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ABSTRACT

Title of Dissertation: Robust Control of Bifurcating Nonlinear Systems

with Applications

Hsien-Chiarn Lee, Doctor of Philosophy, 1991

Dissertation directed by: Dr. Eyad H. Abed

Associate Professor

Department of Electrical Engineering

This dissertation addresses issues in the robust control of nonlinear dy-
namic systems near points of bifurcation, with application to the feedback con-
trol of aircraft high angle-of-attack flight dynamics. Specifically, we consider
nonlinear control systems for which a nominal equilibrium point loses stability
with slight variation of a distinguished system parameter (the “bifurcation pa-
rameter”). At such a loss of stability, various static and dynamic bifurcations
may occur. These bifurcations often entail the emergence from the nominal
equilibrium of new equilibrium points or of periodic solutions. The control laws
sought in this work are intended to achieve certain goals related to the stability
and/or amplitude of the bifurcated solutions.

An important contribution of this dissertation is the introduction of the
so-called “washout filters” into the control of systems undergoing bifurcations.
These filters have been used for some time in certain practical control systems.
They facilitate attainment of a degree of robustness of the system operating
point to control actions and to uncertainty. Here, washout filter—aided feedback
stabilization of nonlinear systems is studied in a general framework. Moreover,
washout filters are employed in the feedback control of bifurcating systems.

Several critical cases associated with bifurcations are considered. These
include cases in which stability is lost through a zero eigenvalue, a pair of pure
imaginary eigenvalues, two zero eigenvalues, and two pairs of pure imaginary

eigenvalues. Robustness estimates are given for the achieved stabilization.



The foregoing analytical work is complemented with a thorough control
study of nonlinear models for the high angle-of-attack longitudinal flight dy-
namics of an F-8 Crusader aircraft. In this application, we demonstrate the
superiority of washout filters in extending the stable high angle-of-attack flight
regime. Also, we demonstrate the robustness of the control algorithm by using
a fixed controller to stabilize twelve different Hopf bifurcation points in six dif-
ferent aircraft dynamic models. The numerical work employs state-of-the-art

software packages for bifurcation analysis.
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CHAPTER ONE
INTRODUCTION

Bifurcation phenomena, or qualitative changes in a system’s qualitative
behavior occurring as a parameter is slowly varied, have been observed and an-
alyzed for many real-world systems. Indeed, applications of bifurcation theory
are now common in such diverse areas as electronic circuits, electrical power sys-
tems, mechanical systems, chemical reaction systems, fluid systems and aircraft
systems. Many instances of loss of stability in physical systems have been char-
acterized in terms of elementary local bifurcations. For instance, [1] relates the
voltage collapse of a power system to a saddle-node bifurcation; [2], [3] consider
loss of stability of axial flow compression systems in terms of local and global
bifurcations of equilibria and periodic solutions; and the stall and divergence
of aircraft in high incidence flight, as well as other nonlinear aircraft motions,
have been linked to bifurcations of the governing dynamic equations [4], [5],
[6], [7], [8], [9], [10], [11]. Observation and analysis of bifurcation phenomena
are usually useful in understanding nonlinear system behavior. For instance,

in [8], through bifurcation analysis, the nonlinear behaviors of aircraft at high
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angle-of-attack, such as jump to new steady states, oscillations, and hysteresis

are predicted and explained.

Although there is a great volume of work on bifurcation analysis both in
terms of theory and applications, few general results are available on issues of
control of bifurcating systems. Although for some systems bifurcations may
be removed by using linear feedback, such controllers may require excessive
feedback gains and large bandwidth [12], which may be unfavorable in practical

applications.

Several local bifurcation control methods for certain classes of nonlinear
bifurcating systems have been developed [13], [14], [15], [16], [17]. Based on
these methods, interesting applications [18], [19], [20] have been proposed for
satellite stabilization systems and aircraft control systems. These methods focus
on the design of stabilizing state feedback control laws at the bifurcation points,

as an alternative to removing the bifurcations.

Several authors have focussed on a nonlinear stabilization problem closely
related to problems of bifurcation control, without necessarily viewing their
work in such terms. The problem here is to stabilize a critical equilibrium
point of a nonlinear autonomous system, that is an equilibrium at which the
system linearization has at least one eigenvalue with zero real part. This being
the goal of the studies, the authors usually assume that the critical eigenval-
ues are uncontrollable for the linearized system. Indeed, otherwise, well known
results would allow the easy design of a linear state feedback which moves the
critical eigenvalues into the open left half of the complex plane, thus stabiliz-
ing the equilibrium point. A few examples of such efforts in the stabilization
of critical systems are [21] [15] [16] and [17]. The connection between stabi-
lization of critical equilibrium points and control of bifurcations was pointed
out in [13]. An equilibrium can undergo a bifurcation only if it is critical at
a certain setting of system parameters, and the stability of the eritical equi-

librium is closely related to that of the bifurcated solutions. In some physical
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applications, stabilization of critical equilibria is a primary consideration, with
little physical consequence of any associated bifurcations. An example of this
is [18], wherein a tethered satellite system dynamic model is found to possess
two pairs of simple, nonzero imaginary eigenvalues. Only one of these pairs is
controllable.On the other hand, [13], [14] consider the local stabilization con-
trol for Hopf bifurcating systems and stationary bifurcating systems in which,
by the continuity of system dynamics, not only the bifurcation points but also
the bifurcated solutions near these bifurcation points are stabilized. For the
resulting closed-loop system, in the case of stationary bifurcation, trajectories
starting near the nominal equilibrium tend to a bifurcated equilibrium; and, in
the case of Hopf bifurcation, trajectories tend toward small-amplitude stable

bifurcated periodic orbits.

All of these methods presume that the bifurcation points (critical equi-
librium points) are at origin or can be easily transformed to the origin. This
implies the need for accurate knowledge of the bifurcation points. Such an
assumption i1s adequate for some applications. For instance, in the tethered
satellite system considered in [18], the critical points are clear from the phys-
ical problem, and their knowledge does not depend on accurate knowledge of
model parameters. However, in many practical applications, either the sys-
tem model is highly uncertain or the potential operating points are not easy
to distinguish. In these cases, accurately determining “where” the bifurcation
points are or “when” the control should be applied may become a problem.
For instance, in aircraft control systems, there are inherent uncertainties in the
dynamic model especially in the high angle-of-attack regime, and there are a
broad range of operating conditions in which the aircraft may operate. It is very
difficult to accurately locate the bifurcation points and to estimate precisely the

parameter values associated with the occurrence of bifurcation. Sometimes, an

additional estimation of operating points such as on-line equilibrium computa-

tion is necessary to minimize the undesired effects from the bifurcation control

3



to the nominal (noncritical) operating conditions. Nevertheless, the inaccuracy
in the estimation as well as in the system model may limit the system capabil-
ity. (An example of this is given in Section 7.3.3, which concerns the near-stall
control of an aircraft model through direct state feedback.) Moreover, even if
the system model is uncertainty-free, the knowledge of bifurcation points may
still be elusive. In [1], even though the dynamic equations of the power system
are given, due to the numerically ill-conditioned nature of the equations, it is
very difficult to locate the bifurcation points. Some of the bifurcations in this

model are surely not yet detected.

In this dissertation, we derive robust control laws for systems possessing
Hopf bifurcations, systems possessing a stationary pitchfork bifurcation, and
systems possessing double pairs of pure imaginary eigenvalues. The control
algorithms are extended from [13], [14] and [17]. However, the control laws
we derive do not depend on accurate knowledge of equilibrium points. More-
over, they preserve the equilibria of the original systems. For the cases where
systems possess a Hopf bifurcation and systems with double pairs of pure imag-
inary eigenvalues in the Jacobian matrix, we focus on the design of a purely
nonlinear stabilizing control algorithm such that while the control is applied to
any operating point it does not affect its linear stability properties. For appli-
cations where the bifurcation points are uncertain and/or the operating points
are not unique, our control strategy is to apply the nonlinear stabilizing control
over a range of operating points which contains the bifurcation points. Since
all the equilibria and the linear stability of each operating point is preserved
and since the linear stability dominates the local behavior, the control stabilizes
the bifurcation points and the bifurcated solutions, but has little effect on the
stable operating points. For cases in which a system or its “embedded system”
(system with artificial parameter included) possesses a pitchfork bifurcation, we
derive a robust linear control algorithm which also does not depend on accu-

rate knowledge of the operating points and will stabilize the bifurcation point
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(critical equilibrium point) and both bifurcated equilibrium branches with all

the equilibrium branches preserved.

This robustness is achieved by introducing a washout filter to each of the
state variable feedback loops. A washout filter (or washout circuit [22], or
canceller [23]) is a simple high pass filter which allows only the transient signal
to pass through. At steady state, the output of the filter is zero. Thus, the
equilibrium state of the closed-loop system is the same as that of the open-loop
system. Washout filters are used commonly in control systems for electric power
systems [24], [25], [26], [27] and aircraft control systems [23], [22], [28], [29].
The main purpose of using these filters is the resulting robustness of the system
operating point to the control actions which may be used. In aircraft Dutch roll
control, the filter blocks out the steady state yaw rate signal which is fed back to
the rudder deflection to increase the Dutch roll damping. The control is initially
designed under straight flight conditions. If the yaw rate signal is directly fed
back to the rudder, the control has a tendency to eliminate the yawing motion
of the aircraft. However, during a steady turn, the aircraft needs to persist at
constant yaw rate, which is opposite the effect of the control. Thus, without
an additional yaw command to balance the counter effect from the control, the
new turning steady state will be different from that of the uncontrolled system.
On the other hand, by using a washout filter, the steady state counter effect is
removed. The turning steady state (the equilibrium state) is then the same as
that of the uncontrolled system. Moreover, at any turning state, the Dutch roll
damping is improved. That is, the control is independent of whatever operating

point at which it works.

With these advantages of using washout filters in feedback loops, the con-
trol laws derived in this dissertation are robust with respect to uncertainty in

the equilibrium points (operating points), and preserve all the equilibria of the

original systems. Moreover, the freedom in choosing the washout filter time

constants 1s very useful in improving the robustness of the control.
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The development of this dissertation is as follows. In Chapter 2, some
basic concepts related to bifurcation along with notation and terminology are
reviewed. The classification of bifurcations by codimension [30], normal forms
for systems near equilibrium points of codimension 1 and 2 [30], and two basic
theorems for stationary and Hopf bifurcations [31], [32] are recalled. Then, the
use of center manifold reduction [33] and normal form transformation [30] for
reducing the system complexity along with three supporting theorems [33], [17]
are summarized. Finally, some properties of multilinear functions, involved in

the derivation of stabilizability conditions, are reviewed.

In Chapter 3, the model and some basic properties of washout filters are
introduced. The advantages, the limitations, and a strategy for using washout
filters in feedback control are discussed. The major advantages of using washout
filters in feedback loop are that they preserve the equilibria after feedback, they
trace (follow) the actual operating points automatically, and that this facilitates
the design of a robust controller. However, there are some limitations of their
use in stabilizing certain classes of unstable systems. For instance, systems
with Jacobian matrix having an odd number of eigenvalues in the open right-
half complex plane cannot be stabilized by feedback through the traditional
stable washout filters. To alleviate this limitation, an unstable washout filter is

also introduced in this chapter.

In Chapter 4, we extend the results of [13] by introducing a washout filter
to each of the feedback loops to achieve a robust nonlinear feedback stabilizing
control law both for systems possessing a pair of pure imaginary eigenvalues in
the Jacobian matrix and for systems undergoing a Hopf bifurcation. Both the
case in which the critical mode is controllable and uncontrollable are considered.
For the case in which the critical mode is uncontrollable, the sufficient conditions
for stabilizability obtained here cover the results in [13]. The control function
does not depend on knowledge of the equilibrium points. Thus, it is robust

with respect to uncertainty in the system equilibria. The control law preserves
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equilibrium points and linear stability of the original system. Therefore, it has
little effect on the stable noncritical equilibrium points. The control is also
robust with respect to general system uncertainty. Two sufficient conditions on
the uncertainty range for the existence of a robust controller are discussed in

the last section.

Since feedback through washout filters cannot alter the equilibrium points
of the original system, it cannot be used to stabilize a pitchfork bifurcating
system by shifting the bifurcated branches to the other side of the bifurcation
point as was done in [14]. However, by introducing unstable washout filters into
the feedback loop, one can change the direction of the ezchange of stability. A
linear stabilizing control algorithm for this purpose is derived in Chapter 3.
This algorithm also has the property of preserving equilibria, and it also does
not depend on accurate knowledge of the bifurcation point (critical equilibrium
point). This algorithm is adequate for systems possessing a pitchfork bifurcation
with the zero eigenvalue of the Jacobian matrix controllable. However, with a
small modification, an algorithm for stabilizing certain class of critical systems

possessing double controllable zero eigenvalues is also derived.

In Chapter 6, we consider deriving a purely nonlinear robustly stabilizing
feedback control law for systems possessing two pairs of pure imaginary eigen-
values in their Jacobian matrices. The cases with both critical modes uncontrol-
lable, both critical modes controllable, and only one of critical modes control-
lable are included. The stability conditions derived by [17] through center man-
ifold reduction and normal form transformation are employed. Through these
stability conditions, the results show that stabilization using washout filter—
aided feedback control is no more restrictive than that using direct state feed-
back as derived in [17]. Moreover, with the flexibility of choosing the washout

filter time constant, the results are much more robust.

In Chapter 7, applications of Hopf bifurcation control to aircraft high angle-

of-attack flight dynamics are given. This chapter involves extensive numerical
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work, requiring the use of a dedicated bifurcation analysis software package as
well as simulation tools. The package AUTO of E. Doedel [34] is used to obtain
global bifurcation branches, while the program BIFOR2 of B. Hassard [32] is
used to calculate coefficients determining local stability at Hopf bifurcation
points. The longitudinal flight dynamic model of an F-8 Crusader of [35] is
studied first. By neglecting the effects of varying weight components in body
axes, the “pseudo steady-state” ( [36], [9], [11], also called the steady state of
the fast mode in [37]) possesses an unstable Hopf bifurcation in the region of
stall. Both direct state feedback control and feedback through washout filters
are employed. The results show that with washout filters, the equilibrium
branches are preserved so that the stable operating range is increased more

than that with direct state feedback.

In order to reflect more realistic high angle-of-attack dynamics and demon-
strate the robustness of the control, six different modified wing lift profiles are
employed in the longitudinal dynamics. Through the use of washout filters,
two fixed stabilizing controllers are designed. Each one stabilizes all the Hopf
bifurcations of six different lift profiles. The one presented last has better re-
sponse in the bifurcated periodic solutions. It results in a family of stable limit
cycles linking two stable Hopf bifurcations which does away with the jumping
and hysteresis phenomena in the region of stall. However, it is observed that
local indices of the nature of the Hopf bifurcations would seem to indicate the
opposite of what is observed for the global bifurcation diagram. This observa-
tion is interesting and motivates the possibility of optimization-based design of

controllers to achieve desired global characteristics.

The time simulations of the full model in the last section show significant

improvement of the aircraft response after control. This also justifies the use of

a reduced model (containing only the fast variables) in the analysis and design.
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Conclusions and suggestions for further research are collected in Chapter



CHAPTER TWO
MATHEMATICAL PRELIMINARIES

In this chapter, we review some basic results relating to bifurcation the-
ory, center manifold reduction, normal form transformation, and multilinear
functions. The properties of codimension one bifurcations along with theorems
on stationary and Hopf bifurcations [30], [38], [39], [32], [31] are recalled first.
These will be employed in the derivation of stabilizability conditions for sys-
tems whose linearization possesses a pair of pure imaginary eigenvalues or a
single or double zero eigenvalue. Next, the use of the center manifold theorem
[33] and normal form transformation [30], [40] in reducing system complexity is
discussed. These methods will be used in deriving stabilizability conditions for
systems whose linearization possesses two pairs of pure imaginary eigenvalues.
Then, some basic properties of multilinear functions [41] are recalled. Finally,
the Fredholm alternative, which will be used for deriving stationary bifurcation

formulae in Chapter 5, is recalled.

2.1. Basic bifurcation theory

Bifurcation refers to qualitative changes in the solution structure of dy-
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namical systems occurring with slight variation in system parameters. The
parameter values at which the changes occur are called bifurcation values or
critical parameter values. Originally, Poincare’ used the term “bifurcation” to
describe the splitting of equilibrium solutions in a family of differential equa-
tions. Bifurcations involving only equilibrium points are known as stationary
or static bifurcations. There are also bifurcations, such as Hopf bifurcation,

which involve both equilibria and periodic solutions. Consider a system

z = fu(x), (2.1)

where z € IR" is the system state and g € IR* denotes a k-dimensional
parameter; k can be any positive integer. In this work, we restrict k to be 1.
The equilibrium solutions are given by the solutions of the equation f,(z) = 0.
By the implicit function theorem, as p varies, these equilibria are smooth
functions of y as long as D, f,, the Jacobian derivative of f,(z) with respect
to z, does not have zero eigenvalue. The graph of each of these functions of
equilibria in (z, ) space is a branch of equilibria of the system. An equilibrium
point is called a “stationary bifurcation point” if several equilibria join at that
point. A necessary condition for an equilibrium (zo, po) to be a (stationary)
bifurcation point is that the Jacobian D, f, has one or more zero eigenvalues.

Bifurcation are often classified according to the codimension of D, f,. Us-
ing a linear coordinate transformation, D,f, can be represented in block-

diagonal form

D,f' = (f(l) j) , (2.2)

where A, is the Jordan block corresponding to the critical modes and A,
denotes the remaining stable modes. Bifurcations from an equilibrium of codi-
mension 1 and 2 require one of the following situations:
Codimension 1 bifurcations:

i) One zero eigenvalue in A, that is A, = 0. (This is associated with

stationary bifurcation.)
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ii) A pair of purely imaginary eigenvalues in A.. (This is associated with
Hopf bifurcation.)
Codimension 2 bifurcations:

i) Double nondiagonalizable zeros in A., that is

A, = (g (1)) (2.3)

ii) Double diagonalizable zeros in A., that is

A, = (g 8) (2.4)

iii) One zero and one pair of purely imaginary eigenvalues in A., that is

0 —w. O
Ac=|w. 0 0]. (2.5)
0 0 o

0 —Ww1 0 0

_ w1 0 0 0
A=10 0 0 —w (2:6)

0 0 w9 0

By using the center manifold reduction technique and normal form trans-
formations, we can reduce system (2.1) to a lower order simplified system called
the normal forms. The normal form preserves the qualitative properties of the
solutions near the bifurcation. Analyzing the dynamics of normal forms yields

a qualitative picture of the solutions for each type of bifurcation. The normal
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forms of codimension one bifurcations are summarized as follows:

i) Saddle-node bifurcation: The normal form is given by
& =p—z. (2.7

The bifurcated solutions exist for y > 0 and are given by z = +,/p.
The equilibrium branch = = ,/p, is stable while the other branch,
r = —,/1t, is unstable.

ii) Transcritical bifurcation: The normal form is given by
&= pr — x> (2.8)

The bifurcated solutions, « = u, exist for both ¢ >0 and g < 0. For
p >0 (resp. u < 0), the bifurcated branch is stable (resp. unstable).

iii) Pitchfork bifurcation: The normal form (for the supercritical case) is
given by
&= px — . (2.9)

There are two bifurcated branches, = = +,/i, for p > 0, and they are
both stable.

iv) Hopf bifurcation: The normal form is given by

b =~y + (= (@ + )

y=2x+y(p—(z* +y%)). (2.10)

The associated bifurcated solutions are nontrivial periodic trajectories.

Theorem 2.1. (Stationary Bifurcation Theorem [38]). Suppose f, of system

(2.1) is sufficiently smooth with respect to both z and p, f,(0) = 0 for all

, and the Jacobian of f,, A, := D, fu(zo(p)), possesses a simple eigenvalue
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A(p) such that at the critical parameter value p. =0,

N(0) = % e (2.11)

and all the remaining eigenvalues of Ay have strictly negative real part. Then:

i) there is an ¢y > 0 and a function

W(e) = pre+ uaé + O() (2.12)

such that if u; # 0, there is a nontrivial equilibrium 2(y) near = =0
for each € € {[—€y,0) U (0,¢0]}; if g1 = 0 and pp > 0 (resp. < 0),
there are two equilibrium points z4 () near z = 0 for each p € (0, )]
(resp. p € [—€0,0)).

ii) Exactly one eigenvalue f(€) of the Jacobian evaluated with respect to
each of the nontrivial equilibrium points in (i) approaches 0 as € — 0

and it is given by a real function

Ble) = Bre+ Pz’ + O(€). (2.13)

The coefficient (; of this function satisfies 8; = —\'(0)g1. The non-
trivial equilibrium z_ (resp. 4 ) is stable (resp. unstable) if

B1e < 0 and is unstable (resp. stable) if Bie > 0. Nevertheless, the
bifurcation point itself is unstable. If 8; = 0, then [y = —2X(0)p2,

and the nontrivial equilibria are asymptotically stable if f; < 0 and
are unstable if 8y > 0.

Theorem 2.2. (CE-Hopf Bifurcation Theorem [32]). Suppose the system
(2.1) satisfies the following conditions:

i) fu(0) =0 for p in an open interval containing 0, and 0 € IR" is an isolated

equilibrium point of f.
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ii) All partial derivatives of the components f}t of the vector f of orders [ <
L+2 (L > 2) (including the partial derivatives with respect to p) exist
and are continuous in # and g in a neighborhood of (0,0) in IR" x IR'
space,

ii1) A, := D, f.(0, 1) has a complex conjugate pair of eigenvalues A and A such

that A(p) = a(p) + jw(u), where wg :=w(0) >0, a(0) =0, and

a'(0) := Z—Z - #0. (2.14)

iv) The remaining eigenvalues of Ay have strictly negative real parts.

Then:

i) There exists an €, > 0 and a CL*+! function

(%)

p(e) = pne +0(Ht)  (0<e<ey) (2.15)
=1
such that for each € € (0,¢p) there exists a nonconstant periodic solution

p(t) with period

L
T(e) = %:—[1 + §T2i€2i] + O(eF1) (0 <e<ep) (2.16)
occurring for p = p(e).
i) There exists a neighborhood n of z = 0 and an open interval ¥ containing
0 such that for any u € 9, the only nonconstant periodic solutions that lie
in n are members of the family p(t).
iii) Exactly two of the Floquet exponents of p((t) approach 0 as € | 0. One is

0 identically, and the other is a CL*t! function

[4]
Ble) =) Buc® +0(e4F!)  (0<e<g). (2.17)

1
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The periodic solution p.(t) is orbitally asymptotically stable if 8(e) < 0, and
is unstable if f(e) > 0. If there is a first nonvanishing coefficient p?,, then

the first nonvanishing coefficient in Eq. (2.17) is given by

Bk = —2X"(0) iz (2.18)

Moreover, there is then an €; € (0,¢,) such that

sgn[B(p)] = sgn[Bax] (2.19)

for p € {p|0 < p/por < u(er)/par}. Here, sgn denotes the sign of a real

number.

2.2. Center manifold reduction

Center manifold theory is very useful in reducing the order of a system
such that the local behavior of solutions of the full system can be determined
by the reduced equations on the center manifold. The following terminology
and notation are based on [33]. A local invariant manifold S for a system (2.1)
is a subset of IR"™ such that for any z¢ € S, the solution z(t) with z(0) = zg
isin § for |t| < T where T is some positive number. If T = oo, then § is
said to be an invariant manifold.

Consider the nonlinear autonomous system

&= Az + f(z,y)
y=By+g(z,y) (2.20)
where ¢ € IR", y € IR™, A and B are constant matrices, f and g are C?
functions with f(0,0) = 0, ¢(0,0) = 0, and the Jacobian matrices of f and
g, f'(0,0) = 0 and ¢'(0,0) = 0. If all the eigenvalues of A have zero real
parts and all the eigenvalues of B have negative real parts, then there exists a

center manifold for (2.20), y = h(z), |z| < 6, where h is a C? function which

satisfies the relationship
R'(z)[Az + f(z,h(z))] = Bh(z) + g(z, h(x)), (2.21)
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where §é is a positive real number. The flow on the center manifold is governed

by the n—dimensional system
2= Az + f(z,h(2)). (2.22)

Theorem 2.3. ([33], Theorem 2) If the origin, z = 0 is a stable (or asymp-
totically stable) (or unstable) equilibrium of system (2.22), then the origin,
z = 0,y = 0, is a stable (or asymptotically stable) (or unstable) equilibrium of
the full system (2.20). If the origin is a stable equilibrium and (z(t),y(t)) is a
solution with initial condition (z(0),y(0)) sufficiently small, then there exists

a solution z(t) of the reduced system such that as ¢ — oo,

z(t) = 2(t) + O(e™™)
y(t) = h(=(t)) + O(e™™), (2.23)
where 4 > 0 is a constant.
In general, it is very difficult to solve for the function h from the relation-
ship (2.21). However, h can be approximated to any desired order.
Theorem 2.4. ([33], Theorem 3). Let ¢ : IR™ — IR™ be a C' mapping in

a neighborhood of the origin with ¢(0) = 0 and ¢'(0) = 0. Let M(¢(z)) be
defined as

M(4(z)) = ¢'(2){Az + f(z,¢(2))} — Bé(z) — g(z, é(x)). (2.24)

If M(¢(z)) =0(|z|?) as @ — 0 for some ¢ > 1, then ¢ also satisfies

|h(z) — ¢(z)| = O(Jz|*) (2.25)
as  — 0.

2.3. Normal form transformation
Center manifold reduction is useful in reducing the system order to the

dimension of the center manifold, while normal form reduction simplifies the
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analytic expression of the reduced system dynamics by successive nonlinear co-
ordinate transformations. The resulting simplified system equations are called
normal forms. The dynamics for the normal form is qualitatively the same as
for the original system.

Consider a system
i = f(z) (2.26)

where z € IR™, f is sufficiently smooth, and 0 is an equilibrium point of the
system. Let the coordinate transformation function be z = y + h(y) where h

is a purely nonlinear function and h(0) = 0. System (2.26) becomes

y = I+ Dh(y))™" f(y + h(y)). (2.27)

The following lemma ensures the preservation of local properties, for instance
stability, after this coordinate transformation.
Lemma 2.5. [17] Let h be a smooth mapping from IR"™ to IR" with
Dh(0) = 0. Then there exists an open set D € IR" containing the origin such
that the mapping ¢ = y + h(y) from D to D is one-to-one and onto.
Suppose h is a polynomial of degree k. Then (I+Dh)™! = I—Dh modulo
terms of degree k and higher, which implies the transformation affects only the
nonlinear terms in (2.26) of degree k and higher. Therefore, by successively
searching for polynomials h of different degrees to remove the nonessential

nonlinear terms, the system equations can be reduced to “normal form.”

2.4. Multilinear functions

Multivariate Taylor series expansions are used extensively in our derivation
of local stability conditions for bifurcating systems and critical systems. It is
very convenient in dealing with these expansions to employ the notation of
multilinear functions. The following are some basic definitions and properties
of these functions.
Definition 2.1. [41] Given vector spaces over the same field V;, Va,---, Vi

and W, a mapping ¢ from the product space Vi x V; x --- x V. into W 1is
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called multilinear if it is linear in each of its arguments. That is, for any v,,

v; € Vi, t=1,---,k, and any scalars a, b, we have
¢(U1,"',(IU,’ +b61 +--- +Uk) = a¢(’01,“',’l)i,"',’l)k)
+ bd(v1,- -+, Viye -+, V). (2.28)
The integer k is called the rank (or the degree) of the function ¢.

Definition 2.2. [42] A k—linear function ¢ : VxV x.-- xV — W is

symmetric if it is symmetric in any pair of its arguments. That is,

¢(v],...,’vi’.-.,vj’...’vk)=¢(vl’...’vj,...’vi,---”Uk)_ (2.29)

Proposition 2.1. [42] Given a symmetric k—linear function ¢ : (IR™)F —

IR™ and any vector y € IR", we have

D¢($,$,'°',$)'y=kd)(.’lf,.’li,"',:t,’y). (230)

Let @ and C denote symmetric bilinear and trilinear functions respec-
tively. Then we have the following identities:
C(z — ay,z — ay,z — ay) =C(z,z,z) — 3aC(z,z,y)
+3aC(2,y,y) — a*C(v,9,y), (2.31)

Q) =710 +y, +¥) ~ @z —y,7 — y)]. (232

2.5. The Fredholm Alternative

Theorem 2.6. (Solvability Theorem; e.g. [39], [43]). Suppose A is a linear
operator defined on the finite dimensional vector space IR" and 0 is an eigen-
value of A. Denote by [ the left eigenvector of A corresponding to the zero

eigenvalue. Then, given any y € IR", the equation
Az =y (2.33)
is solvable for € IR" if and ouly if ly = 0.
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CHAPTER THREE

FEEDBACK STABILIZATION
THROUGH WASHOUT FILTERS:
PRELIMINARIES

This chapter is concerned with the modeling and basic understanding of
washout filters in control systems. Both the advantages and limitations of the
use of washout filters in feedback controllers are discussed. The advantages of
using washout filters are equilibrium preservation, automatic operating point
following, and facilitating the design of a robust controller. The limitations
are in losing the controllability or stabilizability for some classes of unstable
systems or critical systems. Besides the traditional stable washout filters, an
unstable washout filter to alleviate some shortcomings in the use of traditional
stable washout filters is introduced. Also, a strategy for selecting these washout

filters for feedback control is proposed.

3.1. Background and motivation
Our interest here is in the design of stabilizing feedback compensators for

uncertain nonlinear systems
i = f(z,u) (3.1)

where the vector field f is uncertain, possibly depending on one or more un-
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known parameters, u is the scalar input, and the state vector z is available
through measurement. Due to the uncertainty in f, there will also be an uncer-
tainty in the equilibrium points (if any) of this system of differential equations.
However, despite the uncertainty in the equilibrium, the objective in terms
of control design often centers on stabilization of some equilibrium condition.
Typically, in the stabilization of equilibrium points of nonlinear system (3.1),
one expands the vector field f(z,u) about the equilibrium point of interest,
z., and then applies linear feedback design techniques to the linearized model.
This method, which usually involves static state feedback, does not easily apply

to problems in which the dynamics and the equilibrium z. is uncertain.

If a static state feedback is applied to an uncertain system (3.1), then one
expects this feedback to affect the equilibrium points of the system. This is
because the feedback would likely be of the form, say, u = —k(z — z'), where
x, is a possibly crude approximation of #.. Dynamic state feedback, on the
other hand, can alleviate this difficulty. Of course, this is accomplished at
the expense of the increased dimensionality of the controller. A dynamic state

feedback which has been employed in problems of this type is the so-called

washout filter.

Washout filters are commonly incorporated into control systems for electric
power systems [27], [24] and aircraft [23], [28] [22], [29]. The primary benefit of
using washout filters is the resulting robustness of the system operating point
to control actions which may be employed. In power systems, they are used to
remove any steady-state offset voltage which may be produced in the feedback
[25], [27]. In the Dutch roll control of an aircraft, a direct state feedback would
adversely affect the aircraft’s turning capability. By incorporating a washout

filter in the control system, the turning capability is maintained.

In this chapter, two types of washout filters, stable washout filter and un-

stable washout filter, and the general configurations and considerations of their

use in the feedback control are discussed. In subsequent chapters, these results
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are employed to study stabilization algorithms for critical nonlinear systems.

3.2. Washout filter model

A traditional washout filter (or washout circuit), as shown in Figure 3.1, is

a stable high pass filter with transfer function [22]

_yls) s
Gls) = z(s)  (s+d)

=1- (;-J‘i—d). (3.2)

Here, d > 0 is the reciprocal of the filter time constant. With the notation

1
(s +d)

2(s) := z(s), (3.3)

the dynamics of the filter can be written as

z =1z —dz, (3.4a)
along with the output equation
y=z—dz. (3.4b)
At steady-state,
2 = :”—cl‘i, (3.5)

the output y = 0, and the steady-state input signal z. is said to have been
washed out.

As will be discussed in Section 3.5, there are limitations on the efficacy of
traditional stable washout filters in feedback control, and some of these limita-
tions can be alleviated through the use of unstable washout filters.

Unstable washout filters are similar to stable washout filters, except that
the reciprocal of the time constant d in Eq. (3.2) is negative. When the input

is z., the output y is again zero. If the overall closed-loop system is stable,
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an unstable washout filter behaves as would a stable filter. Figure 3.2 depicts

a possible structure of an unstable washout filter.

Ry
——
c R,
" | — -y
S
Y(S)=——--1'——X(5)
S+ R
R,C

S
Y(3) = —=———X(S)

Ficure 3.2. Unstable washout filter
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3.3. Linear feedback through washout filters

Consider the nonlinear system (3.1) expanded at an equilibrium point z.
&= AL + bu + ¢(2,u), (3.6)

where z € IR"™ is the state vector, u is a scalar input, z. 1s an equilibrium,
and & := z—z.. The function ¢ represents higher order terms, i.e., ¢(0,0) =0

and

96(0,0) _

2 =0, (3.7)

By incorporating washout filters in feedback loops, as shown in Figure 3.3, one

achieves the "washing out” of the feedback signals at steady state.

- SYSTEM

CONTROL
FUNCTION
ym
Fit, : the ith -~
washout filter n 5

Figure 3.3. Feedback through washout filters

Due to the linearity of washout filters, in Figure 3.3, several different states
may feed into one filter, and one state may feed into several different filters, to
result in a signal which is a linear function of system states and which vanishes

at steady-state. Therefore, the dynamic equations of washout filters used in a
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feedback loop can be written in general as

n
2 = —d;Z; + E CijZ;
J=1

n
= —d;z; + Z CijZj, (38)
i=1
for + =1,---,m, where m is a positive integer, z.; is the equilibrium state of

Zi, Zei 1s the equilibrium state of the ith washout state z;, and 23; := z — z;.

The relation between z.; and z. is
1 n
Zej == E ;Cijwej. (39)

The overall system is then

()-(2 9)(O)+()+(*5").  aw

where C is the m x n matrix (Cij), ¢ = 1,---,m; j = 1,---,n, which
consists of nonzero row vectors, D is the m x m diagonal matrix with diagonal
entries d;,t = 1,---,m, 2= (21, -+,2m)! is the state vector of washout filters,
Ze = (Ze1, " ,zem)T is the equilibrium state vector of 2, and % := 2z — z.,. The
control u then, can be taken as either a linear or nonlinear function of filter

outputs, are given by

n
yi = —dizi + Y _ cijz;
=1

= —d;z; + Zc,‘jrﬁj. (3.11)
i=1

There is much freedom in choosing the matrices C and D. The following two
lemmas, based on the linear controllability considerations, show two of the basic

rules for selecting these two matrices.
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Lemma 3.1. If the diagonal entries of the matrix D are not distinct, the

linearization of the overall system (3.10) is not controllable even if the subsystem
& = AZ + bu (3.12)

is controllable.
Proof: From the Popov-Belevitch-Hautus (PBH) rank test [44], the linearized

system is controllable if and only if

AI—A 0 b
p( c \—D 0) =n+m, (3.13)

for each complex number A. Here, p denotes the rank of a matrix. Letting A,

be an eigenvalue of D with multiplicity greater than one, then

0 <m-—1
P\ \I-D me L

Since
MI—-A b
p( c 0)gn+1, (3.14)
we have
MI—-A 0 b MI—A b 0
”( C  MI-D 0)5”( c 0)*”(&1-1})
<n+m. (3.15)

Thus the linearized system is uncontrollable.
|
Note that the controllability of system (3.10) does not imply that the eigen-
values of system (3.6) can be arbitrarily assigned by feedback through washout
filters. However, the uncontrollability of (3.10) does imply that the uncontrol-
lable eigenvalues of system (3.10) will persist. Lemma 3.1 implies that if the

eigenvalues (or the time constants) of any two washout filters used in system

26



(3.10) are the identical, one of these eigenvalues will persist in the overall closed-
loop system. This may not be acceptable, especially when two unstable filters
with identical eigenvalue are used. In that situation, the system will surely be
unstable.

In fact, for linear feedback, with simple transformation, two washout filters
with identical time constant can be replaced by one without affecting any other

closed-loop eigenvalues. Consider two filters with the same time constant d—!

n
z1 = —dz + E 1525,

J=1

2'52 = —dZ2 + Z Co;T;. (316)

i=1

Suppose that the control u is a linear function of the outputs of these two

filters

u =k1y1 + kayo

n

- Z(klclj + kQCQj)SCj —_ d(k1z1 -+ k222). (317)
j=1
By setting Z = kyz; + k222, we can construct a new washout filter with identical
time constant d~!
F=—di+ ) (kicij+ kacaj);. (3.18)
i=1

The output of this new filter can be written as a linear combination of the

outputs of the old filters
ﬂ = klyl + k‘2y2. (319)

Thus, we can replace two old filters by simply setting « = ¢. The dimension of
the overall closed-loop system is reduced by one. The closed-loop eigenvalues
are the same with those of using two washout filters except the uncontrollable

one introduced by the redundant washout filter is removed.
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Lemma 3.2. Suppose matrices A and D have identical eigenvalue A\; and

MI—A b ‘
p ( C 0) <n. (3.20)

Then, the overall linearized system (3.10) is not controllable.

Proof: By choosing A = )\q,

AI-A 0 b
C AI-D 0

) <n+m-—1, (3.21)

the PBH test fails. Therefore, the overall system is uncontrollable.
|
Lemma 3.2 shows that to avoid losing the linear controllability, it is better
to have all of the eigenvalues of washout filters different from any of the system
eigenvalues, otherwise there will be some restrictions in the selection of matrix
C. If one of the washout filters does have eigenvalue X, identical to one of
system eigenvalues, matrix C should be chosen not only to have the rank in

Eq. (3.20) equal to n + 1 but also to have the column (0,---,A,0,---)7 in

(g) (3.22)

be linearly dependent on the columns in

MI—-A b 0
(M 8 wp): (3.23)

Note that, in purely nonlinear control, we can neglect these rules since all

the existing eigenvalues will be preserved after control is applied.

3.4. Advantages of using washout filters
Based on the property of “steady-state washing out ”, the advantages of

inserting washout filters in a feedback loop can be summarized as equilibrium

28



preservation, automatic equilibrium (operating point) following, and facilitating

the design of a robust controller.

3.4.1. Equilibrium Preservation

Equilibrium points represent, in some sense, a system’s capability to per-
form in a certain manner at steady state. There are cases in which such a
capability should not be altered by the introduced control strategy. For in-
stance, in the problem of lateral control design for an aircraft, the yaw rate
signal is fed back to the rudder to increase the Dutch roll damping factor. The
control is usually designed assuming a straight flight condition. That is, one
works with a linearized model obtained relative to a straight flight condition.
A direct feedback of yaw rate signal has a tendency to eliminate the yaw rate
motion of the aircraft so as to increase the yaw damping. Unfortunately, this
type of feedback also tends to oppose the aircraft’s tendency to turn. For in-
stance, during steady turns, this feedback will generate a steady-state rudder
deflection associated with constant yaw rate. This deflection is opposite to the
deflection wanted in the turn and means to eliminate the yaw rate. Unless there
is an extra yaw command produced by human pilot to compensate this oppo-
sition, the aircraft will have a steady turn with less yaw rate (larger sideslip).
That is, the aircraft will run into an equilibrium state which is different from
the equilibrium without feedback. To remedy this situation, a washout filter
is included in the feedback loop. This filter, which rejects steady-state input
signals, has the effect of “washing out” the yaw rate signal at steady-state and
thus minimizes the tendency opposing a steady turn. In other words, the lateral
control designed for level flight does not impact the open-loop equilibrium for
turning flight.

The main mechanism which leads to this preservation of equilibrium is that
the feedback function goes to zero at any open-loop equilibrium point. Consider

a system

&= f(z,u) (3.24)
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with
f(ze,0) =0, (3.25)

where u is the control input and z. is any equilibrium point for the system
with zero input. Let the control input u be a function of y = (y1,--- JYm) T

Yi, t =1,---,m, defined in Eq. (3.11):
u = h(y), (3.26)

and let h satisfy
h(0) = 0. (3.27)

From Eq. (3.9) and (3.11), it is clear that y vanishes at steady-state. Hence

f(ze, h(ye)) = f(ze,0) =0, (3.28)

and z. remains an equilibrium point of the closed-loop system. Therefore, by
incorporating a washout filter in the feedback, the equilibrium points of the
original system are preserved. Note that, if the control function h is purely

nonlinear, the linear stability of each equilibrium point is also preserved.

3.4.2. Automatic equilibrium following

Suppose that the system is designed to operate in a wide range of operating
conditions. Let z., denote the operating point determined by parameter pu.
Here, u can be a scalar or a vector. A typical direct state feedback is to have the
control function center at each operating point, that is, to have u = h(z —z.,).
This implies the need of an on-line computation of operating point z. , for each
g. On the other hand, since the output y of washout filters in Eq. (3.4b) can
always be written as

=z —dz

=(z —Te,p) — d(z = Zeu), (3.29)

where z¢ , is the actual operating point which system is currently operated at,

the control function u = h(y) is guaranteed to center at the correct operating
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point without any on-line adjustment. For systems which have uncertainty in
the operating point or have difficulty in performing the on-line operating point

computation, washout filters are very useful.

3.4.3. Facilitating the design of a robust controller

Since the control function h is independent of the operating point, it al-
ready provides robustness with respect to uncertainty in the system operating
point. In addition to that, it provides better opportunity to estimate the range
of other uncertainty that the controller can tolerate. This is because the control
function is always centered at the correct operating point. One can concentrate
on determining the amount of uncertainty in other system dynamics as if the
operating point never changes. To see this, consider applying a nonlinear con-
trol, for instance, a quadratic control, on the system (3.6) at operating point

z.. By direct state feedback, the control function will have a form as
U= Qu(T — 2, — ). (3.30)

Should there be any mismatch éz. in the operating point, the control function

would be deformed to

U = Qu(-’l; — Ley, T — xe) + 2Qu(6xe,$ - we) + Qu(6$3,6$e)» (331)

The induced constant and linear terms in the right-hand side of Eq. (3.31) have
to be taken into account during the stability analysis. Due to the dependency
on the uncertainty éz., these induced terms, while mixed with the uncertainty
in other system dynamics after feedback is applied, will either make the stability
analysis complicated or make the robustness limited.

On the other hand, by using washout filters in the feedback loop, the pat-
tern of control function remains the same for all operating points. Thus, one
can concentrate on analyzing other uncertainty, say, uncertainty in the coeffi-
cients of the series expansion of the system dynamics that relates to stability.

Therefore, robustness analysis is much easier.

31



3.5. Limitations of using washout filters

By inserting washout filters in the feedback loop, the outputs of the filters,
y; in Eq. (3.11), instead of arbitrary system states z, are used in the control.
Although there is plenty of freedom in selecting the coefficients of d; and ¢;;,
some capability of direct state feedback is still lost due to the restriction of
d; # 0. The following lemmas summarize some of the capability limitations
while using washout filters in feedback loop. The stability considered there is
asymptotical stability.
Lemma 3.3. If a system defined as Eq. (3.6) has an odd number of eigenvalues
with positive real part, it cannot be stabilized by feedback through the stable
washout filters, even if those eigenvalues are linearly controllable.
Proof: The system is asymptotically stable only if it does not have any eigen-
value with positive real part. Since pure nonlinear control does not affect the
eigenvalues, only the linear control and the linearized system are considered in
the proof.

Apply a linear feedback u = Ky where K is a 1 X m vector and y is

the output of washout filters to the system (3.6). The linear part of the overall

(ﬁ):A(j) (3.32)

system becomes

where
A:(A+CZ:KC bIIx’)D), (3.33)
and
-d; 0 - 0
p=| 0 % , (3.34)
0 0 - —dn

with all d; > 0. The closed-loop characteristic equation is

a(\) :=det(A — A)
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=det(A\] — D) - det((\I — A — bKC) — bKD(M\I — D)™'C)
=det(A] — D) - det(\I — A)-
det(I — bK(I + D(AI — D) 'C(A\I — A)™")
=det(A — D) - det(AI — A) - (1 — K(I + D(AI — D)"'C(A\I — A)"'b)
=0. (3.35)

Here, det denotes the determinant of matrix. Since D is a diagonal matrix,

we have
%dl (3 e 0
[+DO-D)y=| | TE °
o0
=X-(\[-D)™". (3.36)
Let
a()) :=det(M] — A), (3.37)
d()) :=det(A\I — D). (3.38)

One can write

oL

(A — D)~ :ﬁN(A), (3.39)

where M(A) and N()) are polynomials matrices of A. Substitute Eqgs. (3.36)-
(3.39) into (3.35), we obtain
a(A)=d(A)a(A)+ A (K N(A) C M(\) b
= 0. (3.40)

Since all of the filters are stable, the constant term, d(O), of d(/\) is positive.

And since there is an odd number of eigenvalues with positive real part, the
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constant term, a(0), of a()) is negative. From Eq. (3.40), the constant term,
d(0)a(0) of the closed-loop characteristic equation @(\) is negative. Thus, the
closed-loop system is unstable. That is, any feedback through stable washout
filters cannot stabilize the system.
|

Note that negative a(0) implies that the possible way to stabilize the
system is to introduce an odd number of unstable washout filters (d(0) < 0) to
make the constant term of a(\) positive. In fact, it is easy to show that systems
with odd numbers of controllable eigenvalues having positive real part and
remaining eigenvalues having negative real part can be stabilized by repeatedly
using feedback through unstable and stable washout filters.
Lemma 3.4. Feedback through washout filters cannot move all the zero eigen-
values of a system. That is, at least one of the zero eigenvalues persist after
control is applied.
Proof: Again, since pure nonlinear control does not affect the eigenvalues, only
the linear control and the linearized part of the system are considered. Assume
that the system (3.6) possesses some zero eigenvalues. We have det(4) = 0.
Apply to the system a linear feedback through washout filters, v« = Ky. The
linearization of the overall system will be of the form of Eqs. (3.32)-(3.34).
Since the determinant of a matrix is independent of the row operations in
the matrix, performing row operations in the determinant of the closed-loop

Jacobian matrix, we obtain

de“i:det<A+bAC be’D)

C D

A 0
—det(c D)

= det(A) - det(D)
=0. (3.41)

The nullity of the determinant of the closed-loop Jacobian matrix implies that
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the closed-loop system possesses a zero eigenvalue.

|
Lemma 3.5. Purely nonlinear feedback through washout filters cannot change
the stability of a critical system possessing single zero eigenvalue.
Proof: The proof is based on the fact that the equilibria as well as the type of

static bifurcation are not affected by washout feedback. Consider a system
= f(z,u) (3.42)
with Taylor series expansion at equilibrium point z. as

& =Ao(z — z.) + bu + ud;((z — z.)
+ Qo(z — Teyx — xe) + ulAy(z — 20, ¢ — ) (3.43)

+ Co(z — 2e, 2 — Ty @ — T) + ...

Assume that one of the eigenvalues of 4, is zero and the remaining eigenvalues
are in the open left-half plane. The stability of the system can be judged by
assuming that there is a pseudo parameter p such that the zero eigenvalue
crosses the origin as p varies. Since p is pseudo, the crossing speed of zero

eigenvalue with respect to pu can be made nonzero, i.e.

A1(0) == a—AallE—O) # 0, (3.44)
where A1(0) = 0 is the zero eigenvalue of the original system at y = 0. From
the static bifurcation analysis in [45], if this parametrized system exhibits a
transcritical bifurcation or a subcritical pitchfork bifurcation, the original is un-
stable. If the parameterized system exhibits a supercritical pitchfork bifurcation,
the original system is stable. Since purely nonlinear feedback through washout
filters preserves the equilibria and the linear stability, it also preserves the type

of static bifurcation. Thus, the stability of the system does not change.
|
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CHAPTER FOUR

CRITICAL SYSTEM STABILIZATION AND
HOPF BIFURCATION CONTROL
THROUGH WASHOUT FEEDBACK

In this chapter, a washout filter-aided feedback control law for stabilizing
the critical systems possessing a pair of pure imaginary eigenvalues and for
controlling the Hopf bifurcated systems is developed. All the remaining eigen-
values of these systems are assumed stable. The control law does not require an
accurate knowledge of the system equilibrium points. Thus, it is robust with
respect to uncertainty in the equilibrium points. Moreover, the control law
preserves all the equilibrium points of the original system. It also ensures the
asymptotic stability of the Hopf bifurcation point as well as orbital asymptotic
stability for a range of parameter values of the periodic solutions emerging from

the bifurcation point.

The control algorithm developed in this chapter extends the work in [13].
However, due to the equilibrium preservation property and the flexibility in
choosing the washout filter time constant, the present approach offers the ad-

vantage of accommodating the uncertainty in the system dynamics.
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4.1. Background and motivation

Local feedback stabilization for critical nonlinear systems for cases in which
the system linearization possesses a pair of simple pure imaginary eigenvalues
has been studied by Aeyels [15], Abed and Fu [13], and Liaw [17], among others.
Aeyels [15] and Liaw [17] approached this problem through center manifold re-
duction and normal form transformation. Aeyels [15] focused on a class of third-
order systems with uncontrollable critical mode. This analysis was extended
by Liaw [17] to general finite dimensional systems having either a controllable

or an uncontrollable critical mode.

On the other hand, [13] employed the stability formula for Hopf bifurcation
([38]) involving only Taylor series expansion of the vector field and eigenvector
computations. They used this formula in addressing the local stabilization
problem for critical systems possessing a pair of imaginary eigenvalues. For a
system undergoing a Hopf bifurcation, by continuity, the control law stabilizes
the Hopf bifurcation point and the bifurcated periodic solutions emerging from

this point (locally in parameter space).

Each of the foregoing studies assumed that the critical equilibrium point
is known. For convenience, these studies take this equilibrium to be the ori-
gin. Indeed, in the discussion in [13] of the stabilization of bifurcated periodic
orbits in a parameterized system, it was assumed that the dependence of the
equilibrium on the parameter was also known. In many practical applications,
equilibrium points may not be easy to obtain due to the model uncertainty or
the complexity of the computation. Some equilibria may be crudely approxi-
mated within a parameter range of interest. However, as discussed in Chapter
3, the inaccuracy severely limits the robustness to be expected in the controlled

system.

In this chapter, by introducing washout filters in the feedback control loop,
the need for accurate knowledge of equilibrium points is relieved, and the control

laws preserve the equilibrium points of the uncontrolled system. Moreover, by
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using the flexibility in choosing the time constant for the washout filters, the
control function can be much more robust than those previous works not only
with respect to the uncertainty in equilibrium points but also with respect to
the uncertainty in other system dynamics.

The control law derived here is also based on the stability formula derived
by [38] and the control algorithm derived by [13]. Since no center manifold
reduction and normal form transformation are necessary, it is much easier to
determine the upper limit of uncertainty that the control can tolerate for a
system described in a general state variable form.

The problems discussed in this chapter are both local feedback stabilization
of critical systems possessing a pair of pure imaginary eigenvalues and the Hopf
bifurcation stabilization. The control functions used here are purely nonlinear
so that not only the equilibrium points but also the linear stability of the original

system are preserved.

4.2. Hopf bifurcation formulae

In this section, a stability criterion for Hopf bifurcation derived by Howard
[38], and Abed and Fu [13] is briefly reviewed. The criterion is based on the
Taylor series expansion of the vector field and the eigenvector computations, no
center manifold transformation and normal form transformation are necessary.
Thus, it is very convenient for the robust stabilization control discussed in the
Section 4.5.

Consider a nonlinear autonomous system

z = fu(z), (4.1)

where z € IR" is the state vector, u € IR is the system parameter, f : IR" —
IR" is sufficiently smooth in z,p and f,(z.,,) =0, i.e. z., is an equilibrium
point of (4.1) at system parameter u. Suppose that following hypothesis (called
hypothesis (H)) holds: The Jacobian matrix D, f,, (2 ., ) has a simple pair of

nonzero pure imaginary eigenvalues A1(p.) = jwe and Aq(pc) = —jwe with
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we # 0 and the transversality condition

M) 42

satisfied, and all the remaining eigenvalues are in the open left-half plane. Then,
the Hopf Bifurcation Theorem asserts the existence of a one-parameter family
{pe,0 < € < €9} of nonconstant periodic solutions of system (4.1) emerging from
T = T, at the parameter value p. for ¢ sufficiently small. The system pa-
rameter u can be represented as a smooth function of €. The periodic solutions
pe(t) corresponding to parameter values u(e) have period near 2mw;!. Exactly
one of the characteristic exponents B(e) of the periodic solution p. governs the
asymptotic stability. That is, if B(e) <0, pe is orbitally asymptotically stable,
while if B(e) > 0, p. is unstable. The characteristic exponent ((e) is a real,

smooth and even function of €
B(€) = Ba€® + Bt + - --. (4.3)

Moreover, if 8, in Eq. (4.3) does not equal to zero, the sign of f; is
sufficient for determining the stability of system (4.1) for u(e€) in the sufficiently

small neighborhood of u. (equivalent to sufficiently small value of ).

An algorithm for computing the ”stability parameter”, 3, is as follows
Step 1. Perform a Taylor series expansion on system (4.1) with respect

to both  and p at Hopf bifurcation point, i.e. at p = p., T = Te ,. -

t = AoZ + Qo(Z,2) + Co(Z,8,2)+ -
A(A1E + Qu(E,8) + ) + p*Asd + - (4.4)
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where & = — 2y, = p — pte, Qi(2,2) and Ci(&,%,2) are the
second order (in &) terms and third order (in Z) terms generated by
a vector valued symmetric bilinear form Q;(z,y) and a vector valued
symmetric trilinear form Cji(z,y, z) respectly. With proper rearranging
the order of state variables if necessary, let r be the right eigenvector
of Ap with respect to eigenvalue jw, with the first component of r
equal to 1. Let [ be the left eigenvector of Ay corresponding to the
eigenvalue jw., normalized such that Ir =1.

Step 2. Solve the equations

Aga = _%QO(T7 7_')7 (45)

(2jwe] — Ag)b = %Qo(r, r) (4.6)

for a and b.

Step 3. The stability coefficient 3, is given by

85 = 2R{21Q0(r, a) + 1Qo (7, b) + Zco(r, r ). (4.7)

Note that the sign of #; not only determines the stability of the periodic
solution p., but also the stability of the critical equilibrium point z. ,, . There-
fore, a feedback control law which renders £, < 0 will stabilize both the Hopf

bifurcation and the critical equilibrium point.

4.3. Direct state feedback

In this section, a direct state feedback control law for critical system sta-
bilization and Hopf bifurcation control derived by Abed and Fu [13] is recalled.
Here, the setting of [13] in which the nominal equilibrium branch is taken as
the origin is not assumed. The main advantage of this control law is that it
is based on the coefficients in the Taylor series expansion of the original sys-

tem and on the eigenvector corresponding to the critical mode. Preliminary
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transformations of variables, such as the center manifold transformation, are
not employed. The control law of this section serves as a platform for deriving
control laws using washout feedback, and also for comparison with the results
obtained subsequently using washout filters.

Consider a one-parameter family of nonlinear autonomous control systems

& = fu(z,u). (4.8)

Equation (4.8) is the natural extension of Eq. (4.1) to allow an additional,
smooth dependence on a scalar control input u. Thus, z and p are as in
system (4.1), f, is a smooth map from IR"™ x IR to IR", and u is a scalar
input. Assume that hypothesis (H) of section 4.2 holds for u = 0 with g,
a critical value of p and .,  the corresponding nominal equilibrium. Set
g = pe. Then Taylor series expansion of (4.8) with respect to =z and u at

T = Te,p,, =0 gives (here & : =1 — z,,)

& = Ao + uy + uAi1d + Qo(&, &
+u?Aod +uQy(2,2) + Co(2,2,8) 4 - - -. (4.9)

Take the feedback control u to be of the form
U= jTQu-'i + Cu('i'v z, 33)7 (410)

where @, is a real symmetric n X n matrix and C, is a cubic form generated
by a scalar-valued symmetric trilinear form. No quartic or higher order terms
are included in the feedback since it is clear from the formula (4.7) that these
terms do not affect 3. We also do not include linear terms in the control law
(4.10). Any linear feedback used to modify the critical parameter value p. is
assumed to be accounted in the nominal system (4.8). Of course, linear feedback
could conceivably be employed in (4.10) without influencing the value of ..
However, such a feedback would influence the associated eigenvectors, along

with the linearized stability of other equilibria. To avoid these complications,
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we choose to exclude linear feedback from the control law (4.10). See, however,

Bacciorti and Boier [46] and Abed and Fu [13]. The closed-loop system is
£=A0£+Q3(i,£)+03(32,£,:2)+, (4'11)
where
Q3(,2) = (87 Qui)y + Qu(&, %), (4.12)
Cy(2,%,%) = Cu(#,#,8)y + Co(2,2,2) + (37 Qu?) A1 2. (4.13)

We need Q3(z,y), and Cj(z,y,z) to be symmetric bilinear and trilinear
forms in order to use Eq. (4.7) to calculate the closed-loop B;. This is auto-

matic in the case of Q}(-,-), since both £7Q,y and Qo(z,y) are symmetric.

As for Cg(-,-,-), we can define
Ci(z,y,2) = Cu(z,y,2)y + Co(z,y,2)
1
= 5{(yTQu2)A1~’E + (27 Quy)A12z + (2T Qu2) A1y}, (4.14)

which is a symmetric trilinear form.

Following the algorithm in Section 4.2, we have

x |
a :_§A01Q0(T,T)

= 545 Qo(r7) — 20T QuAT (415)
b = 5 (2wl — 40 Q3(r,7)
= S(2jwcT — 4)7 Qo(r, 1) + 3 (2l — A) (T Qur)y,  (416)

and the closed-loop stability coefficient is

3
By = 2Re{21Q5(r, ™) +1Q(7, %) + 71Cq (r, 7, 7)}
= f2 4+ 2R.A (4.17)
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where A is given by
1
A= ZZ[TTQua*'y — Qo(r, E(TTQuF)Ao_l’Y)]
1 . -
+I[FTQub*y + Qo(F, §(TTQuT)(2chI — Ao)7')]

+ ZlC’u(r, r i)y 4 %l[2(rTQuF)A1r + (T Qur)Ar 7. (4.18)

From Eq. (4.17), it is clear that stability of the Hopf bifurcation point and of
the local bifurcated periodic solution p,, (see Section 4.2), can be achieved if
ReA can be assigned by feedback of the form (4.9). To further analyze the

stabilizability, two cases are discussed separately.

4.3.1. Linearly controllable critical mode
From the well known PBH test [44], controllability of the critical mode is

equivalent to the requirement Iy # 0. By setting the @, = 0 in the control
law (4.10), Eq. (4.18) becomes

A= %Cu(r, r,7)ly. (4.19)

Since the coefficients of Cy(z,y,z) can be arbitrarily assigned, the value of A
can be assigned arbitrarily in the complex plane. Thus, we have the following
result {13].
Theorem 4.1.  Suppose the system (4.8) satisfies hypothesis (H) and the
critical mode is linearly controllable (ly # 0). Then there exists a purely
nonlinear feedback u(Z) of the form (4.10) which stabilizes the Hopf bifurcation
point (critical equilibrium point) and the periodic solutions emerging from that
bifurcation point for parameter values u near the critical parameter value ..
Note that, the equilibrium points extended from the Hopf bifurcation point
as the parameter 4 is varied need not be preserved unless the control u is taken

to be a function of r — z., instead of z — z, ..
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4.3.2 Linearly uncontrollable critical mode

In this case Iy =0, and Eq. (4.18) becomes
1 - 1 . -
A = —21Qy(4, §(TTQuF)A0 17) + 1Q0o (7, E(TTQur)(zjch — Ao) 17)

+ 16T QuR) Arr + (T Qur) Qi (4:20)

Note that only the quadratic terms in the feedback influence A. The problem
now is to find a condition to ensure the assignability to arbitrary negative values
of ReA by a quadratic feedback control. To achieve an explicit condition, we
employ the following lemma [13].

Lemma 4.2. If r is a right eigenvector of Ay corresponding to the eigenvalue

Jwe, then there exists a real symmetric matrix @, such that
In@.r =0 and R.Q.r #0. (4.21)

Based on Lemma 4.2, we can choose a quadratic control u which satisfies
condition (4.21).
Let

p = (Rer)TQu(Rer). (4.22)

Using (4.21),(4.22) in Eq. (4.18), we have
A = p{=21Q0(r, 540 7) +1Qo(7, 5(2jwel = Ao)™ )

1

A sufficient condition for the stabilization problem is as follows:
Theorem 4.3. Suppose the system (4.8) satisfies hypothesis (H) and the criti-

cal mode is linearly uncontrollable ({7 = 0). Then there is a quadratic feedback

u(2) with »(0) = 0 which stabilizes the Hopf bifurcation point (the critical

equilibrium point) and the periodic solutions emerging from that bifurcation
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point for the parameter values p near p., provided that
1. _, 1. 1
Re{=21Qo(r, 545™7) +1Qo(F, 5(juse] — 4o) ™)

+ 24 + Arr) £ 0. (4.24)

|
As was the case with Theorem 4.1, the equilibria are not necessarily pre-

served.

4.3.3 Critique of direct state feedback

Recall the control function in Eq. (4.10). The argument of the function u
1s £ =2 — ¢, . If the equilibrium points z., are not equal to the critical
equilibrium point . ,, for yu near g, the function f,(z.,,,u(z— ., )) does
not necessarily vanish. This means that z., may no longer be an equilibrium
point for parameter values g # p.. This may sometimes be undesirable since
an equilibrium point represents a certain capability of the system at steady
state. Altering the equilibrium may seriously degrade such a capability. The
case of aircraft Dutch roll control as discussed in Chapter 3 is an example of
this.

In order to preserve the original equilibrium points while still using direct
state feedback, the argument of the control function should be &, 1=z — . ,.
Clearly this requires knowledge of the whole branch of equilibria within the
neighborhood of z. ,, of interest, and also requires the control u to depend on
the parameter p. Thus, the need for on-line computation of equilibrium points
arises with this type of feedback. For systems exhibiting large uncertainty in
the equilibrium points or with mathematic complexity in the computation of
equilibrium points, it may be difficult to arrange that the control u be an
accurate function of z — . ,. Hence, in practice, it may be difficult to preserve

the system equilibrium points within the framework of direct (static) state

feedback.
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Even if the equilibrium points are known accurately, if the system has
multiple equilibrium branches, that is, there is at least one equilibrium point
Ty, F Te,u for some parameter values p, by using the control as a function
of  — z¢, one still cannot preserve the equilibrium - This defect also
is not always acceptable. An example is shown in Chapter 7 in the context
of direct state feedback control of aircraft high angle-of-attack flight dynamics.
In that example, feedback brings the extraneous equilibria very close to the
nominal equilibrium, significantly increasing the stability vulnerability of that
equilibrium. This vulnerability occurs because the domain of attraction of the
nominal equilibrium is compromised in the direction of a nearby extraneous
equilibrium.

On the other hand, by employing the outputs of washout filters (see Chap-
ter 3) as the arguments to the control, the control is rendered independent of
the equilibrium points. Hence, on-line computation of equilibrium points is no
longer necessary. This type of control is therefore inherently robust to uncer-

tainty in the equilibria. Moreover, all the equilibrium branches, including those

extraneous branches, remain where they are before control.

4.4. Feedback through washout filters
Recall the system defined in Eq. (4.8). For each system state variable

zi,t = 1,...,n, introduce a washout filter governed by the dynamic equation
zi = x; —dz; (425&)

along with output equation
y; = x; — dz;. (4.25b)

The eztended system (the system with washout filters added on) becomes

(2)=4(

+ulArd +uQi(2,2) + Co(2,2,8) + -, (4.26)

>

Ny 8B

) + uy + udi& + Qo(&, #)

N>
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where z is an n-dimensional vector of washout filter states,

1
Ze = _xeyl"c

d

represents an equilibrium state of z, 2 := z — 2z, , and

i (A 0O
A""(I —dI)’

for :=1,2,...,and

a0 = (9G),

E,(¢,¢,0) = (Cj(cl,ocl,@)) |

for j =0,1,.... Here, (1 := %, (2 := 2, and

(&)

denotes the extended system state.

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Note that only stable washout filters, i.e., those for which d > 0, are ad-

missible here, since the eigenvalues of the extended system (4.26), are precisely

those of the original system along with those of the washout filters. (Recall

that a purely nonlinear feedback is applied.) An unstable washout filter would

introduce an unstable eigenvalue, destabilizing the closed-loop system.

For simplicity, n washout filters, one for each system state, are reflected

in Eq. (4.26). The order of the closed-loop system is 2n. In fact, the actual
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number of washout filters needed, and hence also the resulting increase in sys-
tem order, depends on the number of states involved in the feedback control.
Usually, this will be less than n.

Since all of the eigenvalues are preserved by the (purely nonlinear) feed-
back, the issue of losing linear controllability discussed in Section 3.3 is not
relevant. It is therefore allowed, for instance, to use washout filters all of which
have the same eigenvalue —d to simplify the computation.

For simplicity, a single state is taken as input to each washout filter, al-
though the general form presented in Chapter 3 permits several states to be
input to the same filter.

Next, in order to investigate the influence of washout filters on the stability
parameter [, , the eigenvectors of the extended system are expressed in terms
of the eigenvectors of the original system.Let r and [ denote the right and
left eigenvectors of the original system corresponding to the eigenvalue jw.,
respectively, with the first element of r equal to unity and ! -r = 1. Then we

have

Aor = Jwer, (4.34a)

14y = jwel. (4.34b)

Denote by 7 the 2n-dimensional column vector

f:( ! ) (4.35)
dtjw. |

Since

= jwe, (4.36)



7 is a right eigenvector of Aj. Moreover, the first element of 7, being equal to

the first element of r, is unity. Denote by [ the 2n-dimensional row vector
I=(1 0). (4.37)

We have

i x A 0
T4y = (1 0)(I° _dI)

= (jwcl 0)

= jwel. (4.38)

Thus, [ is a left eigenvector of Ay corresponding to the eigenvalue jw.. Note

that
[.f=1l-r=1. (4.39)

Hence, # and satisfy the normalizations required in computing the stability
parameter B, of the overall system by the algorithm of Section 4.2.

Lemma 4.4. The extended system (4.26) has the same stability coefficient
as the original system (4.9), that is, 8, = fs.

Proof: Following the algorithm of Section 4.2, we have

]- 11 A ~ ™
§A0 IQU(Tar)

S 5)(*47)
B ( iy %o((: %)

“a) (4.40)

1
d

i=—

I
N

b= l(21%1 Ao) ' Qo(#, )

S ) (47)

2jwe+d 2jwe+d
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B L(2jwel — Ao) " Qo(r,7)
_ . o
2(2julzc+d) (2jwel — Ao)™ Qo(r,T)

b
=( 1 b)_ (4.41)
2jwe+d

From the definitions of Qq,Cy,l, and 7 in Eqs. (4.31), (4.32), (4.35), (4.37),

the stability coefficient becomes
Bz 1= 2R{21Q0(7, &) + 1Qo (7, b) + gé’o(f-, 7 7))
= 2R {21Q0(r, a) + 1Qo(F, b) + %Co(r, r 7))
= Bs. (4.42)

|

Next, the closed-loop stability parameter B3 of the overall system (the

extended system with control applied) follows from Egs. (4.15)-(4.16) of Section
4.3:

By = B2 + 2RA
= f2 4 2ReA, (4.43)

where A is given by
ST A ws A e LT A m\ F—1x
A= QI[TTQua 7 — Qo(F, §(TTQur)A0 17)]

+ 17 Qub™y + Qo7 %(fT@uf)(zjch — 40)7'9)]

+ %i (77 7)Y + zll-l”[Q(fTQu?)/M + (FT Qu7) Ay 7], (4.44)
with
* 1 =1 ~ = 1 ~ AR T—1 ~
a* = -§A0 1Qo(r, F)— §(rTQur)A0 13, (4.45)
* ]. . ~ —1 ~ ~ o~ 1 . ~ -1 ~T N o~
b* = 5(2jch-— Ap) T Qo(F,7) + 5(2](.()6[ — Ao)T (7 QuT)Y, (4.46)
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and where Q. (¢,¢) and €, (¢,¢,¢) (with ¢ asin Eq. (4.33)) are the quadratic
and cubic terms of the control function of the overall system. The main dif-
ference between direct state feedback and feedback through washout filters is
that the control functions Qu and é’u, are now restricted to be functions of the
outputs of the washout filters, rather than depending directly on the system
states.

Let the control u take the form

u=y"Quy+ Culy,y,y), (4.47)

where y is the vector of washout filter outputs
y=c —dz (4.48a)
=z —d3. (4.48b)
In (4.47), Q. is areal symmetric nxn matrix and C, is a cubic form generated

by a scalar-valued symmetric trilinear form. Substituting y from Eq. (4.48b)

into the quadratic and cubic terms in Eq. (4.47), we obtain

y Quy = (& — d2)TQu(& — d2)

=(& %) (_%u ;fg) (‘”) , (4.49)

(833

and

Cu(y,y,y) = Cu(® — d2,& — d2,% — d2)
= Cu(#,2,%) — 3dCu(2, %, 2) + 3d>Cu(2, 3, 2) — d*Cu(2, 2, 2).
(4.50)

The corresponding quadratic and cubic terms in the control function for

the overall system of (4.26) are

Q= (% A3, (4.51)
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4.4.1. Controllable critical mode
In this case, Iy # 0. Setting the quadratic component of the control to
zero and denoting by P the quantity

_ wg(wc + jd)

Pi= (4.58)
we have
A= Z—PCu(r, r, 7). (4.59q)
Thus
RoA = %Re(C’u(r, r,#)Re[Ply] — LnCua(r, , #)Im [PIA]}. (4.595)

Since Cy(r,r,7) can be taken to be any complex number, we can find a cubic
function Cy(y,y,y) such that ReA is sufficiently negative to ensure g5 < 0.
Thus, we have the following result.
Theorem 4.5. Suppose system (4.8) satisfies hypothesis (H) and the critical
eigenvalues are linearly controllable. Then there is a purely nonlinear washout
filter-aided feedback which stabilizes the Hopf bifurcation point (critical equi-
librium point) and the periodic solutions emerging from the Hopf bifurcation
point for p the critical value p..
||
Since the feedback function is independent of the equilibrium, no accurate

on-line computation of the system equilibria is necessary.

4.4.2. Uncontrollable critical mode

In this case [y = 0, and Eq. (4.44) becomes
1
A = =21Qo(r, 55:(r" QuF) A5 7)
1 T : 1
+ Qo (T, §Sl(r Qur)(2jwel — Ap)™ )
+ il[252(’rTQuF)A1T + Sl(TTQuT')Al F]. (460)
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As in the case of direct state feedback, the cubic control Cy(y,y,y) has no

influence on the stability parameter §;. Following Lemma 4.2, choose a real

symmetric matrix @, with I,Q.r =0 and ReQ.r # 0. Denoting
p:= (Rer)TQu(Rer),
. 1 _
g1 + ymy = 1Qo(r, §Ao ),
. _1 . -1
g2 + Jma 1= 1Qo(F, '2‘(2.7ch ~Ao)™ ),

m + 61 := lAyr,

ne + 502 = AT,

we have

1 1 1
ReA = p[S2(—2¢1 + 5771) + Re{S1}(g2 + 1772) — Im{S1}(m2 + 102)]-

By Eq. (4.66), R.A # 0 is equivalent to the condition
K3 + dw K, +w?K; #0,
where
> 1 1
Ky :=-2¢ +q: + 5771 + ;1-772,

1
Ko :=2my + 592,

. 1 1
K3 := —2q; — ¢2 + '2‘771 - I?z-

Thus, we have the following result.

(4.61)

(4.62)

(4.63)

(4.64)
(4.65)

(4.66)

(4.67)

(4.68)
(4.69)

(4.70)

Theorem 4.6. Suppose that system (4.9) satisfies hypothesis (H) and the

critical eigenvalues are uncontrollable. Then there is a quadratic washout filter-

aided feedback which stabilizes the Hopf bifurcation point (critical equilibrium

point) and the periodic solutions emerging from the Hopf bifurcation point for
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parameter values u near p. provided that either of the following conditions

holds:
. 1, _, 1
i) Re{-21Qq(r, §Ao ¥)+ §IA1T} # 0 (4.71)

1
ﬁ)z@dn;yMJ_A@*w+§mw¢o (4.72)

Proof: From the definitions (4.68)-(4.70), condition (i) implies that at least one
of Ky or K; does not vanish. Condition (ii) implies that at least one of the

following conditions holds:

1
2@+§m#0, (4.73a)

%w+%%¢o. (4.73b).

If Eq. (4.73a) holds, at least one of K; or K, does not vanish. If Eq. (4.73b)
holds, we have I # 0. Thus, condition (i) or (ii) implies that at least one of
K, K,, K3 does not vanish.

If K3 =0 and K7 =0 but K; # 0, then we have

4

w -
s K1 #0. (4.74)

Rl =@y ane

If K3 =0 but K, #0, by choosving

_K
d# —Ltu., 4.75
S (4.75)

we also have ReA # 0.
If K3 # 0, by choosing

K2 + I&’22 — 4K3K1
We,
2K;

d # (4.76)

we still have ReA # 0.
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Hence, by proper choosing the washout filter time constant, d, we can
make ReA # 0. By choosing the magnitude of p sufficiently large, we can
ensure the closed-loop stability coefficient 85 < 0 and solve the stabilization
problem.

|

Note that, condition K; # 0 is the same with the condition in Theorem
4.3 ([13] Theorem 2) for the case of direct state feedback. Therefore, by using
washout filters we have two more flexibility, either Ky # 0 or Ks # 0, for

stabilizing the system.

4.5. Robustness of washout filter-aided feedback control
Since the washout filter-aided feedback control does not require an accu-
rate knowledge of the system equilibrium points, it is robust with respect to
uncertainty in the equilibrium points. That is, the same feedback controller
can be applied to all the systems having the same Taylor series expansion up
to the cubic terms. Moreover, the control function is also robust with respect

to other system uncertainty. Consider the system

&= fulz,u) + Afu(z,u), (4.77)
where Af,(z,u) € S denotes the uncertain part of the system dynamics, and
S is a bounded set within which the system satisfies the hypothesis (H). The
problem considered in this section is to specify certain sufficient conditions for S
such that, a fixed robust controller for stabilizing all the Hopf bifurcation points
and the bifurcated periodic solutions emerging from the Hopf bifurcation points
of the system (4.77) with Af, € S exists.

4.5.1. Controllable critical mode
In this case, both quadratic and cubic control affect the stability coefficient.
For simplicity, we consider using the cubic feedback c;y? alone. Since the first
element of r has been normalized to 1, we have Cy(r,r,7) = ¢;. From Eqs
(4.17) and (4.19), the influence on closed-loop stability coefficient is given by
A :=2R.A
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= R(PC(r,r, 7))

2
_ gfn [Re(P)Re(17) — In(P)L(17)]
3 w?

(d2 )2 ["‘)C Re (h’) dIm(h’)]' (4.78)

Lemma 4.7.  Suppose the critical mode of system (4.77) is linearly con-
trollable. Then, if either Re(ly) does not vanish and does not change sign
or In(ly) does not vanish and does not change sign for all Af,, € S, then
the robust stabilizing controller given by the form c;y} exists. Here, [ is the
normalized left eigenvector with respect to the critical eigenvalue and + is the
control vector of the system expanded at Hopf bifurcation point.

Proof: Denote S’ the set of all the values of Iy for Af, € S. Suppose in
S’, all the values of Re(ly) are not zero and remain the same sign. Set the

washout filter time constant d to be

0<d< min {

Vv Ives IIm(l'y)l J (4.79)

for all |I(Iv)| # 0. Suppose in S’, all the values of Ij,(ly) are not zero and

remain the same sign. Set

d > max {wc [Re(i7)]

Ve i) (4.80)

For either case, the term w;Re(ly) — dIn(ly) in Eq. (4.79) will remain the
same sign for all Af, € S. Choosing ¢; with sufficient magnitude and proper

sign, the control c;y? stabilizes the system.

|
4.5.2. Uncontrollable critical mode
Since the first element of r is always 1, by choosing
Qu(y’ y) =m0 y%7 (481)
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we have In(Qur) =0 and Re(Qur) = vi. The influence of the control on
the stability coefficient is given by

UJ2

Cu, (4.82)

where

Cy = K3d® — Kydw, + Kjw?, (4.83)
and K, K3, K3 are defined as in Eqgs. (4.68)-(4.70).
Lemma 4.8 Suppose the critical mode of system (4.77) is linearly uncontrol-
lable. Then, if for all Af, € S, either K; or K3 does not vanish and does not
change sign, then the robust controller of the form viy? exists.
Proof: Case 1. Suppose K3 does not vanish and remains the same sign, Cy
can be rewritten as

e \/“77?‘_’_»‘ s \/_Qf—T
CH _ 1{3((1_ 112 -+ I\2 4A3I\1wc)(d_ I&2 K2 4]&3 \lwc). (484)

2K 3 2 I\’3

If K2-4K;3K; < 0, Eq. (4.84) contains a product of a pair of complex conjugate
which is always positive. Thus, for any real value of d, Cy and K3 have the

same sign. If K2 —4K3K; > 0, by choosing

Ky + v/ IX’22 — 4K, K

2K3

d > max{ we}, (4.85)

Cp will have the same sign as K.
Case 2. Suppose K; does not vanish and remains the same sign, Cy can be
rewritten as

6+ VEISIGE, o - VET-AKE,
O = Ky (wo — D2 T Vs 4B Ry Ko = v By = 4RsH0 ) - gg)

2K, 2K,

If K2-—4K,K3 <0, similar to the case of (4.84), Cy and K; always have the

same sign. If

- \/T‘?’
K, ++/ Kj; 41&11{3} <0, (4.87)

max{ 9K,
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since w, is positive, for any positive d, Cy and K; also have the same sign.

If

G+ VEI 4K K,
max{—2 + Kz, 4A1K3} > 0, (4.88)
2K,
by choosing
d< min{w.} (4.89)

Ky + K22 — 4K, K;
ax{

the sign of Cy and K; will remain the same for all Af, € S.

Either case 1 or case 2 satisfied, we can properly choose the eigenvalue for
washout filters to have Cy in (4.82) remain the same sign. Then, by setting
v1 to have sufficient magnitude and proper sign, the robust controller viy} will

stabilize the system.
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CHAPTER FIVE

STABILIZATION OF CRITICAL SYSTEM WITH
ONE OR TWO ZERO EIGENVALUES
THROUGH WASHOUT FEEDBACK

In this chapter, feedback stabilization through washout filters is studied for
critical nonlinear systems for cases in which the system linearization possesses
one or two controllable zero eigenvalues. Upon embedding the critical system
in a one-parameter family of systems, if the corresponding bifurcations are
stationary transcritical bifurcations, as discussed in Chapter 3, we find that
they cannot be stabilized by state feedback through washout filters. If the
corresponding bifurcations are stationary pitchfork bifurcations, linear feedback
stabilization algorithms through washout filters are developed. For systems
with one zero eigenvalue in their Jacobian matrices, the control transforms the
corresponding subcritical bifurcation to a supercritical bifurcation by changing
the direction of exchange of stabilities. This is different from the previous works
[14] and [17], where the control changes the direction of bifurcating equilibrium
branches. The control function does not depend on the accurate knowledge of
the equilibrium point and all the equilibrium points existing before feedback are
preserved. The control does depend on the left eigenvector, I, corresponding
to the zero eigenvalue. However, the control is robust to uncertainty in the
system model. The amount of uncertainty which can be tolerated depends on

how the control affects the stable eigenvalues, if ! is uncertain. If there is no
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uncertainty in [, as for classes of systems such as (5.62) (presented later in this
chapter), the amount of uncertainty that the control can tolerate can be easily
determined.

For systems with two controllable zero eigenvalues in their Jacobian ma-
trices, the control moves one of the zero eigenvalues and stabilizes the other
simultaneously. The control is also robust. If the system dynamic model has
two diagonal blocks, as in Eqs (5.65)-(5.66) below, it is also easy to determine
the degree of uncertainty that the control can tolerate. Otherwise, the impact
of the uncertainty in the coordinate transformation on the stable eigenvalues
has to be considered.

The control algorithms developed below are based on the stability analysis
of the stationary pitchfork bifurcation. Therefore, they can be used to simulta-
neously control the stabilities of the bifurcated branches of systems exhibiting
pitchfork bifurcation without affecting the location of any equilibrium branch.

Similar methods can be applied to critical nonlinear systems whose lin-
earizations possess more than two controllable zero eigenvalues by repeatedly
using linear feedback through washout filters to move the zero eigenvalues till
one or two zero eigenvalues remain. Then, the algorithms in this chapter can

be applied.

5.1. Background and motivation

Feedback stabilization for critical nonlinear systems for cases in which the
system linearization possesses a simple zero eigenvalue has been addressed in
[14] and [17]. [14] employed the stability property of stationary bifurcating
system to stabilize the system by transforming the corresponding bifurcation
from a transcritical or subcritical stationary bifurcation to a supercritical bifur-
cation. The Projection Method, involving only power series expansion of the
vector field and eigenvector calculations, was found to be easy to apply to sys-
tems with dynamics expressed in general state variable form. The method was

also shown to be useful in designing control laws for both the critical nonlinear
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system and the stationary bifurcated system.

On the other hand, [17] employed center manifold reduction to derive sta-
bility conditions for critical systems with a single or a double zero eigenvalue.
The stabilization of critical systems with two zero eigenvalues via center man-
ifold reduction was investigated first by Behtash and Sastry [16] for a class of
third order systems. Liaw [17] extended this result to more general finite di-
mensional critical systems. This method allows one to assess stability based
on a lower order reduced system. However, the reduction to a center manifold
may involve complicated transformations, which makes the determination of

robustness difficult.

In this chapter, washout filters are employed in determining a robustified
stabilization law for critical systems whose Jacobian matrices possess either one
or two zero eigenvalues. This work is motivated by certain results of Chapter 3.
In particular, it was found that feedback through washout filters cannot move
all the zero eigenvalues, and that purely nonlinear feedback through washout
filters cannot stabilize the critical equilibrium point with one zero eigenvalue.
However, since washout filter-aided feedback has several advantages, as elab-
orated in Chapter 3, it is certainly interesting to investigate the possibility of

using linear feedback through washout filters to stabilize those systems.

The stability formulae for stationary bifurcating systems derived by [14] are
employed in deriving the stabilization algorithms. The systems considered here
are restricted to those which undergo pitchfork bifurcations (in the parametrized
models), and the critical eigenvalues are assumed controllable. The method
is naturally adequate for pitchfork bifurcation control. Systems possessing a
transcritical bifurcation are not considered since they can never be stabilized
by feedback through washout filters. In fact, even using direct state feedback
as in [14] and [17], it is very difficult to stabilize the transcritical case, since an

exact nulling of the stability coeflicient 8, (see [14]) is needed.
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5.2. Bifurcation formulae

In this section, the stationary bifurcation formulae for stability analysis
and computation derived by [38] and [14] are briefly reviewed.
5.2.1. Stability analysis

Consider a one-parameter family of nonlinear autonomous systems

z = fu(z) (5.1)

with fu(ze,,) = 0, where z € IR", p is a real-valued parameter, f, is suffi-
ciently smooth in z and g, and z., is the nominal equilibrium point of the
system as a function of the parameter u. Suppose the following hypothesis
holds:

Hypothesis (S): The Jacobian matrix of system (5.1) at the equilibrium =z, ,

possesses a simple eigenvalue A;(p) with A1(0) =0,

O (p)
O ju=0

A1(0) = #0
and the remaining eigenvalues A3(0),- -+, A,(0) lie in the open left-half complex
plane for u within a neighborhood of u. =0.

Then near the point (z.,0,0) of the (n+1)-dimensional (z, ;)-space, there
exists a parameter € and a locally unique curve of critical points (z(e€), u(€)),
distinct from z., and passing through (z.0,0). This phenomenon is called
stationary bifurcation.

The parameter € may be chosen so that z(e€), u(€e) are smooth. The series

expansion of z(e), u(e) can be written as

p(e) = pre+ pge® + -+ (5.2)
z(€) = Teo + T16+ 262 + - - (5.3)

If p1 # 0, the system undergoes a transcritical bifurcation from z¢, at p = 0.

That is, there is a second equilibrium point besides z.,, for both positive and
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negative values of g, |u| small. If g3 =0 and pg # 0, the system undergoes
a pitchfork bifurcation for || sufficiently small. That is, there are two new
equilibrium points for either positive or negative values of p, || small. The
new equilibrium points have an eigenvalue  which vanishes at g = 0. The

series expansion of 3 in € is given by

Ble) = Bre+ fae* + -+ (5-4)

with
By = —p1X\'(0), (5.5)

and, in case 3y =0, B, is given by

Ba = 2p2X'(0). (5.6)

Thus, the system exhibits an exchange of stabilities at the bifurcation point
Teo (at p = 0). Moreover, the stability of the bifurcation point z., itself is
addressed in the following theorem.

Theorem 5.1. Consider a system (5.1) satisfying hypothesis (S). If p; # 0,
then the bifurcation point z.o is unstable. If g3 = 0 and ps # 0, then z.
is asymptotically stable if 35 < 0, but is unstable if g, > 0.

5.2.2. Computing 3, and S,

The stability coefficients 8; and [, can be determined solely by eigenvec-
tor computations and the coefficients of the series expansion of the vector field.
This is explicated next.

By assumption, the Jacobian matrix D fo(z0) of system (5.1) at the
critical equilibrium .o with p = 0 possesses a simple zero eigenvalue A;(0).
Let r be a right eigenvector and [ a left eigenvector of D fo(ze,0) correspond-

ing to A1(0). Set the first element of r equal to unity, and normalize ! so that
l-r=1.
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From the smoothness assumption on the vector field f, system (5.1) can

be rewritten, through series expansion, in the form
& =A,5 4 Qu(#,2) + Cu(#,2,8) +---
=Ao2 + pA12 + ptAsi + -
+ Qo(&,2) + pQu(2,2) + - -
+Co(%,2,8) + - (5.7)
Here, & := x — z.0, Ay, Ao,A1,A2 are n x n matrices, Q,(z,z), Qo(z,z),
Q1(zx,z) are vector-valued quadratic forms generated by symmetric bilinear

forms, and Cy(z,z,z),Co(z,z,z) are vector-valued cubic forms generated by

symmetric trilinear forms. Then, it is easy to check [45], [38] that
N(0) = lA;r (5.8)

Denote by 2, , = z., + x an arbitrary solution to f,(z,0) = 0 other

than the nominal solution 2. ,, and introduce a parameter
e:=1-x. (5.9)

Expand x and p as power series in e:

@8) - i e (Zi) : (5.10)

k=1

Next, substitute Eq. (5.10) into Eq. (5.7), and set the right side of Eq. (5.7)
to zero. Equating coefficients of ¢, €2, and € in the resulting equation yields

the following relationships:
0 =Aox1, (5.11)
0 =Aoxz + 1 dix1 + Qo(x1,x1), (5.12)
0 =Aoxs + u1A1x2 + pedix1 + pi A2 x
+2Qo(x1, x2) + #1Q1(x1,Xx1)

+ Co(x1, X1, X1)- (5.13)
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From Egs. (5.9) and (5.10), we have

e=1-x(e)
=el-x1+€l-xo+---. (5.14)
Hence,
l-x1=1 and [-xx=0 for k>2. (5.15)

Based on Egs. (5.11) and (5.14), we have
X1 =T. (5.16)

Premultiplying both sides of Eq. (5.12) by [, we obtain

= - A,io)lQo(r, r). (5.18)

With conditions of Fredholm Alternative (see Theorem 2.6) now satisfied, we

can obtain x; from Eq. (5.12). We have

y2 = (RTR)™R” ("“A”' o 9l "’)) (5.18)

where
R:= (“?’). (5.19)
Substituting x1, x2, and p; into Eq. (5.13), uo is obtained

1

p2 = s Al Arxe + pilAsr +21Q0 (7, x2) + 111Q1 (7, 7) +1Co (7, 7, 7)}. (5.20)
A1(0)

Substituting p; from (5.18) into (5.5), we find that (; is given by

Br = 1Qo(r,r). (5.21)

Similarly, using (5.20) in (5.6) (which applies only in the case p; = 8 = 0),
we find that, if 8; = 0, then

ﬂZ = 21(2Q0(ra XZ) + C()(T‘, T, T')) (522)
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Based on (5.2)-(5.4), (5.21), (5.22) and Theorem 5.1, the stability of the
bifurcation point ., and that of the bifurcated equilibrium points near z. g,
can be determined.

Since f1, 2 depend solely on the eigenvectors and the quadratic and cubic
terms of the series expansion of the vector field f,(ze,,0) at p = 0, these
coefficients can also be used to determine the stability of any given critical
system at an equilibrium with a simple zero eigenvalue. Thus, the (physical)

presence of a stationary bifurcation is not necessary.

5.3. Stabilization in the case of a simple zero eigenvalue

In this section, we present a method for the stabilization of critical sys-
tems whose linearization at an equilibrium possesses a simple controllable zero
eigenvalue. As usual, the remaining eigenvalues are assumed to lie in the open
left-half complex plane. The control employs feedback through washout filters
to achieve robustness and equilibrium preservation. The development below
employs the stability formulae for stationary bifurcation given in Section 5.2.
The resulting control laws are also applicable to stabilization of the bifurcation
branches arising from a pitchfork bifurcation, while ensuring the exact preser-
vation of all equilibrium points.

As discussed in Chapter 3, pure nonlinear feedback through washout fil-
ters does not change the stability of an equilibrium possessing a simple zero
eigenvalue. Moreover, linear washout filter-aided feedback cannot remove the
critical zero eigenvalue. Therefore, in the following we employ linear washout
filter-aided feedback, achieving stabilization while retaining the critical eigen-
value.

The control law design is performed for one-parameter families of systems
undergoing a stationary bifurcation. If given a critical system with no bifur-
cation involved, we modify the system by introducing an extra g in such a
way that the critical eigenvalue crosses the origin with nonzero speed at y = 0

and with the remaining eigenvalues restricted to the open left-half complex
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for plane p near zero. Then the modified system undergoes a stationary bi-
furcation, whose nature can be studied using the stability formulae of Section
5.2. If the modified system undergoes a transcritical bifurcation, it cannot be
stabilized by any linear feedback through washout filters since a transcritical
bifurcation is preserved by any washout filter-aided feedback law. However, if
the modified system possesses a subcritical bifurcation and the critical eigen-
value is controllable, then a washout filter-aided stabilizing controller can be

designed. This is pursued next.

5.3.1. Pitchfork bifurcation control

Consider a system
i = fulo,u) (5.23)

with the series expansion at an equilibrium point z. ,

& =Ao® +uy+ pA1 & + udy + p2Asd + - - -
+Qo(2,2) + pQu(2,2) + uQr(8,8) + - -
+u? Ao + Co(&,%,8) + - - (5.24)

where &, A;, Qi(#,%), Co(&,%,%) are as defined for system (5.7), and u is
a scalar input. Suppose that with v = 0 the system possesses a subcritical
pitchfork bifurcation at p = 0 with stability coefficient 82 > 0, and that the
zero eigenvalue, A1(0), is controllable, then from the formulae in Section 5.2.2,

we have

ﬂl = lQO(ra T')
=0, (5.25)

and
B2 = 21(2Q0(r, x2) + Co(r,r, 1))
> 0, (5.26)
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where [, r are the left and the right eigenvectors of the Jacobian matrix A
corresponding to the zero eigenvalue. These eigenvectors are normalized as in
Section 5.2.2, and x2 is defined as in Eq. (5.18).

Introduce into the feedback loop a single washout filter with (scalar) dy-

namic equation

zn1=1l-z—dxn, 5.27)
and output equation
y=1-z—dn
=1-z—dz, 5.28)

where 2; :=2; — 21, and z; is the equilibrium state of z;, given by

l- Te,0

S 5.29)

Zl,e =

Consider a linear control law u = ky, and denote (; = £, (3 = 21,

(= (2) : (5.30)

Then the overall closed-loop system for g =0 is

(= Ao+ Qu(¢, )+ Co(¢, ¢, O+, (5.31)
where
(A" ke _f;h), (5.32)

(6, ¢) = (QO(C"CI ) (k(l'ﬁ _Od@)/i“”), (5.33)

Co(¢,¢,¢) = (CO(ClaCl,Cl ) ([k(l'fl _(C)ZCZ)]ZA2C1)

s (k(l G- d%»)@x((u Cl)) _ 5.34)
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Symmetric bilinear and trilinear forms Qo (p1,p2), and é’o( p1, P2, p3) which
generate the quadratic and cubic forms Qg(p, p) and Co(p, p, p), respectively,

can be chosen as

QO(Pl,Pz) = (Q"(plbl’ P2,1))

1 (k(l-p11— A - pg1—dpsa)A
_'_5{( (I-p1a Odpl,z)A1P2>+(k( P21 Opz,z) 1p1>’

(5.35)

and

5 Colons oo
Co(p1,p2,p3) ;:( o(p1,1 82,1 p3,1))

+ {([kz(l p11 — dp, 2)(10 p2,1 — dp2 2)]A2P3 1>

n [k2(1- p11 —dp12)(1- p31 — dps, 2))Aa2pa, 1)

0

+

0

—+

k(1-p11— dl)l,z)Ql(pz,l,Ps,l))
0

+ 0

(
( [k2(1- p2,1 — dp2,2)(1- 31 — dps 2)] Azpy, 1)
("
(

k(l P21 — dp, 2)Q1(p1 1,P3, 1))

N (k(l P31 — dP3g)Q1(P1,1aP271))}, (5.36)

where p; are (n + 1)-dimensional column vectors with

pi = (Z;) , 5.37)

pi1 € IR" and p;, € IR.
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The right and the left eigenvectors, 7 and I, corresponding to the zero

eigenvalue of closed-loop Jacobian matrix Ay can be chosen as

. (dil ) , (5.38)

~ d

Then, the first element of 7 is unity, and [ -7 = 1, as desired. We can now
compute the closed-loop stability coefficients g and ;.

The coefficient B} is zero. To see this, note that

Qi) = (957 ) 4+ (k(l-rgn,alr)

_ (Qo(gv ")) , (5.40)

and, therefore,

~

ﬁf =1 O(Fﬂz)

- a.*_‘licl_'_v_(l ki) (QO((;‘,T))

d

:d~—kl-fyﬂ1

=0. (5.41)

By Eq. (5.22), in order to compute the closed-loop S, we first need to
compute the closed-loop y2. Let X be the difference between bifurcated equilib-
rium point and the nominal equilibrium point Z. , of the extended closed-loop
system corresponding to x, the difference of the bifurcated equilibrium point

and the nominal equilibrium point ., of the open-loop system, then

~ X ~
X = (d—ll_x>- z).42)
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Recall the definitions of € and x2 in Egs. (5.9)-(5.10). The closed-loop pa-
rameter € is

é=1-%

= d—il-’y (=) (l’XXd"1>
= (5.43)
By Eq. (5.10), the closed-loop equilibrium ¥ can be written as a power series
in €
X=e1+&X2+ -
=ex1+ €K+, (5.44)
By Egs. (5.42)-(5.43), it also can be written as

o X
X—(d_ll-x>

_ X1 2 X2 :
“€<d‘ll-x1)+6 (d‘ll-x2)+ . (5.45)
Equating the coefficient of €? in Eqs. (5.44) and (5.45) we obtain
~ X2 :
X2 = (d—-l l. XQ) . (‘546)

Substituting Y2 and 7 into Eqs. (5.35)-(5.36), we obtain
N k(l'Xg—l'Xg)z‘ilT
X e , k(l-r—1)A
Qo(, X2) = (QO(B XZ)) + ( (-r 0 ) 1X2) + (

0
_ (Qo(?(‘), m)) , (5.47)
e ColF 7. 7) = (Co(r(,)r, r)) N ([k(l-r —(l)- r)]2212r>
N (k[l-r ——-lbr]Ql(r,r))
- (CO("(’)"’ ’")) . 5.48)
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Applying the formula of Eq. (5.22), the closed-loop §5 is found to be
By = 21{2Qo(F, %2) + Co(F,7,7)}
_ d QO(T', X2) Co('r, 'I‘,T‘)
_2d_k1.7(z —kl-'y){z( 0 + 0 }

d

= mﬂz, (5.49)

where (3, is the corresponding stability coefficient of the original system.
By Theorem 5.1, for stability we need 83 < 0 and that all noncritical
eigenvalues including the one introduced by washout filter, be in the open left-

half complex plane. Since f8; > 0, by Eq. (5.49) we must require

d

to ensure (5 < 0. As for the closed-loop eigenvalues, consider the characteristic

equation of the closed-loop Jacobian matrix Ag

iy (A= (Ao + Ry D) kdy
det(/\I—-Ao)_det( i o

_ A—Ay —kyA
_det( ~1 ,\+d)

= det(A — Ag) - (=I(A] — Ap) kYA + A + d) 5.51)
Since [ is a left eigenvector of Ag corresponding to the eigenvalue 0, it satisfies
[Ap = 0. Rewriting
MO — Ag)™ = (M 4 1A)(M — 4g)™!
= I(X] + Ao)( A — A) "
=1, 5.52)
Eq. (5.51) becomes
det(AI — Ap) = det(XA — Ag)(A — kl - v + d). (5.53)
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By assumption, one eigenvalue of A, is zero and the others are in the open
left-half complex plane. To ensure all the noncritical eigenvalues of Ay in the

open left-half complex plane, we require
d>kl-vy. (5.54)

Conditions (5.50), (5.54) imply that to stabilize the system, the values of
d and k should be chosen such that

0>d>kl 7. (5.55)

Note that the condition d < 0 implies that an unstable washout filter is needed.

Theorem 5.2. Suppose the system (5.23) possesses a pitchfork bifurcation or
a critical system defined as Eq. (5.23) with u fixed to 0 possesses a simple zero
eigenvalue. If the zero eigenvalue is controllable and the stability coefficients
B1 = 0 and B2 > 0, then stabilization of the critical point of critical system,
and of the bifurcation point and bifurcated branches near bifurcation point for
a pitchfork bifurcating system, by using a linear feedback through an unstable

washout filter, exists.

5.3.2. Geometric meaning of pitchfork bifurcation control

A pitchfork bifurcation is a codimension one bifurcation with normal form
& = pr — az® 5.56)

where a is either +1 or —1.
If a = 41, we have a supercritical bifurcation with bifurcation diagram
as shown in Figure 5.1. In this case, the bifurcation point and the bifurcated

solutions are stable since for y =0,

&= -z, 5.57)



and for g > 0, the bifurcated solutions z = =+,/p have eigenvalue A = —2u < 0.
If a = —1, we have a subecritical bifurcation with bifurcation diagram as shown
in Figure 5.2. In this case, the bifurcation point and the bifurcated solutions
are unstable since for p =0,

& = z° (5.58)

b

and for p < 0, the bifurcated solutions z = +./—p have eigenvalue A = —2u >
0.

4 T T T
X
2 - i
O ___________ —
_2 . -
—— sighle
— == unstable
__4 ! 1 1
-10 -5 0 5 10
H

Figure 5.1. Supercritical pitchfork bifurcation
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Figure 5.2. Subecritical pitchfork bifurcation

Washout filters preserve all equilibrium points. Hence, if the system pos-

sesses a pitchfork bifurcation as in Figure 5.2, then with a washout filter-aided

feedback the bifurcation point cannot be stabilized through moving the bifur-

cated branches to the other side of the bifurcation point (as Figure 5.1) as was

done in [14]. In contrast, the stabilization strategy discussed in Section 5.3.1

1s to achieve a supercritical bifurcation by changing the linear stability of the

nominal branches, as shown in Figure 5.3. That means we need to destabilize

the nominal branch which is stable originally. This destabilization is why an

unstable washout filter is needed in the feedback loop.



4

__2 e _ —
-7 — stable
~7 - — -~ unstable
_4 ! !
-10 -5 0 n 5

Figure 5.3. Pitchfork bifurcation control through washout filters.

The main property of using this method is that it preserves and stabilizes
the bifurcated branches simultaneously without the accurate knowledge of the
equilibrium branches. On the contrary, in [14], the bifurcated branches had been
moved to the other side of the bifurcation point. Another way of preserving
and stabilizing one of the bifurcated branches is to use a linear feedback as a
function of (z — Z.,), where Z., is function of u denoting the equilibrium
point on that bifurcated branch. However, in this case, other branches may not
be preserved. Figure 5.4 shows a simple example of the effect of using linear

direct state feedback, namely

u = k(z ~+/—p), (5.59)
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to stabilize the system

z = puz+ a3+ u. (5.60)

Note that the other two equilibrium branches are severely distored.

>

T T T
% o~ -7
2 b — < i
O -
_.2 - 7
//
T -7 stable
—— = unstabtle
-6 ! : -
-15 -10 -5 0 S

!

Figure 5.4. Stabilization of bifurcated branch using direct state feedback.

5.3.3. Robustness

The control function u = ky is independent of the equilibrium point,
therefore it is robust with respect to uncertainty in the equilibrium points.

Moreover, suppose we choose k to make kI - ~ sufficiently negative so as to
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make the additional eigenvalue introduced by washout filter be restricted to
open left-half complex plane after the control applied. Then, no matter what
positive magnitude B, may be, the closed-loop 3 is negative as long as an
unstable washout filter (i.e. d < 0) is used. Therefore, the controller is also
robust with respect to uncertainty in open-loop 3.

The main limitation on the robustness is that the control function depends
on the left eigenvalue [ (through y). If there is uncertainty in !, condition
(5.55) may not ensure the stability of all the noncritical eigenvalues. However,
if there is no uncertainty in [, and [ -+ does not change sign throughout the
range of uncertainty, we can choose an arbitrary negative d and a sufficiently
large |k| such that

VIIljl'?EXS'{kl v} <d (5.61)

to stabilize the system. Here S’ denotes the set of all possible -+ throughout
the range of uncertainty. In another words, with negative value of d and
sufficient magnitude of k, we can stabilize an uncertain system for the amount
of uncertainty such that within this amount of uncertainty, condition (5.61)
holds.

There are classes of systems that [ does not vary. For instance, for systems

with the Jacobian matrix intrinsically diagonalized as

. 0 0
= (0 A3> T + uy + g(z), (5.62)
where ¢(0) = 0 and
9g(x) -
= ! .63
a:t T = 0 0, > )

the left eigenvector [ is always [1,0,---0].
The main reason of using the left eigenvector ! in the control function
is, for simplicity, to preserve the stable eigenvalues of the original system (see

Eq. (5.51)) during controlling the eigenvalue introduced by washout filter. In
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fact, for stabilization, we only require that all the noncritical eigenvalues stay
in open left-half complex plane. That is, even there is uncertainty in [, the
system remains stable as long as noncritical eigenvalues remain in open left-
half complex plane. The amount of uncertainty that a fixed controller can
tolerate is thus determined by the magnitude of uncertainty that makes any of

the noncritical eigenvalues hit the imaginary axis.

From the discussion in Section 5.3.2, the unstable washout filter is used to
distablize the nominal equilibrium branch which is originally stable. That is to
change the direction of the ezchange of stabilities. As long as the system does
exhibit a pitchfork bifurcation, this change of direction of exchange of stabilities
will automatically change the stability of the bifurcation point. Therefore,

B2 > 0 may not necessary be required.
5.4. Stabilization in the case of double zero eigenvalues

In this section, we consider the stabilization problem for critical systems
whose linearization at an equilibrium possesses two controllable zero eigenval-
ues. The remaining eigenvalues are assumed to lie in the open left-half complex
plane. Form Lemma 3.4, we know that feedback through washout filters cannot
move both zero eigenvalues. Therefore, in here, with suitable choice of washout
filter, we move away one of the zero eigenvalues and stabilize the other by using

the result in Section 5.3.

Since both zero eigenvalues are controllable, the systems can be trans-
formed to have two diagonal blocks in their Jacobin matrix with the upper
block containing these two zero eigenvalues. Without loss of generality, the

system are assumed already in the series expansion form

&1 =Ao#1 +uy + Qo(2,2) + Co(%,%,2) + udi& + u?Asrd
+uQy(E,8) + -+ O(|E, ul[*) (5.64)
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where £ :=z — z, € IR", z. is the critical equilibrium point,

01 0
A=(00 - ], (5.65)
. . AOs

Ao is a (n —2) x (n — 2) matrix with all the eigenvalues in the open left-half

0
v = (71) (5.66)
Vs

with 4; a nonzero scalar, v, € IR" 2, Ay, A, Qo(+,"), @1(+,+),Co(+,-,+) are as

complex plane,

defined in System (5.7), and O([|2,u||*) are those terms with order higher than
three.
5.4.1. Control setup

Introduce into the feedback loop a single washout filter with dynamic equa-

tions

2.51 =y + Cry — dZ] (“567)

Y1 = T3 + g — dz (5.68).

Set u = kyi, the closed-loop system will be in the form of Eq. (5.31) with

0 1 0 0
i kyy ckyi 0 —dkm

=10 0 A4, o | 5.69)
1 c 0 —d
Qo(¢,¢) = (QO(%’CI)> + (kyl‘(;ll@) : 5.70)
Cr(6,6,0) = (Y (Gopc) (e ),
5.71)

(¢ as defined in Eq. (5.30)).
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The characteristic equation of Aq is given by
AA? 4+ (d — cky1)X + ky1) - det |AT — Ags| = 0. (5.72)

Since all the eigenvalues of Ao, are stable, to move one of the zero eigenvalues
of the original system to open left-half complex plane, we need to ensure the

closed-loop eigenvalues

_ —d+cky £ \/4k71 + (d — ckvy1)?
B 2

A (5.73)

having negative real part. The conditions for that are to have kvy; < 0 and
cky < d.
The left and right eigenvectors corresponding to the critical eigenvalues

can be chosen as

—d
l=(0,+—,0,---,d 5.74
052,00 )
and

1

0
r=] 0|, 5.75)

d;1

Thus, the first element of r is unity, and [-r = 1.
It is easy to see that the remaining critical eigenvalue is still controllable

since

£0. 5.76)

However, in order to use the results in Section 5.3, we require l@o(r, r) =0 so

that the corresponding bifurcation is pitchfork instead of transcritical. Denote
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Qo(z,z) and Co(z,z, 1)

ql(.’L',SL')

Qo(z,2) = qz(a:c,x) , (5.77)

‘In(i;’vm)

Cl(ma z, .’L')
C2($7 :L‘,II?)

Co(z,z,z) = ) , 5.78)

cn(z,z,2)

where ¢;(z,z) and c;i(z,z,z) are scalar quadratic and cubic functions of z,

respectively, with

n n
gi(z,z) := Z Z 4, 1;T1% 5, 5.79)

=1 3=l

and

n n n

ci(z,z,z) = ZZZci,ljk:clewk. 5.80)

=1 j=l k=jy

To have lC}o(r7 r) = 0, we require g3 17 = 0. That is, there is no 2% in the
dynamic equation of 5.

Substituting the closed-loop Ay, Qo(-,-), Co(-,-,-), 1, v into Egs. (5.18)-
(5.19), (5.22) we obtain

("C + d(k’)’l )_1 )‘h,n

* q1,11 -
= -1 5.81
X2 A()slqs,ll ) )

Q1,11(k71)_1

and
* _d T -1 4
Bz =2( Ky H2(q2,12 1,11 + 9215 Agy q211) Fe2111 ), 5.82)
1
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where

q3,11

q4,11 ;
qs,11 = . ) (5)83)

qn,11

2,13

42,14 3
g2,1s 1= : . 5.84)

q2,1n

The sign of (B, can be arbitrary altered by altering the sign of d. Thus, we
have the following sufficient stabilization condition:

Theorem 5.3. Suppose system (5.64) which possesses two controllable zero
eigenvalues in the its Jacobian matrix is unstable at equilibrium .. Then, it

can be stabilized by a linear feedback through a washout filter, provided that

Z) q2,11 = 0 585)
i) 2(q2,1291,11 + 43 14455 ¢2,11) + c2111 # 0. (5.86)
[ |

The procedure for selecting the controller are:
Step 1. Set the reciprocal of washout filter time constant d to be in
different sign with Eq. (5.86). If d is positive (resp. negative), we

require a stable (resp. unstable) washout filter.

Step 2. Select a gain k for feedback to have kv, < 0.

Step 3. Select a gain ¢ such that ckv; < d.
5.4.2. Robustness

Suppose the systems intrinsically have a series expansion form of (5.64)
with Jacobian matrix having a form of Eq. (5.65), and v; and Eq. (5.86)

do not change sign throughout the range of uncertainty. Then, follow the
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procedure steps 1-3, it is easy to choose ¢, k¥ and d which satisfy kvy; < 0 and
ckvy; < dfor all v; throughout the range of uncertainty. Note that, suppose v,
does change sign under certain amount of uncertainty. Within this amount of
uncertainty, there are some cases that the zero eigenvalues are uncontrollable,
i.e. 71 = 0. This contradicts our assumption that the zero eigenvalues are
always controllable.

If any additional coordinate transformation is required to transform the
system into the form of (5.64), uncertainty in the transformation matrix has to

be taken into account in the robustness consideration.
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CHAPTER SIX

STABILIZATION OF CRITICAL SYSTEMS
POSSESSING TWO PAIRS OF PURE
IMAGINARY EIGENVALUES

THROUGH WASHOUT FILTERS

In this chapter, we address feedback stabilization through washout filters
of a class of fifth order nonlinear systems whose linearizations possess two pairs
of pure imaginary eigenvalues. Three cases are considered: both critical modes
uncontrollable; both critical modes controllable; and only one of the critical
modes is controllable. For the case in which both critical modes are uncon-
trollable, the stabilizability conditions we obtain are no more restrictive than
those given in [16], [18] and [17], which employed direct state feedback. In ad-
dition, the present approach gives flexibility in choosing the washout filter time
constants, and the control design is more robust to uncertainty than previous
design. In fact, since our control law does not depend on knowledge of the
equilibrium points, it is robust with respect to uncertainties in the equilibrium
points. For the case in which both critical modes are controllable, we show the
existence of a a purely nonlinear robust stabilizing controller. For the case in
which only one of the critical modes is controllable, a robust controller which

avoids the complexity of involving the states of washout filters is proposed.
6.1. Background and motivation

Feedback stabilization of the class of nonlinear critical systems possessing
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two pairs of pure imaginary eigenvalues has been studied by Behtash and Sastry
[16] and Liaw and Abed [17]. Both works employed center manifold reduction
and normal form transformation, to facilitate application of a stability criterion
for fourth-order systems in normal form. Behtash and Sastry [16] considered
a fifth-order system with two uncontrollable critical modes and a (linearly)
controllable stable state. The critical states and the stable state are linearly
decoupled. The stability criterion and stabilizability conditions are given in
terms of the dynamics of the simplified lower order system. Liaw and Abed
[17] extended the work to more general finite dimensional systems with both
critical modes controllable or uncontrollable. They also gave a procedure for
stating the results in terms of the dynamics of the original system. Behtash
and Sastry [16] considered robustness with respect to C* small perturbations
of the vector field. Their rebustness result asserts the local asymptotic stability
of a small ball B, () centered at the critical equilibrium point. In each of these
works, the critical equilibrium point was taken as the origin. Indeed, even the

C* perturbation considered in [16] does not perturb the equilibrium point.

In this chapter, through the use of washout filters, we extend the results
above to the stabilization of systems for which there is uncertainty in both the
critical equilibrium point as well as in the system dynamics, and we seek to
preserve all system equilibria in spite of the applied control. The stabilizability
conditions obtained here are similar to those obtained previously in the direct
state feedback setting. In addition, the control functions obtained here are
independent of the location of the critical equilibrium point, that is, there is
no limitation on the uncertainty in the equilibrium point. Also, under the
assumption of the existence of critical eigenvalues a bound on the uncertainty
for the existence of certain types of robust controller are determined. Finally,
as expected when using washout filters, the equilibrium points of the original

system are preserved by the applied feedback.

The system considered here is identical to that studied in [16]. Higher or-
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der systems may also be considered, as in [17], and more general system forms
and higher degree of degenerate Hopf bifurcation systems may be considered
by using bifurcation formulas derivated by Farr, Li and Langford [47], although
we do not pursue this here. The stability criterion and the transformation algo-
rithm employed here follow the results of [17]. For cases in which either one or
both pairs of critical eigenvalues are controllable, it is clear that linear washout
filter-aided feedback can be used first to move the critical eigenvalues into the
left half plane. If a critical pair remains (in the case where only one of the
two pairs is controllable, say), the Hopf bifurcation control method discussed
in Chapter 4 can then be used. We restrict the control to be a purely nonlin-
ear function, so that the linear stability of all equilibrium points is preserved.
Thus, the critical eigenvalues will not be moved by the control proposed here.

The stability coefficients obtained in this chapter have been verified using the

software package MATHEMATICA [48].

6.2. Stability criteria for fourth-order critical systems
The stability criterion derived in [17] for fourth-order systems with all

eigenvalues lying on the imaginary axis, which will be used in the derivation of

the control law in the following sections, is briefly reviewed here. Consider a

fourth-order nonlinear system

0 & 0 0

. - 0 0 0

T = 0 0 0 0 z + f(z), (6.1)
0 0 —-Q

with 2,05 >0, Q304 > 0, and

fi(=)
foy = [ 1. (6:2)
fa(z)

where the f;, i = 1,...,4, are smooth, purely nonlinear scalar functions with

power series expansions (for ¢ =1,...,4)
filz) = final + fi2ax] + figsal + fiaaxl
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+ figezize + finszizs + finazizs + figsroxs + fi2aZozs + fi 342324
+ fi23T12223 + fi124T12204 + fi1342123204 + fi 2342273724

+ (firn1z1 + finrexo + firizzs + fi11424)23

+ (fin22z1 + fi2272 + fi223x3 + fi,224$4)$g

+ (fi13371 + fi2a3Te + fi333%3 + fi33474)75

+ (finaa1 + fizaa2e + fizaa73 + figasza)zs + O(||z*]]). (6.3)
In [17], a two-stages near-identity transformation
z =%+ P(%) (6.4)

is derived which renders (6.1) in the normal form (6.6)-(6.10) below. Here P is
a purely nonlinear function, a quadratic function P5(Z,%) and a cubic function
P5(&,%,%) for the first and the second stages, respectively. The purpose of
the first stage transformation is to remove the quadratic terms of system (6.1).

Denote the first-stage transformed version of (6.1)
i = A% + f(a), (6.5)

where A is identical to the linear part of (6.1) and f(z) = (fi(&), f2(2), f3(%),
f4(#))T. The final transformed version of (6.1) (i.e., the normal form) is given
by (here & is replaced, for simplicity, by z):
&1 = Q{2 + (6121 + €122)(2] + 23) + (6221 + €272)(23 + 25)}
+ O(l|«*1]), (6.6)
2y = Qa{—z1 + (6122 — e121)(2] + 23) + (6272 — €271 )(25 + 7))}
+O(ll=*])), (6.7)

i3 = Qa{rs + (6323 + e3z4)(2? + 22) + (6423 + eaxs)(z5 + 23)}

+0(||z*]), (6.8)
24 = Qu{—z3 + (6324 — 631'3)(55% + x%) + (474 — €4$3)($§ + xi)}
+ O([l«*])). (6.9)
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The coeflicients appearing in (6.6)-(6.9) is given by ([17]p-54):

_ Q(3f2.202 + fia22) + i (fanaz + 3fian)

) 6.10
! 307 + 20,0, + 302 (6.10)
e — 9192(f1,112 - f2,122) + 3Q§fl,222 - 3Q%G2,111 (6.11)
! 4Q19Q,(21 + Q2) '
5o — Q3(f1,133 + f2,233) + Q4(f1,144 + f2,244) (6.12)
2 (2 + Q2) - (3 + Q4) '
o — Q2(Qs f1,233 + Qu fr 244) = D (D fo,133 + Qu fo,140) (6.13)
2 20, Q:(23 + Q) '
Q1(fa 113 +f4 114)+92(f3 223 +f4 224) -
83 = J 2 2 2 6.14
? (1 + Q) - (23 + Q) (6.14)
o = Q4(91];3,114 + sz3,224) — Q3(91134,113 + sz4,223) (6.15)
3 2Q304 (21 + Q2) .
5, = 94(3f4,444 + f3,344) + Qs(ﬁt,su + 3f3,333) (6.16)
‘ 302 + 2030, + 302 '
ot — Q394(133,334 — fa344) + 302 f2 aaa — 3Q% fa 333 (6.17)
£ 4Q304(Q3 + Q4) ’ '

and fi,jkl, i,7,k,1 = 1,...,4, are the cubic terms jkl of function f;. Next,
to analyze stability of the origin for system (6.6)-(6.9), [17] employs a positive

definite Liapunov function candidate

{23

6.18
2,7 (6.18)

1 Q4 1
V= §P1($% + 9—290%) + §P2($§ +

where p;,p2 > 0 are determined in the course of the analysis. The time deriva-
tive of V along the trajectories of the system defined in Eqs. (6.6) - (6.9)
is
V = p1bi(2? + 22) + (019182 + p2Q262) - (22 + 22) - (22 4 22)
+paQaba(a3 +23)" + O(||(21, 22, 23, 74)I])- (6.19)
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By using Lemma 6A.1 in Appendix 6A, one obtains the following theorem
ensuring that V is locally negative definite, and thus the local asymptotic

stability of the origin.

Theorem 6.1. Let ©,Q; # af3Qy, for each a € {3,1,1,4,9}. The origin of
system (6.1) is locally asymptotically stable if ,8; < 0,364 < 0 and either

2162 €0 and Q365 <0, or 2,6, and 2383 are nonzero and of opposite sign.

A more explicit stability criterion is achieved by rewriting Theorem 6.1 in

terms of system coefficients before normal form transformation as follows:

Theorem 6.2. Suppose Q;Q; # af238)y, for each a € {%,i,1,4,9}. The
origin of system (6.1) is locally asymptotically stable if S;, S, < 0 and S3,5; <

0 or S3 and S; are nonzero and of opposite sign, where

1
302 +20490, + 3

+ Q2 f1,122)] + f2,22(Q f2,02 — 2Q2f1,22) — f1,12(R2 f122 + Q1 f111)

S1

a2 {Q1[83(Q2f2,222 + Q1 f1,111) + (1 f2 112
2

02 Q
+ 5‘2‘f2,11(f2,12 +2f1,11) + ﬁi[(392f4’22 + Q1 fa,11) f2,23 + (30 fa,11

Q
+ Q9 fa,22)f1,13] — '(i[(ﬂlfs,u + 3Q2 f3,22) f2,24 + (2 f3,22
2
(42192 — Q304)

+ Q2(Q4 f1,24 + 2 f1,13)] - (Qaf3,12 — 201 fa22)

(409 — 0:04)05

— Q2(2Q1 f1,14 — Q3 f1,23)] - (3 fa,12 — 2Q2 f3 20 + 201 f3.11)}, (6.20)

1
302 + 20304 + 3

+ Q4 f3,344)] + f4,44(Q3 fa34 — 2Q4 f3 44) — f3,34(Qa f3,04 + Q3 f5.33)

&
2

+3Q1 f3.11) f1,14] + (21 (s f2,14 — 2Q2 f2,23)

[Q21(2Q2 f2 24 + Q3 f2,13)

Sa

Oz {Q3[3(Q4 fa,044 + Q3 f3333) + (23 fa,334
4

Q
+ —f133(fa,34 +2f333) + Q—g[(394f2,44 + Q3 f2.33)fs,14 + (323 f2 33
2
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Sy =

Sy =

+ Q4 f2,44) f3, 13] — —[(93f1 33 + 34 f1,44) fa,24 + (R4 f144

23
(4023824 — Q21022)9

+ Qs(Q2f3.24 + 293 f3.13)] - (2 f1,34 — 2Q3 f2,33 + 24 f2,44)

+ 3Q3 f1,33) f3,23] + [Q3(Q2fa,23 — 204 f1,14)

Q3
- (4w3Qy — 9192)91 [93(2Q4f4,24 + Q1f4,13)
— Q4(2Q3 f3,23 — QU f3,14]) - (1 f2,34 — 2Qaf1,44 + 2Q3 f1,33)}, (6.21)
s

1
2 + —[2Q
(91 + 92) . (Qa + 94){ f1,33f3,23 93[ 4f1,44f4,24

+ Q1 (f1,144 + f2,244)] + Q1 (f1,133 + f2,233)

2Q9 O

— —"‘fz 33f313 + I [Q3(Q4fa,44 + (Q3f4,33)(f2,23 + fi.13)
3944

2Q Q
— Qu(Qq f3,00 + Q3 f3,33)(f2,24 + f1,14] — ! 4f2 44 fa,14

1
2302

— Q2(Q3f1,33 + Qafi,44)(f1,12 + 2f2,22)]
| 1
(492394 — Q1022)Q5
+ Q3(Q fa,13 + 2Q4 fa24)] - (1 f2,31 — 24 f1,44 + 2Q3 f1,33)
(@050, — 010,)00
+ Q3(Q2f123 — 2Qs fa14)] - (V2 f1,38 — 2Q3 f2,33 + 204 f2,44) }, (6.22)

92
(1 +Q2) - (23 + Q)

+

[91(93f2 33 + Qafo,44)(fo,12 + 2f1,11)

[Q4(Q1 f3,14 — 223 f3,23)

[Q(Qi’f3,24 + 293f3,13)

1
{2f311f1,14 + 9—1[292f3,22f2,24

+ Q3Q(f5,223 + fa,224)] + = [1(Q2 f2,22 + Q1 fo, 11)(fa,14 + f3,13)

Q2Q

- Q2(92]“1 22 + Qlfl 11)(f4 24 + f2 23)] - 2_Qs’f4 llfl 13
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1
+ ——[Q3(Q fa,11 + Q2 fa,22)(fa,34 +2f3,33)
Q1

202382
2184

— (N f3,11 + Q2 f3,22)(f3,34 + 2f4,44)] — fa,22f2,23

1
+
(4821922 — Q304)8

+ Q1 (32,13 + 2Q2f2,24)] - (U3 fa,12 — 2Qa f3,22 + 2 f3,11)

(491 Q2 - 9394)9194

~ 202 f2.23)] - (Qafs,02 — 2 fa11 + 292 fa 22)
+ Q3(f3,113 + fa,114)}- (6.23)

[Q2(23 f1,23 — 204 f1,14)

[Q2(Qa f1,24 + 291 f1,13) + Q1 (R4 f2,14

6.3. Problem formulation

The problem considered in this chapter is the feedback stabilization of
a critical system possessing two pairs of pure imaginary eigenvalues with the
remaining eigenvalues in the open left-half complex plane. For simplicity, the
fifth-order system studied in [16] is considered. It is possible, though tedious,
to extend the result to more general higher order system, as in [17].

Consider a nonlinear system

()= (4 2) iz ) e (Jemmoo ) ()e oo

where (z.,(.) is the critical equilibrium point with input u = 0, and

0 w O 0
_ —W1 0 0 0 n
An = 0 0 0 w (6.25)
0 0 —W2 0

with w? # aw? for all a € {%, i,1,4,9}, and Ay = ¢ is a scalar with ¢ < 0.

Denote the vector function f as

fi(z,¢)

f(2,¢) = }czg 8 (6.26)

f4(£l7, C)
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with scalar function components fi(z,(), and similarly for ¢(z,(). Suppose
system (6.24) is smooth enough that each component (say ¢;) of f or g may
be written in the form
$i(z, () = di1z] + ¢i,22$§ + ¢i,33-’l’?§ + ¢i,44l'i + ¢i,(CC2

+ ¢i127122 + 0i 137123 + 0147124 + i 23T2T3 + P 24T2T4 + ;i 34T374

+ ($i1cm1 + bizex2 + bizexs + Biaca)

+ $i 123212273 + i124T1T2T4 + i,134L1T3T4 + §i 234T2T3T4

+ (di12¢ct122 + dizerizs + Pi14¢T124

+ di23¢T2T3 + Di24¢T2Ta + Di34¢T374)C

+ (fia11x1 + di1272 + Pi113T3 + Pi11aTe + ¢i,11(<)$%

+ (hij122T1 + Pi222T2 + Pi 2233 + 2244 + <I5i,22<;o=’13§

+ (ij133%1 + Pi233T2 + Pi 3333 + dizzaza + ¢i,33<§)$§

+ (i 144%1 + Pi24aT2 + Pi 34473 + b 4aaa + ¢i,44(€)$i

+ (Bincemr + dijaceTe + dices + biacesa + bicecC)C?

+ O([|z, ¢[|*). (6.27)

Let the washout filters used in the feedback loop be governed by the dy-

namic equations

73,‘ =T; — dZi (6.28a)

and

yi =z — dz;, (6.28b)

where 2 = 1,...,4. Here, the coefficients for states z; in washout filters have
been chosen to be unity, and the time constants (d!) for the filters are taken

to be equal for simplicity. The overall system becomes

& A;p 00 ) (ac) <f(:z,¢”)) (m)
= I —dI o0 )+ 0 |+|0|u (629
¢ 0 0 A ¢ 9(z,¢) b2
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where % := z — 2¢,% = 2z — 2., and { = ¢ — (.. We do not use ¢ for control,
and there is no washout filter corresponding to (, since, as will be discussed
in the following sections, ( does not affect the stability coeflicients for the case
in which both critical modes are uncontrollable, and for the case in which the
critical modes are controllable, z suffices as a measured output for stabilization.
Note also that, we must require d > 0 to avoid the introduction of unstable
eigenvalues.

In order to use the stability criterion in Section 6.2, a block diagonalizing
transformation is first applied to decouple states r and 2 in the linearized

dynamics. Let the transformation matrix P be chosen in the form

I 0 O
P=|FE I 0 (6.30)
0 ¢ I
where
d w1
(d2+wf _d2+wf 0 \
w1 d
0 0
2 ) Y) )
p=| 4t dtw (6.31)
0 0 d . wo
d+w: d 4w
[9%5) d
\ 0 0 w0l 4wl /
Then
I 0 0
Pl'=|-E I 0}. (6.32)
0 o0 I
The new transformed state is
T T
1=t
¢ ¢
T
= —E;‘vi—}—% (6.33)
¢



The transformed dynamics is

5? A 0 0 z f(&,0) X
il=( 0o -ar o s+ o | +by (6.34)
C 0 0 A22 g g(:ia C)

where

~ bl
b= | —Eb |. (6.35)
bs

The washout filter outputs can also be expressed in terms of the new state

variables as

"= 'wa%:el + dzd_l:lﬁ By — d51, (6.364)
y2 = d;iw;%a@l e :i%wg &y — d, (6.36b)
v= ﬁfw% is + d2d$2w i~ dis, (6.36¢)
ya d;iwi:zg + 5 ‘i’f’wg G4 — dis. (6.36d)

Since all the eigenvalues of the lower diagonal block of the Jacobian matrix

= —dI 0 R
Ago 1= ( 0 Agg) (1[)37)

have negative real parts, by the center manifold theorem, there exists a center

manifold given by the graph of a function
5 \ hz(:%))
2 ) =h(z)= . 6.38
(5)=r@= (] (6.39)

h(0)=0, Dh(0)=0 (6.39)

with
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and

. o . - . 0 —Eb;
Dh(2)(An# + f(2,h¢(2)) + biu) = Asah(3) + (g(:@,h&:&))) + ( y )
(6.40)
For |z| < &, where é is some positive number, the local stability of system

(6.34) at the origin of (,2,() space agrees with that for a reduced system
Ii' =Anz+ f(:%, h(f})) + by u. (641)

By conditions (6.39), h can be written as
h(2) = 33h11 + 35hoo + E2hay + 25 hay
+ Z189h19 + T183h13 + L124h1a + T2Z3hos + ToZahos + T3Tahay

+ (|12 (6.42)

Since system (6.41) has the same form as the fourth-order system (6.1),
Theorem 6.2 can be used to determine stability.
6.4. Both critical modes uncontrollable

If the vector by = 0 in (6.41), both critical modes of system (6.24) are
uncontrollable. Take the control u to be a nonlinear function of Z and Z of

the form:

4 4 4
U = E E uijii.ﬁj+ E E vijﬁifj

=1 ]:i i=1 j=i
4 4

+) ) wisdizi + U(1,21°), (6.43)
=1 j=1

where u;;,v;;,w;; are scalar constants. Define a 5-dimensional vector function

H(&) (recalling that z = h,(%))

H(E) = (b3u> + (g(io,O))

~2 "2 a ~ A A A A
=z{H11 + 25H2 + IE§H33 -+ .’ITZHM + 2132 H12 + 2123 Hqa

+§71£4H14 -+ CﬁzingQg + .f?2.f;4H24 + T334 H3g + O(||§Z||3) (644)
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Let
L /122 (.UQI
M= (-wzl fin) '
Then, by the formulae derived in [17], we can solve
hss = -—(11%2 + 4w§I)_1(—2w2H44 + 2wy H3s + A22H34),

hsz = —1‘12_21 (Hss + wahss),
haq = — A5, (Hag — wrhaa),

his\ /22 2 1y—1 Hys Ha;
(i) =t setn o (52) —n (520

h23 ___ 2 2ry—1 H23 H13
(h24)_(M +or)THM Hyy +uw Hqy b

hia = —-{/1%2 + 4wfI}_1{2w1(H11 - H22) + A22H12}7
hi1 = —A3, (Hi1 + wihig),

hay = _Az_zl(H22 —wihi2).

(6.45)

(6.46)
(6.47)
(6.48)

(6.49)

(6.50)

(6.51)
(6.52)

(6.53)

Note that, these formulae can be obtained by substituting Eq. (6.42), Eq.

(6.43) into Eq. (6.40), and equating coefficients with same powers of £1&,3324

from both sides to generate a sequence of equality relations.

The reduced system (6.41) becomes
&= Auz + f(:fc),
where
f(&) := f(&,h(2)),
and f(:%) takes the form as Eqgs. (6.2), (6.3) with
fi,jk = fi,jk’
Figsi = fuii + Fuiche,iis
fi,jjk = fi,jjk + fi,jghq,]‘k + fi,kghg,jj,
fijer = fijrr + fijehewt + Firchegt + Firche e,
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(6.55)

(6.56a)
(6.56b)
(6.56¢)
(6.56d)



where ¢,5,k,l =1,...,4 with j # k # [, and h¢mn with m,n =1,...,4 is

the last element of vector hpp.

6.4.1. Stabilizability condition

From the equations of stability coefficients (6.20)-(6.23), only the quadratic
terms fi,mn and cubic terms f:-,zmn of Z in f have influence on coefficients S;
to S4. In Eqs. (6.56a)-(6.56d), the quadratic and cubic terms of f is affected
by the quadratic terms of h¢(#). In formulae (6.46)-(6.53), the quadratic terms
of h(Z) are affected by the quadratic terms of H(Z). The mapping function,
h.(%), of %, is a vector-valued polynomial in # of degree greater or equal to
2, and Z appears in the control function (6.43) in the form of 2;Z;, 2;2; or
|12, 2]|® which are vector-valued polynomials in # of degree greater or equal
to 3, and affect only the cubic or higher terms of H(&), Therefore, state Z in
the nonlinear control function does not affect the stability coefficients S;. That
is, the terms as 27, z;z; in feedback function can be ignored. For the similar
reason, state ¢ in the nonlinear feedback will not affect S; either. Therefore,
¢ is not used in the control function (6.43).

Substituting Eqs. (6.56a) -(6.56d) into formulae of S; in Eqs. (6.20)-(6.23)

with Q; = Q9 =wy and Q3 = Q4 = wy, we have

S = &(leuu + Vi12u12 + Vi22u22 + Vi00), (6.57a)
Sy = é(vz,sausa + Vo 34uss + Vo aauaq + V2 00), (6.57b)
S3 = E(V’;,lzuw + Vs 14u14 + Vi 23ues + Vi 24u24

+ V3 33u33 + V3 squsq + V3,00), (6.57c)
Sy = &1)—2(‘/4,13’&13 + V4,14ul4 + ‘/:1,231123 + V4,24U24

+ Vi n1u1r + Vazouzz + Vaoo), (6.57d)

where V; ; are shown in Appendix 6.A.
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Since the feedback signal is taken from the output of washout filters y;, if
the terms u; ;2;2; in the control function can be generated individually from
Yi, then Eqs. (6.57a)-(6.57d) can be used to determine the stabilizability of the

system. From the relations of y := (y1,¥2,¥3,¥4)7 and & in Egs. (6.36a)-
(6.36d), we have

A ~ ~ 1 ad

Ty — wld(wl 21 — de) = E{wlyl —_ dy2} (13.58a)

. . . 1

Iy — wld(dzl + w122) = :)—{dyl + wlyg} (658b)
1

A . . 1

r3 — W2d(WQ23 — d2:4) = w—{wa3 — dy4} (6586)
2

N R . 1

T4 — wgd(dZ;; + w2Z4) = ;—{dyg, +W2y4} (155861)
2

Since #;2; and z? have no impact on S;, we can construct the terms u; ;#;%;
by using the product of Eqgs. (6.58a)-(6.58d) with the terms containing 2 ne-
glected. That is, for instance, we can use the product of wiy; — dys and
dy; + w1y2 to generate I1Z,. In this way, there will be some byproduct terms
as Zi122, £121, $122, 921, and £229. However, these terms do not affect the sta-
bility coeflicients, thus can be neglected. Hence, we have the following sufficient

condition for stabilizing the system.

Theorem 6.3. Suppose the nonlinear system (6.24) is unstable with both of
the critical modes uncontrollable, i.e. b = 0. If the rank of either of the

following matrices

Vit Vipze 0 0 Vipa O 0 0 0 0

My = 0 0 0 0 0 0 0 Vaszz Vozs Voua
0 0 Vs Viia 0 Vizs Viza Vigas 0 V3,34
(6.59)
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and

Viin Vigz 0 0 Vigz O 0 0 0 0

M, = 0 0 0 0 0 0 0 Vaszs Vaza Vo
Vi 0 Viis Viaia Viae Viaz Viou 0 0 0
(6.60)

is three, then the system can be stabilized by a quadratic feedback of the form

u=Y ) diyiy;. (6.61)
i=1 j=i

Proof: From the stability criterion in Theorem 6.2, the system can be stabilized
if there exists a control to make Sy < 0,53 < 0 and either S3 < 0 or 53 <
0. From Eqgs. (6.57a)-(6.57d), if rank of M; (resp. Ma) is 3, the values of
S1,52,53 (resp. Si,S2,S54) can be arbitrary assigned by u;;, the coefficient of
£;%; in the feedback function (6.43). Since &;&; can be generated individually
by the linear combination of y (with ignoring those terms containing %), the

system can be stabilized by control function (6.61).
Theorem 6.3 involves the tedious computation of all the V; j;z of Eqgs.
(6.57a)-(6.57d). For some special systems, we can have a simpler stabilizability

conditions and a simpler control function.

Corollary 6.4. Assume the nonlinear system defined in (6.24) is unstable

with both of the critical modes uncontrollable. If all of the following conditions

hold
1) 2(fra¢ = faagdwr — c(froc + foug) #0
) 2(fs,3¢ = faacwz — c(fsac + faze) #0
zzz) either f1,1< + fg’gc ;é 0 or f3,3< + f474C 7£ 0
then the system can be stabilized by a quadratic feedback of y.

Proof: Condition (¢) implies V) 12 # 0, condition (¢4) implies V334 # 0, and
condition (7i7) implies either V333 = Vaqq # 0 or Vi1 = Vioe # 0. If
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Vizss = V3,44 #0 (reSP- Vi1 = Vi a2 # 0), U3z Or Ugyq (reSp- U3y or uzzz) can
be used to make S3 < 0 (resp. Sy < 0). Although w33 or us4s might affect
Sy (resp. Si), it can be overcome by using uzs (resp. uy2) with sufficient
magnitude. By using Eqgs. (6.58a)-(6.58d) to construct #;Z; in terms of y, the
system can be stabilized by a quadratic feedback of y.
[ |
Note that, as long as the quadratic and cubic terms of # can be generated
individually from y, the stabilizability conditions for using washout filter-aided

feedback will be the same with that for using direct state feedback.

The equations of stability coefficients Sy — Sy in Egs. (6.57a)-(6.57d) can
be more explicitly written in terms of the coefficients of quadratic control of y.

Assume the control u takes the form of Eq. (6.61), S; becomes

1 ' ~ g ~ -~ ~ ~
Sl B _—8w2 (1/1,111111 + V1,12'U,12 + ‘/1’22u22 + VI,OO), (6620,)
1
1 -~ . N 3
Sy = ] (Va,33ti33 + V2 34134 + V2 44%44 + V2,00), (6.62b)
2

1 . . . 5 ~ . -~ ~
S3 = g5-(Vanatiaa + Vauatias + Va aaflas + Vazatiag
-+ %,331133 + .[73,44,&44 + ‘73,00)7 (6620)
1 . .. 5 . . ~ ~
Sy = E(V:l,muw + Vi1ating + Vaastias + Vi 24ting
2

+ Vi 11t + Va2atiaz + Va00)s (6.62d)

where f/,-, ;& are shown in Appendix 6.B.
The stabilizability conditions is similar to that in Theorem 6.3 except that

elements V; ;i in matrices My and M; are replaced by V; ji.

The expression of 175, ik involves the washout filter time constant, d, and
is more complicated than V; jx. However, flexibility of choosing d makes the

determination of robustness easier.
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6.4.2. Robustness

By using washout filters, the control function does not depend on accurate
knowledge of the critical equilibrium point, therefore it is robust with respect
to uncertainty in the equilibrium point. Moreover, the control is also robust

with respect to other modeling uncertainty.

Lemma 6.5. Suppose the nonlinear system defined in (6.24) has bounded
uncertainty in its system dynamics, and both of the critical modes are uncon-
trollable. If through out the region of uncertainty, the element of control vector
by # 0 and does not change sign, and all of the following conditions hold

1) fi15+ f2,25 # 0 and does not change sign, or

f3,35 + fa,45 # 0 and does not change sign,
it) Py:=c(fi25 + f215 — 2(fi,15 — f2.25)w1) # 0 and does not change sign,
1) Pyi=c(f3 a5+ fa,35 — 2(f3,35 — fa45)w2) # 0 and does not change sign,
then with proper choice of d, there exists a fixed control function to ensure the

stability of the system at its critical equilibrium point. The control function

takes the form
U = U12Y1Y2 + Usaysys + UkkYE, (6.63)

where k is either 1,2 or 3,4, depending on condition (z).

Proof: If f115 — fa,25 # 0 (resp. fs35 — faas # 0), we set k € {3,4} (resp.
k € {1,2}) and choose |ugi| sufficiently large so that S3 < 0 (resp. Sy < 0)
throughout the range of uncertainty. From Appendix (6b.2), Vi 2 can be

written as
- bowiPi(d — ay)(d — a3)
= 6.64
1,12 (d? + w?)2(c? + 4w?) ’ (6.64)
where
1 )
oG = —ﬁ-{—wlql +1/¢ + 4P}w, } (:=1,2) (6.65)
1
and
q1 = c(f115 — f2,25) + 2w1(f1,25 + f2,15) (6.66)
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By condition (i¢), P, does not change sign, 171,12 will remain the same sign if

d is chosen to be larger than all o;. Similarly, 172’34 can be written as

~ — bzwf}PZ(d — a3)(d - a4) (6 67)
2T (@ wd)2(e? 4 40d) '
where
1
a; = 5 —w2qz +1/¢5 + 4P2w,} (1=1,2) (6.68)
and
g2 = c(f3,35 — fa,a5) + 2wa(fa,45 + fa,35)- (6.69)

By choosing d large enough, V334 will remain the same sign. Choose [iiq,12]
and |dg 34| sufficiently large. We can make S; and S, negative. Hence,

stabilize the system.

6.5. Both critical modes controllable

Let the control vector b of system be written as

b=| b5 |. (6.70)

If either 611 or bj2 does not vanish and either by3 or b4 does not vanish, then
both of the critical modes are controllable. A linear control through washout
filters can move all the critical eigenvalues from imaginary axis and stabilize the
system. However, in some cases, if it is required to preserve other equilibrium

points, then a purely nonlinear stabilization control is required.

6.5.1 Stabilizability condition

Recall the stability criterion in Theorem 6.2 , the stability coefficients S;,
are functions of f; ;r and fi,jki. Since both critical modes are linearly control-

lable, f; ;x and f; jr can be affected by the quadratic and the cubic feedback
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of z, respectively, through b; . Since our feedback variables are the output y
of washout filters, quadratic function of y; would induce terms as z;z; which
after mapping to center manifold will affect the closed-loop f; jxi. In order
to avoid the complexity of involving state z into stabilizability conditions, a
purely cubic feedback of y is considered.

Let the control function u be
4 4
w=) DN uikyiyivk, (6.71)
=1 j=¢ k=j

the stability coefficients become
S1 = Vianuin + Vineuiiz + Vijizauizs + Vi 222u222 + Viooo (6.72a)

S2 = Va2 333u333 + V2 334u334 + V2,344 V344 + Va,444%a4a + V2 000 (6.720)

S3 = V3,133ul33 + V3,144ul44 + V3,233“233 + V3,244uz44 + V3,000 (6-720)

S = Vg 11sunis + Vi 11avi1a + Va 223223 + Va,224u224 + Vapoo (6.72d)
where

3 (byyjwy + br2d)w?
Vignn =3Vi22 = —[( e + bizd)w;

I, (6.73a)

8" (d? +w?)?
Vigee =3V 112 = g[(bm{; _i__il%l)i)w?], (6.73b)
Va,333 = 3Vo 344 = g[(blg(‘;; ii?;)wg], (6.73¢)
V2,444 = 3Vi 334 = g[(blél(zg ;Z%i)wg], (6.73d)
V3,133 = V3 144 = E[El:il;ilu;;)b(ﬁjfzgf]’ (6.73¢)
Vs,233 = V3,044 = i[((zlzzilw_%;(lzl;?f;cg], (6.731)
Viniz = Vioos = %[((1;12311:1;)1&1262‘—*1;?;2]’ (6.739)
Vania = Viooa = i[gzl;ilw};zgzd?f;g?], (6.73h)
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and V1 000, V2,000, V3,000 and V4 oo are the same with those ﬁﬂﬁ,oo, o V2,00,
1 2

;1—:,—11/3,00, 4_41‘;;‘/4,00 defined in Appendix 6.A.

Since either by; # 0 or b1y # 0 and either b3 # 0 or byy # 0, by Egs.
(6.73a)-(6.73h), for each I, (I = 1,...4), not all Vi ik, (4,7,k € {1,...,4}),
are zero. Therefore, the values of stability coefficients S; can be individually

assigned by using cubic control function of y.

Lemma 6.6. If both of the critical modes of a nonlinear system defined in
(6.24) are controllable, then there exists a feedback as cubic function of y; that

stabilizes the system.

6.5.2. Robustness

As the case in which both critical modes are uncontrollable, the control
is robust with respect to uncertainty in critical point and system dynamics.
Moreover, the existence of robust controller solely depends on the amount of

uncertainty in control vector b.

Lemma 6.7. Consider a nonlinear system defined as (6.24) with bounded
uncertainty in its system dynamics. If both of the critical modes are control-
lable, then there exists a robust control function to stabilize the system at
critical equilibrium point provided that either b;; or b2 does not change sign
throughout the range of uncertainty, and either b3 or b;4 does not change
sign throughout the range of uncertainty.

Proof: If by; (resp. by2) does not change sign, by choosing d sufficiently large,
Vi22 (resp. Vi111) and Vi a33 (resp. V3 133) will not change sign throughout
the uncertainty range. By choosing |ua22| and |uzss| (resp. |ui11]| and |uiss])
sufficiently large, S; and S3 can be set negative throughout the uncertainty
range. Similarly, we can set S, and S; negative throughout the uncertainty

range. Thus, the system is stabilized.
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6.6. Only one controllable critical mode

Without loss of generality, assume that the first pair of eigenvalues +jw; of
(6.24) are controllable. That is, either 17 # 0 or b2 # 0, and b3 = by = 0.
It is obvious that a linear feedback through washout filters can be used to
move away the first pair of critical eigenvalues, the stabilization method for
single pair of purely imaginary eigenvalues discussed in Chapter 4 can then
be applied. In here, by the same reason discussed in Section 6.5, the control
function is restricted to purely nonlinear.

Since eigenvalues +jw;, are linear controllable, from the result in Section
6.5, stability coefficients S; and S3 can be controlled by cubic feedback of
y; through b1; or by directly. The main problem of this purely nonlinear
control is that S, has to be controlled by quadratic feedback due to the lack
of linear controllability of eigenvalues +jw;. These quadratic feedback may
influence the stability coefficients S;, (¢ = 1,...,4) directly through b;; and
b12, and indirectly through &, ( through the center manifold mapping). This
effect makes the equations of S; much complicated than previous two cases.

In order to reduce the complexity of the computation, the control function

is chosen to take the form of

4 4 2 2 2 2 4

= Z Z UijY3Ys + Z Z UijkYiYiYk + Z Z wijiYiy;
=3 j=i i=1 j=i k=j i=1 j=3
4 4 2 2 2

=YY aujisé +ZZZ Eid i +Zzu,,km
=3 j=1 =1 j=1t k=j =1 j=3

(6.74)

Note that, quadratic terms y;y;, for 7,5 € {1,2}, do not appear in control func-
tion (6.74) since Sy can always be controlled through the cubic feedback due to

the linear controllability. Also, the using these quadratic terms will introduce
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undesired terms, z1,z;, into $; that makes the equation complicated. By us-
ing Eq (6.74), the only washout states entering to cubic terms of reduced system
(6.41) are z3 and z4. However, they will be converted to cubic functions of

|lz3,z4|]® in fi, and have no influence on .

Define
( —dbyy + wy by \
d® + w? 0
—w1b11 — dbyy 0
H(z):= &+ P u(#) + 0
0 0
0 §(,0)
\ )

~2 "2 ~2 ~2 P PN
=27Hyy + 25Hog + $5Hss + 35 Hyy + £189H19 + #1835 Hys

+E184Hyg + @283 Hos + #2284 Hag + £384Hsg + O(||2]), (6.75)

Following the formulae in [17], we can compute vectors ; ; through using Eqgs.

(6.46)-(6.53). The quadratic and cubic terms of the nonlinear function f(z) in

the reduced system are given by

fl.._{fl,ij‘*‘bllﬁij le{1,2}, ije{3,4}
LY A 7

frij otherwise
.Ifl,iii + Jfl,i(hg‘,ii + byguii l,7 € {1,2}
Frii = fuiii + fricheii + bu(vighogii
’ ) ‘*:viélhz‘;,ii) le {1,2}, 1 € {3,4}
Juiii + friche i otherwise

fori <y
fuiii + Juiche,ii + fuicheas + buwi;  1i,j € {1,2)
Friis = friji + fl,ich4c,jj + friche,i
’ bl s (Vikhay 55+ viha, )] 1€ {1,2} 4,5 € {3,4}
frigs + fuis + heji + fujehe,ij otherwise

fori<j <k
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fl,ijk + fl,i(hg‘,jk + friche.ix + Firches
+o1u(3 =3 (Vimba,, ik + Vemho,, ij))

T 1€{1,2), ij,ke{l,...,4)

Jrije + friche jr + frjeheiv + fureheij otherwise

frije =

(Note that, from (6.74), v1,m = va,m = 0).
The stability coefficients become

1 ,
S1 = 8—w§(V1,111U111 + Vi 112u112 + Vi 122u122 + Vi 222u222 + Vi,000)s
1

(6.76a)
1 ,
Sy = gu—)z—(%,szxusa + Va 34uss + V2 44u44 + V2,000), (6.76b)
2
1
S3 = E—(Va,aauss + V3 34u34 + V3 44ugq + V3,133u133 + V31440144
1
+ V3,233u233 + V3 244%244 + V3,000)- (6.76¢)

S4 is not shown here since controlling S,S52,S5; is sufficed for stability. All
the V; jx, and V; ju are shown in Appendix 6.C.

Since Sy, S3 are controllable, a sufficient condition for stabilizing the sys-
tem is that not all of V5 ;; vanish so that we can control S, . Two special cases

are shown in the following Corollaries.

Corollary 6.8. Suppose the nonlinear system (6.24) has one pair of its criti-
cal eigenvalues +jw; controllabler and the stable eigenvalue ¢ uncontrollable

(b2 = 0). Assume also, for the controllable critical mode, we have by; # 0 and

b12 = 0. Let

X2 = (2f1,24 = 2f2.22 — fra2)wi + 2(fa,10 + fra8)wrw2

+4(f1,22 + 22,22 — f3,23 — fa24)w3, (6.77a)
x1:= (f3,24 + fa,23)w1 + 2(f3,13 — fa,14)w2, (6.77b)
Xo = (—=3f3,23 — fa,20)w] + 2(fa,14 + faa3)wiw2

+ 8(f,28 + fa,24)07, (6.77¢)
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If any of x2,x1,x0 does not vanish, then the system can be stabilized by a
feedback u as
w = byy(u1n1y} + uir2yiye + wi22v193 + u222y5 + ussyss

+ u133y1y§ + u144y1yZ + u233y2y§ + u244y2y2). (6.78)

Moreover, within a bounded range of system uncertainty, if either yo, or x2
does not vanish and does not change sign, then there exists a robust control
function for stabilizing the system.

Proof: By Eq. (6.77a)-(6.77c) and Appendix (6c.5),

w1 x2d® 4 2wiwax1d — WiXo
(wl(wl — 2w2)(w1 + 2L¢J2)(d2 + w%)Q)'

Vaas = —bjwi (6.79)

If any of x2,X1, and xo does not vanish, there exists a d such that V; 33 is not
zero. Thus, S; can be made negative. Also, if either xo or x, does not vanish
and does not change sign, for d sufficiently large or sufficiently small, V5 33
remains the same sign throughout the uncertainty range. A control function
with |ugs| sufficiently large will make S, negative throughout the uncertainty
range. Asfor S; and Ss, from (6.76a), (6.76¢c), we can choose |u;jx| sufficiently
large to make them negative. Thus, the system is stabilized.

Corollary 6.9. Suppose the stable eigenvalue of the system in Corollary 6.8
is linearly controllable, i.e. by # 0, Let

_ Ui+ fang)en
Y2 ¢ C(d2 +w%)2 )

(6.80a)

_ 02(3f3,3(; + f4,4<) -+ 2c(f3,4<w2 + fazews?) + 8w§(f3,34 + faac)
e(d? + w3)?(c? + 4w3) ’

Yo :
(6.80b)

and

— bg’yz, (681&)



Br:=—b 5 (6.81b)
Bo = bn wzg(o — baw3 o, (6.81¢)

where
D := wy(w? — dwi)(d® 4+ wi)?. (6.82)

If any of B2, 51,8 is not zero, then the system can be stabilized by a feedback
u as in Eq. (6.74). Moreover, within a bounded range of system uncertainty,
if either By or f; does not vanish and does not change sign, then there exists

a robust controller that stabilizes the system.
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Appendix 6.A.

Lemma 6A.1.

V(z,y) = —azi + cx’y + da®

— eyt + fzy? + g2?y?

[42] Consider a scalar bivariate function

+ hzdy + kzt.

If all a,c,d,e, f,g,h,k are positive, then V(x, y) is locally negative definite at

origin.

1¢ — b2Cf2 24)w1

( 202 f1,2¢ — 2b2 f2,1¢) w1®

( 3b20f
V; =
1,11 { 2 4, 2
( 8b; f1 1¢ ™ 8b2 f2 2c)w1
c(c? + 4w?)

}

Vigz = {(— (b2efi,2¢) = bacfag) wi?

c? + 4(.01

(2bzf1 1¢c — 2b2 fa2¢) wi®

}

c? + 4w ? c? + 4w, 2
A {(“ (b2cfi,1¢) — Bbacfaac) wi? (2b2f1 2¢ + 2b2fa10) wi®
1,22 & 1 4w, ? o 4w, 2

( —8by f1,1¢ — 8by f2,2¢) wi*

}

c(c? + 4w, ?)
. (_3bch3,3c —_ bch4,4,;)w2 ( 2[)2f3 A4¢ — 2b2f4 34)&)2
Vo33 = { 6 2
¢ + 4wy cZ + dwy?

( 8b2f3 3¢ 8bzf4 4g)w2
c(c? + 4wy?)

}

Vasa =1

Vpas = {(_ (becfsae) = Bbacfaac) wa?

bows? (= (cfauc) = cfaz¢ + 2fa,3¢w2 — 2f4,4ng)}
c? + 4wy?

(2b2f3 ac + 2b2 fa3¢) wo®

c? + 4wy?
(—8baf3,3¢ — 8bafauc) wat

" o(c2 + dws?) }
b
Vags = {~— (frc "*c_fmc)wl}
b
Vi1 = {— 2 (frac t f2,2C)¢¢1}

c? + 4&)2
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Vius = bzwl{( fiac+ hrscwr + efisewn® + fagewr®)

D
i (02f1,4(;w2 + 2¢cfr 4cwiwe — f1,4cw12w2)
D
c wy? — wiwy? + w3
+ (cf1,3cw2 f2,3(Dl 2° + f1,a¢w2 )} (64.9)
3 2 2 3
Vi 14 = bywr { (c®fi,a¢ + 2 faucwn ‘:)Cfl,4cwl + fa,acwi®)
n (—czf1,3ng — 2cfz 3¢wiw2 + f1,3cw12w2)
D
cfi acwa? — wiwg? — wo?
(cf1,acw2 f2,4ch 2” — f13¢w2 )} (60.10)
Vias = bawr {— (= (S fa,3¢) + A f13cwr — efazewi? + fi3cwr®)
’ D
B (—c? faucwa + 2¢fi acwiws + faacwr’ws)
D
—c wy? — wiwg? — 3
_ ( f2,3c 2 f1,3]§ 1wW2 f2,4cw2 )} (6(1.11)
Va.24 = bowy {— (_ (C3f2,4<§) + C2f1,4<w1 - Cf2,4cw12 + f1,4<w13 - c2f2,3<w2)
’ D
(—2¢f13cwiwa — fo,3ewiwe — efa acwa? — fiacwiwa? + fa,3cw2®)
— - }
(6.12)
b
Vainr = {—= (Faa¢ -lc‘f4,4g)w2} (6a.13)
b
Viar = {- 2(f3’34tf4’4<)“’2} (6a.14)

3 2 2 3.2
Afane + S faacwr +cfsrewi? + fapcwi®cE facw
Vl,wzbng{( ¢ ¢ 500012 + fa20w1°¢? fa10w2)

D
(2¢fs 2001wz — faacwr®ws + cfs1cwa® — faacwrwa® + fuicw2?®)
D }
(6a.15)
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(— (C3f4,1<;) - 62f4,2cw1 — Cf4,1(;w12 - f4,2<;l-013 - 2cf3,2Cw]lw2)
D

Vi1a = bawo {—

B (€ f3,1cw2 + — f3,1cw1 2w — cfa1cwae? + fapcwiwa? + f31¢w23) }
D

(6a.16)

(¢ f3,0¢ = € faewr + cfa pcwn® = fanewr® — 2¢fa1c01w2)
D

Vi,23 = bawo{

+ (e fa2cwa — fapcwiPwa + cfs 2cwa? + fapcwiwe? + fapcwa®)

2 } (6a.17)

(— (03f4,2¢) + 2 facwr — cfaoewr? + faewr® + 2Cf3,1<;w].w2)
D

Vi24 = bawo {—

c? we — wi12wy — cfy gcwa? — wiwe? + ws®
(P fa20w2 = fy2ewni ey f4,12)c 2" = fagrwe” + f3 2002 )} (6a.18)

Vioo =(—fraifiiz — fiaefiee + 2fi 1 fe1 + faaifaa2 — 2f1,22f2,02

+ fa12f2,22)w1 + (Befi111 + cfi,122 + ¢f2,012 + 3¢ fa 202 — 3f1,1¢911

2 2
w1 (— (cfi,2¢912) — cf2,1¢912) wa
— — _ 3 > 3

fa2¢911 — f1,1¢922 f2,2¢922) p + 2 1 A2

n 2(—=fr2¢911 — faacg11 + fiic912 — fa2¢912 + fi12¢922 + f2,1¢g22)w13
C2 + 4w12

n (4f11¢911 — 4f2,2¢911 — 4110922 + 4f2,2¢922) Wit
c(c? + 4w ?)

+ (—3f1,1af311 — fa2af3,01 — fiaaf3,22 — 3f2,24f3,22

2
w
+3fi13fa11 + fa2sfa1 + fr3fa22 + 3f2,23f4,22)~j;

+(=fi23f301 — feasfan + frasfsnz — fa2sf312 + f1,23f3,22
+f2a3f322 — frzafanr — feafan + fraafaiz — fo2afa02 + fr24 4,22

2w, R
+ f2’14f4’22)4w ! + (fr1afs,01 — fa2afs01 — fraaf3,22 + fa24f5,22

12 —l—¢)22

4:(.014

— fiasfaar + fa2sfan + frasfaoee — fa23fa22)

wy (4wi? — wa?)
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V2,00

+ (f1,24f3,12 + f2,14f3,02 — fr23fa12 — f2,13f4,12)w12w2

4wi2 — w92
=(—f3,33f3,34 — fa34f3,44 +2f333fa33 + fa,33f1,34 —2f3 44 f4,44
+ fa3afa04)wa + (3cf3 333 + cfs 344 + cfa,334 + 3¢ fa444

(6a.19)

w2
—3f3,3cg33 - f4,4c933 - f3,3<g44 - 3f4,4cg44)—c—

+ (3f2,33f3,13 + f2,44f3,13 —3f1,33f3,23 — fr,44 3,23 + f2,33f1,14

_ (cfsacg34 + cfa,3¢934 )wa?
62 + 4&)22

2
w
+ 3f2,44f4,14 — f1,33f4,24 — 3f1 44 F4,24) w21

n 2(—fa,4¢933 — fa3¢933 + f3,3¢934 — faacg34 + faacGas + Fi.3¢944)02®
C2 + 4:(4)22

n (4f33¢933 — 4f1,4c933 — 4f3,3¢941 + 4 f1 40944 )w2?
c(c? + 4w,?)

(=(f2,34f3,14) + f1,34f3,24 — Fo,3af4,13 + f1,34 1,23 )wiws?
+ 2 2
—w1® + 4wy

+ (fi,34f3,13 — fi1,33f3,14 + f1a4f314 + fo34f323 — fa,33f3,24 + f2,44f3,24
— f1,33f4,13 + fi,aafa13 — fi34fa04 — fa33fa23 + foaafa 23

2&)23
_w12 + 4(.022

+(—fa33f3,13 + fa,aaf313 + f133f3,23 — f1,44f3,23

~ f2,34f4,24)

4&)24
(—w1? + 4w,?)

(6a.20)

+ f2,33f4,14 — f2,4afa,14 — fi3sfaon + f1’44f4’24)w
1

= —fi2f133 — fr12f1,44 — 2f1 33 f2,22 — 2f1 44 f2,22
+2f1,11f2,38 + faa2f2,33 + 2f1,11 f2,44 + f2,12f2 44
—2f233f3,13 + 2f1,33f3,23 — 2f244fa,14 + 2f1 44 f4 24

+ (¢f1,133 + cf1,144 + cf2,233 + cf2,244 — f1,1¢933 — fa,2¢933

wq
- f1,1§944 - f2,2§g44)?
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+(—fi14f3,33 — fa2af3,33 — fi14f3,44 — fo,24f3,44 + f113f4,33

w1
+ f2,23f4,33 + f1,13fa,44 + f2’23f4’44)5;

n (03f1,3c913 + 63f1,4(;914 + c3f2,3¢923 + C3f2,4<g24)w1
D

+ (C2f2.34913 + C2f2,4<914 - C2f1,3c!]23 - C2f1,4<;924)w12
D

n (cfr,3¢913 + cfi,ac914 + cf2,3¢923 + Cf2,4c924)w13
D

+ (f2,3¢913 + f2,a¢914 — f1,3¢923 — f1,4(!]24)l-014
D

n (C2f1,4cg13 - C2f1,3<g14 + C2f2,4cg23 — c2f2,34924)w1w2
D

n (2¢f2,4¢913 — 2¢f2,3¢914 — 2¢f1,4¢923 + 2¢f1 3¢924 w1 w2
D

n (—(f1,4¢913) + f1,3¢914 — f2ac923 + f2,3cg24)w13w2

D

N (cfi,3¢913 + cfr,ac914 + cf2,3¢923 + cf2 4¢g24)wrwo?
D

N (—(f2,3¢913) — f2,a¢914 + f13¢923 + f1,4¢924)w12w2?
D

n (fiac913 — fi,3¢91a + f2,4¢923 — f2,3cgz4)w1w23

D
+ (f2,34f3,14 — fi3af3,24 + fa3a fa13 — f1,3afa23)w1?

+(—f1,3af3,13 + fr,33f3,14 — fi1,44f3,14 — f2,34f3,23 + f2,33f3,24
— faaaf324 + f133f1,103 — fraafa13fr3afa0a + f233f4,23 — f2,4afa,23

2(.«)1(.02
+ f2,34f1,24) o7 1 duy? + (f2,33 313 — f2,44f3,13 — f1,33f3,23
4wq? ,
+ fraafs2s — fassfaa + foaafapa + fissfaod) —5——F— (6a.21)
—w1? + 4w

Vioo = 2f114f301 + 2224322 — f3,11 3,314 — f3,22f3,34
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—2f1,13f4,11 + 2f3,33fs,11 — 2f2,23fa,22 + 2f3,33f4,22
+ faa1fa34 + fa02fa,34 —2f3,11 fau4 — 2f3,22 4,44
+ (cfs,113 + ¢fs 223 + ¢fs,114 + cfa 224 — f3,3¢911

w2

— faac911 — f3,3¢922 — f4,4c!]22)-;—

+ (f2,1f313 + fo22f3,13 — fi11f3,23 — fi22f3,23 + fa,11 fa14

w2
+ fa,22f4,04 — fr,11f4,24 — f1,22f4,24);

+(—fiaafs1 + fa2af301 + fiaafs,22 — fa2af3,20 + fr13fan

UJ]2

4
— —_ _+. —————
foa3fa1n — fi,13f1,22 f2,23f4,22)4w12 "

+ (fi2afar + foa3fan — frasfa e + fa23f3,12
— fi23f3,22 — fa13f3,22 + fr2afan + foafan — fraafane

2w
+ fa2afa02 — fr,24fa,22 — f2,14f4,22)4 =2

w12 - w22

" (—(f1,24f3,12) — foaaf3 12 + fr23fe12 + f2,13 fa2)wa?

4&)12 - (U22

+ (S fs,1¢913 + S faicq1a + S f32¢923 + ¢ fa,2¢924)w2
D

+ (02f3,2<g13 + 62f4,2<;914 - 02f3,1<;923 - sz4,1cgz4)w1w2
D

+ (cf31¢913 + cfa1c014 + €f3.2¢923 + cfa,2¢924) w1 wo
D

+ (f3.2¢913 + fa2¢914 — f3,1¢923 — fa,1¢924)w1°wo
D

+ (02f4,1<913 - 02f3,14914 + 62f4,24923 - sz3,2<924)w22
D

+ (2Cf4,2C913 - 26f3,2(914 — 26f4,1(;g23 + 20f3,14924)w1w22
D

n (—(fa1c913) + fa.1¢914 — fa2¢923 + fa3,2¢924)w1’wo?
D
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n (cfscgis + cfacgra + cfsacg2s + Cf4,24924)w23
D

n (=(f3,2¢913) = fa2¢q14 + f3,1¢923 + fa,1¢924 )wiw2®
D

+ (f4,1(;913 - f3,1c914 + f4,24923 - f3,2c;924)w24
D

D = (c® + (w1 —w2)?)(c? + (w1 +w2)?)

Appendix 6.B.

Vinn = {—(Ed fi1¢ + 3P fao¢ + 2c2d 1 gewr — 2¢d? fi 2cwn
+ 2c2df2,14w1 - 2cd2f2,1¢w1 + 3c2f1,1gw12 — 4cdf1,1cw12
+ 8d? f1 1cwi? + A faacw? + dedfa gcwi® + 8d° fapcuwn’
+ 2¢f1,2¢w1® + 2¢fa,10w1° + 8f1,1cw1?

b2wi
e(d? + w12)*(c? + 4w ?)

+ 8 2¢w1*) }

‘71,12 = {(Cd2f1,2<; + Cd2f2,1¢ + 2cdfi1¢w1 — 2d2f1,1cw1
— 2cdfa gcwr + 2d2 fop0w1 — cfi acwi? + 4dfy 2w
—cfopcwi? +4dfa 10w + 2f1 1001’

b2w1 4

-2 wy?
Foaen ) (@ 4 dr?)

}

171,22 = {~(382d® f1,1¢ + d? fy 9¢ — 2c2df1,24w1 + 2¢d® f1 9cwn
— 202df2,1<w1 + 2cd2f2,1cw1 + czfl,lgwlz + 4cdf1,lcw12
+ 8d? fi1cwi® + 3¢ faocwi® — dedfypcwi® + 8d” faacwr”
— 2¢fi20w1® — 2¢fa1cwr® + 8f1 10wt

b2w1 4

+8fp0cwn*
Faa¢en )c(d2 +w12)2(c2 +4wi?)

}

172,33 = {—(02d2f3,3<; + 302d2f4,4§ + 262df3,4¢w2 - 2cd2f3,4<w2
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+ 202df4’3CLU2 — 2cd2f473¢w2 + 3C2f3,3<£.¢)22 — 4Cdf3y3((.d22
+ 8% f3 scwa? + €2 fy sewa® + dcdfyacwr® + 8d% fi acw2?
+ 2¢f3 acw2® + 2¢fa 3cw2® + 83 3cws

bQWQ 4

+8 wy?
faagen )c(d2 + wa?)?(e? + 4wsy?)

} (6b.4)

Va3a = {(cd® fa,a¢ + cd® fa 3¢ + 2¢dfs sewg — 2d° f3 3cw2
— 2¢dfy acwa + 2d° fa gcws — cfs acwa’® + 4dfs gcws?
— cfaacwe’ + 4dfy zewr® + 2f3 3cwa®

b2U)24

(d? + wy?)?(c? + 4wy?)

— 2f4 4cw2”)

} (6b.5)

Vaaa = {—(32d* fa 3¢ + 2 d® fya¢ — 2c2d fs a¢wa + 2¢d” f3,4¢w2
— 2c2dfy sews 4 2¢d? fu 3cws + S fs scwa’? + dedfs 3cwa?
+ 8d2 f3 3ewa® + 3¢ fuacwa? — dedfy acwr® + 8% fa 4cwa?

— 20f3,4<w23 - 26f4,3§w23 + 8f3,3<w24+

8 f1,a¢w2”) sz;Z4 } (6.6)
c(d? + we?)"(c? 4 4wy?)
y b2(f1,1¢ + fa2g)wrws?
Viss = {— (ot wa?) } (60.7)
~ b2(fi1¢ + f2,2¢)wrwa? n
Vaas = {~ ( 161(4(12 +2:;2)) 12 (65.8)

Vi = {(Ad® fa,a¢ + Edfiacwr — A f1acwr + dfz aewn?
+ Cdzfz,zxcwl2 + Cdf1,4cwl3 - 012f1,4<<—t’13 + dfz,4cw14
+ Bdfs zews — A2 fr3cwas + 3 fi zcwiwe — 2¢2dfi1 3cwiws
+ 2cd2f1,3¢w1w2 + sz2,34w12w2 - Cdfz,acwlzwz + d2f2,3cw12w2
+ cftacwiwr + fazcwrtwa + cAdfa gcwe’ + ed® fo,acw2?

+ 02f1,4<w1w22 — Cdf1,4gw1w22 + d2f1,4gw1w22 + 2¢f2 a¢w1 Zw,?
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(65.10)
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(6b.11)
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(66.12)
~ b2(f3,3¢ + fa,ac)wri’we :
Ve = {— 223 : .
411 = { (@ +or?) } (6b.13)
~ b2(f3,3¢ + fa,4¢)w1iw2 :
Vigs = {— ’ ’ b.14
4,22 = { (& +wr?) } (6b.14)

V4,13 = {(03d2f4,2g‘ + C3df4,1(;w1 - 02d2f4,1<;w1 + c2df4,24w12
+ ed’® fazcwi® + cdfaacwr® — & fracwr® + dfsacun?
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b2W1WQ2
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(6b.15)

‘74,14 = {—(C3d2f3,2¢ + c3df3,1cw1 - C2d2f3,1(;w1 + C2df3,2c<-012

+ cd® fs pewn® + cdfsewi® — @ facwi® + dfspewr?
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(60.16)

Vigs = {(—(d® fy1¢) + Bdfszcwr — 2d? fa2cwr — *dfs1cwr?
—ed® fycwi® + edfypcwr® — & faocw1® — dfaicwr?

— Edfscwa + Ad f3 10wz + & fz pcwiwe — 2¢%df3 2cwiwg

+ 2¢d? f3 pcwiwa — €2 f3 1cwi 2wy + edfs 1 cwiiwz — d2 f31cwitwa
+ Cf3,24w13w2 - f3,1cw14w2 - C2df4,1¢¢d22 - Cd2f4,1cw22

+ C2f4,2cw1wz2 - Cdf4,2cw1w22 + d2f4,2<w1w22 - 2cf4,1<w12w22
+ 2dfy 1 cwiiwe? — frgcwiPwa? — edfs qw2® + d° f31¢wr’

+ efs 2cwrwa® + fa1cwiwe® — dfscwat + fazcwiwa?)

b2w1 (.4)22

(d% + w12)(d? 4 wa?)(c? +wi? — 2w wy + wa?)(c? +wi? + 2wiws + wzz)}
(6b.17)

Vips = {=(—(Sd fs1¢) + Sdfs pewr — AP f3 pewr — c*dfs 101
— ed® fa 1ewi® + cdfs pews® — & fy pewr® — dfs1ewr?
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- 20d2f4,2(;w1w2 -+ 62f4,lcw12(.()2 e cdf4,1<w12w2 + d2f4,1¢w12w2

— cfapcwri’wa + forcwrtws — Edfs 1cwe? — ed? f3 1 cwo?

+ 62f3,2cw1w22 - Cdfs,2<;f-01¢022 + d2f3,2<w1w22 - 2Cf?.,l(,‘wlzwzz

+ 2df3,1cw1wa? — f32cwiPwe? + edfy 1 cwe® — d2 fy1cwa®

_ 3 _ 2,3 _d 4 1
cfa,2¢w1w2 facwifwe fa,1cw2” + fa2cwiwa”)

b2w1w22

(d? + w1?)(d? + w2?)(c? + w1? — 2wywy + w2?)(e? + w1? + 2w ws +w;22)}

Vioo = V00
‘72,00 = V2,00
Vs.00 = Vs,00
Vi 00 = V00

Appendix 6.C.

‘/1 1 :{ 3b12d3w15 3b11d2w16 3b12dw17 3b11w18 }
@+ (@02 (@ 4w (@ +wn?)
% o {-3b11d3w15 3b12d2w16 3b11dw17 + 3b12(.018 }
1222 — -
(@ +w?)’ (@ 4w’ (@2+w?)’ (& +w?)
Vi11g = {_ bnd3w15 512d2w16 _ blldw17 biow, ® }
’ (@ +wi?)’ (@ +w?)®  (@4w?) (@ +w?)
biad3w,® bi1d?w,® biodw,” b 8
Vl,122 ___{ 120 W1 114"W1 12GW1 11W1 3}

(d2 + w12)3 (d2 +w12)3 (d2 + W12)3 (d2 + w12)
Va,zs = {(2b12d” fi,11 — buud® fi12 + brad® 212 — 2b11d% fa 22

2
— Obygd? 21102 fy p4) a2
12d° fa14 + 2b11 f4,24)(d2 T wl)

+ (_b2d2f1,1< _bad’fape,  wiw?
c c (d2 +w22)2
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(d? + w22)2(02 + 4w, ?)

4ba f3 3¢ 4bafyac wp?
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( 4b12f3,13 + 4b11 f3,23 + 4b12 fa 14 — 4byy fa 24)w2®
w1(d? + w32)*(—w: 2 + 4wy?)
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+(

+(
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3
w
— 2by2dfa 14 + 2b11df4’24)m
+ (_b2df1,lc _ b2df2’2c CU1LU23
C C (d2 +w22)2
+(3b2df3,3c n bzdf4,4g) wa® 2
c c (dz +w22)
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CHAPTER SEVEN

NONLINEAR BIFURCATION CONTROL
OF HIGH ANGLE-OF-ATTACK

FLIGHT DYNAMICS

This chapter considers the problem of designing stabilizing control laws for
flight over a broad range of angles-of-attack which also serve to signal the pilot
of impending stall. The model of the longitudinal dynamics of an F-8 Crusader
of Garrard and Jordan [35] is studied. The direct state feedback stabilization
derived in [13] and the feedback stabilization through washout filters derived in
Chapter 4 are compared. The results show that by using washout filters, the
equilibrium of the uncontrolled system is preserved so that the stable operating
range can be increased. Second, six different wing lift profiles are introduced to
the dynamics to reflect possible uncertainty in modeling the aircraft. By using
washout filters, two robustly stabilizing controllers are designed. The latter
design results in a window of stable, small amplitude, periodic orbits encircling

the equilibrium between two previously unstable Hopf bifurcation points.
7.1. Background and motivation

Several authors have studied the nonlinear phenomena that arise commonly

in aircraft flight at high angle-of-attack (alpha). The literature on high alpha
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flight dynamics, control and aerodynamics has grown at a rapid pace. Of partic-
ular relevance here are references [4], [7], [35], [8] and [10]. The direct linkage of
aircraft stall and divergence, as well as other nonlinear aircraft motions in high
incidence flight, to bifurcations of the governing dynamic equations is a goal of
many previous investigations. In particular, both stationary and Hopf bifur-
cations are reported and/or studied for several aircraft models in [4], [7], and

[8]; and a Hopf bifurcation occurring in the lateral dynamics of a slender-wing

aircraft has been studied in [10], [7], [19].

In this chapter, we study the stabilization of the operating condition of an
aircraft in the neighborhood of stall, in a manner which has negligible effects on
the normal flight conditions by preserving the equilibrium and the linear stability
of the normal flight conditions, and provides an impending stall warning signal
to the pilot. This is done by using a pure nonlinear feedback control to stabilize
the unstable Hopf bifurcation in the high alpha flight regime. The stabilized
Hopf bifurcation points and the stable periodic solutions serve to extend the

useful operating range as well as to warn the pilot of impending stall.

By appealing to singular perturbation theory, the bifurcation analysis and
stabilization design are done for the fast mode of the longitudinal model of
an F-8 Crusader given in [35]. Since accurate aerodynamic data is, in general,
not easy to obtain, we introduce six different wing lift profiles to reflect possible
uncertainty in the aerodynamic model. These different wing lift profiles result in
different equilibrium profiles for the system. With the help of washout filters,
robust controllers are designed to stabilize all the Hopf bifurcations in these
equilibrium profiles. The simulation results for both controlled and uncontrolled
systems show the significant improvement in reducing the amplitude of post-
stall oscillation, which also justifies the use of reduced models in analysis and

design.

In all the following figures, a solid line denotes a stable equilibrium, a

dashed line denotes an unstable equilibrium, a solid block denotes a stable
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periodic solution, and a blank block denotes an unstable periodic solution. All

the stability coefficients, [, are calculated by using the computer program
BIFOR2 [32], and all the equilibrium branches and periodic solution branches

are calculated by using the computer program AUTO [34].

7.2. Aircraft longitudinal dynamics

Let the body axes of an aircraft be chosen as in Figure 7.1 [28], where the
origin of the coordinate is located at the center of gravity of the aircraft, the
positive X axis points forward, the positive Y axis points toward the right

wing, and the positive Z axis points downward.

Figure 7.1. Body axis coordinates of an aircraft (Etkin [28])
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If the flight condition is symmetric (that is, the velocity V' of the aircraft
lies in the X — Z plane), the velocity components in the X and Z directions,
u, and w, the body attitude 8, the angle-of-attack o, and the principle forces

which govern the longitudinal dynamics are as identified in Figure 7.2 [35].

¥
8
[
]

— o ey =~ - =

mg

Figure 7.2. Principle longitudinal parameters

The basic equations of motion for longitudinal dynamics with drag and

thrust neglected are

m(t + wd) = —mgsind + Ly sina + Lysinay (7.1a)
m(t — ub) = mg cos§ — Ly, cosa — L, cos oy (7.1b)
Iyé =M, +1Lycosa — 4Ly cosay — cf. (7.1¢)
Here,
u : velocity in X direction

w : velocity in Z direction
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0 : pitch angle
I, : moment of inertia about Y axis
L,, : wing lift force
Ly : tail lift force
a : wing angle of attack
a¢ : tail angle of attack
M,, : wing moment
m : mass of aircraft
[ : distance between wing aerodynamic center and
aircraft center of gravity
l; : distance between tail aerodynamic center and
aircraft center of gravity
b damping moment

The wing and tail lift forces are

L, =CLgS, (7.2a)
L, = C1qS:, (7.2b)

where
C1 : coefficient of the wing lift
C: : coeflicient of the tail lift
g : dynamic pressure
S : wing area
S: : horizontal tail area.
By using the relation
w = utana, (7.3)

the velocity component in the Z direction, w, can be eliminated from Egs.

(7.1a), (7.1b). The equations of motion are then given by

: L L
4 =—uftana — gsinf + —sina + = sinay (7.4a)
m m
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. A e g . . Lw .
& =0sin?a+ Zsinfsinacosa — — sin® & cos
u um
L, . ) .
— ——sinacosasina; + fcos® a + —g-cos2 acos
um u
Lw Lt
— —cos® a — —cos® a cos ay (7.4b)
mu mu
M L ltLt c ;.
6 =—= + —“cosa — ——cosa; — —¥. (7.4¢)
I, I, I, I,

7.3. High o control: Garrard and Jordan’s model

In this section, based on the model in [35], the control of high a longi-
tudinal dynamics for an F-8 crusader is studied. By the singular perturbation
reduction theory, the analysis is done using the fast mode of the longitudinal
dynamics. The steady state of this reduced model is usually called pseudo
steady-state (PSS). PSS was originally used by Phillips [36] to analyze the sta-
bility of the short-period longitudinal and lateral oscillations. Phillips’ analysis
predicted some divergence-like motions which would be predicted as an accept-
able behavior if the usual linearized stability analysis was used. This method
is not suitable in predicting the magnitudes of response peaks [9]. However, it
can be used to predict the “jumps” caused by control input [9], [11].

In our analysis of the reduced F-8 model, we find that the aircraft suf-
fers an unstable Hopf bifurcation at a near stall which makes the longitudinal
motion diverge past the bifurcation point. For comparison, two types of stabi-
lizing control laws, direct state feedback and feedback through washout filters,
are applied to stabilize the Hopf bifurcation point and the periodic solutions

emerging from this Hopf bifurcation point.

7.3.1. Garrard and Jordan’s simplifying equations
In [35], Garrard and Jordan approximated the wing lift and tail lift coeffi-

cients by cubic polynomial functions
Crw =C}i, a—C% o3, (7.5)

CLt = Citat — CIZJtO(:Z + ae5e, (76)
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where 6. represents the horizontal tail deflection angle measured clockwise from
the X —axis (Figure 7.2), and a. is the linear approximation of the effect of &,
on Cr;. The true wing lift coefficient and the cubic approximation are shown

in Figure 7.3 [35].

/

Linegr ,
| a4k approximation,’
7/

i | |
0 0.087 0175 02862 0.349 0.438
Radians

Figure 7.3. Cr, _vs. a (Garrard, Jordan [35])

Since the horizontal tail of the F-8 is within the wing wake, the downwash
angle, €, has to be included in determining the tail angle-of-attack. With a
linear approximation, € = a.a, the tail angle-of-attack is given by

a; =a— €+ 6,

= (1 —ac)a + é.. (7.7)

The aircraft data is given in Table 7.1.
Assuming the aircraft to be in level, unaccelerated (v = 0) flight at a

speed of 0.85 Mach, altitude 30,000 ft, and employ the following trigonometric
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approximation:

w = utan o«

o3
= u(a+ =), (7.8)
3 3
Sine%é’—-% sinaza—%—
2 2
cosawl——%- cosa%l—%—. (7.9)

The equations of motion are then simply to ([35], Eqs. (10),(11))
& =6 — a’0 — 0.877afd — 0.877a + 0.47a* + 3.8460° — 0.2155,

+ 0.286.a* + 0.4762 + 0.6365 — 0.01967, (7.10a)

6 = — 0.3966 — 4.208a — 0.47a? — 3.564a° — 20.9676.

+ 6.2656.a® + 466°a + 61.46. (7.100)

Here, o and &, represent the angle-of-attack and the tail deflection angle after
the trim terms, ag = 0.044 radians, é.9 = —0.009 radians, are subtracted so

that 6 = @ =6 = 0 is an equilibrium point.

7.3.2. Bifurcation analysis

Since the dynamics of 6 and u are the slow phugoid mode, comparing to
the dynamics of 9 and a which are the fast short-period mode, by singular
perturbation theory, we may separate the longitudinal dynamics into two time
scales and analyze their behavior separately [37]. In this bifurcation analy-
sis, we are interested in the fast mode periodic behavior since it is useful in
predicting nonlinear behaviors such as jumps, divergence, etc., and which are
believed to have a stronger impact on the pilot. To facilitate this, the veloc-
ity is assumed constant (which is already done by [35]) and the 6% term in
(7.10a) is neglected. This additional simplification implies that the effects of
varying weight components in body axes are neglected. The equilibrium state

considered here is therefore called a pseudo steady-state ([36], [9], [11], [8]).
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In the equations of motion (7.1), the lateral motion is assumed negligible.
We denote the angular velocity about the Y axis as ¢ = 9. Egs. (7.10a),
(7.10b) become

& =q — a’q — 0.088aq — 0.877a + 0.47a? + 3.846a° — 0.2156,
+0.286.a% + 0.4762a + 0.6362, (7.11a)
¢ = — 0.396¢g — 4.208a — 0.47a® — 3.564a> — 20.9676,
+ 6.2658.a® + 4662 + 61.462. (7.11b)

By treating é. as the system parameter, the (pseudo) equilibria for o
and ¢ at each command value of é. are shown in Figure 7.4a and Figure 7.4b.
There is a Hopf bifurcation point on the nominal branch (the branch passing
through the origin of the o — é, plane and the ¢ — 6. plane) at 6. = —0.064
where o = 0.305,¢ = 0.116, and a fold point at §. = —0.1556 where a =
0.750,¢ = —3.36. At the Hopf bifurcation point, the eigenvalues are given by
+372.212, and the stability coefficient is (2 = 3.123. The sign of this stability
coefficient implies instability of the bifurcated periodic solutions. Thus, for
|6¢] > 0.064, transients beginning near equilibrium diverge. This divergence
of the uncontrolled system is shown in the simulation of Figure 7.5. Also, the
unstable limit cycles emerging from the Hopf bifurcation for || < 0.064 limit
the attraction region of the nominal stable equilibrium.

The purpose of this control is to extend the useful range of angles-of-
attack to increase the safety margin for aircraft operation in the region of stall.
Additionally, the nonlinear Hopf bifurcation control provides a better attraction
region for these stable operating conditions near the critical bifurcation point
by removing the unstable limit cycles encircling them. Also, the stable limit
cycles for the post-critical parameter values serve as a warning of impending
post-stall jump.

Two types of feedback are used in the following sections: direct state feed-

back and indirect state feedback through washout filters. Direct state feedback
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is very commonly used in control systems. However, it requires on-line sensing
of the parameter value and on-line computation of the equilibrium to prevent
the deformation of the nominal operating branch. These may sometimes limit
the robustness. Moreover, the deformation of other equilibrium branches may
limit global performance. Indirect state feedback has the advantages of reliev-
ing the dependency on equilibrium, preserving the equilibria and making the
control more robust as discussed in Chapter 3. However, it is accomplished at

the expense of the increased dimensionality of the controller.

7.3.3. Hopf bifurcation control: direct state feedback

To remedy the divergent phenomenon for [6.] > |6cc| (6e. denotes the
parameter value at the Hopf bifurcation point), one can either use a linear
feedback to stabilize the nominal equilibrium condition for a useful range of
angle-of-attack, or use a bifurcation control law to render the bifurcated peri-
odic solutions stable and of small amplitude for such a range of angles-of-attack.
With the latter design, the aircraft would continually experience an oscillatory
pitch motion, which may not be acceptable. With the former, the Hopf bifur-
cation is delayed to a greater value of angle-of-attack, and operating at higher
than that new critical o might result in divergence as well. Thus, we em-
ploy a linear-plus-nonlinear feedback. The linear part of the feedback is chosen
to delay the Hopf bifurcation, and the nonlinear terms are chosen to stabilize
(if necessary) the Hopf bifurcation at the new higher critical angle. The tail
deflection angle §, which is treated as a system parameter in obtaining the
equilibrium curve is also treated as a control signal for stabilization.

For direct state feedback, in order to minimize the deformation of the nom-
inal equilibrium states caused by feedback (to preserve the nominal equilibrium
branch in Figures 7.4), the control signal must have a certain dependence on

the state, namely

6c(z) = 8¢ + {a polynomial in (z — z19(8)) and (z2 — z20(6¢))}- (7.12)
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Here, 1 and z, are the state variables a and ¢, respectively, 8. is the
constant commanded value of é., and subscripts 0 indicate equilibrium (trim)
values of state variables, which depend on 8.. In this example, we choose a

linear function and a cubic function of 8, to approximate the nominal branch:

oo = —4.60926,, (7.13a)
go = 630.814662 — 5.04988.. (7.13b)

A linear feedback
be = 8 + ka(a — ao(8.)) + k2(q — go(5.)) (7.14)

with &y = 0.3317 and ks = 0.0836 is applied first to move the Hopf bifurca-
tion to &, = —0.109 where a = 0.5,¢ = —0.252, and the eigenvalues of the
linearization are +;52.158.

The stability coefficient 33 of the new Hopf bifurcation point is 32.064
which implies instability of the Hopf bifurcation point and the limit cycle emerg-
ing from the Hopf bifurcation point. Figures 7.6a and 7.6b show the post-linear
feedback equilibria and the unstable limit cycle emerging from the Hopf bifur-
cation point.

Note that, in Figure 7.6a, the fold point appears at smaller |§.| = 0.1198
(was 0.1556 for the uncontrolled version) and the nearby equilibrium branch
moves toward the nominal branch. The former is due to the inaccuracy in
approximating the nominal equilibrium branch by using Eqs. (7.13a),(7.13b).
This effect limits the possibility of operating the aircraft at higher angle-of-
attack (at those equilibrium points existing in uncontrolled version and beyond
the new fold point). The latter is because direct state feedback deforms the
equilibrium branches other than the nominal one. This deformation can shrink
the attraction region of the stable nominal equilibrium branch.

To stabilize the Hopf bifurcation, and thus result in containment of post-
critical trajectories to within a neighborhood of the nominal equilibrium, nonlin-

ear terms are added to the linear feedback above. Since the critical eigenvalues
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are linearly controllable, by the algorithm in Chapter 4, both quadratic and
cubic feedback can be used to render (; negative. However, the strategy of
choosing the feedback in this case is not only to render 3> negative but also to
make the post-critical stable periodic solutions remain so for as large a range of
parameter values as possible. Specifically, we have chosen to add both quadratic
and cubic terms to the linear feedback, as follows:

be =bc + k1(a — ao(8e)) + k2(g — q(8e)) + c1(@ — ao(8e))?
+ ha(a@ — ag(8e))® + ha(g — ¢(8.))°. (7.15)

Here, ¢i = hy = hy = 0.8, resulting in a bifurcation stability coefficient 8, =
—320.639. Thus, the Hopf bifurcation for the controlled system is stabilized.
Figures 7.7a and 7.7b show the equilibrium branches and the stable periodic
solutions emerging from the Hopf bifurcation point toward the fold point. The
stable limit cycle becomes a homoclinic orbit and disappears before the fold
point. Figure 7.8 shows the convergence of the system trajectory to a stable
limit cycle for the post-critical parameter 6, = —0.11318. Figure 7.9 shows
a trajectory of the system started near equilibrium for the parameter value
de = —0.11349. The trajectory no longer converges to a stable limit cycle, but
now diverges.

Note that, in Figures 7.7a and 7.7b, the nearby equilibrium branch are
further deformed toward the nominal branch after nonlinear feedback is added.
This nearby deformed branch further limits the attraction region of the nominal
branch.

7.3.4. Hopf bifurcation control: washout filters

In Section 7.3.3, the closed-loop equilibrium branches are severely deformed
partly by inaccuracy of approximating the nominal branch in control func-
tion, partly by the nature of using the direct state feedback. Moreover, recall
that the original open-loop equilibrium branches are obtained using a cubic
approximation of the wing and tail lift coefficients as well as the trigonometric

approximation in Eqs. (7.8)-(7.9). Also, more inaccuracy is expected in the
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control function due to uncertainty in the lift curve, not to mention the possi-
ble uncertainty caused by different flight conditions. To remedy this, feedback
through washout filters is employed. By using washout filters, no approxima-
tion of the nominal equilibrium branch is necessary, and none of the equilibrium
branches are deformed. Although the approximation of the lift coefficients and
the trigonometric functions are still invoked in the dynamic equations, the equi-
librium of the real system will none the less be preserved.

Two washout filters with identical time constant d=! = 0.1 are inserted

into the feedback loop of aircraft model (7.11) in the following study:

1 =a—dxn (7.16a)
with output equations

1 =a—dzn (7.17a)

Y2 = q — dzy. (7.17b)

The control function is now given by

e = 8¢ + kyy1 + kayz + qyf + hlyio’ + hzy:;, (7.18)

with coefficients k; = 0.317, k; = 0.0836, ¢; = h; = hy = 0.8, identical to
those used in Sec. 7.3.3 for direct state feedback. The closed-loop equilibrium
branches along with the stable periodic solutions are shown in Figures 7.10a
and 7.10b. Note that the equilibrium branches coincide exactly with those of
the open-loop system.

A Hopf bifurcation occurs at parameter value 6, = —0.1085, for which
the angle-of-attack a = 0.4999, and ¢ = —0.2511. There are stable limit
cycles emerging from this Hopf bifurcation point toward higher |6.|. After
|6c| > 0.11403 (was 0.11349 for direct state feedback), the limit cycles disappear
(fold back and become unstable). Figure 7.11 depicts post-critical stable limit

cycles for four different values of &, .

142



The major advantage of using the washout filters is that the need for
approximation of the open-loop equilibrium branches is removed. Also, the
preservation of equilibrium branches prevents or delays the occurrence of the
homoclinic bifurcation. The occurrence of a homoclinic orbit in the case of
direct state feedback was associated with the fold point being moved toward
the Hopf bifurcation point. Although the stable limit cycles in this washout
filter-aided feedback case also disappear for |é.| beyond 0.11403, the preser-
vation of nominal equilibrium branch beyond this point opens the possibility
of extending the stable limit cycles to higher values of 8, by using a different

nonlinear stabilizing control law.

7.4. High o control: improved model

In this section, we improve the model employed in Section 7.3 in two ways.
First, the approximation of the trigonometric terms in the dynamic equations
Egs. (7.4a)-(7.4¢c) is not invoked here since the magnitude of the arguments in
those trigonometric terms is not small during high « flight. Secondly, the wing
lift force coefficient which was approximated by cubic functions of a in Section
7.3 is modified by invoking a sharp window function to accelerate drop of lift

force after stall. The wing lift coefficient is now given by

1

Ciw = (Cllwa - c?was)[ﬁ_w

1, (7.19)

where m relates to the abruptness of the drop of the lift curve, and «, is
the half-way drop point. This sharp drop of the lift coefficient reflects a more
realistic wing lift force vs. « profile.

Six different combinations of m and «, are chosen for the window function
in Eq. (7.19), « € {041,045}, m € {10,30,60}, to reflect some possible
uncertainty in estimating the lift force. Our goal is to design a fixed feedback
controller which stabilizes the aircraft under all these different lift force profiles

up to certain useful range of «, and also provides a warning of impending

143



stall by small periodic motion. Figure 7.12 shows the profiles of these six
approximations of wing lift force coefficients and the pure cubic approximating
coefficient.

Recall the dynamic equations (7.4a)-(7.4c). With the assumption of con-
stant speed, level flight condition and neglecting the effects of varying weight
components in body axes, the equations of motion are given by
& =q cos® a — 0.03808 cos® a — (0.845a cos a — 2.536a° cos® a)W

— (0.0526 + 0.00987a® + 0.21586,, + 0.11843a%6, + 0.4737ab?

+ 0.63168° cos? o) cos? a cos(0.25a + &), (7.20a)

g = — 0.396¢ + (0.9319a — 2.7960°)(cos @)W — (5.127a + 0.9613a° + 21.026,

+ 11.536a%8, + 46.144062 + 61.52663) cos(0.25a + 6.), (7.200)
where
1
Wi=———o-—. 7.20c
1+ (35)m ( )

Using the computer program BIFOR2 [32], we find that, prior to the ap-
plication of feedback, the aircraft dynamical model has two subcritical (i.e.
unstable) Hopf bifurcations for each lift force profile. Table 7.2 lists the Hopf
bifurcation points and their corresponding eigenvalues and stability coefficients.
Figure 7.13 show the nominal equilibrium branches obtained using the computer
program AUTO [34] for these six lift force profiles. The two subcritical Hopf
bifurcation branches of each lift force profile turn back and join together af-
ter emerging from the Hopf bifurcation points. This implies that, if 8, goes
slightly beyond the first Hopf bifurcation point, the aircraft will jump into a
large amplitude oscillation, which is not acceptable.

To remedy this, we give two stabilizing washout filter-aided nonlinear feed-
back controllers for the system. These controllers do not destroy the Hopf bifur-

cations discussed above, nor do they shift the critical parameter values for which

these Hopf bifurcations occur. Rather, the direction of the Hopf bifurcations is

reversed, rendering them supercritical, i.e., stable.
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7.4.1. The first stabilizing controller
In the first design, we choose ¢ passed through a washout filter as the
feedback signal. The output, y;, of the washout filter is given by

Y1 =q—dz. (7.21)

Here z, denotes the state variable introduced by the filter and d is the inverse
washout filter time constant. As in Section 7.3, denote by &, the constant
commanded value of the elevator deflection. Set d = 1. Feeding back ¢} to

the elevator input, we have
be = b + ckyys. (7.22)

The reason for choosing y? as a feedback signal is that it is found to be the
most effective among all cubic in making the stability coefficient, 3, negative.
This can be easily checked by using the BIFOR2 program or by comparing the
effects of each cubic term on ReA of Eq. (4.62b) in Chapter 4. The value of d
1s chosen for robustness considerations, that is to render the real part of variable
P defined in Chapter 4 remaining the same sign at all Hopf bifurcation points
under the six different lift force profiles. By doing this, with a suitable choice
of the feedback gain, we can have a robust controller to stabilize all the Hopf
bifurcations existing for the various lift force profiles.

Set the gain ck; = 20. Table 7.3 shows the stability coefficients for all
the Hopf bifurcations of the six different lift curve profiles. The negativity
of all of these stability coefficients implies the stability of all the bifurcation
points and the bifurcated periodic solutions emerging from them within a small
range of parameter values. In fact, for the lift force profiles with m = 10, the
control results in a window of small amplitude stable periodic orbits encircling
the equilibrium for values of the elevator deflection parameter between the two
adjacent Hopf bifurcation points. Figures 7.14 - 7.15 depict these results as
produced by the program AUTO.
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For the cases where m = 30 and 60, the stable limit cycles (shown in
Figures 7.16 - 7.19) fold backward and become unstable after emerging from
both Hopf bifurcation points for a small range of parameter values. After an-
other small range of parameter values, these unstable limit cycles turn forward,
become stable again, and finally join. Although the Hopf bifurcation points and
the periodic solutions emerging from these Hopf bifurcation points for param-
eter values near the critical parameter values are stable, and the amplitudes
of these stable periodic solutions are small, for the parameter values slightly
beyond this range, there still exists a “jump” to larger amplitude (smaller than
that of the uncontrolled system, however) limit cycles. Moreover, there will be a
hysteresis and other jumps associated with recovery from those large amplitude
oscillations.

To further improve on the above, we design the second washout filter-aided

nonlinear feedback controller in the fellowing section.

7.4.2. The second stabilizing controller
Let « passed through another washout filter serve as another feedback

signal. The output, ys, of this washout filter is given by
Yo = a — dzg. (7.23)

Here z; denotes the state variable introduced by the new filter and d is the
inverse of the new washout filter time constant which is set equal to 1, as for
the previous filter. Add the new control term, y2y, , to the elevator input. The

control is now given by
8o = be + ck1y® + ckayly,. (7.24)

Set the gains cky = 15, cky = 40. The two unstable periodic branches on top of

the two stable branches for the cases in which m = 30 and 60 are removed. Now,
the outer large amplitude periodic branch is moved down and merged with the

two inner stable periodic branches. Thus, the jump and hysteresis phenomena
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in the previous design are removed and the amplitudes of periodic solutions
between the two adjacent Hopf bifurcation points are significantly reduced.
Figures 7.20 and 7.23 show the maximum amplitudes of these stable periodic
branches. Table 7.4 lists the stability coefficients at each Hopf bifurcation point.

Note that y?y, is less effective in rendering B, negative than y?. The
magnitudes of B2 in Table 7.4 are smaller than those in Table 7.3 where the
first design is applied. However, y2ys , in this case, is very effective in bringing
down the outer periodic branch and eliminating the unstable branches. This is
a very important effect as far as the responses of the parameter values between
the two adjacent critical parameter values are concerned. This effect may not
be easily predicted by the values of B3, alone since f3; provides information
only on the local behavior near a critical point. Indeed, the amplitudes of the
periodic solutions of the first design are smaller than that of the second design

for parameter values sufficiently close to the critical values.

7.4.3. Simulation of a third order model

The designs and analysis above are based on the pseudo steady-state of the
reduced model, the fast short-period mode. In order to check the model, we
consider a more accurate longitudinal model which includes the “slow” gravity
effects. This model is Eqs. (7.4b),(7.4c) with u = constant, written in state
space form, including the variation of 6 through the equation = q. We
perform time domain simulations of this third order model for «, 6, and ¢
for two cases: the uncontrolled case, and the case using the second stabilizing
controller. Figures 7.24 - 7.29 show the time simulations of this third order
model for 8§, = —0.088 and —0.105. For the uncontrolled system, there are
large oscillations for parameter values between the two critical values. For the
parameter value §, = —0.088 where the pitch rate ¢ is close to its peak value,
there is a slow frequency modulating the periodic solution of the fast mode. This
slow frequency comes from the effects of varying weight components in the body

axes (due to the §—variation). For the parameter value 6, = —0.105 where ¢
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is small, the effect of the slow mode is very insignificant. For the preceding two
chosen parameter values, the amplitudes of oscillation are significantly reduced
after feedback is applied. In fact, the amplitudes of the oscillations can be

further reduced if the feedback gains are appropriately increased.
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Cp, =40 Ci, =120
C{ =40 Ci, =12.0
a.=0.1 S = 375 ft*
Sy =93.4 ft* m = 667.7 slugs
ac = 0.75 I, = 96800.0 slug - ft*
1 =0.189 ft I, =16.7ft
M, =0. c = 38332.8

g = 32.2 ft/sec’

g = 318.19 Ib/ft’

Table 7.1.

Aircraft data

Lift curve Critical Critical
window 6. « q B2 Eigenvalues

m ap

10 0.41 -0.0737 0.327 0.124 3.7 +52.219

-0.1137 0.472 -0.015 11.6 +72.096

10 0.45 -0.0796 0.352 0.125 2.1 +72.202

-0.1215 0.504 -0.016 8.3 +52.063

30 0.41 -0.0817 0.361 0.133 153.8 +72.194

0.1087 0.450 0.030 202.4 +52.118

30 0.45 -0.0888 0.390 0.127 70.9 +52.171

-0.1179 0.488 -0.029 163.9 +52.093

60 0.41 -0.0860 0.379 0.131 489.3 +2.180

-0.1053 0.435 -0.034 931.7 +2.202

60 0.45 -0.0936 0.408 0.121 128.4 +2.155

0.1150 0.475 0.336 767.0 +2.093

Table 7.2. Hopf bifurcation data for uncontrolled system
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Lift curve (m =10 |/m =10 {m =30 |m =30 |m =60 |m =60
window ap = 0.41l|a, = 0.45|a, = 0.41|a, = 0.45|ap, = 0.41|a, = 0.45
B2 of
1st Hopf -1247 -1263 -1118 -1220 -794 -1176
B2 of
2nd Hopf -1348 -1381 -1138 -1210 -397 -596

Table 7.3. Hopf bifurcation data under the first control law applied

Lift curve |[m =10 /m =10 |m =30 |m =30 |m =60 |m =60
window ap = 0.41la, = 0.45|a, = 0.41|a, = 0.45|ap, = 0.41|a, = 0.45
B2 of
1st Hopf -994 -1007 -860 -959 -534 -913
B of
2nd Hopf -1074 -1101 -867 -933 -120 -314

Table 7.4. Hopf bifurcation data under the second control law applied
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CHAPTER EIGHT

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

We have developed robustly stabilizing feedback control laws for systems
exhibiting Hopf bifurcation, stationary pitchfork bifurcation, and systems whose
linearization at an equilibrium possesses two pairs of pure imaginary eigenval-
ues. This is achieved by introducing washout filters into the feedback loops.
With these washout filter-aided feedback control laws, the control does not
depend on the operating point, and the equilibria of the original system are
preserved. Thus, the control is robust to uncertainty in the system operating

points.

For systems exhibiting Hopf bifurcation, we derived a purely nonlinear sta-
bilizing control law, preserving the linear stability of the original system. This
preservation of linear stability along with the preservation of equilibria permits
application of the control over a broad range of operating conditions. Since lin-
ear stability dominates the local behavior of the system, this purely nonlinear
control will stabilize the Hopf bifurcation point (critical equilibrium point) and
the bifurcated periodic solutions, but has little effect on the local behavior of
stable noncritical operating points. It is suitable for stabilizing systems which
have a broad range of operating conditions such that, within the range of the
operating conditions, some of the operating points undergo a Hopf bifurcation

but the parameter values for occurrence of these bifurcations are uncertain. Be-
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sides the robustness with respect to uncertainty in operating point, the control
is also robust with respect to other modeling uncertainty. Since the control
derived here is based on the stability formula derived in [38], it only depends on
Taylor series expansion of the vector field and eigenvector computations, and no
center manifold reduction and normal form transformation are required. Thus,
it is feasible to determine the upper limit of uncertainty that the control can

tolerate.

For systems undergoing a stationary pitchfork bifurcation, if the critical
eigenvalue is controllable, we derived a linear control law to stabilize the bi-
furcation point. The control employs unstable washout filters to change the
direction of ezchange of stabilities. The bifurcated branches are stabilized.
However, the linear stability of the nominal branch is lost. That is, the orig-
inally stable nominal branch is now unstable. It is suitable for stabilizing the
critical systems whose modified parameterized systems (by adding an artifi-
cial parameter to the original systems) undergo a pitchfork bifurcation with
the critical eigenvalue controllable. The control is also robust with respect to
other system uncertainty (besides that in the system equilibria). However, since
the control function depends on the left eigenvector of the critical mode, the
amount of uncertainty that the control can tolerate depends on the effect of the

left eigenvector uncertainty on the noncritical eigenvalues.

For critical systems possessing a double controllable zero eigenvalue, using
washout filter-aided feedback control can only move one of these zero eigenval-
ues. If after one of the zero eigenvalues is moved, the modified parametrized
systems undergo a pitchfork bifurcation, by using the same stabilization al-
gorithm for pitchfork bifurcation, we can apply a linear feedback through the
same washout filter which is used to move one zero eigenvalue and stabilize the

system simultaneously.

For systems whose linearization possesses two pairs of pure imaginary

eigenvalues, we also derived a purely nonlinear stabilizing feedback control law
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under which the linear stability of the original system is preserved. Similar
to the case of Hopf bifurcation, the control is also suitable for systems under
a broad range of operating conditions. For the cases in which both critical
modes are linearly controllable and both critical modes are linearly uncontrol-
lable, under the stability criterion derived in [17], introducing washout filters
into the feedback loop not only does not compromise the stabilizability, but
also increases the flexibility in enlarging the bound for robustness.

In the application to aircraft high angle-of-attack Hopf bifurcation control,
we showed that using washout filter-aided feedback control is superior to using
direct state feedback in extending the range of stable periodic solutions. We
also demonstrated the robustness of the use of washout filter-aided feedback
by designing two fixed stabilization controllers. Each of these controllers can
stabilize twelve Hopf bifurcations for six different profiles of equilibria which
were set up to reflect part of the uncertainty in the system model. Also, the
amplitudes of the bifurcated periodic solutions are significantly reduced by the
control.

To further extend the research covered in this thesis, several possible di-
rections for further study are noted as follows: First, it is important to explore
the relation between the nonlinear system performance criteria related to the
attraction region, convergence rate, and control energy with the form of the
nonlinear controller used and the washout filter time constant. Optimization-
based controller design can be pursued in this context. Second, techniques for
extending the local bifurcation control algorithms to global bifurcation control
or chaotic system control should be investigated. A third possible direction is to
extend the washout filter-aided feedback technique to the control of nonlinear

slowly varying system.
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