisson input,
exponential service times and a finite buffer. This already suggests that, provided
an interconnection methodology were available, tandem configurations of PH-type
servers could be approximated by several isolated two node models of the type
studied in Chapter IV.

The third example comes from Sheskin [68], where the servers are subject to
failures. He studied a general tandem line where service times are constant whereas
failure and repair times are random, i. e., a model in class (ii.a) described earlier.
The transitions between the up and down states of the servers are assumed to
occur according to a time-homogenous Markov chain. For larger systems, Sheskin
proposes to approximate the system by analyzing each server separately by ignoring
the dependence between the arrivals and the departures to a node. Hence, this
decomposition algorithm reduces the problem to several simple problems. Due to the
memoryless nature of the up and down time distributions, the service distribution
of such a failure server can be represented by a PH-type distribution with only
two phases, the so-called up and down phases of the service. This decomposition
procedure yields simple systems which are special cases of the models studied here.
It is noteworthy that, this decomposition algorithm is reported to approximate
general systems within 5% of relative error, without requiring much computer time
and memory.

The last example was considered by Altiok [1], who studied a model in class
(ii.b) with independent Erlang type service distributions, ezponential up times and
arbitrary down time distributions. Although expressions for the cumulative distri-
bution of service completion times can be obtained, they are very complicated and
not readily implemented. When the down times have also exponential distribu-

tions, Altiok proposes to assume that during the processing time of a job at most
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one failure may occur and uses this fact to incorporate failures into the service
completion times. These service completion times are then approximated by spe-
cific PH-type distributions through empirical observations, and Then, by using the
results of Perros and Altiok [63], the effective service time distribution of the 7t%
server is represented with a phase structure involving 2 X (M — 7 + 1) phases, where
M is the total number of nodes in the system. Again, the model is approximated
by simple systems (of the type studied here) in isolation.

The last two examples suggest that even models with unreliable servers can be
approximated by simultaneously solving several simple models. Since these models
are of the type discussed in Chapter III, it is particularly important that explicit
solutions for such models be obtained and that their algorithmic properties be
discussed in some detail.

In order to capture a fairly general class of service time distributrions PH-
type servers are considered. To fix the notation and terminology for the unfamiliar
reader it is convenient at this point to briefly describe properties of the class of PH-
type distributions. For additional information on this topic the reader is invited to

consult the monograph by Neuts [58].
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I1.2. Phase Type Distributions :

Probability distributions of the phase-type, denoted by PH-type, were intro-
duced both in discrete and continuous-time by M.F. Neuts [58]|. Loosely speaking,
a discrete-time PH-type distribution is any probability distribution on the non-
negative integers obtainable as the distribution of the time until absorption in a
discrete-time finite state space Markov chain with a single absorbing state. The
class of PH-type distributions includes well known distributions such as the Gen-
eralized Negative Binomial and Hypergeometric distributions, as well as any dis-
tribution with finite support on the nonnegative integers. The usefulness of these
distributions to the algorithmic solution of many queueing models has been force-
fully advocated by Neuts for quite some time now, and is illustrated in some detail
in [58]. The reader is also refered to [11] and [55] for a discussion of the many
interesting properties enjoyed by PH-type distributions.

Specifically, consider a discrete-time Markov chain on the state-space
S = {1,,2,...,m + 1}, where the states {1,...,m} are transient and the state
m + 1 is absorbing. The chain starts in state ¢ € S with probability a; and evolves
in accordance with the one-step transition matrix P. It is customary to write the

one-step transition matrix P and the initialization probabilities in the form

oo <°?" 11’) () (2.2.1)

a=(a1,02,...,am)

where
Q@ is a m X m substochastic matrix,
p is a m X 1 column vector of absorption probabilities to the absorbing

state m + 1 from the transient states {1,...,m},
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o is a 1 X m row vector of initialization probabilities,
0,, is a 1 X m row vector with zero entries.

The following relationships

p=Un—Q)em , Om+1 =1 —aen,
obviously hold, where I, is the m X m identity matrix and e,, is the m X 1 column
vector of ones.

It is assumed that the matrix (I, — @) is nonsingular or equivalently, that the
states {1,2,...,m} are all transient, so that the absorption into the state m + 1,
from any initial state, is certain [58, p. 45].

The PH-type probability distribution associated with the pair (¢, Q) is the dis-
tribution function F(-) on the non-negative integers with probability mass function
{qx}{° given by

am+1, k=0,
qr = { (2.2.2)

aQlp, k>1.
The pair (@, Q) is called the representation of the distribution F, which it uniquely
determines. The converse is not true in that a given distribution function F(-)
admits infinitely many PH-representations. The probability generating function

P(-) of the PH-distribution with representation (o, Q) is given for all 0 < 2 < 1 by

o0
P(z) = Z k. 2°
k=0

= ami1 +2za(lm — 2Q) " !p (2.2.3)

1—2 1 -1
z z

The following probabilistic construction is given in Neuts [58, p. 48]. Upon

absorption into state m + 1, independent multinomial trials with probabilities
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(at, ¢my1) are instantaneously and repeatedly performed until one of the alterna-
tives 1,2,...,m occurs. The process is restarted in the corresponding state and
the same procedure is repeated at the next absorption. It is easy to show that
upon indefinitly continuing this procedure, a new Markov process is constructed on
{1,2,...,m} in which the state m 41 is an instantaneous state. The corresponding

one-step probability matrix is readily seen to be

R =Q+ 1 P« (2.2.4)
1 — am+1
The successive visits to the instantaneous state form a renewal process with the
underlying distribution F, called a PH-renewal process. The representation (o, Q)
is said srreducible if and only if the Markov chain on {1,...,m} with one-step
probability matrix Q* is trreducible.

As shown in [58, pp. 49-50], every PH-type distribution function F admits an
irreducible representation, whence only irreducible representations will be consid-
ered hereafter. Moreover, the condition ¢,,+; = 0 will be assumed in order to avoid
complications of limited interest in applications. Under this assumption, it is plain
that o # Oy, and that p # 0L, where 7 denotes transposition, for otherwise the
matrix @ would be stochastic, thus contradicting the nonsingularity assumption of
the matrix (Im — Q).

To fix ideas, the representations of some well-known PH-type distributions are
displayed below; they will be used in the numerical examples of later chapters. In
these examples, 0 < p; < 1for 1 <7< n.

(?): A Negative Binomial distribution of order n is represented by the pair

(e, Q), where
a=(1,0,0,...,0) = (1,0,_1)
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and

((1—u1) 1 )

(1—p2) o

Q= . : (2.2.5)

\ (1"'/‘11.—1) Mn—1 }

(1— pn)

(¢7): A Hypergeometric distribution of order n is represented by the pair (o, @),

where

a=(ai,oz,...,a,) and @Q=diag(l —p1,1—p2,...,1—p,) . (2.2.6)

(¢32): A Deterministic service time of n units is represented by the pair (¢, Q),

where
o =(1,0,0,...,0) = (1,0,_1)
and
01
01
Q= ) _ . (2.2.7)
0 1
0

PH-type representations can also be introduced in a similar way for distribu-
tions on [0,00). In this case, a Markov process on the states {1,...,m 4 1} with

@ »p

0 0) is considered, where the m X m matrix @ satisfies
m

infinitesimal generator (
the conditions @Q;; < O and p; > 0for 1 <z <m,and @Q;; >0, 1 <t # 5 < m.
Moreover, Qe,, = —p and the initial probability vector of Q is given by (o, apm+1),
where « is defined as before. It is again assumed that the states {1,...,m} are all

transient, or equivalently, that the matrix @ is nonsingular [58, p. 45].
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A probability distribution F(-) on [0,00), is a distribution of PH-type if and
only if it is the distribution of the time until absorption in a finite Markov process of
the type defined above. In that case, the distribution function F(-) can be expressed

as

F(z)=1-aezp(Qr)em , x>0, (2.2.8)

with a jump at z = 0 of height a,,+1 and its density F'(z) on (0, 00) given by
F'(z) = aexp(Qz)p, z>0. (2.2.9)

The pair (a, Q) is again called the representation of the distribution F.
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I1.3. Preliminaries :

In this section, several definitions and results of interest from the theory of
nonnegative matrices are presented, and the nonsingularity of several matrices of
interest for subsequent developments is proved. The reader is referred to Berman
and Plemmons [10] for a general reference on the theory of nonnegative matrices.
Throughout the discussion, all the matrices have real entries unless otherwise men-
tioned. The notation A > 0 is used whenever each entry of the vector or matrix A
is nonnegative whereas A > 0 is used if A > 0 and at least one entry is positive,
and A >> 0 is used if all entries of A are positive.

Definition 2.3.1. : An n X n nonnegative matriz A 1s cogredient to an n X n
matriz E if for some permutation matriz P, PAPT = E. The matriz A is said to

be reducible if it is cogredient to

B 0
#=(2 b)

where B and D are square matrices, otherwise, A 1s said to be irreducible.
Definition 2.3.2. : The directed graph G(A) associated with an n X n nonneg-
ative matriz A is the graph made up of n vertices, say Py, Pa,... P,, with an edge
leading from P; to P; if and only +f A;; >0, 1 <14,5 < n.

It is well known [10, p. 30| that a matrix A is irreducible if and only if G(4) is
strongly connected, that is, for every ordered pair (P;, P;) of vertices of G(A), there
exists a path, i. e., a sequence of edges which leads from P; to P;. The following
Lemma is a simple application of the Definition 2.3.2 and will be useful in the proofs
of Theorems 4.3.2. and 5.3.1.

Lemma 2.3.3. : For any two nonnegative square matrices A and B, the matriz
(A+B) is irreducible if and only if the matrix (c1A + c2B) s irreducible for all

scalars ¢1,¢2 > 0.
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Proof : Owing to the nonnegativity of the matrices A and B, (A+ B);; > 0 if and
only if (¢1 A + ¢2 B);; > 0, whenever ¢y, ¢z > 0, while (4 + B);; = 0 if and only if
A;; = Bij = ¢y Aij + ¢2 Bij = (¢1 A+ ¢2 B);; = 0 . The topology of the directed
graphs G(4 + B) and G(c1 A + ¢2 B), c¢1, c2 > 0, are thus exactly same, and the
result follows by Definition 2.3.1.

A

When a nonnegative matrix is a stochastic one, the notion of irreducibility
in the Definition 2.3.1 is related to the probabilistic one in that every stochastic
matrix can be viewed as the one-step transition matrix of a Markov chain. In order
to clarify the terminology used hereafter, it is imperative to classify the states of a
Markov chain.

Consider a finite state Markov chain with the state space S = {s1,...,8,}.
Definition 2.3.4. : If in the state transition diagram of the Markov chain S there
exists a path from state s; to state s;, s;,s; € S, then the state s; is said to have
access to state s;, written s; — s;. If s; has access to s; and s; has access to s,
then s; and s; are said to communicate, written as s; < s;.

Implicit in Definition 2.3.4 is that every state in § communicates with itself,
and with this convention, the communication relation is an equivalence relation on
the set of states and thus partitions S into equivalence classes. With this in mind,
the following definition is given.

Definition 2.3.5. : A state s; € S is called transient if there exists some s; # s;
in S with the property that s; — s; but s; / s;, that is, s; has access to some other
state which does not have access to s;. Otherwise, the state s; is called ergodic.

Thus, s; is ergodic if and only if s; — s; implies s; — s; for some s; # s; in S.
It follows that if one state in an equilance class of states associated with a Markov

chain is transient (resp. ergodic), then each state in that class is transient (resp.
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ergodic). This leads to the next definition.
Definition 2.3.6. : A class induced by the communication relation on the set S is
called transient if it contains a transient state and ergodic otherwise.

Definition 2.3.7. : A Markov chain is called irreducible if it consists of a single
ergodic class.

In view of the above definitions, the following Lemma can easily be proved.
Lemma 2.3.8. : A finite state Markov chain is irreducible if and only if the
corresponding one-step transition matriz is irreductble.

Therefore, these two concepts of irreducibility can and will be used interchange-
ably hereafter. The following notion of reachability will be used repeateadly in later

chapters.

Definition 2.3.9 : Let U and V be subsets of the state space of a Markov chain
with corresponding one-step probability transition matriz T. The set U is reachable
from the set V if there 1s a path from some state in V to a state tn U in the directed
graph G(T) of the matriz T.

The following class of matrices is very useful in many applications.

Definition 2.3.10 : An n X n matriz A is called an M-matrix if it is of the form
A = sI, — B for some s >0 and B > 0, with s > p(B), where p(B) denotes the

spectral radius of B.

For many useful properties of M-matrices, the reader is referred to [10, Chapter

6). The following Lemma will be used in the proof of Lemma 2.3.17.

Lemma 2.3.11 : If (a,Q) is an irreducible discrete (resp. continuous) PH-
representation of order m, then the matriz (I, — Q) (resp. —Q) is a nonsingu-

lar M-matriz and its eigenvalues all have positive real parts.
Proof : It is well known, [10], that for any n X n nonnegative matrix A, the following
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bounds
n n
mz.in{z Ay} < p(4) < m?X{Z Aiz}
j=1 J=1

hold true for its spectral radius. When the matrix A is stochastic, each one of its
rows sum to 1, whence p(4) = 1.
Since the nonnegative matrix @ is substochastic, p(Q) < 1, and the matrix
I, — @ is an M-matrix by Definition 2.3.10 (with s = 1 and B = Q). Furthermore,
the matrix (I, — Q) being invertible implies p(Q) < 1 and the second part of
Lemma 2.3.11 is now immediate: Indeed, (A, z) is a rigth (left) eigenpair for Q if
and only if (1 — A, z) is a right (left) eigenpair for I,, — Q, whence Re(1 — X) > 0
since —1 < Re(A) < 1, where Re(z) denotes the real part of the complex number z.
The Lemma can be proved in a similar way for an irreducible continuous PH-
representation with s=—¢* and B= (—¢*I,,+Q), where —¢* := max;<;<m{—Qi:}
JAN
The following theorem is a basic result in the Perron-Frobenius theory of non-
negative matrices.
Theorem 3.2.12. : If A is an n X n nonnegative matriz, then
(i) The spectral radius p(A) of A is an eigenvalue of A, and
(i7) There always exists left and right eigenvectors with nonnegative

components which corresponds to p(A).

The invariant probability vector 7 of an m-state Markov chain with one-step

probability transition matrix A is defined as the 1 X m vector 7 that satisfies
TA=m , Tem =1 .

The following results investigate the existence and uniqueness of the invariant prob-

ability vector of a finite state Markov chain.
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Theorem 2.3.13. : Every finite state Markov chain has an invariant probability
vector.
Proof : If the m X m matrix A is the state transition matrix associated with the
chain, then p(A4) = 1 by Lemma 2.3.11 and by Theorem 2.3.12 there exists a row
vector z > 0 with A4 = z. Normalizing z gives 7 = (ze,,) ! = with 74 = 7 and
mem = 1, i.e., 7 is an invariant probability vector of the chain.
A

Although Theorem 2.3.13 guarantees the existence of an invariant probability
vector, it is not unique in general. The next result investigates the general form of
an invariant probability vector.
Theorem 2.3.14. : Let S;, 1 <1 < r, be the ergodic classes of a finite state
Markov chain. For each S; there is a unique tnvariant probability vector w(2) with
the property that the entries of n (i) corresponding to the states of S; are positive
whereas all other entries are zero. Moreover, any invariant probability vector m of the
chain can be expressed as a linear conver combination of the vectors (i), 1 <1 <r,

i e.,
r
m=Y XNw(E), A0, Y A=1.
=1

Proof : See Berman and Plemnons [10, pp. 224-225].

In view of Theorem 2.3.14, even when the Markov chain is not irreducible, if
it has a single ergodic class, then the invariant probability vector is unique with
positive entries for positions corresponding to the ergodic class and zero entries for
positions corresponding to the transient states. Note that the ergodic classes are de-
fined as equivalence classes induced by the communication relation as defined above,

with no assumptions made on the (a)periodicity of the Markov chain. Therefore,
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in cases where there is a single ergodic class, the unique invariant probability vec-
tor will coincide with the long-run average probability vector of the Markov chain
( defined in the Cesaro sense).

Next, conditions for the nonsingularity of several matrices of interest for subse-
quent developments are established. To that end, the Kronecker product of matrices
is defined and some of its properties are introduced.

Definition 2.3.15 : If B and A are p X ¢ and m X n, rectangular matrices, respec-
tively, then their Kronecker product, denoted B ® A, is the pm X gn matriz defined

in block-partitioned form by

FB11A BijgA .- quA-
ByyA ByA -+ ByA
B® A := . (2.3.1)
-.BplA BpZ.A . .quA..

Some properties of the Kronecker product are collected in the following Lemma
for future use. The proof of these properties and of other useful properties of the
Kronecker product can be found in [14].

Lemma 2.3.16. : (i) : If A,B,C,D are rectangular matrices such that the ordinary

matriz products below are defined, then

(A®B)®C=AQ®(B®C), (2.3.2a)
(A® B) (C ® D) = AC® BD , (2.3.2b)
(A9 B)T = 4T @ BT . (2.3.2¢)

(¥7) : If the row vectors oo and [ are the left eigenvectors of the m X m and n X n
matrices A and B corresponding to eigenvalues A and u, respectively, then o ® B is

an eigenvector of A ®@ B with eigenvalue A u and all eigenpairs of A @ B have this
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form, whence the relation
det(A ® B) = det(A)" det(B)™ (2.3.2d)

holds, where det(X) is the determinant of the matriz X.

Let the pairs (a, A) and (8, B) be two irreducible discrete-time PH-represen-
tations. The row vectors a and 8 and the matrices A and B have dimensions
1x1l, 1 xm,lx!land m X m, respectively, and the corresponding ! x 1 and m x 1
column vectors of absorption probabilities are denoted by a and b, respectively. The
(I m x I m) matrices M and N are now defined by

M:=1,®(i—eaqa) + B ® (e1a — A) (2.3.30,)

Ni=Un—enf)QL+ (emfB—B)® A, (2.3.30)

respectively. Conditions for the nonsingularity of the matrices M and N are now
given. To that end, let C be the open disc centered at (0.5,0) in the complex plane
with radius 0.5 and let Sp(X) denote the spectrum of the matrix X. The following
result gives a sufficient but not necessary condition.

Lemma 2.3.17. : If Sp(B) C C (resp. Sp(A) C C) then the matriz M (resp. N)
defined by (2.3.3) is nonsingular.

Proof : Let Re(z) again denote the real part of the complex number z. The lemma,
is proved only for M as nonsingularity of N follows along the same lines. Since the
matrices (I; — A) and (I,, — B) are nonsingular, Lemma 2.3.16 allows a rewriting

of the matrix M in the form
M=I1,0(I-A)+(In—B)®@(A—e0a)
=Im® (L —A4)] D [(Im — B)® I}
where
D=(In~-B)'@h+1,(L-A) ' (A-e q).
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This clearly shows that M is nonsingular if and only if the matrix D is nonsingu-
lar. By Lemma 2.3.16 again, each eigenvalue of the matrix D is the sum of the
eigenvalues of the matrices (I,, — B)™! and (I; — A)~! (4 — €/ ). By assumption,
it is an easy exercise to check that the eigenvalues of (I, — B)"1 have real parts
strictly greater than one, and the matrix D is thus invertible if the real parts of the
eigenvalues of the matrix (I; — A)~! (4 — e; a) are greater than or equal to -1.
The proof will be completed by showing that if y € Sp [(Iz — A" (A-¢ a)] ,
then Re(y) > —1. The argument proceeds by contradiction and assumes Re(y) <

—1. If y denotes the corresponding right eigenvector, then
(L—A) Ay~ (ay) (- A) Tea=1y , (2.3.4)

and therefore ay # 0, for otherwise the second term on the left hand side of (2.3.4)

drops and adding y to both sides then yields
L+ n-A T4 y=L—-A) 'y=vy+y

and therefore (y+ 1) € Sp [(I — A)~*] and Re(y + 1) > 0 by Lemma 2.3.11, thus
contradicting the assumption that Re(y) < —1.

Since ay # 0, assume without loss of generality that ay = 1 and note from

(2.3.4) that —v [Iz — (HT'Y) A] y = e;. The assumption Re(y) < —1 implies '1%‘ <

1, whence (Il — (l%) A) is invertible. The relation

y=—[L-1+7A4 e

thus obtains, and therefore upon premultiplying by «,

-1
1 2
l1=——— o« II—A e . 2.3.5

1+~ [1+’7 ! ] : ( )
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Equations (2.3.5) and (2.2.3) combine to yield

-1

1+~ ~1 o

Pl—)=1—-(—— I — A =0
< v ) (1+7)a[1+7 : } “

where P(:) is the probability generating function of the PH-representation (a, 4).
The condition Re(y) < —1 means 0 < Re (1?) < 1, and the probability generating

function of a non-negative random variable being strictly positive in the right half-
plane, it thus follows by contradiction that Re(y) > —1.
A

It should be noted that for many interesting discrete PH-type distributions
such as Erlang or hypergeometric distributions the eigenvalues of the associated Q
matrix as given by (2.2.5) and (2.2.6), respectively, satisfy the conditions of Lemma
2.3.17.

The following corollary is an immediate consequence of this last proof.
Corollary 2.3.18. : The matriz M (resp. N) s singular if the matriz B (resp. A)
1s singular.

Proof : The matrix B being singular, A = 1 is an eigenvalue of (I, — B)~! that
corresponds to eigenvalue A = 0 for B, while (—1,¢;) is a right eigenpair for the
matrix (I; —A)~! (A—e; a). Therefore, zero is an eigenvalue of the matrix D defined
above, whence the matrix D is singular and so is the matrix M.

A

Similarly, let the pairs (o, A) and (8, B) be two irreducible continuous-time
PH-representations. The row vectors a and §# and the matrices A and B have
dimensions 1 X [,-1 x m, I X ! and m X m, respectively, and let the corresponding
I x 1 and m X 1 column vectors of absorption probabilities be again denoted by a
and b, respectively. The (I m X ! m) matrices M and N are now defined by

M:=Bo(li—ea)+I,®A (2.3.60)
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Ni=(n—emB)®A+B®1I, (2.3.6b)

respectively.

Lemma 2.3.19. : The matrices M and N defined by (2.8.6) are nonsingular.
Proof : The Lemma is proved only for N as the nonsingularity of M follows along
the same lines. With a similar line of thoughts as in the proof of Lemma 2.3.17, the

matrix N can be rewitten as
N=(Be&L) B '(Un—enf)@h+In®A™] (In® A)

Since the matrices A and B are invertible, it follows from the second part of Lemma
2.3.6 that the matrices (B®I;) and (I, ® A) are both invertible, whence N is invert-
ible if and only if the matrix [B_l (Im —emB)R LI+ 1, ® A‘l] is invertible. Note
from Lemma 2.3.11 that A has eigenvalues with strictly negative real parts, therefore
to show the nonsingularity of N , it suffices to show that if v € Sp[B~! (I, — em B)],
then Re(v) < 0. That this fact holds true follows by arguments similar to the ones
given in the proof of Lemma 2.3.17, and the matrix N is thus invertible.
A
Finally, the well-known Gerschgorin Circle Theorem is stated here for easy
reference in later chapters.

Theorem 2.3.20. : Let X be an nXn complex matriz. Define
n

ri(X) =) 1%l 1<i<n,
=1
J#

and let Z;, 1 < 1 < n, denote the closed disc in the complex plane C, with center

X;; and radius ri(X),i. e.,

Z;={z€C :|z—zy| <ri(X)}.
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Any eigenvalue A of X belongs to at least one of the discs Z;, 1 <1 < n. Moreover if
m of the discs form a connected set S, disjoint from the n—m remaining ones, then
S contains exactly m of the eigenvalues of X, counted according to their multiplicity
as roots of the characteristic polynomial of X. The numbers ri(X), 1 <i¢ <n, are
called the Gershgorin radii of the matriz X.

Proof : See Atkinson [7, p. 500].
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CHAPTER III
TWO NODE SYSTEM WITH PHASE TYPE SERVERS

II1.1. Introduction :

This chapter is devoted to the analysis of a two node system with PH-type
servers in both nodes. Under the discrete-time formulation discussed in Sections 2
and 3, neccesary and sufficient conditions‘ for the irreducibility of the underlying
Markov chain are given and its ergodic and transient states are identified. Explicit
analytical expressions for the invariant probabilities of the system are shown to have
a matriz geometric form and closed form expressions are obtained.

In Section 4, the effect of reversing the order of the servers is studied. The
results for the discrete-time formulation are illustrated in Section 5 through nu-
merical examples, for some specific PH-type service distributions. In Section 6, a
continuous-time formulation of the same model is discussed; the underlying Markov
chain is shown to always be irreducible, and closed form expressions for the invariant

probabilities are obtained in matrix geometric form.
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I11.2. The discrete-time model :

The model to be discussed consists of two nodes separated by a finite inter-
mediate buffer of capacity K, i. e., there are exactly K positions in the buffer,
inclusive of the one taken by the job in service at the second node server. The
service times at both nodes have PH-type distributions with irreducible represen-
tations (o, A) and (8, B), respectively. The row vectors o and § and the matrices
A and B have dimensions 1 X I, 1 X m, [ X! and m X m, respectively, and the
corresponding [ X 1 and m X 1 column vectors of absorption probabilities for the
first and the second node server are denoted by a and b, respectively. There is an
infinite supply of jobs available in front of the first node server and the second node
server never gets blocked. Immediate blocking is assumed in that blocking of the
first node server occurs as soon as the intermediate buffer becomes full. The first
node server resumes service as soon as there is a space available in the buffer, i. e.,
whenever a service completion takes place at the second node server.

A natural state space F for this system is the one that contains

r:= (K — 1)lm + 1 + m states with

(z,0) , 1<, k=0,

E=< (4,k,j), 1<1<,0<k<Kandl1<j<m,

(K,j), 1<5<m, k=K,
where k indicates the buffer size, while 7 and j represent the service phase in the
first and the second node server, respectively. The phase of the second node server
is not defined when it has no jobs to process and the phase of the first server is not
defined when the buffer is full since blocked.

The invariant probability vector of these states is denoted by the

1 X r row vector w. This vector is partioned into K + 1 blocks of components,
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say ® = (7o, m1,...,TK), With 7o, 7k, 0 < k < K, and ng being row vectors of
dimension 1 x I, 1 X Im and 1 X m, respectively.

By lexicographically ordering the states, i.e., (1,0),...,(!,0),(1,1,1),(2,1,1),
... (1,1,1),(1,1,2),..., the one-step state transition matrix T of the underlying
Markov chain can be obtained in block tridiagonal form. If T%, x, denotes the

(k1,k2)-th block of the matrix T', 0 < k1,k2 < K, then the reader will easily check

that
Tk pk—1=b8® A 1<k<K,
Txx =B®A+bB®aa 1<k<K,
Tyk+1 = B®aa 1<k<K-1,

where each block is an I m X I m matrix. The following interpretation can be given
for the above expressions: For the equation Tk x—1 = b8 ® A, the buffer size will
decrease by one when a service completion take place in the second node server,
according to the absorption vector b, and the new phase of service is initialized
according to the initialization vector o« (if there is a job availible in the buffer),
while no service completion occur in the first node server and the phase of service
change according to the transition matrix A. A parallel reasonning can also be
given for the term Tj x+1. On the other hand, at the end of the time epoch the
buffer size may remain unchanged for two reasons: i) A service completion may
occur at both servers, b8 ® ac, or ii) no service completion occur in both servers,
B ® A, whence the interpretation for the term T k. For the boundary states, the

entries are given in block form by

Too = A l x | matrix,
Tio=0 A ml x | matrix,
To1 =Rac I X ml matrix,
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Tk_1,k =BQ®a ml X m matrix,

Tkxk-1=b8®« m X ml matrix,

Tk, x =B m X m matrix.

The resulting transition matrix then takes the form

/ A f®an

b A BA+ B®aa
bfQaa

b®A B®A+ DBRacx
T = bB®aa

bBRaa

\ b ®«a
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II1.3. Analysis of the discrete-time model :

In this section, necessary and sufficient conditions are obtained for the irre-
ducibility of the Markov chain with one-step transition matrix T given by (3.2.1) and
explicit solutions for the invariant probability vector are obtained. For notational
convenience, when the intermediate buffer capacity is K, the one-step transition
matrix (3.2.1) is denoted by Tk.

The case K = 1 is discussed first since the results for the general discussion do
not cover this case. The results are summarized in the following theorem.
Theorem 3.3.1. : For the model described above with K = 1, 1. e., there is no
intermediate buffer, the underlying Markov chain is always irreducible and the

tnvariant probability vector 15 given explicitly by
mo=ca(lj— A", m=cB(In-B)", (3.3.1a)

where

-1

c=(a(li—A) te+B(In—B) em) (3.3.1d)

Proof : Let Eo and E; be subsets of the state set F given by

Eo={z€E:z=(0), 1<i<l}

Ei={z€eE:z=(1,7), 1<j<m}

Since no intermediate buffer space is available other than the one taken by the job
in service at the second node and immediate blocking is assumed, the servers cannot
be active simultaneously and the decomposition F = EgU F; thus holds. Note that
the one-step transition matrix T takes the form

A af
Ty

Il

ba B
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Since the PH-representation (a, A) is irreducible, by viewing the transitions
from the states in the set Eq to the states in the set Fy as visits to the instantaneous
phase [ 4+ 1 of the first server, it readily follows that the states in Eo belong to the
same irreducible class of £. By a similar argument, the states in F; are also in
an irreducible class. The irreducibility of the Markov chain thus follows since these
two irreducible classes of F communicate.

The equation 7 T} = 7 can be rewritten as

no A+ 7y (ba) = mo (3.3.2a)

no(af)+m B=m. (3.3.2b)
Solving 7o from (3.3.2a) and using (3.3.2b) with the relation Be,, + b = e, gives
mo=moaa(l; — A)7. (3.3.3)

or egivalently,

mo=ca(l;— A, (3.3.4)

with the identifation ¢ = mg a. Substitution of {3.3.4) into (3.3.2b) readily leads to
m =70(aB)(Im —B) ' =¢B(Im—B)". (3.3.5)

Use of the normalization condition 7o e; + 71 €, = 1 gives the desired result.
A
Next, the transitions among the states of the matrix Ts are discussed in detail
since they will be used to characterize the irreducibility of the matrices Tk, K > 2.

Let F denote the set of states for the Markov chain with one-step transition

matrix
A B Q ac Oixm
T, =]|bQA BQA+,Qaa B®a
Omxi b3 ® o B
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If the sets Ex, 0 < k < 2, are defined by

Ey:={ec E:e=(1,0), 1<i<},
Ey:={e€cE:e=(i,1,7), 1<i<l, 1<j<m},

Ey;:={e€E:e=(2,5), 1<j5<m},

then Eo, E; and Fs form a partition of the set E and the transitions among the
states within these sets are induced by the directed graphs G(4),G(B® A+ b8 ®
aa) and G(B), respectively. In general, these directed graphs may induce several
irreducible classes, say I, 1 <r < Rk, 0 < k < 2, and a set of transient states, say
Tk, 0 < k < 2, respectively. In order to more completely understand the transition
mechanism of the underlying Markov chain among the states in F, and characterize

the ergodic and transient states, the following sets are introduced:

E} :={(i,1,7) € E1 : a;8; > 0},

T# :=TynE*,

[y

El:=I7U{e € Ty :1Ij is reachable from e} 1<r <Ry,

U {e € Ty : e is reachable from T} and I} is reachable from e} ,
Qy:={r, L<r<R;: EINE] #0}
E} :=I; U{(k,?) € Tx : (k,7) is reachable from U,cq, E}

and Iy, is reachable from (k,7)} k=0,2, 1<r< Ry,
O :={r, 1 <r < Ry : Ej is reachable from the set Useq, Fi}, k=0,2,
Tk :={1,2,...,Re}\ Qi , 0<k<2,
(3.3.6)

where 1 < ¢ <!land 1<j <m. Note that each set E}, 0 <k <2, 1<r < Ry,

has two components, one in the rt? irreducible class I % of Ex and the one formed

- 33 -



by states which are transient for the directed graph governing the law of motion
within the set E%, but for which there exists a path that connects the irreducible
classes in the sets Ex, 0 < k' # k < 2, to the irreducible class I]. The index sets
Qk, 0 < k <2, identify thesets Ef, 0 <k <2, 1 <r < R, that communicate with
each other through a service completion process. The transitions from any state in
Eo U E4 to any state in E; is due to a service completion either in the first or the
second server. In either case, the phases in both PH-distributions are reinitialized.
Therefore, the Markov chain can enter the set Fy only from the states in the set
Ef. Furthermore, every state in the set E] is reachable from every state in the set
Eq U E5. Therefore, in view of these definitions the following property (P) holds,

where

(P): The sets Ef, r € 1, are reachable from every set Ef and E;l, 1<r< Ry
and 1 < r’ < Ry, and the sets E], r € I'; and the set T} \ E} are not reachable

from any state in Eq U Fj.

If Qo U Qs = 0 then, once the process reaches a state in the set U,cq,, the
service completions in the PH-type servers occur at the same time so that there
will always be one job in the buffer. Since all the sets E], r € 1;, are reachable
through a service completion in both servers, the states in the sets Ef, r €
communicate, whence the set |, E7 forms an irreducible class for the matrix T3
and all the other states will be transient. On the other hand, if Qo U Qs # 0, then
from the above argument none of the sets E], r € 1; are absorbing, and owing to
property (P), the set T := Ui:o Ureq, % form an irreducible class for T,. The
sets Ef, r € I'1, can not be absorbing sets since this would mean that the service
completions occur at the same time in both servers, and this would contradict the

fact that they are not reachable from Eq U Eq. Therefore, the states which are not
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in the set TZ;E are the transient states of T5.

The above discussion can be summarized in the following theorem.
Theorem 3.3.2. : The Markov chain with one-step probability transition matriz
T, is either irreducible or it has a single irreducible class and the remaining states
are transient. Furthermore, the irreducible class of the chain, denoted by T, is

given by

Ty = O U =; . (3.3.7)

k=0 r&Qy

The following corollary follows immediately from Theorems 3.3.2 and 2.3.13.
Corollary 3.3.3. : For the model described above, when K = 2, the invariant
probability distribution vector is always unique.

The analytical expression for the invariant distribution when K = 2 is included

in the statement of Theorem 3.3.7.

The directed graph, G(T%), of the matrix T3 can be used to obtain information
about the classification of the states of the Markov chain induced by the matrix
Tk, K > 2. In order to avoid confusion in the discussion, the state space for the
model with intermediate buffer capacity K > 2 is denoted by E. As in the case

K = 2 the state space E is partitioned into sets Ek, 1 < k < K, where Ek are

defined by

Eo:={e€E: e=(1,0), 1<i<1},
Ex:={ecE: e=(i,k,j), 1<t<!l,1<5<m}, (3.3.8a)

Ex ={ecE: e=(K,j), 1<j<m},
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and the subsets Ez, 1< r< Ry of Ek are defined as

E} = EI,
El:={(i,k,5): (5,1,/) € E], 1<i<m, 1<j<I},0<k<K (3.880)

Ey:={(K.,j): (2,5) €E}, 1<j<I}.

Comparison of the matrices Tx and T2 quickly reveals that the equailities

~

G(Eo) = G(Eo)
G(E,) =G(Ey), 0<k<K (3.3.9)

G(E;) = G(Ex)

holds, where the notation = indicates that the associated directed graphs have same
topological structure.
By using the notation developed for T3 the following cases are studied:

(i) No = 0 and N2 = B; As discussed for K = 2, this means that when both servers
are operational the service completions occur at the same time. From the discussion
given for K = 2 and relations (3.3.9) each set UrG?ilE{,, 0<k< K, 1<r<Ry,
form an ergodic class for Tx. Note that these are not the only ergodic classes of
Tk and there may be other ergodic classes formed by the communication of the
transient states of Ek that are not in any of the sets EIZ’ 1<k< K, 1<r<Rg.
(ii) No # 0 and Q3 = @; In this case, again owing to (3.3.6) and (3.3.9) the sets E) are

not reachable from the sets Ek_ 1, while the sets E’k_ 1 are reachable from the sets Ek,

for 1 < k < K. Therefore all the states in the set [Uszz Ek] U [U,lczo Urer, E;]

are transient states for Tx and the states in the set U11c=o Urenk E,: form a single

irreducible class, where 'y and Q, 0 < k < 2 are as defined in (3.3.6).
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(iii) Qo = 0 and Q3 # B; A similar argument as in case (ii) shows that the states in
the set [Ui{:_oz Ek} U [(Ureﬁ EE{_J U (Uref"g E}})] are transient states, while
the states in the set (Uregl E}'{_l) U (Urenz E}}) form a single ergodic class.

(iv) o # 0, Q2 # @ and E, and Ex are reachable from every state in the set

kK=_11 Ek; A sufficient but not necessary condition for this to happen is that Eg

and E, are reachable from every E] in G(T2). Let the set X be defined as
X:={e€ E : eis reachable from the set E‘o U EK} .

Note that Eo Uk k € X. In this case, every state in X communicates with each
other, possibly through the states in the set Eo UE k. Therefore, the set X form
an ergodic class for T, and the states in the set E \ X are the transient states as
they have access to the set 1770 UE Kk but not reachable from Eg Uk K-

The following results are immediate consequences of this discussion.
Lemma 3.3.4. : If cases (11)-(iv) above holds, then the matrices Tk, K > 2, have
a single ergodic class.
Corollary 3.3.5 : If cases (i1)-(iv) above holds, then the invariant probability
distribution vector m for the Markov chain with one-step transition matriz Tk,
K > 2, 1s unique.
Lemma 3.3.6. : If case (i) above holds, then the matrices Tk, K > 2, have several

ergodic classes.
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In order to obtain a closed form expression for the vector =, proceed as follows:
The equation

7 Tg=7 , we,=1
satisfied by the invariant vector can be rewritten as
o A+ 71 (b® A) = mo (3.3.10a)
o (BQac)+m (BOA+bS®aa)+m (bf @A) =m (3.3.108)
k-1 (B®aa)+ 7, (BOA+bIBQac)+ mry1 (b8 Q@ A) = mp (3.3.10¢)
1<k<K-1
Tk—2(B®aa)+7xk_1(B®A+b8Qaa)+7x (bfQ®a)=rmg_1 (3.3.10d)

k-1 (B®a)+7xg B=mg . (3.3.10¢)

Postmultiplication of (3.3.10a) by e, of (3.3.10b)-(3.3.10d) by (em ® €;) and of

(3.3.10e) by ey, leads, after simplifications, to the relations
7, [0® (61— a)] — k-1 [(em —0) ®a] =0, 1<k<K , (3.3.11)
whence upon postmultiplication by (8 ® ),
e (bB®@(e1—a)o] =mk—1 [(em —b)BQacq) , 1<k<K . (3.3.12)

Note that the left hand side of equation (3.3.11) is the transition probability from
the set E’k to the set Ek_l in one step while the right hand side of (3.3.11) is the

transition probability from the set Ek,_l to the set Ek. Now, postmultiplication of

(3.3.10b)-(3.3.10d) with (e, § ® I;) and use of (3.3.10b)-(3.3.10d)readily yield
71 [Blem B —Im) @ A+ (Im — em ) @ I1] = Oy (3.3.13a)
7k [Blem B —In) ® A+ (Im — em B) ® It]
+7k—1 [Blem B —Im)®aa] =0,y 1<k<K, (3.3.13b)
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whereas postmultiplication of (3.3.10b) and (3.3.10c) by (I, ® (e; o — I)) gives

Tht1 [bﬁ@A(cla—Iz)]+
(3.3.14)
Tk [B®A(e1a—Iz)—Im®(ema—Il)]=0m1 , 1<k<K-1.

Although both (3.3.13) and (3.3.14) provide a relation between the vectors 7 and
mr—1 for 1 < k < K, neither of these relations yields a recursive solution for the
vectors mx, 1 < k < K, since all the matrices in square brackets in these equations
turn out to be singular. Indeed, (0, e, ® €;) is eaily seen to be a right eigenpair for
both matrices upon postmultipliying them by e,, ® e;. Now, recall the definition

(2.3.3) of the matrices M and N. Equation (3.3.13b) gives the relation

g N=mg [(Im —em B) ® I + (em 8 — B) @ A
=Tk [emﬂ®A—Bemﬁ®A]"|“7rk—-1[B(Im"'em,3)®0/0£]

=g (b @ Al + 71 [B(lm —emfB)Qaca], 1<k<K ,
which combines to (3.3.12) to yield
e N=m, [bfQ(A—(e1—a)a)]+7x—1[BRaq], 1<k<K. (3.3.15)
Similarly, use of (3.3.13a) and (3.3.10a) readily gives

m N =y [bﬂ@A]
(3.3.16)
= 7o [B ® (I} — A)]

On the other hand, (3.3.14) can be rewritten in the form
e M=m, [BRaa]+nkt1 bFR(A—-(a1—a)a)] , 1<k<K-1 . (3.3.17)
Upon combining (3.3.15) and (3.3.17), the reader will check that

7k N=mp_1 M, 1<k< K . (3.3.18)
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The system of equations (3.3.18) can be solved recursively if either the matrix N or
the matrix M is invertible. The explicit solution is presented when the matrix N
is invertible. Necessary and sufficient conditions for the invertibility of N are given
in Lemma 2.3.17 and Corollary 2.3.18, respectively. From (3.3.16), (3.3.10e) and

(3.3.18) it follows that

mp=m (BR(L1—A)) N7!
Tk = mg—y M N1 1<k<K, (3.3.19)

Tk =71 (B®a)(lm—B)"1.

Postmultiplication of (3.3.10b)~(3.3.10d) by (en, ® I;) and of (3.3.10¢) by e,, ®

gives
Toaa+m (Bem®A+bQaa)+m(b® A) =7 (em® 1) (3.3.20a)
Th~1 (Bem®aa)+7mr (Bem ® A+b® aa) (3.3.200)
Thr1 (0@ A) =mp (em® L), 1<k< K —1
TKk—2 (Bem®ac)+7x_1 (Bem ® A+b® aq) (3.3.20¢)

+7x (b® @) =7x_1 (€m @ I})

k-1 (Bem®aa) + 7k (Bem ®a) =7k (em ® I)) (3.3.20d)

Summation of (3.3.20b) over k, 1 < k < K — 1 and use of (3.3.20a), (3.3.20¢),

(3.3.20d) and (3.3.10a) lead after some simplification to the relation

K-—1 K—1
mo+ > m (em®Il)=(7ro+ > ﬂk(em®I1)) (A+ac) . (3.3.21)
1=1 =1

Equations (3.3.19) and (3.3.21) combine to give the main result, which is sum-

marized in the following theorem.



Theorem 3.3.7. : Let the 1 X1 row vector z be the unique solution to the equation
z(A+aa)=z , zeg=1 . (3.3.22)

If the matrizx N s invertible, then any invariant probabilty wvector

7 = (7o,...,TK) has the following matrix geometric form
T =7 S RF! 1<k< K (3.3.23a)
Tk =70 S RET2 U, (3.3.23b)

where the vector mgo satisfies the equation

nZ=z . (3.3.24)

The matrices R,S,U and Z are defined through the equations

M=I,®(li—ea)+B®(ega—A) ml X ml matrix,
N=Un—-enf)QL1+(emfBf—B)®A ml X m! matrix,
R=MN"! ml X ml matrix,
S=[B®([,—A)] N7! I x m! matrix,
U=(B®a)(In—B)! m! X m matrix,
W=n+[2K" s B (eme D) I x | matrix,
Z=W+SRE-2Ue,zx I x | matrix.

Proof : The irreducibility of the matrix (A + ac) implies that the system (3.3.22)

has a unique solution z. Equation (3.3.23) follows from (3.3.19) and combines with

(3.3.21) to yield

oW (A+ax) =mW ,

whence, mo W = ¢ z for some constant ¢. The normalization condition 7 e, = 1 and

(3.3.23) lead to ¢ = 1 — 7k e;. Therefore,

moW = (1 — Tkem)z =T — 7oSRE2Uepmz
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and the relation

o [W—i—SRK“ZUem:c] =M d =z

follows upon grouping terms appropriately. This completes the proof.
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II1.4 The effect of reversing the order of the servers :

In this section, the model of Section 3.2 is studied when the order of the servers

is reversed, i. e., the first and the second node servers have PH-representations

(8, B) and (e, A), respectively. The states of the system are now

(0,5), 1<j<m,
(4, k,5) »
G,K), 1<i<l,

k=0,

1<:<,0<k< K,and1<j5<m,

k=K.

Note that now the first index denote the phase of the second node server. The

invariant probability vector is denoted by 7 and is partitioned into K + 1 block

components g, 0 < k < K, as in Section 2. By lexicographically ordering the

states, the one-step state transition matrix T of the underlying Markov chain can

be obtained in the block tridiagonal form

( B bR a
B®a B®A+ bA®A
bBRaa
" B®aa B®A+
T =

bfRax

bR A

B®aa BRA+ bRA

bf®aa
.

B®ac

(3.4.1)

while the equation 7 T = # fot the invariant probability vector 7 can be rewritten

as
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Kk A+Tr-1(0®@A) =Tk (3.4.2a)

Tk (FRaa)+Tgk_1(BOA+bBQac)+Tg_2 (0B ® A) = Fx_1(3.4.2)

Tryr (BRaa)+ T (BOA+bfRaa)+Tr—1 (bB®A) =Tk (3.4.2¢)
I1<k<K-1

T (BRaa)+ 7 (BQA+bBQaa)+To(bf®a) =7 (3.4.2d)

?T'l (B ® a) -+ /7?0 B = ’7\1"0 (3.4.26)
A direct comparision of (3.4.2) and (3.3.8) quickly reveals that
Tk =7Tg-x , O0<k<K . (3.4.3)

Denoting the service phase in the first and the second node servers, and the buffer
size at steady state by the random variables PH1, PH2 and C, respectively, (3.4.3)

now reads as

P{PH1=1, C=0}=P{PH2=1i, C =K},
P{PH1=:{,C=k,PH2=j}=P{PH1=3,C=K-k,PH2=1}, 0<k < K,
P{PH2=3j, C=K}=P{PH1=j C=0},
(3.4.4)
for 1 <:<1, 1 <3< m, where P, corresponds to the probability measure when
the order of the servers is reversed. In particular the marginal probabilities satisfy

the relations

P{C=k}=P{C=K-k}, 0<k<K,
P{PH1=1}=P{PH2=1}, 1<i<l,
P{PH2=j}=P{PHl=j5}, 1<j<m.
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A probabilistic interpretation for this kind of reversibility is provided in Mela-
med [49] by embedding both the original and the reversed system in the same
probability space and by viewing the vacant buffer locations (holes) of the original
system as “occupied” by fictitious dual jobs. As regular jobs march through the
buffer in one direction, the holes march in the opposite direction and they both

receive tdentical service times.
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IT1.5. Numerical examples :

In this section, Theorem 3.3.7 is illustrated with specific PH-type distributions.
Typical examples of PH-type distributions, such as Negative Binomial and Hyper-
geometric distributions, are used. First, three different examples are considered by

using PH-type distributions with the following numerical values:

1. Negative Binomial of order 3 (NBjg) with ¢y = 0.75, p2 = 0.5 and ug = 0.6,

2. Hypergeometric of order 3 (HG3) with o« = (0.5,0.3,0.2) and
Q =diag(0.75,0.85,0.8),

3. Hypergeometric of order 4 (HG4) with a« = (0.3,0.1,0.2,0.4) and

Q =diag(0.4,0.5,0.2,0.5).

The expected service time E S(-) can be found by using P/(1) = a(l, —
Q)7 ! em. The numerical values given above lead to ES(NB3) =5, ES(HG3) =5
and E S(HG4) = 1.75.

The following three examples are considered.

1st Node 2nd Node

(i) NBs  HGs
(i) HGs  HBs
(i) HG,  HGs

In Table (3.5.1), the values of py = 7 e, the invariant probability of having
k customers in the buffer, are displayed for buffer size K=6. The calculations are
carried out in double precision complex arithmetic up to 15 digits after the decimal
point. Only the first four digits after the decimal point are displayed in Table
(3.5.1). The last row checks the normalizing condition and it is accurate up to 1015,
Many of the matrices defined in Theorem 3.3.7 are of the form X = B A™! and

are computed as the solution of equation X A = B, by using Gaussian Elimination,
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instead of directly computing the inverses.

K=686

bufler size NB3 — HG3 HG3 — NB3 HG4— HG3
0 0.0875 0.0875 1.0836x10~4
1 0.1773 0.1447 5.9041x10~4
2 0.1705 0.1645 0.0027
3 0.1680 0.1680 0.0120
4 0.1645 0.1705 0.0560
5 0.1447 0.1773 0.2786
6 0.0875 0.0875 0.6500

sum 1.0 1.0 1.0

Table 3.5.1.

Cases (i) and (ii) show the effect of reversing the order of the servers and the
results confirm the conclusion of Section 4. In the third case, the first node server
is being faster than the second node server, the buffer is usually full and the first
node server is mostly in blocked position.

As a second example, a system that contains unreliable servers with constant
production times of one time slot is considered. The up and down times of the
servers are assumed geometric with parameters p and g, respectively, and the servers
are assumed to fail only when processing a job. A two node blocking system that
involves such unreliable servers has been studied by many authors (class ii.a). The
service distribution of such an unreliable server has a PH-type distribution which

can be represented by the pair (e, @), where

a = (1,0) and Q

i
TN
0 O
o 3|
N
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The following numerical values are used for the servers,
p1 = 0.95 pz = 0.6
g1 = 0.8 g2 = 0.2
For these values, the expected service times for server one and server two are 1.12
and 5, respectively. The vectors m; and the probability of finding k customers at
steady state, P{C = k}, 0 < k < 6, are shown in Table 3.5.2. As expected the

buffer is mostly full since the first server is faster than the second one.

K=6
buffer size (k) Tk P{C =k}
0 104 x (0.5356, 0.2965) 0.8321 x 104
1 10~2 x (0.4528,0.0622,0.0315,0.0182)  0.5647 x 103
2 103 x (0.8628,0.2936,0.3311,0.0643)  0.0016
3 (0.0066,0.0007,0.0010, 0.0003) 0.0086
4 (0.0011,0.0057,0.0056,0.0008) 0.0133
5 (0.1866,0.0003,0.0079, 0.0048) 0.1996
6 (0.1306,0.6457) 0.7763

sum = 1.0 exact up to 15 digits.

Table 3.5.2.

A word of caution: After computing the matrices M and N to form R, the use

of the equations 7, = 71 R and (3.3.10a) in (3.3.10b) gives

mo=Lm (3.5.1)
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with the matrix L being given by

L=0boA)(I;-—A)"'(B®aa) +t B A+bBQaa+R(BA®A)  (3.52)

To get the invariant probability vector m, a direct approach might be to solve (3.5.1)
for 71, as suggested in Neuts [58, p. 126| for the continuous-time version of the
problem. The difficulty with such a procedure is that the solution 7; to equation
(3.5.1) may not be unique. For instance, in the last example the eigenvalues of L
are 1, 1, 0.1294 and -0.0494, and the vectors z; = (0.9995, —0.0220,0.0071, 0.0220)
and x5 = (1.3539,1.2397,0.5084,0.1745) are both eigenvectors of L with eigenvalue
A = 1. Hence, the eigenvectors of L that corresponds to A = 1 lie in the subspace
spanned by z; and zz. Therefore, the eigenvalue problem (3.5.1) does not yield
to a unique solution 7y, and (3.3.24) needs to be solved for 7o in order to get the

invariant probability vector .
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II1.6. The continuous-time formulation :

In this section, a complete solution to the same problem is presented in
continuous-time to show that the two formulations do not subsume each other. The
continuous-time formulation has two major advantages: The underlying continuous-
time Markov chain is always irreducible, and the computations to obtain the explicit
solution are simpler.

The service distributions of the first and the second node servers again admit
representations («, A) and (8, B), respectively, which are assumed irreducible. The
row vectors o and @ and the infinitesimal generator matrices A and B have dimen-
sions 1 x !, 1 xm, I x1I and m X m, respectively. The corresponding / X 1 and
m X 1 column vectors of absorption rates for the first and the second node server
are denoted by a and b, respectively.

The state-space of the continuous-time Markov chain is defined as in Section
2, while the corresponding generator matrix T of the underlying Markov process
can be obtained by ordering the states in the lexicographical order as before. The

resulting infinitesimal generator matrix then takes the form

( A fRacx \

bel; BIi+ I,Qac
I, A

b, BL+ I,®ac
T = I.®A . (38.6.1)

b, BRI+ I,®a
I,® A

\ b ® a B j

The irreducibility of this continuous-time Markov chain is first established.
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Theorem 3.6.1. : For the contiuous-time version of the model described in Section
2, the underlying continuous-time Markov chain 1s always irreducible.

Proof : In the continuous-time formulation, two events cannot occur simultane-
ously (with a positive probability) unlike for the discrete-time case. This fact to-
gether with the independence and irreducibility of the service representations (a, A)

and (B, B), yields the following access relations:

zO zl'

(¢',k+1,7) 0<k<K-1,

(t,k,7) —
K k=K-—
(K,7) L (3.6.2)
zk—l,g 1<k< K,
k=1,
’J ’ 1’]

for every 1 <1, <land 1< 7,7 <m.

It is now easy to see that starting from an arbitrary state (z,k,J), any other
arbitrary state (¢/,k + n,J’) can be reached, for 1 < k, k+n < K — 1. For the case
when n > 0, based on (3.6.2), there is a path from the state (7, k£, ) to (¢', k+n+1,7),
and then from this state to the state (¢/, k +n,J'). A similar argument can be made
when n < 0, first by fixing + and then j. Since these two states are arbitrary all the
states of the Markov chain in the sets Eg, 1 < k < K — 1, communicate, where the
sets Ex, 0 < k < K, are defined as in Section 3. Similar arguments reveal that the
states in the sets Ep and F;, and Ex_; and Ek, respectively, also communicate.
Therefore, all the states in E communicate with each other since the sets Fx_o
and Fg_, and E1 and E,, respectively, are reachable from each other.

A

In order to obtain a closed form solution for the invariant vector 7, the equation
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x T = 0, it satisfies can be rewritten as

o A+m (b®L)=0;  (3.6.3a)

70 B®aa)+ 7 (BOLi+ I;m®A)+m2 (b8 1) =0im (3.6.3b)

7k—1 Im ® ac) + 7k (B ® It -+ I;m ® A) + 7iet1 (b8 ® It) = Oim (3.6.3¢)
1<k<K-1

Txk—2(In®ac) +7x_1 (BRI +In®A)+ 7k (b ® a) =0, (3.6.3d)

k-1 (Im ® @) + 7 B =0p, (3.6.3¢)

Postmultiplication of (3.6.3a) by ei, of (3.6.3b)-(3.6.3d) by (em ® e;) and of

(3.6.3) by em, after simplifications, gives

me(b®e) —Tho1(em®a) =0, 1<k<K , (3.6.4)
while postmultiplication of (3.6.4) with (8 ® o) yields

e (bB®erc) =mh—1 (emB®ac), 1<k<K . (3.6.5)

Now, postmultiplication of (3.6.3b)-(3.6.3d) with (em 8 ® Ii) and use of (3.6.3b)-
(3.6.3d) imply
m (B +58) ® Ii + (Im — em ) ® A] = Oim (3.6.6a)
Tk [(B 4+ 08) ® I + (Im — em B) ® A]

+7%—1 [(Im —emB)®ac] =0, 1<k<K . (3.6.6b)
Postmultiplication of (3.6.3b) and (3.6.3¢) by (Im ® (10 — I;)) yields

Trt1 (08 @ (I — e @]
(3.6.7)
+mx [BO 1 —e1e) +Im @ (A+aa)] =0m , 1<k<K-1.

Both (3.6.6) and (3.6.7) provides a relation between the vectors 7y and mx_y for

1 < k < K. However, neither of these relations yield a recursive solution for the
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vectors g, 1 < k < K, since all the matrices in these equations that are in square
brackets are singular as discussed in the discrete-time case.
Recall the definitions of the matrices M and N given in (2.3.6). Equation

(3.6.6b) can now be rewritten as

7k N =nk [(Im — em B) ® A+ B ® I]
=g [bB® I~ 7k—1 [(Im —emB)®aa] , 1<k<K , (3.6.8)

=-m B (LI —e1a)] —mk—1[Im®aa) , 1<k< K, (3.6.9)

where the last equality is obtained by direct substitution of (3.6.5) into (3.6.8).

Similarly, use of (3.6.6a) and (3.6.3a) gives

mN=-mbBOL]=m [B®A] . (3.8.10)

Moreover, (3.6.1a) and (3.6.7) combine to readily yield

mM=—n; In®ac] —mepy bB® (I —ere)] 1<k<K—1, (3.6.11)

whence

m N=mp_1 M, 1<k<K . (3.6.12)

by direct inspection of (3.6.9) and (3.6.11).

Since the matrices N and M are both invertible owing to Lemma 2.3.19., it

follows from (3.6.10), (3.6.3a) and (3.6.3¢) that

1 = 7o (ﬂ@A) ﬁ_l
Mg = Mgy M N7 1<k< K (3.6.13)

T = —Tg—1 (Im ® @) B!
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Postmultiplication of (3.6.3b)~(3.6.3d) by (em ® I1) and of (3.6.3d) by (em @ @)

and summing over k, 1 < k < K — 1, readily give the relation

K-—-1
(wo + ) mr(em ® I,)) (A+aa)=0 . (3.6.14)
k=1

Equations (3.6.13) and (3.6.14) combine to give the main result which is sum-
marized in the following theorem, whose proof goes along the same lines as the

proof of Theorem 3.3.7.
Theorem 3.6.2 : If the 1 X | row vector  is the unique solution to the equation

r(A+aa)=0;, zeg=1, (3.6.15)

then the invariant probabilty distribution vector m = (mo,...,Tk) has the following

matrix geometric form

T =mo S R*¥1 1<k<K (3.6.16a)
rx =70 8 RE72 U, (3.6.16b)

where the vector mo satisfies the equation
o Z =2 . (3.6.17)

The matrices R,S,U and Z are defined through the equations

—~

M=Be@(li—-eo)+I,®A ml X m! matrix,
Jvz(Im—emﬂ)®A+B®Iz ml x m!l matrix,
R=MN—! ml x ml matrix,
S =[8® A N-1 I x ml matrix,
U=—(I,®a) B~1 m! x | matrix,
wW=I+ [Zsz_ll S Rk“l] (em ® It) [ x | matrix,
Z=W+SRE2Uencz I x I matrix.
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CHAPTER IV
TWO NODE SYSTEM WITH
GEOMETRIC AND PHASE TYPE SERVERS

IV.1. Introduction :

In this chapter, a special case of the model studied in Chapter III is considered
when one of the servers is geometric. The discussion focuses on the situation where
the first and second node servers have geometric and phase type service distribu-
tions, respectively. The case when the order of the servers is reversed is only briefly
outlined as the results of the previous chapter clearly hold in this case. A system
state process is introduced and its probabilistic structure is carefully described.
For this special case, unlike for the general model of Chapter III, the underlying
Markov chain is shown to always have a single ergodic class, whence a unique in-
variant probability vector. The possibility of having transient states is established
and these transient states are identified in terms of the PH-representation of the
PH-server. Necessary and sufficient conditions are given for the irreducibility of
this Markov chain. Explicit expressions for the unique invariant probability vector
are obtained in matriz-geometric form and attempts are made to get an expression
for the (average) system throughput, in order to study its behaviour as a function
of the intermediate buffer capacity. The discussion of the discrete-time model con-
cludes by applying the results to some specific PH-type distributions. Finally, the
continuous-time formulation of the model is briefly discussed and similar results are
obtained: As in Chapter III, the irreducibility of the underlying continuous-time
Markov process is established and the unique invariant vector is given in matrix

geometric form.
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IV.2. The discrete-time model (Geometric/PH) :

The model to be discussed consists of two nodes separated by a finite inter-
mediate buffer of capacity K, i. e., there are exactly K positions in the buffer,
inclusive of the one taken by the job in service at the second node server. There is
an infinite supply of job units available in front of the first node server, which has
geometric service time distribution of parameter p with 0 < ¢ < 1. Moreover, the
second node server never gets blocked and has a PH-type service time distribution
with representation (o, Q) of order m, the notation being the one introduced in
Chapter II. The immediate blocking strategy is again adopted.

The state space of this system is naturally defined to be the set £ = {0} U
{1,2,...,K}x {1,2,...,m}, i. e,

(k,j), 1<k<K,1<j<m,

E =

0, k=0,
where k and j indicate the buffer content and the service phase of the second node
server, respectively. When the buffer is empty, the second node server has no jobs to
process and its phase is thus not defined; the corresponding state is indicated simply
by 0. Note that F is the state-space of a Markov chain, the so-called system process
which is different from the one given in Chapter III owing to the “memoryless”
nature of geometric distribution.

The invariant probability vector is denoted by the 1 x (K - m + 1) row vector
w, which is partitioned into K + 1 blocks of components, say, 7 = (7o, 71,...,TK),
with first entry mo being scalar and 7, 1 < k < K, being 1 X m row vectors. The
gt* entry of my, denoted by 7;, represents the invariant probability of the state
(k,7), 1 <k < K, 1< j < m, while mo is the invariant probability of having an

empty buffer.
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IV.3. Analysis of the discrete-time model :

If the states are ordered lexicographically, say in the order 0,(1,1),(1,2),...,
(1,m),(2,1),...,(2,m),...,(K,1),...,(K,m), the corresponding one-step transi-
tion matrix T is a (K -m+ 1) X (K -m+ 1) block tridiagonal matrix. If T, x, again
denotes the block corresponding to transitions from queue size k; to queue size ks,
then

Ak k—1 = Hpa 1<k<K,
Ap kg1 = 1@ 1<k<K,
Agk =0Q +upa 1<k <K,
where each block is an m X m matrix and @ is used for 1 — u. For the boundary

states, the entries are

Aco=1n scalar,

Ai0 = up m X 1 column vector,
Ao,1 = po 1 X m row vector,
Ax x-1 = pa m X m maftrix,

Ak =Q m X m matrix.

The resulting matrix is thus
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(7w \
p BQ + upa jne

Hpe RQ + pupa puQ

T = | - . (4.3.1)

kpa pQ + ppa pQ
\ pa Q }

The next theorem gives a necessary and sufficient condition for the irreducibil-

ity of the matrix T and identifies its transient and ergodic states in terms of the
properties of the matrix Q. The corresponding invariant probability vector is shown
to be unique, and is obtained explicitly in matriz geometric form.

Theorem 4.3.1. : The Markov chain with one-step probability transition matriz

T is irreducible if and only if the index set
I':'={1<j<m: Qi =0 for all 1 <i<m}

is empty. Moreover, if I' # 0 then the set of states © := {(K,7) : 7 € T} will be
transient and the rest of the states will form a single irreducible class.

Proof : As in Chapter III, let the sets Eg, 0 < k < K, be defined by

{z€eFE:z=(k,j), 1<j<m}, 0<k<K,
Ek:=
{0}, k =0.

From the structure of the matrix 7', the transitions among the states within Eg,0 <
k < K, are clearly governed by the directed graph G(EQ + upa). By the irreducibil-

ity assumption on the PH-representation, the matrix @ + pe is irreducible, and so is
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the matrix ZQ+ ppa by Lemma 2.3.3; the states in each component B, 0 < k < K,
therefore communicate with each other, without leaving Fx. On the other hand,
@ > 0 and pa > 0, since both & > 0 and p > 0 as discussed in Section 2.2. There-
fore the sets Ey, 0 < k < K, are reachable from each other, whence the set £\ Ex
is composed of states that communicate with each other without leaving it.

Since the transitions to buffer size K are due to a service completion in the
geometric server only, the set © by its very definition can never be reached from
the set E'\ ©. On the other hand, all the states in the set Ex \ © communicate with
all the states in the set Fx_; through a service completion in either of the servers
owing to the irreducibility of the PH-representation. Therefore, the set E \ © form
a single irreducible class for the state set E, whereas the set © is the transient class
of the Markov chain, and the statement of the theorem readily follows.

A

The next corollary is now an immediate consequence of Theorems 4.3.1 and
2.3.14.

Corollary 4.3.2. : The tnvariant probability distribution of the Markov chain with

one-step transition matriz T is unique.

In order to emphasize the simplicity of this model as it compares to the model
of Chapter III, the unique invariant probability vector is obtained by direct manupi-
lations, without specializing Theorem 3.3.7 to the case where A = %, « = 1 and
a = u, although this would give the same result.

In order to obtain this unique solution vector, the equation

rT=m (4.3.2)

is rewritten explicitly in terms of the block entries of the matrix T and of the vector
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7, in the form
mo + Bwip = 7o (4.3.3a)
proatm [BQ+upal+mmpa=m (4.3.3b)
umg—1Q + TE[EQ + ppa) + Trgpy1pa = Tk 1<k<K-1 (4.3.3¢)
Uk —2Q + Tr1[AQ + ppa] + Txpo = TE (4.3.3d)

UTE-1Q+7xkQ =7k . (4.3.3¢)
Postmultiplication of equation (4.3.3¢) by e, and use of the simple identities
Qem =€m — P and oe, =1 (4.3.4)
give
Tk 1P — unk(em — p) = Fmgp — umk—1(em —p) , 1<k<K-1. (4.3.5)
With the notation,
Yk i= Bmgp — prk—1(em —p) , 1<k <K,
the relation (4.3.5) takes the equivalent form
Y2 =93 = .= YK -2- (4.3.6)
Now, upon post multiplying (4.3.3b) with e, and using (4.3.3a), it follows that
Y2 = @mep — pri(em — p) = 0. (4.3.7)
Similar calculations in equations (4.3.3d) and {4.3.3¢) lead to

1k-1=0, (4.3.8)
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and (4.3.6),(4.3.7) and (4.3.8) thus combine to yield
=0, 1<k<K. (4.3.9)
Consequently,
ke = 0y Or TTgp1pa = unglen —pla, 1< k<K, (4.3.10)
and substitution of (4.3.10) into (4.3.3c) gives
Urk—1Q = 7|l — BQ —pemal , 1<k<K. (4.3.11)

Note that (4.3.11) agrees with (3.3.18) since for this special case, M = uQ and
N =(In —0Q — pena).
As readily observed, the m x m matrix (I, — ZQ — pema) is stable, thus

nonsingular, and for ease of notation, it is convenient to pose
S i=pu(lpn—aQ — ,uemoz)_1 (4.3.12q)

R:=QS . (4.3.12b)
With this notation, (4.3.11) takes the equivalent form
e = Tp—1 R, 1<k< K. (4.3.13)

S0

7 =m RFTL, 1<k< K, (4.3.14)
Solving (4.3.3e) for 7k yields
7k = uigk-1QUm — Q)71 (4.3.15)
while (4.3.7) and (4.3.3b) lead to

T = 71'0045 . (4.3.16)
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As usual, the scalar 7 is determined through the normalization condition

K
7o + Z Them =1 . (4.3.17)
k=1

Upon substituting (4.3.13)—(4.3.16) into (4.3.17), it is a simple matter to check that
7o = (1+ aST(K)em) ", (4.3.18)

where

K-—1
T(K)= Y RF'+4uR¥-Y(S-R)™. (4.3.19)
k=1

Nonsingularity of the matrix (S — R) in (4.3.19) follows from the nonsingularity of
the matrix (I,, — Q) and (4.3.12b).

This discussion is now summarized in the following theorem.

Theorem 4.3.3 : The unique tnvariant probability vector m = (mo,my,...,7TK) is
given by
7o = (1+ aST(K)ewm) " , (4.3.20a)
7, = moaSRFY 1<k<K, (4.3.20b)
Tk = prg—1QLm — Q)" (4.3.20¢)

= umoaSRE2Q(In — Q)71

where S,R and T(K) are defined by equations (4.3.12a), (4.8.12b) and (4.3.19),

respectively.
From the Neuman expansion

o0

S=plln—EQ+pema) ' =n) (AQ+pnema), (4.3.21)
1=0
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and from the fact that (Z @ + ¢ em @) is a positive matrix, it follows that S is also a
positive matrix, and so is the matrix R. A similar reasoning shows that (I,,, — Q)~!
is a positive matrix. Also 1 X m row vector S >> 0. This can be shown by the
following steps: Since 0 < u < 1, it is an easy exercise to check that elementwise

Y2 BQR+ nema)t > 320 (EQ) + pema. In view of this observation and (4.3.21)

1 . . .
Las > B (eQ) + e (4.3.22)
=0

If a; > 0 then (aS); > 0 owing to (4.3.22). On the other handifo; =0, 1< j<m
then

m oo oo
~(a8); > Y Y Fa; =Y 3 mad

=1 1=0 t=0 l€L*

where L* = {1 <1l < m: o > 0} and L* # 0 owing to the assumptions made
throughout the thesis. Since # > 0 and Q > 0, (aS); = O if and only if ij =0
for every | € L* and 7, 0 < ¢ < co. But since j is not in L*, if ij = 0 for every
lin L* and 7, then the state 7 of the PH-representation is not reachable from the
set L* in finite number of transitions, thus contradicting the irreducibility of the
PH-representation. Whence the inequality oS >> 0 holds.

In view of the above conclusion the analytical results which were obtained in
Theorem 4.3.3 readily check with the statement of Theorem 4.3.2: Indeed, a similar
argument to the one given above shows that the nonnegative matrix R = @S has no
zero column and since aS >> 0, from (4.3.20b) the inequality 7 >> 0, 0 < k < K,
easily follows. In particular, 7x_; >> 0 and if the j** column of the matrix Q has
all zero entries, then clearly every matrix Q*, ¢ > 1, will have all zero entries in the

7t column, and so does the matrix Q(I, — Q)~?! since

Qlm — Q) '=Q+Q*+Q*+...
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z = 0 for (I, — BQ) is nonsingular. Therefore, the matrix (I;, — ZQ — pen ) is
nonsingular, and so is the matrix S.

The effect of reversing the order of the servers discussed in Section IIL.5 for
the more general model clearly still holds for this special case. Denoting the service
phase of the PH-type server and the buffer size at steady state by the random

variables PH and C, respectively, equation (3.5.4) now takes the form

P{PH=j, C=k}=P{PH=j,C=K—k}, 1<j<m, 0<k<K,

P{C =0} = P,{C = K}

where P, again corresponds to the probability measure when the order of the servers

is reversed.
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IV.4. System throughput and some concavity results :

From the exact analytical expressions for the steady state probabilities, an
explicit expression for the average system throughput is developed as a function of
the intermediate buffer size K.

In terms of the parameters defined earlier, the average system throughput
Tr(K), when the buffer size is K, is defined as the departure probability of a job

from the system during a time slot, and is given by the expression
K
Tr(K)= > mp . (4.4.1)
k=1

From equation (4.3.20), it readly follows that

Tr(K) = +aj ST:I(@){;:% (4.4.2)
where T'(K) is defined by (4.3.19).
Lemma 4.4.1 : If T(K) is defined as in equation (4.8.19), then
T(K+1)-T(K)=pR¥ 1 epa(lm—Q)" !, K>1, (4.4.3)

holds and T'(K) increases (elementwise) with K.

Proof : From (4.3.21), simple algebra yields
T(K+1)-T(K) =1 — (In — R)T(K)

K-—1
=In—(In—R) | ) R™'+puR¥'(S-R)!
=1

=R¥™ [In—p(m—R)(S— R)7']

=RX"! [S~pul,—TR](S—-R)"?

=R¥ ' [In—pS™' - Q] (Im—Q)™*

=puRE Ve a(lm—Q)7 1, (4.4.3)
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and the result readily follows since the right handside of equation (4.4.3) is a positive
matrix.

A

To show the integer-concavity of the throughput as a function of the buffer size,

Tr(K + 1) — Tr(K) must be shown to decrease as K increases. From (4.4.2), it

follows that
Tr(K +1) — Tr(K) (4.4.4)

_aS[T(K+1)-T(K)] p+ aST(K +1) [pel, — empT| T(K)T (a85)T
B (1+aST(K)en)(1+aST(K +1)en) ’

Although the integer concavity of the throughput is intutively plauisible, this could
only be shown for the case when both servers are geometric, owing to algebraic
difficulties. In this simple case since e; = 1 and p is a scalar, pel = e;pT and the

second term in the numerator of (4.4.4) is thus zero. The equation takes the form

Tr(K + 1) — Tr(K) = o [T(K +1) = T(K)] p

= (1+aST(K)em)(1+aST(K+1)em) ’ (4.4.5)

Tr(K+1)—Tr(K) aS[T(K+1)~T(K)]p 1+aSTK —1)em
Tr(K) —Tr(K—1) aS[T(K)—T(K-1)]p 1+aST(K +1)em

(4.4.6)

The second factor of (4.4.6) is always less than one owing to Lemma 4.4.1
Lemma 4.4.2 : For a two node blocking system with geometric servers at each
node, the system throughput is integer-concave in the intermediate buffer size.

Proof : When both servers are geometric, with A being the rate of the second node

server, p=X, Q =X\, a=1, § = 3\#_71’ and R = i—%, and (4.4.6) reduces to

Tr(K+1)-Tr(K) _
Tr(K) —~Tr(K —1)

(4.4.7)
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When p < A, or equivalently R < 1, the right hand side of equation (4.4.7) is less
than one owing to Lemma 4.4.1. For R > 1, the recursion (4.3.22), after some

cancellations, readily yields

Tr(K +1) - Tr(K) _ (—u/B) + 3% T(K)

Tr(®) ~ Tr (& =1) ~ 17 & T & RT(K (44.8)
r(K) -Tr(K -1) 1+ + 3% RT(K)
whence
Tr(K +1) ~ Tr(K) _ (—w/B) + 5 T(K) -1
Tr(K)—Tr(K —1) 1+X‘fﬁ+§%T(K) ’
and the throughput is thus integer-concave.
FAN
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IV.5 Numerical examples :

To see the effects of buffer size and stochastic variability of the PH-type server
on the system throughput, (4.4.2) is evaluated for different types of distributions.
The reader is referred to (2.2.5)-(2.2.7) for the representations of these distributions.
In all cases the first node server had geometric service distribution with ¢ = 0.5.
The following distributions and numerical values were used for the second node

server:

i. Deterministic (5 units),
ii. Negative Binomial with three transient phases (NBgs), with ¢12 = 0.75,
g23 = 0.5, and ¢34 = 0.6, the forth phase being the absorbing phase;
iii. Geometric with rate A = 0.2; and
iv. Hypergeometric with three transient phases (HGs), with ¢4 = 0.25,
g24 = 0.15 and ¢34 = 0.2, the forth phase being again the absorbing phase.

The initialization vector was « = (0.5,0.3,0.2).

The cases are numbered in increasing order with the variance of the service
time distribution of the PH-type server. Expected service time of the PH-type
server is the same in all cases and is equal to 5 units. The resuts are summarized
in Table 4.5.1. For each PH-type server, the columns indicate that the throughput
is integer-concave in buffer size, whereas the rows indicate that for fixed buffer
size, throughput increases as the service time distribution of the second node server

becomes less variable.
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THROUGHPUT AS A FUNCTION OF BUFFER SIZE

buffer size deterministic = N Bg geometric HGg

1 0.142857 0.142857 0.142857 0.142857
2 0.197531 0.195804 0.187500 0.187093
3 0.199907 0.199714 0.196970 0.196733
4 0.199997 0.199980 0.199248 0.199152
5 0.200000 0.199999 0.199812 0.199778
7 0.200000 0.200000 0.199988 0.199985
10 0.200000 0.200000 0.200000 0.200000
expected service time of the

first (geometric) server =2

second (PH-type) server =5

Table 4.5.1
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IV.6 The continuous-time formulation :

In this section, the continous-time formulation of the model of Section 4.2 is
presented. Theorem 3.6.1 holds in that the underlying continuous-time Markov
chain is always irreducible. The service distribution of the PH-type server is again
represented by the pair (a, @), while the exponential server operates at rate u.

The states of the Markov chain are defined as in Section 3. The states be-
ing considered in the usual lexicographical order, the corresponding infinitesimal

generator matrix T takes the form

[~k ne \

p Q-—pln T3 B

T = pa @-plm pln , (4.6.1)

po Q—uly uly

\ po Q}

and the equation 7 T = Og 1 satisfied by the invariant vector can be rewritten as

—umo+ 7 p=0 (4.6.2a)
pumoa+m{(Q—uly)+mepa=_0pn (4.6.2b)
prp—1+ 7k (@ —ulpn) +mgp1pa=0, , 1<k<K, (4.6.2¢)
UTK—1+ 7Kk Q =0pm . (4.6.2d)

As in the discrete-time situation, postmultiplication of each equation in (4.6.2) by

em, after simplifications, gives
Tip— pumo =0 (4.6.3a)
Tht1P — UTkem =0 , 1<i<K . (4.6.3b)
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Postmultiplication of (4.6.3) by « and use of (4.6.2b)—(4.6.2¢c) and of the boundary

equations (4.6.2a) and (4.6.2d) give

proa =7y (W lm — pemo— Q) , (4.6.4a)
urg—1 =7k (lm —pena—Q), 1<k <K, (4.6.4b)
UTKE_1=—TgQ . (4.6.4¢)

By following the same arguments that lead to the nonsingularity of the matrix § in
discrete-time model of Section 3, it can be shown that the matrix (1 Im —p ey a—Q)

is nonsingular. If the matrix R is defined by

R=p(uln —pena—Q)~ 1, (4.6.5)

then (4.6.4) has a solution in matriz geometric for given by

i =7moaR, (4.6.6a)
me=m R 1<k<K, (4.6.6b)
Tk =—prg-1Q L, (4.6.6¢)

The scalar mg is now obtained through the standard normalization condition as

mo=(1+aT(K)em) " , (4.6.7)
where
K-1
T(K)=)»_ R'—uR¥7'Q7' . (4.6.8)
i=1

Since by Lemma 2.3.11 the matrix —@ is a nonsingular M-matrix, its inverse is a
nonnegative matrix [10] while the matrix R can be seen to be a nonnegative matrix
through its Neuman expansion. Therefore, 7o given in (4.6.7) is strictly positive.

The discussion is summarized in the following theorem.
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Theorem 4.6.1. : The unique tnvariant probability vector # = (mg,...
given by

mo=(1+aT(K)em)™" ,

m=maRk |, 1<i<K ,

K-1 -1
T =—umoak QT ,

\TK) 18

(4.6.90)
(4.6.9b)

(4.6.9¢)

where R and T(K) are defined by equations (4.6.5) and ({.6.8), respectively.
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CHAPTER V
TWO NODE SYSTEM WITH PHASE TYPE SERVERS
AND AN ARRIVAL PROCESS TO A FINITE BUFFER

V.1. Introduction :

In this chapter, a two node system with PH-type servers at both nodes is again
considered. This time, a finite capacity queue is allowed in front of the first node
server in order to capture the situation of a Bernoulls arrival stream to the system.
In Section 2, a system state process is defined and the corresponding one-step prob-
ability transition matrix is given. In Section 3, necessary and sufficient conditions
for the irreducibility of the Markov chain are obtained in terms of the system pa-
rameters. Unlike for the model of Chapter III, the invariant probability vector is
shown to always be unique, even in the discrete-time formulation, and is obtained
in matriz geometric form by grouping the states in pairs. The joint queue length
distribution is then easily obtained as entries of this invariant probability vector. A
continuous-time formulation of the same model is discussed in Section 4, where the
underlying Markov process is shown to be irreducible, and the unique invariant vec-
tor is obtained in matrix geometric form by using the solution technique of Section

3.
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V.2. The discrete-time model :

The model consists of two nodes separated by finite capacity buffers of sizes K;
and K> in front of the first and second node servers, respectively, including the jobs
being served by these servers. Each node is attended by a single PH-type server
with srreducible representations (a, A) and (8, B), at the first and second node,
respectively. The row vectors o and S and the matrices A and B are of dimensions
1x1l, 1 xm, !l x!and m X m, respectively. The corresponding ! X 1 and m x 1
column vectors of absorption probabilities for the first and the second node server
are denoted by a and b, respectively. A Bernoulli arrival stream with parameter n
feeds into the first buffer under the assumption that arrivals which see a full buffer
are lost. It is also assumed that the second server is never blocked, and that the
immediate blocking strategy is enforced for the first server.

The state-space of the system is naturally defined to be the set E given by
(k1,k2,%,5), 1<ki <Ki, 1<k;<K,,

(k1,0,7), 1<k <Ky, ky=0,

E =< (ki,K2,7), 1<ki<Ky, k:=K,,

(0,’62,].), kl =0, ].Skz SKz,

{ (0,0) ki =0, ke=0,

for 1 <7 <!land 1< j5 < m. Here, ki and k; represent the numbers of jobs in
buffer one and two, respectively, while ¢ and j represent the service phases at the
first and second servers, respectively. Note that the phase of the first server is not
defined when it has no jobs to process or when it is blocked, and that the phase of
the second server is not defined when the second buffer is empty.

For the sake of compactness, the notation
ri=[(K;=1)lm+1+m], s:=Km+1,
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is adopted in this chapter.

The invariant probability vector of these states is denoted by the 1 x (Kyr +
s) row vector m, which is partitioned into K; 4+ 1 blocks of components, say
7w = (T0,71,...,TK, ), With mo being 1 X s and =g, 0 < k1 < K, being 1 x r
row vectors, respectively. Each entry mg,, 0 < k1 < Kj, is of the form 7, =

(k10> Thy1s-++ > Thy K,) Where the vectors mg, x, is of dimension
lm’ 1Sk1SK1a 1Sk2<K2,
L, 1<k £ Ky, ks =0,

m, k1=0, 1§k2§K2,or
]-SleKla k2:K21

(1, ki1 =0, ky=0,

and the entries of each 7y, k,, 1 < k1 < K1, 1 < ky < Ka, are ordered as

(1,1),(2,1),...,(,1),(1,2)...,(5,9),..., (¢ —1,m), (,m).
By lexicographically ordering the states as described above, the one-step tran-

sition matrix P of the underlying Markov chain can be put in the form

(¢ P )
E G H

F G H
pP= S : (5.2.1)

F G H

\ FoL)

where the block entries C, D, and E are of dimensions s X s, s X r and r X s,

respectively, and the matrices F, G, H and L are of dimensions r X r. These
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matrices are given by

1
b B \
b3 B
O:ﬁ : )
b3 B
\ b8 B)J
«a
(b®a B®a \
b®a BQRa
D=77 : ’
ba BR®a
\ b ®a B)
© 5o \
b®a B®a
E:ﬁ : 3
b®a B®a
b®a B®a
\ 0
(0 0 ® acx ‘\
b R®aa B ax
F:ﬁ : ’
bBRaa B®ax
bfR®aac B®a
\ 0 0
7A n(B ® acr)
7(b® A) Ga n(B ® aa)
G = 7(b8 ® A) Gq n(B ® aa)
7(b8 @ A) Gy n(B ® a)

(b8 @ «) 7B
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A \
b A BRA
A BQA

A B®A
\ bfa B

A n(f®aa)
b A Lq n(B ® ac)
B®A Lg n(B Q ac)
B A Lyg
b ® a
with the diagonal entries G4 and Ly being defined by

Ga=n(B®A)+n(bfQac) ,

Li=B®A+n(bf ®aa).
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V.3. Analysis of the discrete-time model :
A necessary and sufficient condition for the irreducibility of the Markov chain
associated with the matrix P of one-step transition probabilities is now studied and

the uniqueness of the corresponding invariant probability vector is established.

If the sets Ex,, 0 < k; < K;, are defined by

(klakZaiaj)’ 1Sk2 _<_.K2
Ekl :Z{CEEZ € — (kl,O,z'), k2:0 },1_<_k1§K1,
(klaKZ,j), k2 :KZ

Eo:={ec E: e=(0,ks,5), 1<ks<Ky}U{(0,0)},

then the sets Ef,, 0 < ki < Kj, form a partition of the state space E for the
Markov chain. Since 0 < n < 1, the following three observations are easily verified:
(i) Lemma 2.3.3 quickly implies that the directed graphs of the matrices G, L and
T have the same topological structure, with T' given by (3.3.1).
(ii) The set Eg,_1 is reachable from every state in the set Ey, and vice versa, for
1<k <K;.
(iii) The state (0,0) is reachable from every state in the set Eg.

The next theorem readily follows from the observations (i)-(iii) by virtue of
Theorem 3.4.5.
Theorem 5.3.1. : If the matriz T defined in Chapter III is irreducible, then so is

the matriz P.

Next, even when the matrix P is not irreducible, it is now shown to have a
single ergodic class, whence the invariant probability distribution vector is always
unique. Let the Kyr X K;r matrix P be obtained by deleting the first s rows and
columns of P, i. e., P is the submatrix of P that governs the transition mechanism

within the states in the set E \ Eo. Assume the directed graph G(ﬁ) to induce
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several ergodic classes and a set of transient states, as would be the case if T' had
several ergodic classes. In view of (ii) the set Ey is reachable from all of the ergodic
classes of E \ Eg, whence by (iii), the state (0,0) is reachable from every ergodic
class of the set E\ Eo. On the other hand, if (0,0) — e for a state e in E, then e will
be in the communication link between the state (0,0) and the other states of the
chain that (0,0) has access to, while if (0,0) /4 e, then e will be a transient state
of the chain since e — (0,0) from the above argument. Therefore, in the directed
graph G(P), the set E(oo) := {e € E : (0,0) — e} U {(0,0)} forms an irreducible

class while the set E \ E (g o) forms a transient class.
The next theorem follows from Theorem 2.3.14 and these remarks.

Theorem 5.8.2. : The Markov chain with one-step transition matriz P always
has a single ergodic class, and the invariant probability vector © as defined above

1s thus untque.

In order to obtain a closed form expression for this unique vector =, it is
convenient to group the vectors mg,, 0 < k; < Ky, in pairs. With this in mind, the

equation 7 P = 7 can then be rewritten as

o (IS—C):W1E (5.3.10,)

7oD+mG+me F=m (5.3.1b)

H 0 I I
(7 —15 Tk ) (G’ TIXT> = (Thys Ty +1) <_}, 0 " ) , 1 < ki < Kq(5.3.1c)

Xr

T, —1H =mg, (Ir—L) . (5.3.1d)

In order to get this explicit solution, nonsingularity of the matrices (I, — C)
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H 0,9, \ . ]
and ( a I. ) is needed. Since

n
_—ﬁb Im - ﬁB

_ﬁbﬂ Im - 77—B
and n > 0, I, — C is invertible if and only if the matrix I,, — 7B is invertible, a fact
easily established by a direct application of Theorem 2.3.20. This can also be seen
by noting that p(B) < 1 and hence O is not an eigenvalue of the matrix I,, — 7B.
On the other hand, since

det (g O}i") = det(H) = 1" det(A) det(B) [det(B ® 4)]¥>~1

=p" det(A)(Kz“l)m“"l det(B)(K2—1)1+1 ,
where the last equality follows from (2.3.2d), it is easy to see that the matrix

(g OrIXT) is invertible if and only if both A and B are invertible.
,

As a result of this discussion, nonsingularity of both A and B will be as-
sumed for the discrete time model. Although this may seem rather restrictive,
many well-known discrete PH-type distributions enjoy this property, including the
hyperexponential and negative binomial distributions, to name a few.

Theorem 5.3.3. : If the matrices A and B are invertible, then the unique invariant
probability vector m = (mg,71,...,7TK,) has the following form
mo=m E(I;—~C)"1, (5.3.2)

I,

OTXT

mh =7k, (I —L)H™',I,) REr=F~1 ( > , 1<k < Ky (5.3.3)

i, = (zw)" ! (5.3.4)
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where 1 X r vector x satisfies
£Z =0, , £>0F (or z<07F) (5.3.5)
with the 2r X 2r and r X r matrices R and Z and the r X 1 vector w being given by

R = IT Ir H Orxr -
N —F Or><'r G Ir ’

_ —1 -
Z= (I -L)H\L,) RK1—2<E(I3 ) FD+G Ir‘) |

w=(I,—L)H',I,)

Ki—1
_ I _ oy
RKI 2<0 " )E(Is_"o) 1€s+ E RKl fer—L (S;‘)]"l’er
r

rXr -

Proof : Since I, — C is invertible, (5.3.2) follows from (5.3.1a). On the other hand,

(5.3.1c) takes the form
(Thy—15 Thy) = (Thyy Thy+1) R, 1<ky <Ky ,
or equivalently, by induction,
(Thy—1, Try) = (T, —1, 7rK1)RK1_k’l , 1<k <K; . (5.3.6)
From (5.3.1d), it follows that
(7x, -1, 7x,) =7k, (I —LYH ', 1) , (5.3.7)

and therefore (5.3.3) readily obtains. Equations (5.3.4) and (5.3.5) are obtained
by using (5.3.2), (5.3.6) and (5.3.7) in (5.3.1b) and the standard normalization

.t K
condition 7pes -+ Zk11=1 Tk, €r = L.

- 82 —



V.4. The continuous-time formulation :

In this section, a complete solution, without any additional assumptions on
the service distributions, is presented for the continuous-time formulation. The
notation and state description of Section 2 are again used. The arrival process is
now assumed to be Poisson with rate . The infinitesimal generator matrix P is

again of the form
(¢ P )
E G H

F G H

: (5.4.1)

F G H

\ F L)

where the block entries C, D, and F have dimensions s X s, § X r, and r X s,
respectively, while the matrices F, G, H and L are of dimension r X r. These
matrices are now given by

—-n

b B-—nl,
b3 B—nl,

b3 B —nl,
\ b8 B—nln)
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I ® a
D=n s
I, R«
I,
0 B®a \
0 I,.®a
E = . ,
0 I,,®a
0 Im®aJ
0
0 fRaa \
0 I, ®ax
F = . ,
0 I,®ax
0 I.®a
\ o )
(4~ \
b I; Gy
el Gy
G= . ,
BRI Gq
\ b@a B-—nl,
4 \
b I; Ly
3@ I Lg
L= . ,
I L4
\ Boa B/

and H = n I,. The diagonal entries of the matrices G and L are given by

Gi=BL+1,8A—n(In®IL)and Lg =B ®I; + I, ® A, respectively.
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The observations (i)—(iii) made for the discrete-time model obviously still apply
to the continuous-time model, and the conclusions of Theorem 5.3.1 thus combine
with Theorem 3.6.1 to give the following result.

Theorem 5.4.1. : The Markov process with infinitesimal generator matriz P is

irreducible, and the invariant probability vector w as defined above ts thus unique.

In order to obtain an expression for the unique vector m, the vectors mg,, 0 <
k; < K;, are again grouped in pairs. The equation # P = Ok, ,4+s can then be

rewritten in the form
7o C = —m E (5.4.2a)
mo D+ 71 G+ 7w F =0, (5.4.2b)

-G I
77(Wkl—l"]rk1):(7rk1a7rk1+1)(__F 017”:’.) , 1<k <Ky, (5.4.36)

NTK, -1 =—7Tg, L . (5.4.2d)

In this case the matrix H is the identity matrix, only the nonsingularity of
C is needed in order to get an explicit solution. The nonsingularity of C again
follows from the Gershgorin Circle Theorem given in Theorem 3.2.20. Note that no
invertibility assumption on the matrices A or B is needed for the continuous-time
model. Proceeding as in the proof of Theorem 5.3.3, the following similar result
can be obtained.
Theorem 5.4.2. : The unique steady state probability vector m = (mwo,T1,...,TKk,)
is given by the equations

7!’0:—7I'1EC_1 ’ (543)

I,

rXr

Tk, = TK, (——’)’]_1 L, IT) RKl_kl_l (0 ) ) 1 S kl < Kl (5.4.4)

Tx, = (zw) 'z, (5.4.5)
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where 1 X r vector z salisfies
tZ =0, , z>>0F (or z<<0l) (5.4.6)

and the 2r x 2r and r X r matrices R and Z and the r X 1 vector w being given by

—1
— -n G 1,
B= (—?le OrXr> ’
— -1
Z=(—n"'L,1,) R+ (G EC D) ’

F

K,—-1
w=(-n""L,1) ["RK‘“Z <OI’ ) EC e+ Y RFi—R-1 (;51) +er.

rXr ki=1 r
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CHAPTER VI
APPLICATIONS TO SERVERS SUBJECT TO FAILURES

VI.1. Introduction :

In this chapter, a class of unreliable servers with PH-type service and repair
time distributions is introduced. In Section 2, the effective service time distribution
of such servers is shown to admit a PH-type represention of higher order so that
the methods of the previous chapters apply. Under the irreducibility assumption on
the service and repair PH-distributions, necessary and sufficient conditions for the
irreducibility of the effective service representation are established. In Section 3,
the situation where even idling servers may be subject to failure is considered: The
transition probabilities among the boundary states are explicitly written out for
this case and an explicit solution is then obtained in matrix geometric form for the
invariant probabilities through algebraic manupulations similar to the ones given in
the previous chapters. The case when only operational servers can fail is obtained
as a special case of the discussion given for the case when idling servers can fail.
Applications to other models are only briefly mentioned. Finally to illustrate the

ideas, several numerical examples are considered in Section 4.
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VI1.2. Representation of The Effective Service Time Distribution :

Consider the following model for a PH-type server subject to occasional failures:
The service and repair distributions have irreducible PH-representations (¢, A) and
(8, B) of order m and n, respectively, with the corresponding m x 1 and n X 1 column
vectors of absorption probabilities denoted by a and b, respectively. As soon as a
failure occurs, the repair process starts and proceeds according to a PH-type repair

distribution. Let the sets S, R and E be defined by
Si={s;, 1<i<m}, R:={rj, 1<j<n}, E:=SUR,

where s; and r; are the ** service phase and the j** repair phase, respectively.
Let C and D be m X n and n X m non-negative matrices with entries C;; and
Di;, 1 <1< m, 1< 75 < n, respectively, with the property that Ce, = e,, and
De,, = e,. Similarly, let the 1 X m column vector f have non-negative entries
fi, 1<e<m.

It is assumed that when the server is up and in phase of service i, it can
fail with probability f;, 1 < ¢ < m, and the repair is initialized at phase 7 with
probability Ci;, 1 <7 < m, 1 <j < n. Similarly, when the repair is completed,
i.e., whenever there is a transition from a transient phase 5 to the absorbing phase
n + 1 of the repair distribution, the service restarts at a phase ¢ with probability
Dj;, 1 <7 <n, 1<¢< m. Moreover, a failure at a repair completion epoch is
not allowed. In addition to these fairly general transition mechanisms, the server is
allowed to fail at a service completion epoch with probability ¢ and reinitialization
of the repair phase is then done according to the probability distribution vector £.
The natural conditions ¢ <1 and f; < 1, 1 <7 < m, are imposed throughout.

Under the assumptions made, it is easy to see that the effective service time

distribution of such a server admits a PH-type distribution. To that end, consider a
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discrete-time Markov chain on the state space EU{s;+1}, where sy, is interpreted
as the instantenous state for the PH-representation of the (effective) service. The
corresponding one-step transition matrix P and the initialization probability vector

q are of the form

P = ( Q ij) ) (q:qm+n+1) ’

0m+n
q= (ql,an"' ,Qm+n) ’

where @, p and ¢ are of dimension (m +n) x (m +n),(m+n) x1 and 1 x (m + n),

respectively. The equalities

Ay A Af C

Q= , (6.2.1a)
Ay D B
A=

p= ( fTa) : (6.2.1b)
On

g=(¢a,4p) , (6.2.1¢)

readily follows, where the notation A, := diag(zi,...,z:) is used for all z in IR'.

The relations Af e, = f and Ay e, = b easily follows.
The effective service distribution of such a server thus has a PH-representation

(¢,Q) of order n + m. The assumption ¢my1 = Bn+1 = 0 imply that ¢mini1 =0.

Lemma 6.2.1. : The PH-representation (q,Q) is irreducible if and only if every

state rj in the set R\ R* is reachable from the set R* under the transition mechanism

induced by G(B), where
R* :={rj € R :r; is reachable from the set § under G(Q + pq) }.

Moreover, if a state r; in R\ R* is not reachable from R*, r; is a transient phase

for the PH-representation (g, Q).
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Proof : By definition, the irreducibility of the PH-representation (g, Q) is equiva-
lent to the irreducibilty of the (m + n) X (m + n) matrix @ + pq, which is readily

given by

AjA+dAyaa AfC+@Azaf
Q+pg=
Ay D B

Now, the property s; — sy, 1 < 4,4’ < m, is a direct consequence of the irreduciblity
of the matrix ATA + $A7aa, a fact which follows from Lemma 2.2.3 since by
assumption ¢ < 1, f; <1, 1 <7 < m, and the representation (o, A) is irreducible.
Therefore, every state s in S communicates with any other state in § without leaving
S. On the other hand, since (I, — B) is assumed invertible, B is substochastic and
b # 0L, This fact, together with the fact that the states {r1,...,r,} are all transient
states for the representation (8, B) yields the access relation r; — s; for every r; in
R and s; in S.
(Sufficiency) The sufficiency part of the first assertion of the Lemma now follows
from the hypothesis, since every r; in R \ R* is reachable from R*, thus they are
communicating with the set S U R*.
(Necessity) Follows trivally by the definition of irreducibility and the form of the
matrix @ + pg in that the transitions within the set R are governed by the matrix
B only, due to the assumption that failures at repair completions are not allowed.

The second part of Lemma 6.2.1 also follows easily from the above discussion.
Since b # 0Z, the underlying Markov chain will eventually leave the set R and enter
the set S. If r; in R\ R* is not reachable from the set R* then r; will never be
revisited and will be a transient state for the Markov chain.

A

Since, (¢, @) is constructed from basic building blocks and is not given from the
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onset, no invertibility assumptions are made for the matrix I,,+, — @. However, a

sufficient condition is obtained in the following Lemma.

Lemma 6.2.2. : If the PH-representation (q,Q) is irreducible then the matriz
Ipyn — @ is invertible.
Proof : The directed graph G(Q) may in general induce several ergodic classes.
However the irreducibility of the representation (¢, @) implies that all of these classes
communicate with each other through s,,41 in the access relation induced by G(Q+
pq), and therefore, the states in E are all transient for the Markov chain with
one-step probability transition matrix P. On the other hand, if G(Q) induces a
single ergodic class, the states in F are again all transient since s,,+1 is indeed an
absorbing state for P, i. e., p # O;F,H_n from (6.2.1b), owing to the assumption that
a # 0T and f; <1, 1 <1 < m. The invertibility of (I;s4+», — @) is now immediate
since it is equivalent to the statement that the states in E are transient for the
Markov chain with one-step probability transition matrix P [Neuts, 58 p. 45].

A

The representation of the effective service time given above for such a faliure
type server subsumes the case when the server is reliable, i. e., = 0, f =07 | in

A+aa Opmxn

which case, the matrix Q + pq takes the form ( AsD B

). This special case

also provides a trivial example for the representation (g, Q) not to be irreducible,
although the representation (a, A) for the service duration is. If the representation
(g,Q) is not irreducible, Lemma 6.2.1 may provide a general guideline in identi-
fying the corresponding irreducible representation. In the following sections it is
assumed that the representation (g, Q) is ¢rreducible whence the matrix (In4+n — Q)

is invertible.
In some applications the server may fail with a positive probability at a ser-
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vice completion epoch, i. e., ¢ > 0. In that event, since a # 0L, there exists
some ¢, 1 < ¢ < m, such that a; > 0, whence s; — r; for every r; in the set
R.:={1<j<n: Bj >0} as the repair phase is initialized according to 8. Since
the representation (8, B) is irreducible, every state in R\ R, must be reachable
from the set R, since otherwise r will be a transient state for the matrix B + b8
thus contradicting the irreducibility of (8, B). Therefore, similar arguments that
lead to the sufficiency part of Lemma 6.2.1 show that the representation (g,Q) is
irreducible.

To conclude this section, it is noteworthy to keep in mind that the matrices
C and D, corresponding to transition probabilities between the service and repair
phases, take special forms depending on the assumptions made. For instance, if
upon completion of a repair, the phase of service is reinitialized according to «,
and similarly if upon a failure the phase of repair is initiazed according to 3, then
C and D take the special forms C = e, 8 and D = e, a. In the case when
C = e B, regardless of the form of the matrix D, it is an easy exercise to see that

the representation (g, Q) given by (6.2.1) is irreducible.
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VI1.3. Two Node System With PH-Type Failure Servers :

In this section model of Chapter III is considered in the event that the servers
are subject to failures even when they are idling. The first and second node servers
have irreducible PH-representations of the form (6.2.1), denoted by (q1,@1) and
(g2,Q2), respectively. The service and repair PH-representations are denoted by
the pairs (a4, A;) and (8;, B;), ¢ = 1,2. It is assumed that an idling server fails with
probability ¢g;, ¢ = 1,2, and upon failure the phase of repair is initialized according
to the initialization vector 8;. The row vectors a; and 3; and the matrices 4; and
B; are of dimension 1 X m;, 1 X n;, m; X m; and n; X n;, respectively, for + =1, 2.
The corresponding m; X 1 and n; X 1 column vectors of absorption probabilities for
the service and the repair distributions are denoted by a; and b;, respectively, for

¢ = 1,2. For sake of compactness, the following notation is used hereafter.

h = (mq + ny) (m2 + n2) ry=mg+ny ,
h1 = (m1+n1) (1+n2) , ro =mqg +ng ,
he = (14 n;1) (ma +n2) , l=mnq+1

As in Chapter III it is assumed that the first server never starves while the
second is never blocked, and the immediate blocking strategy is adopted. The

states of the system are denoted by

((7:,0), kzoalﬁiﬁfh
(Z',O,].) ] k=0, 1Sifrlg 7’)’I,2+]_S].ST2,
(G, k,j), 1<:<r;,0<k<K,and1<j<ry,

(iaK’j) 3 k:Ka m1+1SZ’S71,1SJ'S7’2>

(K,j), k=K, 1<j<rs.

Here, k indicates the buffer size, while ¢ and j represent the service or repair phase
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in the first and the second node server, respectively. The phase of service of the
second node server is not defined when it has no jobs to process and the phase of
service of the first node server is not defined when the buffer is full as it is blocked.
The pairs (¢,0), 1 <7 <ry, and (K,J), 1 < j < rg, correspond to states where the
second and the first node server, respectively, are functional but idle.

The invariant probability vector of these states is denoted by the
1 X [(K —1)h+ k1 + hy] row vector w. As in Chapter III, this vector is parti-
tioned into K + 1 blocks of components, say = = (mo,71,...,7k), With 7o being
1X hy, 7, 0<1< K, being 1 X h, and 7 being 1 X hg, row vectors.

By ordering the states as in Chapter III, i. e., first varying the index of the first
server, the one-step state transition matrix T of the underlying Markov chain can
be obtained in block tridiagonal form. Since the effective service time distribution
of the failure service is still PH-type, the intermediate block entries of the matrix T
is still of the form given in Chapter III, i. e., if Tk, x, denote the (k1,k2)-th block

of the matrix T', 0 < k1, k2 < K, then

Txx—1 =p2 o2 @ Q1 1<k< K,
Trr = Q2 ® Q1+ p2 a2 @ p1 oy 1<k< K,
Trr+1 = Q2@ p1ay 1<k<K-1,

where each block is an A X h matrix. For the boundary states the entries are given

by
Too = (iz g%§2> ® Q1 hi X hi matrix,
Ti0 = p2 (fg, 02 02) ® Q1 h x hi matrix,
To1 = <Eb22 01322 ¢%§2> ® p1 o1 hi1 X h matrix,
Tk-1,Kk = (51 R2®p1, ¢1 Q2 pi ﬁl) h X ho matrix,
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P2 a2 ® o .
1= h
Tr,xk-1 <p2 a2 ® (As, D1,B1)> 9 X h matrix,

ho X hg matrix.

T — §1Q2 91 Q28p01
KK Q2®b1  Q2® B

Since the effective service representations (¢1,@Q1) and (g2,Q2) are both as-
sumed irreducible, the results of Section III.4 can be used to characterize the irre-
ducibility of the Markov chain studied here.

As in Chapter III, the matrices M and N are defined by
M ::Irz X (Ir1 — €, ql) + Q@2 (67-1 q1 — Ql) R (6.3.1(1)

N :=(I,, —er, 02) ® I, +(€r, 92— Q2) ® Q1 , (6.3.1b)

The invertibility of the matrix Ir, — Tk x is needed. To see this, note that the

matrix (‘Zl 9113/3 ! ) , being stochastic, has eigenvalues in the closed unit disc, while
1 1

the matrix @2 has eigenvalues in the open unit disc in the complex plane. It is an

easy exercise to show that if (A,u) and (u,v) are right eigenpairs for the matrices

Q2 and (‘Zl 9113,31>’ respectively, then (A, v ® v) is a right eigenpair for the
1 1

matrix Tk x. The eigenvalues of Tk x are therefore all in the open unit disc, or
equivalently the eigenvalues of I}, — Tk, x have strictly positive real parts, and the
matrix Iy, — Tk i is invertible.

The invariant probability vector 7 can now be obtained by following exactly

the same steps as in Section I11.4: First, rewrite the equation 7 = # T, in the form
7o Too + 71 T1o = m0(6.3.2a)
7o To1r + 71 (@2 ® Q1 + p2 g2 ® p1q1) + 72 (P2 g2 ® Q1) = 71(6.3.2b)

M1 (Q2@p1¢1) + 76 (Q2® Q1 +P2¢2QP191) + Tit1 (P292 @ Q1) = 7
1<k<K-1 (6.3.2¢)
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Tk-2(Q2®p1q1) +TEk-1(Q2® Q1 +p2029p1q1) + T T, x—1 = Tr_1
(6.3.2d)

TK—1 TK—l,K + T TK,K = 7rK(6.3.26)
In this case the equations corresponding to (3.4.10)-(3.4.13) take the form

Tk [P2g2 ® (ery, — P1) q1] = Th—1 [(€r, —P2) 2 ®P1q1] 1<k< K, (6.3.3)

T1 [Q2 (er, 42 — Ir,) ® Q1 + (Ir, — €7, g2) ® I, ]
+70 (€192 ® p1q1 — To1) = Op (6.3.4a)
7 Q2 (er, g2 — Iny) @ Q1 + (Ir, — €1, ¢2) ® I, ]

Teo1 [Q2(er,q2 — ) ®p1q1] =0 1<k <K, (6.3.4))

% [Q2 ® Q1 (er, 1 — 1) — I, ® (er, a1 — I1,)] (6.3.5)

+ kg1 [P22®Qrler, 1 —I,)] =0, 1<k<K-1,

Tk N =7k [p2q2® (Q1— (er, —P1) 1) + Tk—1[Q2 ®P11] 1<k <K, (6.3.6)

Similarly use of (6.3.4a) and (6.3.1b) give

71 N =71 (p2 g2 ® Q1) + 7o (To1 — €192 @ p1 q1) (6.3.7)

a2 071.2

On the other hand, postmultiplication of (6.3.2a) by ( > ® I, readily

0n2 Xmo In2

yields

mo L = 71 (p2 g2 ® Q1) (6.3.8)

where the A1 X h matrix L is defined as

az  On Gra2 g2 2
L= 2 L, — 6.3.9
(Onzxm2 In2 ) ® 71 <b2 a2 .B2 ) ® Ql ( )
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Therefore, (6.3.7) and (6.3.8) give
mN=noF (6.3.10)
where the h; X h matrix F is defined as
F:=L+To1—€q:®@p1q1 . (6.3.11)

It can easily be seen that when the second server is reliable (6.3.11) reduces to
F =0a;® (I, — Q2) as in Chapter III

Similarly (6.3.1a) and (6.3.5) yield
e M = 715[Q2®p1 1]+ Tk+1[m2 2 ® (@1 — (er, —P1)@1)] 1<k < K-—1. (6.3.12)
and it now follows from (6.3.7) and (6.2.12) that
gk N=mp_ 1M, 1<k<K . (6.3.13)

The system of equations (6.3.13) can be solved recursively if either the matrix
M or N is invertible. The necessary and sufficient conditions for the invertibiltiy
of N are given in Lemma 2.3.16 and Corrolary 2.3.17. In the case when the matrix

N is invertible, this briefly outlined argument can be summarized as
T, = 7o F ]\f_1

Tk = Tk—1 M N7! 1<k<K (6.3.14)

-1
g =7Tk—1Tk—1,8 (In, —Tr,x)”™" ,

owing to nonsingularity of the matrix (Ir, — Tk, k). Therefore, every component
7k, 1 < k < K, of 7 can be written in terms of my. To obtain 7, the equations

(6.3.2) is summed over 1 < k < K to yield

K-1 K-1
> = Tk G + o To1 — 71 (p2 ¢2 ® Q1)
P k=1 (6.3.15)

+ 7k Tr,k—1 — Tk -1 (@2 ® P1.¢1)
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where the A X h matrix G is given by

G:=(Q2+p2¢2) ® (Q1 +p1¢1) (6.3.16)

Equations (6.3.14) and (6.3.15) constitute the main result.

Theorem 6.3.1 : If the matriz N is tnvertible then the invariant probability vector

7 = (70,...,TK) has the following matrix geometric form
mp =7 S RF! 1<k<K (6.3.17a)
Tk =m0 S RET2 U, (6.3.17b)

where the vector my satisfies the equations
o Z =0, , mov=1. (6.3.18)

The matrices R,S,U, Z and the vector v are defined through the equations

R=MN-1 h X h matrix,

S=FN! hi X h matrix,
U=Tg-1,x (In, — Tk,x)™ ! h X hg matrix,
W = Ef:_ll S Rk-1 h1 X h matrix,
Y =SRE-Z(UTk,g—1— Q29 p1q1) hi X h matrix,
Z=W-WG—To1+85(p2q2® Q1) - Y] hi X h matrix,
v=oep +Wep, +SRE2¢,, hy X 1 vector,

and the matrices F and G are given by (6.8.11) and (6.8.16), respectively.

Similar calculations can be carried out for the continuous-time formulation and
the analog of Theorem 3.6.3 would be obtained. Since in this case, the matrices
M and N are always nonsingular, no assumptions are needed. Furthermore, the

underlying Markov process is again always irreducible. Also, in both the continuous
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and discrete-time formulations, results similar to the ones of Section III.5 can be
obtained when the order of the servers is reversed. Finally, by using the results
of Section 2, the model of Chapter V can also be studied by the same solution

technique.

Special Case — When only operational failures are allowed :

The solution for the case when idling servers cannot fail can be obtained as a
special case of the discussion given above. In this case, even if the servers cannot
fail when idling, the same state description has to be made as a server can still fail
at the time epoch of a service completion. Therefore, the results of this case can be
obtained by setting g2 and ¢2 equal to zero in matrices Tyo and To;, respectively,
and by setting g; equal to zero in matrices Tk k1 and Tk k. Note that ¢, is set
to zero only in Tp; since the second server is still allowed to fail with probability ¢9

at a service completion epoch.
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V1.4 Numerical Examples :

In this section the effects of failures on the invariant probabilities for the model
of Chapter III are illustrated through several numerical examples. For a buffer size
of K = 5, the following three situations are considered:

(i) The case when both servers are reliable and have Negative Binomial service time
distributions with PH-representations (o, 4;), 1 = 1,2.

(i) The case when both servers are subject to failures and have service distributions
as in (i}, and the first server has a geometric down time distribution with coefficient
0.8, while the second server has hypergeometric down time distribution with PH-
representation (82,B2). In this case the idling servers are allowed to fail with
probabilities g; = 0.01 and g2 = 0.5.

(iii) In this case both servers are subject to failures and have service and repair
distributions as in (ii), but idling servers are not allowed to fail.

The following numerical values are considered.

0.8 0.2

Al:(O 0.3) =0
06 04

A2:< 0 05) ) 062:(1,0),

05 O
By = ( 0 0.6) R B2 = (0.4,0.6) ,

The matrices Ay,, C; and D;, 1 =,1,2, are given by

01 O 0.2 O
Ap= ( 0 0.1)’ A = ( 0 0.2) ’
and
1
C1=<1), Co=¢e3P2, Di=a, Dy=eas,
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while the probabilities of a failure at a service completion are ¢; = 0.2 and ¢, = 0.3.

Therefore the effective service time representations (¢;, @), ¢ = 1,2, are given by

048 0.32 0.08 0.12

0 04 0.08 0.12
0.5 0 0.5 0 ’
0.4 0 0 0.6

0.72 0.18 0.1
Qi=| 0 027 01], Qs =
08 0 02

and

¢ = (0.8,0,0.2) , g2 = (0.7,0,0.12,0.18) .

If the random variables S;, R; and S/ s , ¢t = 1,2, denote the service time,
repair time and the effective service time of server ¢+ = 1,2, respectively, then the
above numerical values lead to following expected values: E[S:1] = 7, E[S;] =
4, E[Ry] = 1.25, E[Ry] = 2.3, E[St//] = 0.28, and E[S/7] = 11.18. Note that
although E[S; + R1] > E[S; + Rs] the average effective service time of the second
server is greater then the average effective service time of the first server since the
second server is more likely to breakdown. The effect of breakdowns can easily be
seen from the queue size probabilities in Table 6.4.1. As expected, in the first case,
there are less then three jobs in the buffer for most of the time whereas in cases
II and III there are more then three jobs in the buffer for most of the time. On
the other hand the probabilities in cases II and III differ only slightly although the
second server has a high probability of failure when it is idle. The reason for this
is that the second server is idle with a very low probability and the probability of
a failure when the first server is idle is very low. The invariant probability vectors

obtained by using Theorem 6.3.1 are given in Table 6.4.2.
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Steady state queue size probabilities

Queue size Case 1 Case 2 Case 3
0 0.3042 0.0619 0.0672
1 0.3950 0.1131 0.1143
2 0.1904 0.1495 0.1483
3 0.0758 0.1952 0.1936
4 0.0286 0.2512 0.2492
5 0.0059 0.2290 0.2275
Table 6.4.1
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Case 1

I

0.2181,0.0861)

i

0.2045,0.0433,0.1090,0.0382)

0.0736,0.0163,0.0817,0.0188)

Il

|

(
(
(
(0.0283,0.0063,0.0337,0.0075)
(0.0110,0.0016,0.0132,0.0028)
(

7o
1
T2
T3
Ty
s

0.0017,0.0042)

Il

Case 2

7o =(0.0207,0.0061,0.0040,0.0075,0.0022,0.0014,0.0134,0.0040,0.0026)

m1 =(0.0350,0.0087,0.0068,0.0151,0.0043,0.0028,0.0098,0.0025,0.0019,0.0181,0.0046,0.0035)
72 =(0.0441,0.0113,0.0086,0.0225,0.0058,0.0044,0.0128,0.0033,0.0025,0.0237,0.0061,0.0046)
3 =(0.0576,0.0147,0.0112,0.0294,0.0075,0.0057,0.0167,0.0043,0.0032,0.0309,0.0079,0.0060)
4 =(0.0788,0.0155,0.0122,0.0386,0.0097,0.0073,0.0225,0.0049,0.0038,0.0414,0.0093,0.0072)

75(0.0876,0.0561,0.0286,0.0567)

Case 3

7o =(0.0418,0.0124,0.0080,0.0012,0.0004,0.0002,0.0022,0.0006,0.0004)

71 =(0.0380,0.0087,0.0076,0.0164,0.0046,0.0031,0.0088,0.0025,0.0017,0.0157,0.0044,0.0030

)
72 =(0.0437,0.0112,0.0085,0.0224,0.0057,0.0044,0.0127,0.0032,0.0025,0.0234,0.0060,0.0045)
73 =(0.0571,0.0146,0.0111,0.0292,0.0075,0.0057,0.0166,0.0042,0.0032,0.0307,0.0078,0.0060)

)

4 =(0.0783,0.0154,0.0119,0.0383,0.0096,0.0072,0.0223,0.0049,0.0037,0.0411,0.0093,0.0071

5 =(0.0871,0.0557,0.0285,0.0563)

Table 6.4.2
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CHAPTER VII
AN APPROXIMATION METHOD FOR GENERAL TANDEM
QUEUEING SYSTEMS SUBJECT TO BLOCKING

VII.1. Introduction :

In this chapter an iterative approximation scheme is presented for finding the
steady-state marginal probabilities of the queue sizes in general tandem queueing
systems with finite capacity intermediate buffers and PH-type servers under the
assumption that the steady-state exists. The algorithm is based on the analytical
results obtained for two node systems and is presented under the immediate blocking
policy. Effective two node representations of each buffer is first obtained and then
approximations are made in order to express the effective representations recursively
in terms of the quantities that can be obtained from the two node model. In
Section 3, the accuracy of the algorithm is validated through numerical examples,
both for continuous and discrete-time systems. The same approximation scheme
also applies to tandem systems under nonimmediate blocking policy in view of the
equivalence discussed for two node systems in Chapter I. Although no theoretical
basis is provided for this case, comparison of the results against simulations indicates
reasonable accuracy under both blocking policies even in the presence of significant
blocking. In view of the results derived in Chapter VI, the approximation scheme is
also applicable to failure type servers with PH-type service and repair distributions.

The algorithm uses the decomposition technique that has been used in many
of the approximation algorithms. All the approximation algorithms known to date

considers tandem lines with exponential servers, possibly subject to failures with
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exponential down time distributions. The present algorithm generalizes these algo-
rithms to tandem lines where failure type servers with PH-type up and down time
distributions are in attendance.

Most approximation algorithms use the flow conservation principle to decom-
pose the tandem model into simple two node models. The approximation reported
here uses the approach taken in Altiok [1], and represents the effective service dis-
tribution of a server by considering all the servers upstream of this server so as
to capture the effect of blocking. The algorithm presented here differs from the
method in [1] in that a similar effective representation is also considered in order to
capture the effect of idling. Whereas in [1], the system is decomposed into several
M/PH/1/K queueing systems by approximating the arrivals to the 7t* buffer by a
Poission process in view of the flow conservation principle. Once the decomposition
is done, the iterative solution technique presented here uses a similar method to the
one given by Bradwajn and Jow [13], where exponential servers with state depen-
dent service rates and only immediate neighbors are considered in decomposing the

tandem line.
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VII.2. Decomposition and Approximation Method :

Consider a tandem system as shown if Figure 7.2.1. There are N PH-type
servers in tandem with N — 1 intermediate buffers with capacities K;, 1 <¢ < N,
with the assumption that the last server is never blocked and the first server is always
busy, i. e., infinite supply of exogenous jobs. The servers have PH-representations
(e, Qi), where o; and Q; are 1 X m; and m; X m; matrices, respectively, and m; is
the number of phases in the service distribution of the 7t* server, 1 <7 < N. The

m; X 1 column vectors of absorption probabilities are denoted by p;, 1 <7< N.

1 2 38 N—1 N
—GE T —(Faz]® Kb

Figure 7.2.1

The steady state marginal probabilities for the queue sizes in the 1** queue
could be calculated from the results of Chapter III if the (¢ + 1)** server were not
subject to blocking and the ¢** server were always busy. However, at a service
completion epoch at the (i + 1)** server, this server may be blocked and remain
blocked until there is a departure from the (¢ + 1)** queue. Similarly, at a service
completion at the *? server, this server may become idle.

In order to discuss the blocking and idling of the 7t* server the following events

are defined for 1 < 7,7 < N and ¢ > 0.

Bi(t)  :14th server is blocked at time ¢,

gl’"j (¢) : 7" server is not blocked and in phase of service [ at time ¢, and that
all the servers k, ¢ < k < j are blocked,

I‘(t) :  1** server is idle at time ¢,
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IP(t) :  jth server is not idle and in service phase ! at time t, and that

all the servers k, 7 < k <1 are idle.

Assuming that the limits exists the following probabilities can now be defined:

Pi:= lim P[B(TY)], 1<i<N
nfoo
PY = lim P[BY(TY)], 1<i<j<N
B, nfoo
Pi:= lim P[I'(TY)], 1<i<N
nToo
P = lim P[TV(TY)], 1<j<i<N
I ntoo

where T? is the nt? service completion time at node ¢, for n = 0,1,.... Note that,
due to the assumption that the first server is never starved and that the last server
is never blocked, some of the above defined probabilities are either O or 1 for some

values of ¢ and j.

Decomposition: In order to capture the effect of blocking in the (:+1)*® server, the
effective service time distribution of this server is represented by a PH-distribution
with (m;4+1 + ... + my) phases obtained by considering the service distributions
of all the servers downstream from the (¢ + 1)°* server. Upon the n** service
completion in the (i + 1)** server, this server is either blocked with probability
P[B*1(Ti+1)] or starts serving its next job (if any) according to the initialization
vector a;43. In the case of blocking, say the event ﬁf“’j (T,‘;“) took place for
some 7, t+1 < j < N,and !, 1 <! < mj, the effective service time of the
¢ + 1°t server will be equal to the residual service time in the j* server plus sum
of the service times of all the blocked servers § — 1,...,7 + 2 (time to unblock),
plus the service time in the 7 + 1°¢ server. Therefore, if at time T:+! the ¢ + 1%

server is blocked the effective service phase of the (i + 1)** server is reinitialized at
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phase | of the j** server with probability P[B! (Ti+1)] and the transitions among
these phases occur according to the matrix Q;. Upon service completion in the gtk
server, service in the (j —~ 1)* server is initialized according to o1, thus causing a
transition from the phases corresponding to j* server to phases corresponding to
the (7 —1)°* server in the effective representation of the (i 4+ 1)** server. Finally,
upon service completion in the (i + 2)"? server blocking period of the (i + 1)°
server will end and this server will resume its service according to the initialization
vector a;1. Therefore, if the (miy1 + ... + my) X (migy + ... + my) matrix
@2(¢ + 1) denotes the one-step probability transition matrix among the transient
phases of the effective representation of the (¢ +1)°* server and if the corresponding
(Mmit1+ ...+ mpy) X 1 column vector of absorption probabilities from the effective

service phases is denoted by p2(¢ + 1), then

Qit1 Pit1

' Pit2 &it1 Qiye ] 0%;“
Q2(Z+1): * ) ’ p2(7'+1): * ’

pvan-1 Qn (V.

1<i<N, (121)

and the 1 X (miy1 + ... + mpy) initialization probability vector az(? + 1) of the

effective representation of the (¢ 4 1)t server is given by
. _'+1 . . .
(05} (t + 1) = (PzB Og41, %+1’1'+2, ceey %-’_I’N) (7.2.2)

for 1 <4 < N, and the 1 X m; row vector PI,?I’j has entries %4—1,;" 1 <1< mj.
!

With this effective PH-representation the (7+1)°¢ server is never blocked, but a
service completion is allowed only from the phases that correspond to a service in the

(¢4+1)°t server. The subscript 2 indicates that the representation (az(i+1), Q2 (:+1))
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is the effective representation for the second node server when considering the it%
buffer.

Similarly the effective service of the i** server can be represented by a PH-
distribution with (m; + ... + m;) phases. A similar argument reveals that the
effective representation (a1 (), Q1(z)) of the i** server as the first node server in the

two node equivalent representation of the ** buffer is given by

Qs Pi
Pi—10i Qi—x oF ,
Q]_(Z): . . , pl(i)z . , 1SZSN,
prar @ of

(7.2.3)

where py(?) is the (my+...4+m;) x 1 column vector of absorption probabilities and
ar(i) = (Prow, PE,.., %) (7.2.4)

for 1 <+ < N, and the 1 X m; row vector P,;,’" has entries P,;;’j, 1 <1< m;.
i
Therefore, for each queue i, 1 < 7 < N, by considering the effective represen-
tations (7.2.1)-(7.2.4), the tandem system in Figure 7.2.1 can be decomposed into

N — 1 two node systems of the type studied in ChapterlIll. More preciesly the two

node equivalent of buffer ¢ is as given in Figure 7.2.2.

(01 (1), @) ~OLE_I®— (i +4), @2 + 1))

Figure 7.2.2
Let the 1 x (my + ...+ m;) and 1 X (m;4.1 + ...+ my) row vectors mo(7) and
nr (i) be the steady state probability vectors that the :** buffer is empty and full,

respectively, obtained from the two node equivalent representation in Figure 7.2.2.
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fk=mip1+...+mip;+1 for 1< j < N-—sand 1 <1 < myqjqq, then the
kt* component of the vector nr (i) is the steady state probability that the servers
4,4+ 1,...,4 + 5 are all blocked and the (z + j + 1)°¢ server is in its {** phase of
service. Similarly,if k = m;+miy+...4+mi;+1,0<5<1-1,1 <1< mi_jq,
then the kt* component of the vector mo(2) is the steady state probability that the
buffers 4,4 —1,...,1 — j are all empty and the (z — j — 1)t* server is in its I** phase
of service.

Approximation : In order to put the equivalent model into the framework of

Chapter III, the following approximations are made:

P, ~ lim P[B'(t)], 1<i<N

tToo
PR | b < <
3 }%Iglo P[B”(t)], 1<i<j<N

. (7.2.5)

P; =~ lim P[I'(t)], 1<i<N

tToo
0 o~ 13 ()
% }%?OP[I, )], 1<j<i<N

In view of (7.2.5) and the above descriptions of the vectors mo(Z) and 7r(2), the
initialization vectors e (7) and az(¢ +2) in the effective two node representation of

Figure 7.2.2 are approzimated by af(¢) and a}(: + 1), respectively, given by
af(d)=[(1—=Po(t —1)) e,mo(c —1)] , (7.2.6a)

aj(t+1):=[(1=Pr(t+1)) ajy1,7r(z+1)] . (7.2.6b)
where the scalars Pr (i) and Po(s) satisfy
Pr(i) =np(i) epqy » Po(t) =mo(d)esy » 1<i< N

with r(¢) = mip1 + ...+ my and s(¢) =my +... + m,.
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This approximation leads to an iterative approach based on the two node anal-
ysis. The marginal probability distribution of the queue sizes at queue ¢ can be
obtained once the vectors mo(¢ — 1) and 7p (¢ + 1) are known. These vectors are
calculated from the two node approximations of the (¢ — 1)** and (i + 1)** queues,
respectively, during the past iteration step. More precisely, the steps of the iterative
procedure, by abusing the notation and using a superscript to denote the iteration

number, are :

1. Select an initial approximation for the vectors 7% (:), 2 < ¢ < N.

2. At iteration n, starting from the first queue, solves the effective two node
systems of the form in Figure 7.2.2 for each buffer using 77 (¢—1) and np " (i+1)
at queue ¢, for 2 < ¢ < N — 2, and by using a?(i) = a1 at buffer 1 and
a2 Y(N — 1) = ay at buffer N — 1. The solution for the i** queue will yield
7§ (7) and 73 (2).

3. Test for a convergence criterion, if not satisfied set n to n 4+ 1 and go to step 2.

Although there is no proof of convergence, the algorithm has always converged,
up to 10™%, in less then 10 iterations in many examples. Since at each node all the
servers are taken into account, the computational complexity of the algorithm grows
quadratically with the number of servers in tandem. However, this growth can be
made linear by considering only a few immediate neighboring servers in the effective
representations. On the other hand, the algorithm can be made much faster as it is
very suitable for parallel computation. At each node the effective representations
Q1(¢) and Q2(3), 1 < ¢ < N, are fixed, therefore a different processor can be

assigned to each node, this processor needs information only from its immediate

neighbors, namely from processors 7+ 1 and ¢ — 1.
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VII.3. Numerical Examples :

The accuracy of the algorithm is tested against simulations with both relative
and absolute errors in the approximations being listed. Although relative errors
are usually a more important measure of accuracy of an approximation scheme,
when determining the relative or absolute errors made when calculating some of
the performance measures of interest, absolute errors play a more important role.
To illustrate this point, average queue sizes at each buffer location are calculated.
Both the relative and the absolute errors for this performance measure are better
predicted by the absolute errors in the calculation of the probabilities. For instance,
in example 3, in the approximation of the probability of having an empty buffer
at the second queue 20% relative error is made, while the absolute error is only
2.3%. The relative error in the average queue size for this buffer is only 3.9%. In
many cases the algorithm approximates the probabilities up to the third digit after
the decimal point, but the relative error may be high when the true value of the
probabilities are very small. Such an accuracy is generally considered reasonable
since due to blocking it usually takes a long time for the system to reach steady
state. Therefore, the simulations are believed to be accurate only up to the third
digit after the decimal point.

The first four examples are for the discrete time model under immediate blocking
strategy and involves only geometric servers. Examples 1 and 2 have the same
parameters except the buffer capacities. The approximation gives better results in
example 2 since it has smaller Po(z) and Pr(7), 1 < ¢ < N. The examples indicate
that the reversibility property discussed in Section 3.5 seem to hold for a general
tandem line under smmediate blocking strategy. In examples 1 and 2 since the
tandem line is totally symmetric reversing the order of the servers yield the exact

same probabilities. Example 4 is the same as example 3 except that the order of the
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servers and the intermediate buffers are reversed. The approximation scheme yields
totaly symmetric probabilities. In the simulations the corresponding probabilities
change in the third digit after the decimal point, which is believed to be the margin

of inaccuracy in the simulations.

Example1l: N =4, K; =2, ¢ =1,2,3. Immediate blocking.

Geometric servers; p; = 0.5, ¢ = 1,2,3,4.

Buffer Queue Size Approx. Exact Sol’n. Rel.Error Abs.Error
1 0 0.1738 0.1652 -0.0521 -0.0086
1 0.4641 0.4596 -0.0098 -0.0045
2 0.3621 0.3754 0.0354 0.0133
Average queue length: 1.1183 1.2104 0.0183 0.0221
2 0 0.2629 0.2621 -0.0031 -0.0008
1 0.4742 0.4757 0.0032 0.0015
2 0.2629 0.2621 -0.0031 -0.0008
Average queue length: 1.0000 0.9999 -0.0001 -0.0001
3 0 0.3621 0.3754 0.0354 0.0133
1 0.4641 0.4596 -0.0098 -0.0045
2 0.1738 0.1652 -0.0521 -0.0086
Average queue length: 0.8117 0.7900 -0.0275 -0.0217
Table 7.3.1
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Example 2 : N =4, K; =4, 1 =1,2,3. Immediate blocking.

Geometric servers; p; = 0.5, ¢ = 1,2, 3, 4.

Buffer Queue Size Approx. Simulation Rel.Error Abs.Error
1 0 0.081 0.079 0.025 0.002
1 0.184 0.186 0.011 0.002
2 0.238 0.235 -0.013 -0.003
3 0.305 0.305 0.000 0.000
4 0.193 0.185 -0.043 -0.008
Average queue length: 2.347 2.311 -0.016 -0.036
2 0 0.130 0.127 -0.024 -0.003
1 0.246 0.247 0.004 0.001
2 0.247 0.247 0.000 0.000
3 0.246 0.249 0.012 0.003
4 0.130 0.130 0.000 0.000
Average queue length: 1.998 2.008 0.005 0.010
3 0 0.193 0.195 0.010 0.002
1 0.305 0.308 0.010 0.003
2 0.238 0.238 0.000 0.000
3 0.184 0.182 -0.011 -0.002
4 0.081 0.076 -0.066 -0.005
Average queue length: 1.657 1.634 -0.014 -0.023
Table 7.3.2
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Example 3 : N =5, K; = K3 =2, K; = K4 = 3. Immediate blocking.

Geometric servers; p; =0.7, p2=0.8, p3=0.9, p4=0.75, p5s=0.6.

Buffer Queue Size  Approx. Simulation Rel.Error Abs.Error
1 0 0.169 0.176 0.040 0.007
1 0.601 0.601 0.000 0.000
2 0.230 0.223 0.031 0.007
Average queue length: 1.061 1.047 -0.013 -0.014
2 0 0.095 0.118 0.195 0.023
1 0.322 0.334 0.036 0.012
2 0.408 0.377 -0.082 -0.031
3 0.175 0.171 -0.023 -0.004
Average queue length: 1.663 1.601 -0.039 -0.062
3 0 0.092 0.103 0.107 0.011
1 0.592 0.589 -0.005 -0.003
2 0.316 0.308 -0.026 -0.008
Average queue length: 1.224 1.205 -0.016 -0.019
4 0 0.080 0.091 0.121 0.011
1 0.297 0.305 0.026 0.008
2 0.428 0.416 -0.029 -0.012
3 0.195 0.188 -0.037 -0.007
Average queue length: 1.738 1.701 -0.022 -0.037
Table 7.3.3
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Example 4 : N =5, Ki = K3 =3, K; = K4 = 2. Immediate blocking.

Geometric servers; py =0.6, p2=0.75, p3=0.9, py4=0.8, p5s=0.7.

Buffer Queue Size Approx. Simulation Rel.Error Abs.Error
1 0 0.195 0.191 -0.021 -0.004
1 0.428 0.413 -0.036 -0.015
2 0.297 0.303 0.020 0.006
3 0.080 0.093 0.140 0.013
Average queue length: 1.262 1.298 0.028 0.036
2 0 0.316 0.308 -0.025 -0.008
1 0.592 0.589 -0.005 -0.003
2 0.092 0.103 0.107 0.011
Average queue length: 0.795 0.776 0.024 0.019
3 0 0.175 0.172 -0.017 -0.003
1 0.408 0.376 -0.085 -0.032
2 0.322 0.333 0.033 0.011
3 0.095 0.119 0.202 0.024
Average queue length: 1.399 1.337 0.044 0.062
4 0 0.230 0.224 -0.027 -0.006
1 0.601 0.604 0.005 0.003
2 0.169 0.172 0.017 0.003
Average queue length: 0.948 0.939 0.009 0.009
Table 7.3.4
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The next example is intended to give some ideas of the accuracy of the algo-
rithm developed in Section 2 under immediate blocking policy to tandem lines that
operate under the nonimmediate blocking policy. The invariant probability vector
for the model of Chapter III, with intermediate buffer capacity K, under noni.m—
mediate blocking policy can also be obtained from Theorem 3.3.7 by considering
the service location of the first node server as part of the intermediate buffer, thus
incrementing the effective intermediate buffer capacity from K to K + 1. After the
invariant probability vector # = (7o,...,7x, Tk +1) is obtained in matrix-geometric
form, as given by Theorem 3.3.7, the probability of having a full buffer is given by
TK€ml+ TK-+1€], Where m and | are the number of phases in the PH-representations
of the first and the second node servers, respectively.

As an example, a tandem line with three servers is considered. The first and
the third node servers have generalized Erlang service distributions whereas the
second node server has hyperexponential service distribution, all with two phases.

The following numerical values are considered:

-2 2
Q1=<0 __2>, a; =(1,0), ES; =15,

-1 0
Q2 ( 0 _0.5) ’ Qg = (0.3,0.7) N ESz =17 ,

Q3:<_(2)'5 ?_i), as=(1,0), ES;=14,

where ES; is the corresponding expected service time of server ¢, 1 < z < 3. The
results are summarized in Table 7.3.5. Four independent simulation runs are per-
formed on the Performance Analysis Workstation (PAW) where the results obtained
from each simulation were within 0.01 of each other. The resulsts listed in the sim-

ulation column in Table 7.3.5 are the arithmetic average of these four simulation
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runs. The approximation algorithm converged up to 10™% in 5 iterations and the
results are mostly within the accuracy range of the simulations.

Example 5 : N =3, K; =2, K = 3. Nonimmediate blocking.

Buffer Queue Size Approx. Simulation
1 0 0.167 0.157

1 0.246 0.248

2 0.587 0.597
2 0 0.316 0.350

1 0.268 0.288

2 0.196 0.194

3 0.220 0.168

Table 7.3.5
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FUTURE DIRECTIONS

Throughout the thesis, long-run average results have been sought by assuming
that the system will reach equilibrium fairly rapidly. However, in an actual produc-
tion line, the system being subject to blocking and occasional failures, equilibrium
may be achieved very slowly. Therefore, designs based on equilibrium calculations
may not be adequate and a better understanding of the transient behavior of the
system may be needed. It is thus of interest to study the transient behavior of the
underlying Markov chain so as to get precise information on the rate at which the
equilibrium is achieved and to understand how the transient performance measures
behave.

Also, efforts should be made for better understanding of the approximation
scheme presented in Chapter 7, as well as for developing new algorithmic method-
ologies to compute the quantities of interest. In particular, questions of convergence
and in the event of convergence the rate of convergence and the possible limit points
should be studied. Also as remarked in Chapter 7, parallel implementation of the

algorithm should be explored.
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APPENDIX

Annotated bibliography of blocking systems

Queueing systems subject to blocking have been studied by reaserchers from
different research communities. Due to the wide applicability of these models there
is an exhaustive list of related papers. The survey given here combines a portion of
such papers. The rest of the papers, to the knowledge of the author, are included
in the references.

The papers reviewed here are classified into two major classes depending on
whether the servers are reliable or subject to breakdowns, and the papers in each
class are presented in historical order as they appeared in the literature. A common
assumption to all the models surveyed is that the last stage is never blocked, i.e.,
there is always space available into which the last stage server(s) can discharge a
part. Also, as it is usually the case in many models, unless otherwise specified the

stages have single servers.
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MODELS WITH RELIABLE SERVERS

1] G.C. Hunt, “ Sequential arrays of waiting lines,” Operations Res., 4, pp. 674-683
H
(1956).

Model: A tandem line of ezponeniial servers with Poisson arrivals to an infinite
buffer in front of the first server is considered. Four different models are discussed
under non-immediate blocking assumption. The models involve; (i) infinite capacity
buffers between the servers, (ii) no buffers between the servers, (iii) finite capacity
buffers between the servers, and (iv) a line of M servers where the line moves at
once as a unit (the unpaced belt production line) where no buffers and no vacant
servers are allowed.

Measure: Mean number of jobs in the system and maximum utilization is consid-
ered.

Results: Maximum possible utilization is obtained in all cases and graphs of uti-
lization vs. mean number of jobs in the system are displayed. It is reported that

when utilization is less than 0.5 blocking has almost no effect.

[2] H.S. Hillier and R.W. Boling, “ Finite queues in series with exponential or Erlang

service times - A numerical approach,” Operations Res., 15, pp. 286-303, (1967).

Model: A tandem line of servers with exponential or Erlang service distributions
seperated by finite capacity buffers is considered. Non-immediate blocking is as-
sumed with infinite supply of job units in front of the first server.

Measures: Steady-state output rate and mean number of customers in the system
are considered.

Method: When the service times have Erlang distribution the states are identi-
fied and the balance equations are solved numerically using Gauss-Seidel method.
For exponential service times an approximate procedure which analyzes each stage

individually as an M/M/1/N queueing system is given.

- 121 -



[3] N.P. Rao, “ Two-stage production systems with intermediate storage,” AIEE
Trans., 7, pp. 414-421, (1975b).

Model: A two server tandem system with a finite capacity intermediate buffer is
discussed. Service times are assumed independent and are exponentially distributed
for the first server and have a general distribution for the second. Non-immediate
blocking is assumed with infinite supply of job units in front of the first server.
Measures: Steady-state probabilities and the effect of unblancing is considered.
Results: The equations for the steady-state probabilities are shown to involve
Laplace transforms of the density functions of the service time distributions and
their derivatives. A recursive solution for the mean production rate is obtained
and the effect of balancing is discussed. It is concluded that the balanced division
of buffer capacity is not optimum for an unbalanced system and slightly higher
buffer capacity is needed for the server with less variable service time distribution,
and the effect of unbalancing increases with the difference in the variabilities of
the service distributions. When service distributions are different, the idling times
change slightly from the balanced condition with a greater rate of change at the

server with less variable service time distribution.

[4] A.G Konheim and M. Reiser, “ A queueing model with finite waiting room and

blocking,” J. Assoc. Comput Mach., 23, pp. 328-341, (1976).

Model: A system with two servers in tandem and a finite capacity intermediate
buffer is considered. Service times are assumed independent and ezponentially dis-
tributed. There is a Poisson arrival stream to an infinite capacity buffer in front of
the first server and a feedback path to this buffer for the serviced jobs in the second
server. Immediate blocking strategy is assumed .

Measure: Steady-state probabilities are obtained.

Method: State of the system at time ¢ is defined by the pair (X}, X?), where X}
and X? denotes the number of jobs in the first and the second buffer at time ¢,

respectively. Forward equations are written and solved for the steady state proba-
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bilities by using generating functions. Necessary and sufficient conditions are given
for the stability of the system. Analytical results are then put into algorithmic form

and some special cases are considered.

[5] A.B. Clarke, “A two-server queueing system with storage between servers,”

Math. Rep. 50, Western Michigan Univ., (1977).

Model: A tandem configuration of two servers with independent and exponential
service distributions is considered. There is a finite capacity buffer between the
servers. Non-immediate blocking is assumed with Poisson arrivals to an infinite
capacity buffer in front of the first server. When both servers are idle an incoming
job goes directly to the second server whereas if the second server is busy but the
first one is not the idle is served in the first server and join the intermediate buffer.
When a service completion occurs in the second server, all jobs in the intermediate
buffer including the one that is blocked in the first server(if any) leave the system.
If at the time of a service completion in the first server the second server is idle the
job that has just been served leaves the system.

Measure: Steady-state probabilities of the system state process are studied.
Method: A system state process is defined and the block entries of the generator
matrix is written explicitly. Then a matrix geometric solution is given for the steady
state probabilities where the rate matrix is obtained as the minimal solution of a

third order matrix equation. Some computational methods are also discussed.

[6] P. Caseau and G. Pujolle, “ Throughput capacity of a sequence of transfer lines
with blocking due to finite waiting room,” IEEE Trans. Software Engrg., SE-5, pp.
631-642, (1979).

Model: A tandem line of servers with independent and exponential service distribu-
tions is considered. The servers are seperated by finite capacity buffers. Immediate
blocking is assumed with Potsson arrivals to an infinite capacity buffer in front of
the first server. Extensions to the models where service times depend on queue sizes,

and models that involve external arrivals to intermediate buffers are also studied.
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In the latter case, interarrivals to intermediate buffers are assumed to be Possson
and all have same parameter. An intermediate arrival is rejected if the buffer is full,

and if accepted, it leaves the system as soon as its service is completed.
Measure: Maximum system throughput is considered.

Method: The tandem line is replaced by several isolated M/M/1/N queueing sys-
tems with equivalent arrival and service rates by using the equivalence relations
between different types of blocking policies. Recursive relations for the utilizations
of these subsystems are obtained and saturation conditions are given. Exact ex-
pressions for the maximum throughput is given for the case when there are only two
servers, and also for the case when the servers are identical and the intermediate

buffer capacities are equal.

[7] F.G. Foster and H.G. Perros, “ On the blocking process in queueing networks,”
European J. Operations Res., 5, pp. 276-283, (1980).

Models: Three different models that involves servers with ezponential service times
are discussed. In the first model, there are two such servers in tandem with a finite
capacity intermediate buffer and a Poisson arrival stream to an infinite buffer in
front of the first server. In the second model, there are several servers in parallel in
the first stage and this stage is in tandem with a single server with no buffer space
between them. There are Poisson arrival streams to infinite capacity buffers in
front of the servers in the first stage. Third model is a generalization of the second
model where there are two such models in parallel, tandem with a single server,
again with no intermediate buffer. Non-immediate blocking strategy is adopted in

all the models.
Measure: Mean blocking time is considered.

Results: For the first two models exact expressions for mean blocking time is
obtained for cases when the first stage servers have infinite rates, and when they
have minimum rates (to insure stability). Also conditions for the stability of the

system are given. Only approximate results are given for the third model.
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[8] J. Labetoulle and G. Pujolle, “ Isolation method in a network of queues,” IEEE
Trans. Soft. Engrg., SE-6, pp. 373-381, (1980).

Model: A general queueing network with ezponential servers and finite capacity in-
termediate buffers is considered. There is an Poisson arrival process to the network
and immediate blocking is assumed.

Method: An isolation method is presented where the network is subdivided into
several subsystems so that each system can be studied independently. The method
is said to give powerful approximations on any case where the service times or the

arrival rates are dependent on the state of some part of the queueing network.

[9] G. Latouche and M.F. Neuts, “ Efficient algorithmic solutions to exponential
tandem queues with blocking,” SIAM J. Alg. Disc. Meth., 1, pp. 93-106, (1980).

Model: A two stage tandem system separated by a finite capacity intermediate
buffer is considered. There are r ¢dentical parallel servers in the first stage and ¢
identical parallel servers in the second stage. All the servers are assumed to have
independent and exponentially distributed service times. There is a Potsson arrival
stream to an infinite capacity buffer in front of the first stage. Non-immediate
blocking strategy is adopted but also full blocking of all the first stage servers is
considered in that when r* servers in stage I are blocked all the rest are also blocked.
After full blocking of stage I when the number of departures at stage II reaches £*,
all the servers at stage I resume service again.

Measure: Stedy-state probabilities for the joint queue-length distribution are con-
sidered.

Method: A system state process is defined and for different choices of »* and
k* explicit expressions for the block entries of the generator matrix are given. A
recursive formula for the stationary probability distribution vector is obtained by
using matrix-geometric methods. Some extensions and variants of the above model

are briefly mentioned.
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[10] H.G. Perros, “ A symetrical exponential open queue network with blocking and

feedback,” IEEE Trans. Software Engrg., SE-7, pp. 395-402, (1981).

Model: A two stage tandem system with feedback is considered. There are several
servers in parallel in the first stage and only a single server in the second stage.
Identical and independent Poisson arrival streams to infinite capacity buffers in
front of the first stage servers is assumed. All the servers have ezponential service
distributions. Immediate blocking of a first stage server occurs each time it com-
pletes service and remains blocked until the job that it last served completes its
service in the second stage server.

Measure: Queue-lenght distribution is studied.

Method: An approximate expression for the probability distribution of the number
of blocked first stage servers is obtained. Based on this distribution, assuming
processor sharing type of service, an approximate expression for the queue-length

probability distribution is derived.

[11] M. Pinedo and R.W. Wolff, “ A comparison between tandem queues with de-
pendent and independent service times,” Operations Res., 30, pp. 464-479, (1982).

Model: Tandem queueing systems with exponential servers are considered. The
service times are either independent at each server (case I) or same at each server,
once generated according to an exponential distribution (case D). Specifically, a
two server system with Poisson arrivals to an infinite capacity buffer is considered
under light traffic conditions when there is infinite or no buffer space between the
servers. Also, tandem configuration of servers with general service distributions
with an infinite supply of jobs in front of the first server is considered with infinite
or zero capacity intermediate buffers.

Measures: Expected waiting time, E(W), mean and variance of departure epoch
of a customer, E(U) and V(U), respectively, and the system capacity, Asup, is com-
pared for cases (D) and (I). Also the effect of service regularity on the performance

of the system is considered.
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Results: For the two server case both E(W (D)) and E(W(I)) is computed when
there is an infinite capacity intermediate buffer and also when there is no inter-
mediate buffer, both under light traffic. It is concluded that under light traffic,
average waiting time in case (D) is greater than in case (I) when the intermedi-
ate buffer has infinite capacity. Also for the two server system departure epochs
are compared and it is shown that E(U(D)) < E(U(I)) for infinite capacity in-
termediate buffer and E(U(D)) = E(V(I)) and V(U(D)) > V(U(I)) when there
is no intermediate buffer. Then, for a tandem configuration which involves servers
with general service time distributions, expressions for Asyp are obtained. For the
two server tandem system it is shown that Asup(D) = Asyp(I), while for a general
system Agup(D) < Asup(I), provided that the service times are not deterministic.
Effect of service time regularity on the performance of the tandem systems is also
considered. Variability of distribution functions is defined and some of its properties
are given. It is shown that tandem systems that involves servers with less variable
service time distributions has a larger capacity compared to ones with more vari-
able service time distributions. Based on both analytical and simulation results it
is concluded that relative performance of case (I) improves as (i) arrival rate de-
creases, (ii) arrival process becomes more regular, and (iii) service time distribution

becomes less regular.

[12] T. Altiok, “ Approximate analysis of exponential tandem queues with blocking,”

European J. Operations Res., 11 , pp. 390-398, (1982).

Model: A tandem line of servers with independent and exponential service time
distributions and finite capacity intermediate buffers is considered. Non-immediate
blocking is assumed with Poisson arrivals to an infinite capacity buffer in front of
the first server.

Measure: An approximate algorithm to obtain the steady-state probabilities of
the queue sizes is studied.

Method: A decomposition procedure that revises the service time distribution at

each server and decomposes the system into isolated simple queueing systems is
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presented. Decomposition is done by ignoring the interactions between the com-
ponents of the system. Two basic assumptions are made; (1) the input process to
each intermediate buffer is assumed to be Poisson, and (2) the blocking of a server
occurs only due to the immediate successor buffer. The method decomposes the
tandem line into queueing systems of the type M/C2/1/N, where Cs denotes a two
stage Coxian distribution. A Markov chain is imbedded by looking at each system
at departure points. Analytic results lead to systems of equations which are solved

by iteration techniques. Numerical results and some extensions are mentioned.

[13] F.P. Kelly, “ The troughput of a series of buffers,” Advances in Appl. Proba-
bility, 14, pp. 633-653, (1982).

Model: Messages has to be transmitted through a tandem channel with M nodes.
The nodes have finite but equal buffer capacities. Lengths of the messages are 1.7.d.
with a known common distribution. Time taken by a node to transmit a message
(service time) is proportional to its message length and a given message has same
transmission time at each node. Inputs to the first node are assumed instantaneous.
Both immediate and non-immediate blocking are discussed. Also the model when
transmission rates of a message at different nodes are not equal but independently
distributed according to some distribution is discussed.

Measure: Asymptotic behavior of the throughput is studied as the number of
channels increases.

Results: Throughput is defined as lim;—, oo E(l\{i), where N; is the number of mes-
sages which have been transmitted from the first node in the interval [0,t]. First, the
rate at which the intermediate buffer sizes should grow to ensure that the through-
put does not decline to 0 as M — oo is investigated. Then, certain monotonicity
relations between throughputs of the above models are obtained. Systems with no
intermediate buffers are used to provide straightforward bounds on the degradation
of throughput as the number of nodes increase. Then, more sophisticated bounds
are obtained to see the effect of an increase in the buffer size. It is shown that for

exponentially distributed message lengths either the transmission capacity or the
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buffer size should grow at rate log M and for distributions with tail parts propor-
tional to z 77, either the transmission rate should grow at a rate M # or the buffer

size should grow at a rate M =T to ensure that the throughput does not decline
to zero as M increase to infinity. Therefore, the behavior of throughput for large M

is determined by tail part of the distribution function of the message lenghts.

[14] H.G. Perros and T. Altiok, “ Approximate analysis of open networks of queues
with blocking: Tandem configurations,” CS Rep. 83-11, NC State Univ., (1984).

Model: A tandem line of M servers with independent and ezponeniial service
distributions and finite capacity intermediate buffers is considered. Non-immediate
blocking is assumed with Poisson arrivals to an infinite capacity buffer in front of
the first server. The case with Poisson arrivals to a fintte capacity buffer in front
of the first server is also considered.

Measure: An approximate algorithm to obtain the steady-state probabilities of
the queue sizes is studied.

Method: Same decomposition method as in [12] is used but assumption (2) is
relaxed and it is allowed to have blocking backlogged over any number of successive
queues. Input process to each queue is still assumed to be Poisson. The system is
again decomposed into several M/C/1/N queueing systems in isolation, where now
for the ¢** server C is a M — i + 1 stage Coxian distribution, for 1 < ¢ < M. In
the case when first buffer has finite capacity the effective arrival rate is estimated
by successive iterations. Numerical examples are given and it is reported that the

approximation is better for balanced systems.

[15] F.P. Kelly, “ Segregating the input to a series of buffers,” Math Operations
Res., 10, pp. 33-43, (1985).

Model: Two parallel systems of the type described in [13] is considered. The
incoming message is directed into one of the two systems depending on its length.

Measure: System throughput is studied.
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Result: It is shown that by using two systems in parallel, one dealing with long
messages and the other with short messages the decay of throughput with the num-
ber of nodes M can be improved from (logM)~?! to (loglogM)~! when the message

length distribution is exponential, and when the message length distribution is such

that its tail part is proportional to z=°, with p > 1, the improvement is from M >

-1
to M #*,
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BREAKDOWN MODELS

[16] M.C. Freeman, “ The effects of breakdowns and interstage storage on production

line capacity,” J. Industrial Engrg., 15, pp. 194-200, (1964).

Model: A tandem line of servers with constant and equal production times is
considered. Non-immediate blocking is assumed with infinite supply of job units
in front of the first server. The servers are subject to breakdown only when they
are working on a job. Times between successive breakdowns and the duration of
breakdowns are all assumed to be independent and ezponentially distributed.
Measure: Efficiency of the line is defined as %D(%%, where Pp(X) is the
percentage of the time the line is down for a given storage capacity X.

Results: First, Pp(0) and Pp(co) are calculated. Then, the effect of system
parameters on buffer capacity and gain efficiency is discussed through simulation

results for three stage lines. Some general guidelines based on simulation results

are given for storage allocation.

[17] E.J. Muth “ A method for predicting system downtime,” IEEE Trans. on
Reliability, 17, pp. 97-102, (1968).

Model: A single machine subject to breakdowns is considered. It is assumed
that the succesive failure and repair times are both 7.i.d with known cumulative
distribution functions.

Measure: System downtime is defined as the time the system is down during the
time interval (0,?) and is denoted by D(t). Approximate distribution of D(t) is
obtained.

Results: It is shown that the Beta distribution is a suitable approximation for
the conditional distribution of Qéﬂ, given that at least one failure has occured
prior to time ¢. Mean and variance of D(t) are calculated and it is shown that the

distribution of D(t) approaches to Normal distribution for large values of ¢.
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[18] J. Masso and M.L. Smith “ Interstage storages for three stage lines subject to
stochastic failures,” AIIE Trans., 6, pp. 354-358, (1974).

Model: A tandem line of three servers with equal and constant service times and
independent and ezponential up and down times is considered. It is also assumed
that there is an infinite supply of job units in front of the first server.

Measure: System utility is considered as a performance measure.

Method: Single and multiple regression techniques are used to approximate the
minimal total buffer capacity required by the system to reach its maximal possible
level of system utility. Also a technique to allocate a given quantity of total storage
among individual interstage buffers is given.

Results: It is shown through simulations that when system utility is within 5%
of its maximal value the effect of increasing the buffer capacity on system utility

becomes insignificant.

19] T.J. Sheskin “Allocation of interstage storage along an automatic production
P

line,” AIIE Trans., 8, pp. 146-152, (1976).

Model: A tandem line of servers with constant and equal production times is
considered. Immediate blocking is assumed with infinite supply of job units in
front of the first server. Times between successive breakdowns and the duration
of breakdowns are all assumed to be independent and ezponentially distributed.
Failures, repairs and transfer of jobs are all synchronized to time epochs.
Measure: Allocation of a fix total storage capacity so as to maximize the steady
state output rate is considered.

Method: An exact compression algorithm is given by considering four servers in
tandem. Discussion of the algorithm and guidelines for buffer allocation is given.
For larger systems a much faster approrimate decomposition algorithm is given.
The algorithm analyzes each server seperately by ignoring the dependence between

the arrivals and departures to a node.
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[20] G.T. Artamanov, “ Productivity of a two instrument discrete processing line
in the presence of failures,” Kibernatika 3, pp. 126-130; English trans. Cybernetics,
12 , pp. 464-468 (1977).

Model: Two servers in tandem with equal and constant service times and an inter-
mediate finite capacity buffer is considered. Immediate blocking is assumed with
infinite supply of job units in front of the first server. Times between successive
breakdowns and the duration of breakdowns are all assumed to be independent and
exponentially distributed.

Measure: Mean productivity is calculated using the steady state probabilities.
Method: A continuous time Markov chain is considered with states defined by
the triple (n, a1, a2) where n is the number of jobs in buffer and aq,as are the
up/down indicators for the first and second server, respectively. Balance equations
for the steady state probabilities are written explicitly and closed form solutions

are obtained.

[21] E. Ignall and A. Silver,  The output of a two-stage system with unreliable
machines and limited storage,” AIIE Trans., 9, pp. 183-188, (1977).

Model: A two stage tandem system with a finite intermediate buffer and multiple
servers in each stage is considered. The servers are assumed to have constant and
equal service times and independent and ezponentially distributed failure and repair
times. Non-immediate blocking is assumed with infinite supply of job units in front
of the first stage servers.

Measure: Estimating hourly line output by a computationally simple heuristic
procedure is discussed.

Method: First, the model with a single server in each stage is considered and
approximate line output is obtained by using known results for zero and infinite
buffer capacities. Then, for multiple servers each stage is modelled as a single server
with rate equal to the sum of the individual rates of the servers. An approximate

formula for hourly line output is obtained as in the first case.
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[22] K. Okamura and H. Yamashina, “ Analysis of the effect of buffer storage ca-
pacity in transfer line systems,” AIEE Trans., 9, pp. 127-135, (1977).

Model: A line with two servers in tandem and a finite intermediate buffer is
considered. The servers are assumed to have constant and equal service times, and
independent and geometrically distributed failure and repair times. Non-immediate
blocking is assumed with infinite supply of jobs in front of the first server.
Measure: The effect of buffer capacity on production rate and the mean number
of jobs in the buffer is considered.

Results: The states of the system and the corresponding 4 V+6 by 4N +6 transition
matrix are explicitly written and the balance equations are solved for steady-state
probabilities for several values éf system parameters. Graphs for production rate
and the mean number of jobs in the buffer are illustrated as a function of the
intermediate buffer capacity. A classification of these graphs are made. The effect
of variations in production times for unbalanced systems is considered. It is argued
that the difference between the breakdown rates reduces the effect of installing
buffer while the difference between the repair rates does not and although the effect
of interchanging the servers is negligible, for large differerences it is better to put

the faster server in front.

[23] J.A. Buzacott and L.E. Hanifin, “ Models of automatic transfer lines with

inventory banks- A review and comparison,” AIIE Trans., 10 , pp. 197-207, (1978).

Model: Compares the assumptions, method of derivation and the results of pa-
pers by Vladziewski/Sevastyanov, Koenigsberg, Buzacott and Sheskin for two stage
blocking models with independent and ezponentially distributed service, up and
down times as common assumptions. The major difference in the assumptions is
whether the idling machines can fail or not.

Measure: Line efficieny is compared for these models.

Results: In this mostly qualitative paper validity of the assumptions are tested

by a real data from a transfer line and the predictions of the analytical models
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are compared with a simulation model which uses the actual data. The difference

between analytical and simulation models is reported to be significant.

[24] R.A. Murphy, “ Estimating the output of a series production system,” AIEE
Trans., 10, pp. 139-148, (1978).

Model: A tandem line of servers with finite capacity intermediate buffers between
some of the servers is considered. Up and down times are assumed mutually in-
dependent with ezponential and general distributions, respectively. The servers are
assumed to have constant but different service times. The failures are assumed op-
eration dependent and no simultaneous repairs are permitted as there is a certain
priority. Non-immediate blocking is assumed with infinite supply of job units in
front of the first server.

Measure: Expected output rate is considered.

Method: First, results for a tandem line with no intermediate buffers are obtained.
Then the case when there is only one intermediate buffer in the line is discussed
by considering the servers in front of the buffer as an input block and the ones
after the buffer as an output block. Effective(relative) up and down times are
calculated analytically by viewing the effect of the buffer to increase the up time
and decrease the down time of the output block as seen by the input block. Then,
approximations are made to simplify the calculations so that sensitivity analysis
and numerical optimization can be performed. The results are applied to the case
where there are more than one intermediate buffer in the line by considering the
effect of each buffer and finding the equivalent up and down times of the downstream

servers, whence eliminating the buffers.

[25] Y.C. Ho, M.A. Eyler and T.T. Chien, “ A gradient technique for general buffer
storage design in a production line,” Proc. 17** IEEE Conf. on Control and Deci-

sion, pp. 625-632, (1978).

Model: A tandem line of servers with constant but different production times is

considered. Non-immediate blocking is assumed with infinite supply of job units in
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front of the first server. Times between successive breakdowns and the duration of

breakdowns are all assumed to be independent and exponentially distributed.

Measure: Allocation of a given total buffer capacity to intermediate buffers to

maximize the efficiency of the line is considered.

Method: First, the forced-down state of a server is classified as irreducible (caused
by intrinsic differences in production rates of the servers) or reducible force-downs (
caused by random failures of the servers). An algorithm that computes the sensitiv-
ity (gradient) of the increase of line production per unit increase in buffer capacity
at a buffer location and then allocates a buffer size to each location by a hill climb-
ing procedure until all gradients become equal is presented and simulation results
are displayed. In comparison with the brute force gradient approach, the algorithm

can generate the gradients of all buffers in a single simulation run.

[26] S.B. Gershwin and M. Ammar, “ Reliability in flexible manufacturing systems,”

Proc. 18" IEEE Conf. on Control and Decision, pp. 540-545, (1979).

Model: Tandem and merge configurations are considered for systems with three
servers. Both deterministic and exponential service time distributions are consid-
ered. Repair and failure times are assumed either geometric or exponential and
independent from the state of the system. Failures are assumed operational in that
the servers can only fail when working on a job. Non-immediate blocking is consid-

ered with infinite supply of jobs in front of the first server.
Measure: Steady state probabilities are considered.

Methods: For tandem systems a state process is defined and the state transition
equations are written for the internal states both for exponential and deterministic
(and equal) service times. Also transition equations for a merge configuration are
written for the internal states and they are shown to be similar to the equations for
the tandem model. Comparisons and some speculations are made for more complex
merge configurations. In all cases steady-state probabilities for the internal states

are assumed to be in sum-of-products form.
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[27] J. Wijngaard, “ The effect of interstage buffer storage on the output of two
unreliable production units in series, with different production rates,” AIIE Trans.,

11, pp. 42-47, (1979).

Model: A line with two servers in tandem and a finite intermediate buffer is
considered. The servers are assumed to have constant but different service times
and independent and exponentially distributed failure and repair times. Immediate
blocking is assumed with infinite supply of job units in front of the first server.
The main difference from the other models is that the job units are modelled as a

continuous random variable rather than being discrete.
Measure: System production rate is considered.

Method: The state of the system is defined as in [20]. Regeneration points are
identified as enterence points to states that corresponds to empty buffer and a cycle
is defined as the time between subsequent regenerations. Production rate is defined
as quotient of the expected production per cycle and the expected duration of that
cycle. For equal production rates, this lead to a differential equation and is solved
explicitly. For different production rates, the problem gave rise to a system of
three differential equations and only the form of the solution is given in this case.
Simulation results for the effect of buffer on an unbalanced line are also briefly

discussed.

[28] A.L. Soyster, J.W. Schmidt and M.W. Rohrer,“ Allocation of buffer capacities
for a class of fixed cycle production lines,” AIEE Trans., 11, pp. 140-146, (1979).

Model: A tandem line of servers with finite buffers between the servers is consid-
ered. The servers are assumed to have constant but different service times. Down
time distribution of each server is assumed to be an independent Bernoulli process,
i.e., the probability that server ¢ is down during a given cycle is p;, independent of
the state of all other servers and previous state of server z. Non-immediate blocking

is assumed with infinite supply of job units in front of the first server.

Measure: Allocation of a given set of buffer capacities to maximize the steady
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state output rate is considered.

Method: The problem is formulated as a nonlinear programming problem where
the form of the objective function is not known. Objective function is approximated
by using lower and upper bounds. First, for a two server system an exact expression
is obtained. Then, for the general case approximate expressions are obtained by
using two server subsystems. Upper and lower bounds are established for the steady-
state system output, and certain concave, seperable programs are formulated to
determine the optimal buffer capacities. Simulations showed that the objective
function that is obtained through approximations is insensitive to modest changes
in capacity allocation. Also, it is concluded that larger buffers should be allocated

around servers with lower reliability.

[29] S.B. Gershwin and O. Berman, “ Analysis of transfer lines consisting of two
unreliable machines with random processing times and finite storage buffers,” AIIE

Trans., 13 , pp. 2-11, (1981).

Model: A line with two servers in tandem with exzponential service times and finite
capacity intermediate buffer is considered. Immediate blocking is assumed with
infinite supply of job units in front of the first server. The servers are subject
to breakdown only when they are working on a job. Times between successive
breakdowns and the duration of the breakdowns are all assumed to be independent
and exponentially distributed.

Measures: System production rate, utilization and average in-process inventory
are considered.

Method: A continuous time Markov chain is considered with states defined as in
[20]. Explicit expressions for steady state probabilities of the states are found by
using balance equations and assuming product-form solutions. Then, these proba-
bilities are used to calculate the above performance measures. These measures are
displayed as a function of the productivity of each server and limiting behaviors are
obtained.

Results: The existence of a saturation effect is illustrated through numerical ex-
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amples. The system saturates after a point in the sense that no further increase in
the speed of the first server can improve the productivity of the system. It is illus-
trated that the system’s production rate increases as the productivity of the servers
increase. Also, the average in-process inventory increases as the first server becomes

more productive and decreases as the second server becomes more productive.

[30] E.J. Muth and S. Yeralan, “ Effect of buffer size on productivity of work stations
that are subject to breakdowns,” Proc. 20t* IEEE Conf. on Decision and Control,
pp. 643-648, (1981).

Model: A line with two servers in tandem and a finite intermediate buffer is
considered. The servers are assumed to have constant and equal service times and
independent and exponentially distributed failure and repair times. The servers can
only breakdown when working on a job. Non-immediate blocking is assumed with
infinite supply of jobs in front of the first server.

Measure: Variation of productivity with the intermediate buffer capacity is con-
sidered.

Method: A system state process is defined and 4N+8 states are identified, where
N is the capacity of the intermediate buffer. The states are ordered in such a way
so that the transition matrix has a block tridiagonal structure with 4 by 4 blocks.
This structured form leads to the solution of the steady-state probabilities by suc-
cessively solving a system of 4 simultaneous equations. Moreover, probabilities for
internal states are shown to have a scalar geometric property. Specifically, if X is the
random variable that denotes the number of jobs in the buffer at steady-state then
P(X=k) = X*P(X=1), for 1 < k < N, where the scalar A is an eigenvalue of a
4 by 4 matrix. Therefore, the probabilities are geometrically increasing or decreas-
ing depending on the availabilities of individual servers. The system production
rate is calculated by using these probabilities. Therefore, for any buffer size the
computation of the production rate is equally simple. In general production rate
depends on several system parameters but in order to study the behavior of the

system production rate as a function of the intermediate buffer capacity a simpler
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approximate expression for the production rate that only depends on the buffer
capacity is given by an empirical formula. This empirical formula is reported to be

correct up to 1071° over a wide range of parameters.

[31] T. Ohmi, “ An approximation for the production efficiency of automated trans-

fer lines with in-process storage,” AIEE Trans., 13, pp. 22-28, (1981).

Model: A tandem line of servers with constant and equal service times and finite
capacity intermediate buffers is considered. Each server is composed of stations
that are mechanically interlocked where each station is assumed to have a constant
probability of breaking down. A server can only breakdown when working on a
job and it breaksdown when one of its stations breakdown. Repair times of each
station are i.t.d. with common ezponential distribution. Two further assumptions
are made; (i) only one server can be down at a given time, and (ii) at the time
when a server breaksdown the number of stocked jobs in each buffer equals its
line-averaged value, i.e., fluctuations of in-process inventories are ignored.
Measure: Production efficiency and capacity allocation are considered.

Method: First, lifetime of each server is shown to have geometric distribution.
Then, a method for approximating the line efficiency is developed. Also, the opti-
mal partitioning of the line and the method of allocating capacities for buffers are

numerically investigated.

[32] M.F. Neuts, “A queue with server breakdowns and repairs” in Matriz-geometric
solutions in stochastic models - An algorithmic approach, The John Hopkins Univ.

Press, pp. 274-286, (1981).

Model: A system with N parallel servers with exponeniial service times and Pois-
son arrivals to an infinite capacity buffer whose rates may depend on the number
of operative servers is considered. Times between successive breakdowns and the
duration of the breakdowns are all assumed to be independent and ezxponentially

distributed. It is assumed that there are C repairmen (C' < N) available.
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Measure: Computation of steady state probabilities is considered.

Method: The states of the system are defined and the generator matrix is given.
The state transition process is shown to be a Quasi Birth and Death (QBD) pro-
cess. For N=1 (M/M/1 queue) the steady-state probabilities are given explicitly.
For the general case, recursive equations for the steady-state probabilities are ob-
tained by matrix geometric methods and a numerical algorithm is briefly discussed.
Also, computation of the conditional working time distribution is discussed and a

numerical example is given.

[33] T. Altiok and S.Stidham, Jr. “ A note on transfer lines with unreliable ma-
chines, random processing times and finite buffers,” IIE Trans., 14, pp. 125-127,
(1982).

A comment to the effect that except the two node models the two type of blocking
strategies (immediate and non-immediate) are not equivalent and it is necessary to
insert a blocking indicator into the state description to study models which adopt

non-immediate blocking strategy.

[34] T. Altiok and S. Stidham, Jr. “ The allocation of interstage buffer capacities
in production lines,” IIE Trans., 15 , pp. 292-299, (1983).

Model: A tandem line of servers with independent and exponentially distributed
service, breakdown and repair times is considered. Non-immediate blocking is as-
sumed with infinite supply of job units in front of the first server.

Measures: Optimal allocation of buffer capacities to maximize the average output
rate is considered.

Method: It is shown that the effective service completion time has two stage
Coxian type distribution, whence the system is transformed into a tandem line of
reliable servers with two stage Coxian service distributions. States of a continuous
time Markov chain are defined and the balance equations are solved by using the

power method. A search technique for optimal buffer allocation is also discussed.
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[35] S.B. Gershwin and I.C. Schick, “ Modelling and analysis of three-stage transfer
lines with unreliable machines and finite buffers, ” Operations. Res., 31, pp. 354-

380, (1983).

Model: A tandem configuration of servers with constant and equal service times is
considered. Failure and repair times are assumed geometric and independent from
the state of the system. Failures are assumed operational in that servers can only
fail when working on a job. Non-immediate blocking is considered with infinite
supply of jobs in front of the first server.

Measures: In-process inventory and efficiency (production rate) are considered.
Methods: The states are defined as in [20] and sum-of-products form solution is
assumed for the steady-state probabilities of the internal states. For the boundary
states, expressions for the steady-state probabilities are derived by using the transi-
tion equations. Therefore the order of the system is reduced from N2 to N, where
N is the total buffer capacity. Although the order is reduced the new system is
not sparse and it may also become ill-conditioned. The general results are applied
to a system with three servers, transient and boundary states are identified and a
procedure is discussed for the solution of steady-state probabilities.

Results: The following results based on simulations are given for three server
systems.

- Total average in-process inventory is proportional to the failure rate of the third
server and inversely proportional to the failure rate of the second server.

- Efficiency increases with the total storage size, but so does the error in the calcu-
lations of the steady-state probabilities.

- Efficiency stays approximately constant when all probabilities are multiplied by a
constant number and the storage capacity is divided by the same number.

- Production rate is not affected by the reversal of the data describing the system
while the error in the numerical calculations is.

- For a balanced line, maximum efficiency is obtained when the intermediate buffers
have equal capacities.

- When last machine is almost reliable, the system behaves like a two-server system.
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[36] B. Vinod, “ Unreliable queueing systems,” IE Working Paper, 83-105,Dept. of
Industrial Engrg. Rutgers Univ., (1983).

Model: Both a single server and several identical servers in parallel, subject to ran-
dom breakdowns and repairs are considered. Since the servers are in parallel there
is no blocking. System is modelled as a multiple customer class priority queueing
system. Finite source of failure customers have pre-emptive resume priority over
the job customers, and a queue of breakdowns is not permissible. Arrival process
of failure customers are Poisson whose rate depends on the number of operative
servers. Service times for failure customers (repair times) are ezponentially dis-
tributed. Both operational and time dependent breakdowns are discussed for the
single server case. In the latter case, extensions to multiple servers are also done.
Measures: Steady-state probabilities, marginal queue length distribution and its
moments, covariance between failure and job class customers, utilizations and mean
waiting times are considered.

Method: By lexicographically ordering the states, a continuous time Markov pro-
cess with a block tri-diagonal transition matrix (a QBD process) is obtained. The
stationary probability vector, z, of the process is partitioned into vectors z; and
it is shown that these vectors have matriz-geometric form, i.e., z; = zoR, where
the irreducible, nonnegative rate matrix R is the minimal solution to a non-linear
matrix equation. A recurrence relation is given to compute R. For the single server
case R and zy are obtained explicitly. For multiple servers zo is shown to be the
solution of a system of linear equations. In both cases expressions for the above

performance measures are obtained.

[37] T. Altiok, “ Approximate analysis of production lines with general service and

repair times and with finite buffers,” IE Rep. 84-4, Rutgers Univ, (1984).

Model: A tandem line with finite capacity buffers between the servers is considered.
The servers are assumed to have independent Erlang service time distributions. The

up time distribution is assumed to be ezponential while the down-time has a general
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distribution. Both infinite supply of job units in front of the first server and the
case where there is a Potsson arrival stream to an infinite buffer in front of the first
server is considered with non-immediate blocking assumption.

Measures: Average number of jobs in each buffer and utilization of each server is
considered.

Method: Although an expression for the cumulative distribution of service com-
pletion time is obtained, it is very complicated to deal with. However, in the case
of exponential repair times, by observing the corresponding Laplace-Stieltjes trans-
forms it is seen that the service completion time distribution is the sum of several
two-stage phase-type distributions. Then, a cumulative distribution function is ob-
tained by assuming that at most one breakdown may occur during the process time
of a job. In this way failures are incorporated into the service completion times
which are approximated by specific phase-type distributions. For this approxima-
tion by phase-type distributions, first two or three moments of the derived service
time distribution is used. Particular mixtures of the sum of exponential distribu-
tions are chosen by empirical observations. Then, by using the results of Perros
and Altiok [14], the effective service of the it" server is represented with a phase
structure involving 2 x (M — 7 + 1) phases, where M is the total number of nodes

in the system. Numerical examples and some empirical observations are also given.

[38] B. Vinod and M. Sabbagh, “ Optimal performance analysis of manufacturing
systems subject to tool availability,” preprint, (1984).

Model: A closed network of N jobs and M servers with erponential service times
is considered. Routing probabilities are assumed to be independent from the state
of the system. It is assumed that a job can be processed only if a tool is available
and each server requires only one tool to process a job. The server is assumed down
if a tool is not available. Up and down times of the servers are assumed to be
exponentially distributed.

Measure: Optimal allocation of spare tool classes is discussed.

Method: The processing rate is modified to capture the interruptions caused by
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tool failures. Known results are then applied to these approximate, new processing
times to obtain joint queue length distributions. Then, the problem of optimal allo-
cation of spare tools at each server is formulated as a nonlinear integer programming

problem. An algorithm is given to solve this mathematical programming problem.
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