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Abstract

This paper examines the set-theoretic interpretation of morphological filters in the
framework of mathematical morphology and introduces the representation of classical
linear filters in terms of morphological correlations, which involve supremum/infimum
operations and additions. Binary signals are classified as sets and multilevel signals
as functions. Two set-theoretic representations of signals are reviewed. Filters are
classified as set-processing (SP) or fﬁnc_tion—brocessing (FP). Conditions are provided
for certain FP filters that pass binary signals as binary to commute wit}; signal thresh-
olding, because then the‘y can be analyzed and implemented as SP filters.

The basic morphological operations of set erosion, dilation, opening, and closing are
related to Minkowski set operations and are used to construct FP morphological filters.
Emphasis is then given to analytically and geometrically quantifying the similarities
and differences between morphological filtering of signals by sets and functions; the
latter case allows the definition of morphological convolutions and correlations. Toward
this goal various properties of FP morphological filters are also examined.

Linear shift-invariant filters (due to their translation-invariance) are uniquely char-
acterized by their kernel, which is a special collection of input signals. Increasing linear
filters are represented as the supremum of erosions by their kernel functions. If the fil-
ters are also discrete and have a finite-extent impulse response, they can be represented
as the supremum of erosions only by their minimal (with respect to a signal ordering)
kernel functions. Stable linear filters can be represented as the sum of (at most) two
weighted suprema of erosions. These results demonstrate the power of mathemati-
cal morphology as a unifying approach to both linear and nonlinear signal-shaping

strategies.



1 INTRODUCTION

Morphological filters are nonlinear signal transformations that locally modify geometric
features of signals. They stem from the basic operations of a set-theoretical method for
image analysis, called mathematical morphology, which was introduced by Matheron [1]
and Serra [2]. In this method each signal is viewed as a set in a Euclidean space, and
the morphological filters are set operations that transform the graph of the signal and
can provide a quantitative description of its geometrical structure. For binary signals
(viewed as sets), the erosion (contraction), dilation (expansion), opening, and closing are
the simplest morphological operations. Set erosion and dilation are actually Minkowski
set subtraction and addition {3,4], respectively. These filters were extended to multilevel
signals in {2,5,6,7,8] by using mainly the correspondence> between the shrinking/expanding
of binary signals and the local min/max of multilevel signals [9]. Serra [2] used the cross-
sections (thresholded versions) of the signal to generalize the morphological filtering of
multilevel signals. Sternberg [6] further generalized morphological filters for multilevel
signals by considering graytone images as surfaces of 3-D volumes (the umbrae). E-filters
[10] are related to morphological filters via Sternberg’s approach. Lantuejoul and Serra
[11] studied properties of generalized (algebraic) openings and closings, which they called
M-filters.

The applications of morphological filters in image processing and analysis are numer-
ous [2,12,13]. Areas of applications include biomedical image processing [2,6,8,14,15]; au-
tomated industrial inspection [16,17]; shape recognition [18]; nonlinear filtering [19,20};
edge detection [5,20,13]; noise suppression [5,21,20,13|; thinning [2,5,21,20,22]; enhance-
ment [2,21]; representation and coding [20,22]; texture analysis [23]; and shape smoothing
(2,20,22,24|. Currently, there are several commercialized image analyzers or other pipelined
or parallel computer architectures [25]-[28] that use morphological filters (mainly for binary
signals) among their main operations to extract pictorial information.

In this paper, first (in Section 2) we introduce a classification of signals and filters
suitable for morphological filtering. Then we discuss the basic morphological concepts for

representing signals by sets. In Section 3 we give the basic definitions and properties of the



four simplest morphological filters. Although [2] is an excellent treatment of mathematical
morphology, we feel that it is worthwhile to present some review material in Sections 2
and 3 for completeness and clarity, as well ds for familiarizing the signal processing society
with morphological signal analysis. Throughout Section 3 we attempt to clarify the transi-
tion and oscillation between morphological filtering of binary and multilevel signals. Some
analysis and examples are provided to quantify the difference between morphologically
convolving a signal with another binary or multilevel signal. In addition, some determin-
istic properties of morphological filters for multilevel signals are investigated concerning
their commutability with thresholding, fixed points, and invertibility. Finally, in Section 4
we introduce the representation of linear shift-invariant filters in terms of morphological
filters. That is, we define the kernel of a linear translation-invariant filter as a special
collection of input signals and construct a basts of this kernel based on a signal ordering.
The kernel or basis functions are then used to express a linear convolution as a supremum
of subtractive morphological correlations (erosions).

This paper is the first in a sequence of two papers (Part 1 and 2). The results in Sec-
tion 4 of this paper (Part 1) and the results in Part 2 {32] are all special cases of our earlier
work in {19,20], which showed that a large class of nonlinear and linear translation-invariant
filters can be represented exactly in terms of a minimal combination of morphological ero-
sions or dilations. Both Parts 1 and 2 demonstrate the power of mathematical morphology

as a unifying approach to both linear and nonlinear signal-shaping strategies.

2 REPRESENTATION OF SIGNALS BY SETS

An m-dimensional (m-D) signal can be represented mathematically by a function of m
independent variables (an m-D function), where m is any positive integer. This function
may assume only two distinct values, in which case we can represent the signal as a set in
an m-D Euclidean space. For example, a binary image can be represented by a function
f(z) rthat assumes only two values, i.e., zero and one: Alternatively, the image foreground
can be represented by the set S = {z : f(z) = 1} and the image background by the set

complement S° = {z : f(z) = 0}. This function f is called the characteristic functionof S.



Henceforth, both functions and sets will be used as mathematical representations of signals,
with the distinction that an m-D function implies a multilevel m-D signal, whereas an
m-D set refers to a binary m-D signal. Thus, a binary image will be represented by a 2-D
set, whereas a graytone image by a 2-D function. This classification of signals induces a
similar classification for filters into set-processing and function-processing filters. An m-D
set-processing (SP) filter is a filter capable of accepting m-D binary signals as inputs
and producing m-D binary signals as ox-ltputs.- An m-D function-processing (FP) filter
is any filter capable of accepting rﬁ-D fpnctions as inputs and produéing m-D functions
as outputs. A subclass of m-D FP filters can produce an m-D binary signal whenever the
input is also an m-D binary signal; these are called function-and-set-processing (FSP)
filters. For example, on sampled graytone images a moving local minimum operation is a
2-D FSP filter, whereas a moving local averager is a 2-D FP (but not a FSP) filter.

In the above classification set s the primary notion and function is just a particular
case, because the prototype morphological filters are defined through set operations. In
addition, some of the FSP filters that this paper examines commute with thresholding of
functions (explained later) and, hence, can be reduced to SP filters. In this light then, any
FP or SP filter is viewed as a set transformation from one class of sets into another class
of sets. The concept of a set, however, is more general than needed to represent signals.
Therefore, we restrict ourselves to a class of sets that is just sufficiently general. Assurﬁing
[1] that every set representing a signal (viewed as an image object) contains its boundary,
results in selecting the class C(E) of all closed subsets of a Euclidean space E as our general
signal space. However, before any detailed discussion, it is necessary to introduce some
notation.

Notation: The set of real numbers is denoted by R, and the set of integers by Z.
Capital letters “A, B, C,... X,Y” mainly denote sets; points of sets are denoted by lower
case letters “a,b,c,...,z,y,2”. X¢ denotes the set complement of X. The set of points z
satisfying a property “P” is denoted by {z : P}. If XCR, then sup(X), inf(X), max(X),
and mir;(X) denote, respectively, the supremum, infimum, maximum, and minimum of
X. (See [29] for the differences between sup/inf and max/min, respectively.) Functions

are denoted by “f,g,h”. Capital Greek letters, e.g., “¥, ®” denote SP filters, whereas



lowercase Greek letters, e.g., “¢, ¢” denote FP filters. If X or f are input signals to filters
¥ or 9, then ¥(X) and 9(f) denote output signals.

2.1 Cross-sections and Umbra of a Function

We assume that the domain of an m-D function f(z) is a subset of the domain space
D = Z™ or R™, depending on whether the function is sampled or not, respectively. We
also assume that the range of f(z) is a subset of the range space V=R -or Z, depending
on whether the amplitude of f(z) varies continuously or discretely. Our general Euclidean
space E will be equal to the cartesian product D x V. Thus, 2ll binary m-D signals will
be subsets of D, whereas all multilevel m-D signals will be subsets of E.

Since signals can be represented either by functions or by sets, and set is the primary
notion, the main issue is to represent functions by sets. This is done by following two
different but equivalent approaches. That is, an m-D function can be represented either
by an ensemble of m-D sets called its cross-sections or by a single (m + 1)-D set called its
umbra.

Figure 1 shows a 1-D function f, one of its cross-sections, and its umbra. The set
Xi(f)={ze€D: f(z) >t} , teV, (1)

is called the cross-section of f at level ¢t and is obtained by thresholding f at level t. By
considering all different levels t we can associate f with a family of sets, which decrease
monotonically as ¢ inicreases. Since we work in the class of closed sets, all the cross-sections
of f must be closed. The corresponding class of functions with which we will always deal
is the class of upper semicontinuous' (u.s.c.) functions on D, denoted as USC(D). This
correspondence is established because a real-valued function f defined on R™ is u.s.c. if and
only if (iff) its cross-sections X;(f) are closed sets in R™ for all t € R [31]. Qualitatively,
we can think of u.s.c. (resp. ls.c.) functions as resulting from continuous functions after
the addition of some positive (resp. negative) jumps. A sampled function'is trivially both
u.s.c. and l.s.c., because all its cross-sectidhs are subsets of Z™ and, hence, they are both

closed and open.

1These are defined in [29,30] together with the lower semincontinuous functions (l.s.c.)



If we know all the cross-sections of an u.s.c. function, then we can uniquely reconstruct
it through a supremum operation. This is illustrated in Fig. 2 which shows a 1-D function
f(z) and two of its cross-sections at levels t; and t,. In this figure we observe that, for a
given point z € R, z € X, (f) iff f(z) > t;. By contrast, we observe that z ¢ X,,(f) iff
f(z) < t3. Thus, the value of f at z is equal to the “largest” (supremum) of ¢’s such that

f(z) > t, or, equivalently, z € X(f). The above discussion is formalized by

THEOREM 1 (Serra [2]). (a) Let f(z) be an w.s.c. real-valued function on R™ and
let Xi(f), t € R, be its cross-sections. Then, the X;’s are closed sets in R™ that are

decreasing, t.e.,

t1 < t2 = th 2 th, (2)
obey a monotonic continuity
Xf - n Xt y (3)
t<r
and for each z € R™
. f(z) =sup{teR : z€ X,}. (4)

(b) Conversely, a collection {X, :t € R}, of closed sets satisfying conditions (2) and (8)
generates an u.s.c. function f(z) through (4). Then, the cross-sections of the resulting

function f(z) are tdentical with the initial sets X;’s for all t.

Note that if V= Z, then (3) becomes X, = N,<, X, with r,n € Z, and hence (3) is trivially
satisfied; (4) becomes f(z) =sup{t € Z: £ € X;}.

Another way of establishing a link between sets and functions involves the concept of
the umbra due to Sternberg [6,7]. As shown in Fig. 1, the umbra U(f) of f is a subset of
E and consists of all those points that occupy the space below the graph of f down to —oo.
We can also define the umbra of a set. For instance, Fig. 3a shows a closed set B in R?.
Its umbra U(B) is the closed set formed as follows: Let the points in E be parametrized
by their projection z on D and their altitude t perpendicular to D (in Fig. 3 D= R).
Suppose that the opaque set B is “illumina£ed” from above by a point source located at
t = +oo; then the shadow of B is its umbra U(B) shown in Fig. 3a. Analytically, the
umbra of the closed set B is equal to the Minkowski sum (defined later in (12)) of B and
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the negative axis (—o0, 0] of the amplitudes ¢’s [2]. Similarly, the umbra of a function f is
the Minkowski sum of the graph of the function and (—o0,0], where the graph of f is the
set G(f) = {(z,t) € E: f(z) = t} shown in Fig. 3b. Analytically, the umbra of f is the
subset

U(f) = {(z,t) e DXV : f(z) > ¢t} (5)

of E. Obviously, the umbra is a set of higher dimensionality than the function. Figure 3b
shows that a point (z,t¢) belongs to U(f) iff f(z) > t. The second property of U(f) is
that if (z,t) € U(f), then (z,a) € U(f) for all a < t (see also Fig. 3b), since the set
{z} x (=00, f(z)] is a subset of U(f). From U(f) we can uniquely reconstruct f, because
f(z) is the “largest” altitude, i.e., the supremum of all t’s such that (z,t) € U(f). The
third property of U(f) is that it is a closed set. The class of functions whose umbra is a
closed set in E is the class of u.s.c. functions on D; further, for each u.s.c. function there

corresponds a unique umbra, and vice-versa. Next we formalize the above discussion with

THEOREM 2 . (a) To any real-valued u.s.c. function f(z), z € R™, there corresponds

a unique umbra U(f). This umbra U is a closed set in R™! such that:

(z,t) eU<=t< f(z) <=z € Xi(f). (6)
(z,t) €U = (z,a) €U , Va<t. (7)

Also for each z € R™
f(z) =sup{teR : (z,t) e U}. (8)

(b) Conversely, to any closed subset U of R™'! satisfying (7) there corresponds a unigque
u.s.c. function f(z), which can be constructed from (8). The umbra then of f(z) s equal
toU.

A proof of Theorem 2 can be found in |20, p.54]. Theorem 2 also holds for functions with
discrete argument or amplitude. By comparing (1) and (5) with (6), we see that U(f) is
the union of the sets [X,(f)] x {t} for all t € V.



2.2 Isomorphic Operations between Sets and Functions

Since functions are exactly represented by their umbrae, union and intersection of umbrae
must isomorphically induce two equivalent operations between the corresponding functions.
Figure 4 shows two functions f and g and their respective umbrae U(f) and U(g). The
intersection of the two umbrae is an umbra corresponding to a new u.s.c. function. This
function, shown by the dashed curve in Fig. 4, is equal to the pointwise minimum of f and
g. Likewise, the union of the two umbrae is the umbra of a new u.s.c. function, which is
shown by the solid curve in the right part of Fig. 4, equal to the pointwise mazimum of f

and g. We denote these new functions as:

(fAg)(z) = min{f(z),¢(z)} , z€D.

(fVo)a) = max{f(z),9(z)} , z€D.

Finally, the set inclusion of umbrae, which is an ordering relation, induces an ordering
relation between functions too. Set inclusion between the umbrae of two functions f and ¢
corresponds to an ordering of functions. That is, we say that “f is less than ¢”, denoted

as “f < g¢”, iff f(z) < g(z) Yz € D. Moreover,
f<g= X(f) S Xilg) VeV <= U(f) CU(g)" (9)

Table I shows the types of function operations induced by set operations on umbrae or
cross-sections; e.g., A(V) between f and g is equivalent to N(U) between X;(f) and X,(g)
forallte V.

2.3 Upper Semicontinuous (u.s.c.) Filters

A detailed formal definition of a general u.s.c. filter (viewed as set mapping) lies beyond the
scope of this paper. Intuitively speaking, a filter is u.s.c. if it is continuous “from above”.
However, if the SP or FP filter is z'ncreasingﬂ(see Table II for definitions), then we can easily
verify whether it is u.s.c. as follows. If (X,) is a decreasing sequence of closed sets in E, let
X, | X denote the monotonic set convergence where X,.;; C X, for all n and X =N, Xa.

Then, if ¥ is an increasing SP filter in C(E), ¥ is us.c. iff X,, | X = ¥(X,) | ¥(X)

10



[1]. An obvious way to extend these concepts to FP filters is to consider the umbrae or
cross-sections of functions. Leaving details aside, if (f,) is a decreasing sequence of u.s.c.
functions, we denote by f, | f the monotonic convergence toward the u.s.c. function f,
where fn41 < fn for all n and f(z) = inf.{fa(z)} for all z € D. Then, if ¢ is an increasing
FP filter in USC(D), ¢ is us.c. iff fp | f = ¥(fa) | ¥(f).

The u.s.c. condition is necessary whenever we require filters to be insensitive to the

fine variations in both the amplitude and region of support of signals.

2.4 FSP Filters that Commute with Thresholding

Let ¢ be an m-D FSP filter and let ® be the respective m-D SP filter of ¢. Then ¢ is said

to commute with thresholding iff, for any u.s.c. function f,

X{6(f)] = eXu(f)] , VEEV. (10)

Thus, for a general FSP filter ¢ satisfying (10), transforming the input function f and
then thresholding ¢(f) at any level t is equivalent to thresholding f at level ¢t and then
transforming by ® the set X;(f). This allows us to interpret such a FP filter as a SP
filter, which, especially for sampled signals, is simpler to analyze and implement. That is,
from Theorem 1 and (10) we can synthesize the output function ¢(f) from its SP-filtered
cross-sections:

[6(f)](z) =sup{t € V:t € ®[X,(f)]} , Vze€D. (11)

A necessary condition for a FSP filter to commute with thresholding is given by

THEOREM 3 . Let ¢ : ¥ — USC(D) be a FSP filter defined on a subclass FC U SC(D)
of u.s.c. functions closed under pointwise infimum. If ¢ commutes with thresholding and

® 1s its respective SP filter, then both ¢ and @ are increasing and u.s.c.

Proof. (a)-(Increasing): Let A, B be two closed sets in D such that AC B. Let h be

an u.s.c. function defined as h(z) = 2 for z € A4, h(z) = 1for z € BN A° and h(z) =

0 for z € B°. Then ®(A) = ®|Xy(h)] = Xa|d(h)]C Xi[¢(h)] = @[Xi(R)] = &(B).

Thus, ® is increasing for sets. Now let f < g <= X (f)C X:(9) V¢t € V. Then

11



Xi[o(f)] = @[X(f)]C[X(9)] = Xi[8(9)] V¢ € V, which implies that ¢(f) < &(g).
Hence, ¢ is increasing for functions too.

(b)-(u.s.c): Let S be the set class of all cross-sections of functions in 7; then § is
closed under intersection, because ¥ is closed under infimum. Let (X,) be any decreasing

sequence of closed sets in §; then X,, | X € §. By generalizing the method of proof

> t, for all n,

in (a), we can set X, = X;,(f) for some u.s.c. function f where t,i;
t = sup,{t.}, and X = X;(f). From(2) and (3), since ¢(f) is an u.s.c. function, we have
®(X,) = X, [6(f)] | X:[6(f)] = (X). Thus & is u.s.c. Likewise, let (f.) be a decreasing
sequence of u.s.é. functions such that f, | f€F. Then fu | f = Xi(fn) | Xe(f) =
Xi[¢(fa)] = @[Xe(fa)] | ®[Xe(f)] = Xe[¢(f)] VE €V = ¢(fn) 2 ¢(fns1) and [8(])](2) =
suplt : = € X[8(1)] & [(Jul(2) > t ¥n} = infu{($(fu)](2)}. Thus 9(fu) | () and
hence ¢ is u.s.c. Q.E.D. |

Theorem 3 suggests a straightforward way to construct a FSP filter that commutes
with thresholding from an increasing and u.s.c. SP filter ®. That is, if & operates individ-
ually on all the cross-sections of an u.s,c. function f, the family of filtered cross-sections
{®(X.(f)] : t € V} satisfies both conditions (2) and (3). Hence Theorem 1 guarantees
that the function g(z) = sup{t € V : z € ®[Xi(f)]} is an u.s.c. function and that
Xi(g) = ®[X:(f)] for all t € V. Thus, by setting ¢ = ¢(f), we construct a FSP filter ¢
that commutes with thresholding and whose respective SP filter is &.

Theorem 3 becomes a necessary and sufficient condition by requiring ¢ to be translation-
tnvariant. Let A, = {a + z : a € A} denote the translate of a set A by the vector z. A
SP filter W is translation-invariant iff ¥(A4,) = [¥(A)]., for all z € E and all sets 4
in a set collection S closed under vector translation. If A = U(f), translation of A by
z = (y,c) corresponds to a shift of the argument of f(z) by y € D and to a shift of the
amplitude of f by ¢ € V. Thus, we define herein a FP filter 1 as translation-invariant iff
Y[ fz—y)+¢] = [¥(fl(z—-y)+e, for all (y,¢) € D x V and all functions f(z) in a

function class ¥ closed under such translation. Then we have

THEOREM 4 . A translation-invariant FSP filter ¢ : ¥ — USC(D), where ¥ s a
class of u.s.c. functions closed under translation and pointwise snfimum, commutes with

thresholding iff it is tncreasing and u.s.c.

12



Proof. The necessity was proven in Theorem 3. Sufficiency: Throughout this proof we will
make use of the SP, FSP, and FP erosions filters which are defined in Section 3. Let & be
the respective m-D SP filter of the m-D filter ¢. ® is defined on the set class S of the cross-
sections of the functions in . Since ¢ is a translation-invariant and increasing FP filter,
it is equal to the supremum of FP erosions by a class K of functions [20]. These functions
must be binary, i.e., m-D sets, because otherwise ¢ would not pass an m-D binary signal
as binary. Thus, ¢(f)(z) = supgi {f © B*(z)}, where f © B*(z) = inf{f(y) : y € B.}
is the FSP erosion of f by B and commutes with thresholding. Hence, if f is binary and
thus equal to the characteristic function of a set Y, then the above expression for ¢(f)
becomes ®(Y) = Upgex Y © B®, where YOB* = {2z : B,CY} is the SP erosion of Y by
B. However, ® is a translation-invariant and increasing SP filter and, hence, equal to the
union of SP erosions by all sets B in its kernel K(®) = {X € §: 0 € ®(X)} [1]. Thus the
class K in the above representation of ¢ is actually the kernel of its SP filter ®, and hence
[6(/)(=) = sup {f©B(z)}, Vz€D, fe 7.
BeK(®)
In addition, Vt € V,
ex:(N)l= U [X(NeB' = J X(feB).
BeK (@) BeK (®)

Since @ is increasing and u.s.c., the set class {®[X;(f)] : t € V} creates an u.s.c.
function g(z) = sup{t € V : £ € ®[X,(f)]} = sup{t : z € X,(f6B*) <= feB*(z) >
t, for some B € K(®)} = supgc i (5y{f © B*(z)}. Hence g = §(f). The cross-sections of ¢
are (Theorem 1) X;(9) = ®[X:(f)], and thus ¢ commutes with thresholding. Q.E.D.

Not all FSP filters commute with thresholding. Examples of FSP filters that commute
with thresholding include median and order-statistic filters [32] as well as erosion, dilation,

opening, and closing of functions by sets, which are defined in Section 3.3.

3 MORPHOLOGICAL FILTERS

In morphological filtering each signal is viewed as a set, and its geometrical features are

modified by morphologically convolving the signal with a structuring element, which is

13



another set of simple shape and size [2]. By varying the structuring element we can extract
different types of information from the signal. According to the four quantification princi-
ples of mathematical morphology [2], each morphological filter (viewed as a set mapping)
must be: 1) translation-invariant, 2) scale-invariant (in R™), 3) dependent only on local
knowledge of the signal, and 4) u.s.c. A sufficient condition for a morphological convolu-
tion to be u.s.c. is to use compact sets or functions with a compact region of support as
structuring elements.

In a morphological convolution the signal and the structuring element could be either
sets or functions. Thus, in this section we present the similarities and differences between

the basic SP and FP morphological filters and examine some of their properties.

3.1 Morphological Filters of Sets by Sets

Morphological filters of sets by sets are SP filters processing input m-D sets by interacting
them via Minkowski set addition or subtraction with structuring elements that are compact

n-D sets (n < m). The Minkowski set addition [3,4] of the sets A, BCR™ is the set

A®B={a+b:a€cAbeB}={] 4, (12)

beB
where 4y = {a + b : a € A}. The Minskowski set subtraction [4] of B from A is the

set

AOB=(A"®@B)° =[] 4. (13)
. beB
Let B* = {-b: b € B} denote the symmetric set of B with respect to the origin, and

@ denotes the empty set. The basic SP morphological filters are the erosion XoB°,
dilation X®B°*, opening Xp, and closing X2 of X by B, defined in [1] as:

XoB = {z:B,CX}=[) X (14)
XeB = {z:B,nX¢é§B=UX_b | (15)
Xp = (XoB)®eB b%B - (16)
X® = (XeoB)eB. : (17)

From (14)-(17) and Fig. 5 we observe the following: Geometrically, the erosion of X and

B is defined as the set of all points z such that the translate B, is contained in the original
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set X; the dilation of X by B is defined as the set of all points z such that B, intersects X.
Algebraically, the erosion of X by B is equal to the Minkowski set subtraction of B* from
X; the dilation of X by B is the Minkowski sum of X and -B. Dilating X is equivalent to
eroding X¢ and complementing the result as implied by (13). The opening of X by B is
the set resulting from erosion of X by B followed by Minkowski sum with Bj; this cascade
does not generally recover X, but rather a subset of X which is the morphologically most

essential part with respect to B. From (12), (14), and (16) it follows that

Xg= U B.. (18)
B,CX ’

Similarly, the closing of X by B results from dilating X by B and then Minkowski sub-
tracting B from the result; in general, the closing of X is a set containing X. Closing X
is equivalent to opening X° and complementing the result.

To visualize geometrically these morphological filters we assume that we deal with 2-D
sets, which may represent binary images. Thus, let the closed set X represent a binary
image and the compact set B a structuring element, such as the island and the disk,
respectively, of Fig. 5. Then, Fig. 5 shows that erosion shrinks the set X, whereas dilation
expands X. The opening suppresses the sharp capes and cuts the narrow isthmuses of X,
whereas the closing fills in the thin gulfs and small holes. Thus, if the structuring element
B has a regular shape, both opening and closing can be thought of as nonlinear filters
which smooth the contours of the input signal.

Parallel to the evolution of all these morphological operations in [1,2], since the 1960’
there have been many other researchers who have been using similar operations of the
shrink/expand type (or cascades of shrink/expand) for digital (binary) image processing
and with cellular array computers designed for image analysis. Surveys of these approaches
can be found in [21,33]. In addition to its original contributions, mathematical morphology
formalized all the above collections of image operations.

Figure 6 shows examples of dilations and erosions of discrete sets. It also illustrates
the difference between Minkowski addition/ subtractioﬂn and dilation/erosion, respectively.
Of course, there is no difference between these two pairs of operations if B is symmgﬁric.

Discrete erosions and dilations accept simple parallel implementations. From (14) and (15),
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the erosion or dilation of X by B is equal to the set intersection or union, respectively, of
all translates X, of X, where the vector b sweeps B°. Using this property, Sternberg [34]
suggested parallel computer architectures to implement the SP .erosion and dilation filters,
which actually involve parallel logical AND’s and OR’s between binary image planes. We
discussed the computational complexity of these implementations in [20,22]. In [32] we
also give an alternative non-parallel implementation for the SP erosion and dilation using

linear convolution concepts.

3.2 Umbra Interpretation of FP Moi‘phological Filters

The four morphological SP filters can also be used for functions by viewing the morpholog-
ical FP filters as special cases of SP filters that process the umbrae or cross-sections of the
input functions. The most general case of a morphological transformation of a function
f is the transformation of U(f) by a structuring element B that is a compact subset of
E. For example, if f is a 1-D function, B could be a 2-D disk, such as the one shown in
Fig. 7a. In general, B is a set of the same or lower dimensionality than that of U(f}), but
not necessarily a function. Thus, Minkowsks addition f @ B and subtraction f © B of the
u.s.c. m-D function f with a compact (m + I)-D set B can be defined [2] by finding their
respective umbrae:

U(feB)=U(f)eB=U(f) e U(B) (19)
U(feB)=U(feB =U(f)e[U(B)] (20)

where B" = {(z,—t) € DXV : (z,t) € B} is the reflected set of B with respect to D.
Thus transforming U(f) by B is equivalent to transforming U(f) by U(B).

Sternberg [6,7] investigated the morphological filtering of Z;D graytone images by
isotropic 3-D compact sets such as spheres, cones, paraboloids, and cylinders. In this
paper, however, we focus on only two special cases for B. First, B becomes the graph of
an m-D u.s.c. function g with compact region of support, as shown for example in Fig. 7b,
and, hence, we transform U(f) by the umbra of g. We shall call this case a morphological
filter of a function f by a (structuring) function g. Second, B becomes an m-D compact

set S lying at t = 0, as Fig. 7c shows. In this case, transforming U(f) by S is equivalent
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to transforming U(f) by the umbra of S, which is a half-infinite solid of top S formed by
the Minkowski sum of S and the negative t-axis. We henceforth call this case a morpho-
logical filter of a function f by a (structuring) set S. Transforming f by a set SCD is a
special case of transforming f by a function g. That is, if g is flat (binary), then it can be
represented by a set S.

Concluding, (19) and (20) geometrically interpret the erosion/dilation of a function f
by a function g or by a set S as the erosion/dilation of the umbra of f by the umbrae of ¢
or S, respectively. In what follows, we will analytically define the morphological filters of

a function by a structuring function or set.

3.3 Morphological Filters of Functions by Sets

These are FSP filters where the input signals are m-D u.s.c. functions and the structuring
elements are compact n-D sets with n < m. Their analysis is easy, since they commute
with thresholding because of their construction. For example, if ® is the SP erosion filter
by B, then [2] defines a FSP erosion by B as follows. Since & is increasing and u.s.c., for
any input function f, the set class {®[X;(f)] = Xi(f) © B* : t € V} satisfies (2) and (3)
and, hence, through (4) it creates an output function h by setting X;(h) = &(X;(f)]. This
output function is the erosion of f by B, denoted by f © B*. Likewise, we can define the
dilation f @ B*, the opening fg, and the closing f® of an u.s.c. function f by a compact set
B. Below we give their analytical definitions, which show how these filters operate both
on the function f as a whole dand on each one of its cross-sections:

CROSS-SECTIONS (all t) FUNCTIONS
X(foB)=X(f)oB <= (foB)(z)= ﬁsnéf,{f(y)} (
X(foB)=X()eB <+ (f&B)(2)=sup{f()} (

Xi(fs) = [X:(f)ls <= (f5)(z) =[(f © B’) ® B|() (23
X(f%) = [X())F <= (/%)) =(f ® B") & Bl(=) (
Thus, the erosion (resp. dilation) of f by B at any point z is obtained by shifting the set

B to location z and taking the infimum (resp. supremum) of f inside this shifted set. This

structuring set B plays the same role as a moving window.
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For sampled signals, the set B is discrete; B must also be compact. Hence, in the
discrete case, B is a finite set (window). Therefore, erosion (resp. dilation) of a sampled
m-D function by a finite set BC Z™ is equal to the moving local minimum (resp. mazimum)
of the function inside the window B. The erosion or dilation of the characteristic function of
a set shrinks or expands respectively the set. The correspondence between shrink/expand
of binary images and local min/max of graytone images, as well as the commuting of
min/max with thresholding, was proven in (9] and later used in [5].

Figure 8 shows some examples of morphologically filtering a 1-D sampled function f of
80 samples by a small convex set B = {—2,—1,0,1,2}. We see that erosion of a function
by such a set reduces the peaks and enlarges the minima of the function. The dilation
of f by B increases the valleys and enlarges the maxima of the function. Figure 8 shows
that the opening by B smooths the graph of f from below by cutting down its peaks. The
closing smooths the graph of f from above by filling up its valleys. Subtracting from f
its opening or closing by B gives the peaks and valleys, respectively, of f. The width of
these peaks and valleys depends on the size of B. Thus, opening and closing of functions
by sets can be used for detection of peaks and valleys in signals. In addition, epening
and closing by a convex set B can be used effectively to suppress smpulse notse in signals
[2,5,9,14,21,20]. By impulse noise is meant that a signal is corrupted by impulses (spikes),
i.e., very large positive or negative values of short duration. Opening or closing by B can
eliminate, respectively, such positive or negative noise impulses, if the impulse width does

not exceed the size of B.

3.4 Morphological Filters of Functions by Functions

These are FP filters where the input signal is an m-D u.s.c. function f and the structuring
element is a n-D u.s.c. function g (n < m) with a compact region of support. A cross-
section interpretation of such filters can be found in [2]. Here, we limit our discussion only
to an umbra interpretatiofx [2]. That is, if we replace B with U(g) in (19), the Minkowski
sum of U(f) and U(g) gives the umbra of the Minkowski function addition f@ g of f and
g. (See [35] for a proof.) The Minkowski function subtraction f © ¢ of g from f is defined
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similarly. Thus from (8), (19), and (20) we have, for each z € D,

(fog)(z) = sup {f(v) +9(z—y)} (25)
yeD
(feg)(z) = yiélfD{f(y) —g(z—y)} (26)

The u.s.c. functions may be real-valued only on a subset of D. However, for each z € D
f(z) = sup{A(z)], where A(z) = {t € V : z € Xi(f)}. ¥ f(zo) ¢V for some zo € D,
then we can still define f(zo) = sup[A(zo) = O] = —oco. If A(X,) = V, we define
f(zo) = sup(V) = +oo. Thus we can assume that f and g are defined over all D. We
call the region of support of such a function f, denoted By Ros(f), the subset of D on
which f(z) # —oco. For the morphological filtering of f by g to be an u.s.c. filter, it is
sufficient that Ros(g) be a compact (finite, for sampled signals) subset of D.

The relation between Minkowski subtraction/addition and erosion/dilation, respec-
tively, of functions is the same as for sets. That is, if ¢*(z) = g(—z) denotes the symmetric

functicn of g with respect to the origin, Serra [2] defines:

Erosion of f by g : (f©4°)(z) = f(z) © 9(-2) (
Dilation of f by ¢ : (f®¢°)(z) = f(z) ® g(~2) (28
Opening of f by g : fy(z) =[(f©9¢°) ®g(z) (
Closing of f by ¢ : fi(z)=[(f®¢")©g](=). (

Thus the Minkowski sum of f and g is defined through an additive convolution between
f and g and then taking a supremum, as opposed to summation or integration for lin-
ear convolutions. Likewise, the Minkowski subtraction of g from f is defined through
a subtractive convolution between f and g and then taking an infimum. We shall call
the Minkowski addition and subtraction of two functions morphological convolutions.
From (25) and (28) we see that the relation between Minkowski function addition and
dilation is the same as between convolution and correlation of two functions, respectively;
likewise for Minkowski function subtraction and erosion. Th\is, we shall call the dilation
and erosion of two functions morphological correlations. Of course, if g(z) = g(—xz) is

even, the above difference disappears, because then feg=f®g¢g*’and fog=fO7¢"
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The morphological filtering of a function f by a set B is a simple case of filtering f by
a function g. That is, if g(z) = 0 for all £ € Ros(g), then (27)-(30) reduce respectively
to (21)-(24) by setting B = Ros(g). The difference between a binary and a multilevel
structuring function g is also depicted in Fig. 9. Consider a cosine function f(z) = coswz,

z € R, and a structuring function

Alcos(wz) —cos(wL)] , ||z||<L
9(z) = ' ‘
—00 , tzl>L
where || - || denotes absolute value, 0 < 4 < 1, and 0 < L < n/(2w). Thus g(z) is a

scaled top of the cosine. If A = 0, g is binary; if A > 0, g is multilevel. Figure 9a shows
the opening f, for three different structuring functions corresponding to three different
values of A = 0,0.5,1. If A = 0, the FP opening f, reduces to the FSP opening f3,
where B = Ros(g) = [—L, L]. This opening cuts down the peaks of the cosine. We can
symmetrize this by considering the open-closing (opening followed by closing by the same
structuring function) (f;)¢ shown in Fig. 9b. Similar results can be observed if we consider
the clos-opening (closing followed by opening by the same structuring function) (f9),.
(The open-closing and clos-opening are new morphological filters introduced in [20] and
used for image noise suppression and for providing fixed points of median filters; see also
[32].) For A = 0 the FSP open-closing cuts down the peaks and fills up the valleys of
f. This clipping effect of the open-closing is very similar to the behavior of the analog
median filter [36]. Figures 9a,b (A # 1) suggest that opening and open-closing have
both “low-pass” and “high-pass” filtering characteristics. Indeed both attenuate the basic
frequency w of f and introduce higher harmonics; the opening also introduces a dc-offset
[20]. However, the frequency analysis of the effects of opening or closing is of very limited
importance, because these effects are dependent on the input signal, and they cannot be
generalized since linear superposition does not apply. Of general importance, though, is
the following geometric interpretation that we give for the opening.

For any functions f and g, the umbra of the opening f, is equal to the union of all the
translates of U(g) that can “fit” inside U(f); i.e., for z = (y,c) €D x V,

uf)= U U< fiz)= s {glz—y)+ec} (31)
w@Su lo(z—v)+c]<f(2)
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A similar geometrical interpretation can be given for the closing by g, since (f?) = —(—f,).
For example, in Fig. 9 the closer A is to one, the more g resembles the cosine peak, the
closer the fitting of ¢ under the peaks or above the valleys of f, and hence the closer fe
or (f,)? is toward f. In the limit when A = 1, g becomes equal to the cut-off cosine peak,
and both f; and (f,)? are equal to f for all L < n/(2w).

Next we provide some examples of discrete FP morphological filtering. Figure 10 shows
a 1-D original sampled function representing 250 samples of a graytone image intensity pro-
file (after the addition of a dc-offset); its median filtered version by an 11-point window;
and its filtered versions by six morphological ﬁlters.v(erosion, dilation, opening, closing,
open-closing, and clos-opening), each operated by three differently shaped discrete struc-

turing elements with a convex 11-point region of support. The first structuring element is

a set B, and the other two are functions g, h:

B = {n€eZ:-5<n<5}
gln) = G-v25—n? , -5<n<5

h(n) = H-(zs-ﬁ’) , —5<n<5,

and g(n) = h(n) = —oo if || n ||> 5. In Fig. 10 the scaling factors of g and h were G =5
and H = 2. The umbra U(B) is a semi-infinite rectangle of top B, and (if G = H = 1)
U(g) and U(h) are the umbrae of a disk and a parabola, respectively. As explained in
Section 3.2, morphological filtering of f by B,g,h results in a function whose umbra is
identical to the umbra resulting from morphological filtering of U(f) by U(B),U(g),U(h).
Therefore, in Fig. 10 we called these three cases filtering by “rectangle, disk, parabola”,
respectively. The following qualitative observations are evident from Fig. 10: 1) The
erosion and dilation produce, respectively, a smaller (with respect to function <) and
larger function. 2) The opening or closing by a rectangle produce signals whose peaks or
valleys, respectively, consist of flat plateaus not smaller than the size of the rectangle top;
this flatness increases'with the size of the rectangle top. They also preserve the verticél
boundaries of the signal they transform and commute with thresholding.r 3) Morphological
filtering by g or h does not commute with thresholding and tends to shape the original

signal f similarly to the shape of g or h. Specifically, opening or closing by g and A tends
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to penetrate inside the peaks or valleys of f. The amount and shape of this penetration
depends on the amplitude range, support width, and shape of g and h. Thus the parabola
h penetrates more than the disk g since it has a narrower and sharper shape. 4) Both
the open-closing and clos-opening offer a balanced mixing of the properties of opening and
closing, and they transform f very similarly to the median (see also [20,32]). Finally, the
original function in Fig. 10 was selected 1-D for an easier visualization of the geometrical
effects of morphological filtering, but the above observations are general and apply to
signals of higher dimensionality too.

The principal point of the above discussion and-examples is that, for an intuitive
understanding of morphological filtering, any structuring function g should be seen first as
a geometrical pattern. For instance, (31) implies that the opening of a'signal by g is the
geometrical (inqlusive) content of the signal in this pattern g. Thus, if the signal is not
smooth and g is smooth, then the opening by g will be smoother than the original signal.
However, if the signal is smooth and g is less smooth, then the opening by g may be less

smooth than the original signal.

3.5 Properties of Morphological Filters

Some properties of arbitrary SP and FP filters are defined in Table II. Referring to these
definitions, both SP and FP erosions, dilations, and all their cascades (e.g., opening,
closing, open-closing, and clos-opening) or parallel combinations (using N(U) for sets or
pointwise A (V) for functions) are translation-invariant and increasing filters. Further, if
0 denotes the origin of D, we have:

Property 1. Ordering. The opening is always anti-extensive filter (f, < f), whereas
the closing is always eztensive (f? < f). If ¢(0) > 0O, then the erosion by ¢ is anti-extensive,

whereas the dilation by g is an extensive filter. Thus, if g(0) > 0,
fogsfi<f<ff<fog.. (32)
Proof. If g(0) > 07, Ve D, fog(z) =inf{f(z) —g(z—2) : z€ D} < f(z) —g(0) <

f(z) = fo g < f. Likewise, f®d g > f. 7
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From (27),(28),(29), and Vg, f4(z) = sup,{inf,{f(y) —9(y — 2)} + ¢(z - 2)} =
fo(=) < inf{sup{f(y) — (v — 2) +g(= ~ z)}}.

(See also [29, p.43].) Selecting y = z in the above inequality yields: f,(z) < sup,{f(z)} =
f(z) = f; = f. Likewise, f? > f can be proved. Q.E.D.

Property 1 also holds for SP filters. That is, XpC XC X for any sets X, B; moreover,
if 0 € B, XoBC XgC XC XBC X®B. The validity of Property 1 can be observed in
Fig. 5 for SP filters and in Fig. 10 for FP filters.

The SP and FP opening and closing are idempotént; e, (f)), = f,and (f9)? = f9.
Similarly we have:

Property 2. The SP and FP open-closing and clos-opening filters are idempotent.

Proof. SP open-closing: Let Y = (Xp)2. ThenY = Y2 D(Y3)? = [((X5)®)s]2 2((X5)5)? =
Y = Y = (Yp)B. Similarly we prove that the SP clos-opening (X2)p is idempotent. By
replacing X with a function f, B with a structuring set or function, and set C with
function <, the property is proved for functions too. Q.E.D.

Equations (14),(15) and (16),(17) imply that there is a duality with respect to set com-
plementation between set erosion and dilation as well as between set opening and closing.
Likewise, there is a duality with respect to function negation between the corresponding
FP filters. That is, (—f) ©g9 = —(f®g) and (—f), = —(f?), where (—f)(z) = —f(=z)
for all z. More details about properties of SP filters can be found in {2,22]. Henceforth,
we will focus only on some properties of FP morphological filters.

Dilation of f by g is both commutative and associative. Erosion is neither commutative
nor associative. Moreover, we have:

Property 3. Distributivity. (fVg)®h = (f@h)V(¢®h) and (fAg)Oh = (fOR)A(gER).
Property 4. Parallel Composition. fo (gV h) = (f6g)A(fOh). '
Property 5. Serial Composition. (f®g)®h = f® (¢ ® k) and (fOg)Oh = fO(90h).

The proofs of Préper—ties 3,4,5 result from interchanging sup/inf with max/min, res;;ec-
tively, and other similar properties of sup/inf. Properties 3,4,5 also hold for FSP erosions
and dilations of functions by sets if we replace the g V h or g A h of two functions by the

union A U B or intersection A N B, respectively, of two sets.
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Property 5 makes erosion and dilation inherently separable filters. For example, the
erosion of a 2-D set or function by the discrete 3 x 3-pixel set B of Fig. 6e, can also be
obtained by eroding first by B; (the 3-pixel horizontal segment) and then eroding the
result by B; (the 3-pixel vertical segment), because B = B, @ B;. Thus, this 2-D erosion
becomes a cascade of 1-D erosions.

Difference between structuring function andv set. The difference in geometrical
effects between opening (or closing) of a lfunction by a binary and multilevel structuring
function can be seen in Figs. 9,10. Next we quantify analytically this difference.

Property 6. If g is a bounded real-valued structuring function with a compact region

of support B = Ros(g), then, for any function f, Vz € D,

| fle) - fale) IS suplo(@)} — imf ()} . (@

Proof. Both s = sup{g(z) : z € B} and r = inf{g(z2) : ze B} are are real numbers
because g is bounded. Then, f,(z) = sup{f ©¢*(2) + g(z — 2) : z € D} = f,(z) <
s+sup{fOg°’(2) : z € (B*).}. Also, fog°(2) = inf{f(y)~9(y—2) :y € B,} < feB*(z)-r.
Thus, f,(z) < sup{feB*(z):z € (B*).}+s—r = fp(z) + s — r. Likewise, we can prove
that f,(z) > fe(z) — s + r, and the proof is complete. Q.E.D.

The result (33) applies also to the closing of f by g since f? = —(—f),. For sampled
signals, the sup/inf of g over the compact Ros(g) = B become the max/min of g over
the finite Ros(g). For example, referring to the original function f and the structuring
elements B, g,h of Fig. 10, || f,(z) — fe(z) ||< 25 and || fa(z) — f(z) ||< 50 for each z.

Fixed points of opening and closing by a structuring function. In [1,11] it
was shown that the opening and closing filters can be completely specified from their
fixed points, i.e., signals invariant to these filters. The interest in the fixed points of the
openings and closings also arises from their direct relations to the fixed points of median
filters [20,32]. The following theorem classifies the fixed points of the FP opening and

closing filters. (A proof of a similar theorem for SP openings/closings can be found in-(2].)

THEOREM 5 . A function f is a fized point of the opening (rcsp; closing) filter by a
function g iff f=h &g (resp. f = hO g), where h is an arbitrary function. Likewise; for
any set B, f = fg <= f = h®B and f = fB <= f = h6B, for some function h.

24



Proof. If f = f,, then we simply set h = f © g°. Conversely, if f = h @ g for some

function h, from Property 1 and since dilation is increasing filter,
heg 2 (h@g),=[(h@g)E g |@g=h"Bg>heyg.

Thus, f, = (h @ g), = h ® g = f. Likewise for the closing, if f = f7, we set h = fog’.
Conversely, if f = hOg,

hog < (hog)? = [(hOg)®¢°|0g = hp»Og < hyg .

Thus f¢ = (h©g)? = heg = f. Nothing also changes in the proof if we replace g with B
(and hence g* with B*). Q.E.D.

Invertibility of erosion and dilation. In general, erosion and dilation are nonin-
vertible operations. However, from the erosion of f by g we can recover the original f iff
f = f,. Specifically, since (f ©¢°) ® g = f;, the Minkowski sum of the erosion f ©¢° and g
recovers f iff f = f,. Likewise, if we have the dilation f ® ¢* and we Minkowski subtract g
from it, we obtain (f ® ¢°) © ¢ = f9. Thus, if f = f¢, Minkowski subtraction of ¢ from the
dilation f @ ¢* recovers the original f. However, in the general case, where f, # f # f¥,

we have:

Property 7. If g(0) > 0, then

fiShSf = hoeg =f6g9" =>h=/,, (34)

f<h<f! = h@g=fdg =>hi=J’. (35)
Proof. For any f and g, because of Theorem 5,

o9 =[(fo¢)@gleg =(fog’)" = fog’.

Since g(0) > 0, the erosion by g is increasing filter. Hence, f, < h < f = f;69° <

hog® < fog* = hog® = fegé = h, = f,. Similarly,
freg* = [(fog’)ogles’ = (fog'), = f@g’ .

Since g(0) > 0, the dilation by g is increasing filter. Hence, f < h < f9 = f@g® <

hdg® < fi®g* = hedg* = fOg* = h? = f?. Q.E.D.
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Thus, in the general case when f # f,, from the erosion f © ¢g* we cannot recover f,
because there is not a unique function whose erosion by ¢ is equal to f&¢*. Furthermore,
the Minkowski sum of f © ¢° and g will recover only the function f;, but none of the
functions h between f and f,. Likewise, if f # f9, the dilation of f by g cannot be

inverted.

4 RELATIONS BETWEEN LI-NEAR AND MOR-
PHOLOGICAL FILTERS

A linear shift-invariant (LSI) filter is viewed in our analysis as a FP filter that commutes
only with a shift with respect to the argument of its input functions. A lint;ar translation-
tnvariant (LTI) filter (see Table II) is a LSI filter that passes constant signals unchanged,
viz., whose dc-gain is equal to one. Now suppose that a LTI filter ¢ is defined on a class
7 of real-valued u.s.c. functions that is closed under translation. This class ¥ could be,
for instance, the class of continuous functions, or the class of bounded functions, or the
class of functions with a compact region of support. Let h(z), z € D, denote the tmpulse
response of ¢. Then, ¢(f) = h % f for any f € ¥, where “+” denotes linear convolution,

discrete or continuous. The kernel of ¥ is defined as the following set of input functions:
K@) ={g€F : hxg(0)>0}. (36)

The above kernel uniquely characterizes the LTI filter ¢ and can reconstruct it, as explained

in Maragos [20, chap.5], because Vz € D

[¥(f))(z) =sup{t e R : [f(z + 2) —t] € K()} . (37)

In addition, if ¢ is also tncreasing, then it can be represented exactly as the supremum
of erosions by all its kernel functions. The following theorem provides a necessary and

sufficient condition for a LSI filter to be increasing.

THEOREM 6 . A linear shift-invariant filter is increasing iff its smpulse response s

nonnegative everywhere.
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Proof. Let h(z), z € D, be the impulse response of the LSI filter. Suffictency: Let
h(z) > 0Vz. If f < g,then p(z) = g(z)— f(z) > OVz => h*p(z) >0V => hxg > h+f.

Necessity: Let hx f < h*g for any f < g. Then, h*p(z) > 0 Vz, if p(z) is any function
with p(z) > 0 Vz. 1) Discrete Filters. Let the nonnegative function p(n), n € Z™, of the
previous discussion be equal to the discrete unit impulse §(n). Then h(n) = h(n)*é(n) >0
Vn. 2) Analog Filters. Express the Dirac unit impulse function as the limit é(z) =
lim{pi(z)] for k — oo, where pi(z), z € D = R™, is a nonnegative triangular pulse whose
width goes to zero and height goes to +oo as k — oo in a way such that [ppe(z)dz =1
for all k. Then, if k — oo, Vz, h(z) = Jph(2)é(z — 2)dz = [p h(z)[limpi(z — 2)|dz =
lim[fp h(2)pe(z — 2)dz] > 0, because h * py(z) > O since pi(z) > 0 Vk, Vz. Q.E.D.

For the analysis in this section we also need the following

THEOREM 7 (Maragos |20, p.126]). Any translation-invariant and increasing FP filter
defined on a class of u.s.c. functions closed under translation can be represented ezactly

as the supremum of erosions by all its kernel functions.

Theorems 6 and 7 prepared the groundwork for the first representation of linear con-

volutions using morphological correlations. Formally, we have

THEOREM 8 . Let ¢ be a linear shift-invariant filter defined on a class ¥ of u.s.c.
functions closed under translation. Let also its impulse h(z) satisfy the following two

conditions:

(b) / h(z)dz =1 (or 3 h(n) = 1).

Rm neZm™
Then 3 is exactly represented as the supremum of erosions by all its kernel functions

g € K(¢); thus, for any f € ¥ and z € D,

“(h* f)(z) = su inf z)—glz—z :
e = s () sl e (39

Proof. o is increasing because of Theorem 6 and condition (a). Condition (b) makes ¥

translation-invariant. Thus Theorem 7 completes the proof of (38). Q.E.D.
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For linear convolutions with h(z) we assume that h(z) = 0 iff z ¢ Ros{h), whereas for
morphological convolutions with the structuring function g(z) we assume that g(z) = —oo
iff z ¢ Ros(g). Thus, when the input function f is linearly convolved with h in (38), we
assume that f(z) = O outside Ros(f). However, when f is morphologically convolved with
g, we assume that f(z) = —oo outside Ros(f).

Theorem 8 may have some theoretical interest, but its practicality is rather small
~ because, in general, it is not a simple task to analytically find and describe all the (infinite

in number) kernel functions that (38) requires. Our goal then is to find a subset of the kernel
which is mathematically more tractable and can still represent the filter. We summarize
below our approach. (The complete theoretical analysis is contained in [20].) The kernel
.of the LTI filter ¥, equipped with the function ordering <, becomes a partially ordered
set (a poset). A minimal element of the poset (K(¥),<) is a function g € K(¢) that
is not preceded (with respect to <) by any other function of K(¢). We define the set
B(y) of all the minimal elements of K(3) as the basis of . We have shown that the
basis of any translation-invariant, increasing, and u.s.c. filter is nonempty and can exactly
represent it. The basis of such a filter may be finite (as is the case for morphological,
median, and order-statistic filters [20,13,32]), in which case the filter is realized exactly as
the maximum of a finite number of erosions. For discrete LTI filters a suffictent condition

to find a nonempty basis in their kernel is to have an impulse response of finite extent:

THEOREM 9 . Let h(n), n € Z™, be the finite-extent impulse response of an tncreasing
LTI discrete filter i which is defined on a class ¥ of real-valued sampled functions closed
under translation. Then the basis of Y s equal to
B(v)={g€F: > h(k)g(—k)=0 and g(n) = —co <= h(—n) =0} (39)
kERos(h)

Further, 1 can be represented exactly as the supremum of erosions by all its basis functions

g € B(v). That 1s, for any f€ F and n € 2™,

(hxf)(n)= 2. hk)f(n—k)=

k€Ros(h) geB (#)

{f(k) —glk~n)}}  (40)

min
k€[Ros(g)]n
Proof. (a) Basis: Call B the class of functions given by (39), and let M be the true

basis of 1. We must show that M = B. B is nonempty, because ¢g* € B, where ¢g*(n) =0
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iff h(—n) # 0 and g*(n) = —oo otherwise. Let now g € B. Then, ¢ € K(¥) because
h % g(06) = 0. Is ¢ minimal? Suppose it is not. Then there is f € K(¢) such that f < g
and f # g. Since h(n) >0 Vn,0 < h* f(0) < h%g(0) =0=> h* f(0) =0. Since f < ¢
and g(n) = —oo Vn & Ros(g), there exists k € Ros(g) such that f(k) < g(k); this implies
h(—k)f(k) < h(—k)g(k) and thus h * f(0) < h * g(0) = 0: Contradiction! Hence, g € M,
and thus BC M. 7

Let now g € M. All the basis functions ¢ must have a minimal region of support G =
[Ros(R)]*, because only the indices n € G are required for g(n) in computing h*¢(0). Thus
g satisfies one of the two requirements of (39). Suppose that g & B. Let h % g(0) =p >0
and consider the function f(n) = g(n) —p, n € G. Then, f < g and f # g. However,
hx f(0) = h*g{0)—p = 0, and hence f is a kernel function of ¢ that precedes g. Hence, g is
not a minimal element: Contradiction! Therefore, g € B, and thus MCBC M = M = B.

(b) Representation: Since ¢ is translation-invariant, increasing, and u.s.c. (due to
the finite extent of k), it can be represented exactly as the supremum of erosions by its
basis functions {20, p.135]; this proves (40). An alternative proof proceeds as follows:
Let Ros(h) = {ki,kz,...,kn} be the N-point finite region of support of h(n). Let also
hi = h(k;), f(n — k) = fi, and g(—k;) = gi, with ¢ = 1,2,..., N and k; € Ros(h). Then

we must prove that, Vn,

> hifi= sup {mi.in{fi ~gi}} (41)
i seB(¥)
subject to
Zh;g,':O,Zh;:l,h.-ZO.
Forany n, f;,t =1,...,N, and 3; h; f; are arbitrary but fixed real numbers. Hence, among

all functions in B(y) we can always find a basis function ¢g* defined by g = g*(—k:) =
fi—Sihifi,t=1,...,N. For each g € B(¢) there is a j < N such that f; —g; < fi — g
Vi = hi(f; — g9;) < hi(fi — ¢i) Vi. Summing the latter inequality for all 1, we obtain
fi—gi= mim{f.- ~gi} < ¥ hifi, Vg € B(¥). However, g* achieves this upper bound since
min{f; — g’} = E hif:, and thus the proof of (41) is complete. Q.E.D.

Thus, if an increasing LTI discrete filter ¢ has a finite impulse response h, then its

basis exists, but it contains an infinite number of functions g. These basis functions can
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be found by solving the linear eciuation h % g(0) = 0 subject to three constraints: (1)
h(n) > 0, all n, (2) £, h(n) = 1, and (3) Ros(g) = |[Ros(h)]*. If Ros(h) has exactly N
points, then both h and all the ¢’s are vectors inside the N-D Euclidean space R”. Since,
in solving h * g(0) = 0, we can choose freely the N —1 values of g, the basis B is isomorphic
to the (N — 1)-D vector space R¥~! [20]. Moreover, B is the hyperplane of R” that is
perpendicular to the vector h, because h * g(0) = O corresponds to a zero inner-product
of the vectors h and g. This is depicted in Fig. 11 for the spaces R" and R%. In R? the
2-point impulse response vector has only two components. Because the filter is LTI and
increasing, all components of h are nonnegative and sum:up to one. Hence, h is confined
to move only along the line connecting the points (0,1) and (1,0) in R?. The basis of these
filters is the 1-D space (line) of vectors g that is perpendicular to h and passes through
the origin, as shown in Fig. 11. The next two simple examples clarify these concepts.

Examples. Consider the increasing LTI filter ¢; (a moving average) whose impulse
response is h(n) = 0.5[6(n) + é(n — 1)], n € Z. Its kernel is equal to K(¢;) = {f :
f(n) + f(n — 1) > 0}. Its basis functions ¢ can be found from h(0)g(0) + A(1)g(—1) = 0;
hence, g(n) = r[6(n) — 6(n + 1)}, r € R, and g(n) = —oo if n € {—1,0}. Thus, from (40),
we can exactly express i; by a supremum of minima:

0.5(f(n) + f(n—1)] = S;lp{min{f(n) —nf(n—1)+r}} (42)

for any input signal f(n). Another way (independent of Theorem 9) to prove (42) can be
found in [20, p.155].

Consider now a 3-point increasing LTI filter ; with impulse response h(n) = ad(n —
1) + b6(n) + c6(n+ 1), n € Z, wherea+ b+ ¢ =1 and a,b,c > 0. Its basis functions g
satisfy ag(—1) + bg(0) + ¢g(1) = O; hence, g(—1) =r € R, ¢(0) = s € R, ¢(1) = -}%‘;‘_—bb’,
and g(n) = —oo if n & {—1,0,1}. Thus ¥ can be realized by both linear or morphological

convolutions:

of(n=1)+bf(m) +ef(n+1) = sup {min{f(n—1)= r, f(n)= 5, f(n+1)+ -2t 2"))

(r,c)E:R.2 ( )
43
for any input f(n).
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Theorems 8 and 9 require some constraints on the impulse response of the LSI filter,

i.e., nonnegativity and area equal to one. These constraints are relaxed by the following

THEOREM 10 . Any LSI discrete (resp. continuous) filter whose impulse response is
absolutely summable (resp. integrable) can be represented ezactly as the sum of two suprema

of erosions, each followed by a gain factor.

Proof. Assume that the filter ¢ is di-sc_rete, Abecause for continuous filters we need
only to replace summation with integration in this proof. If h(n), n € Z™, is the impulse
response of 3, then we can represent ¢ -as the sum of two other filters ¥p and ¥n with
impulse responses hp and hy, respectively, such that h(n) = hp(n)+hn(n), hp(n) > 0, and
hn(n) <0 for all n. Since h(n) is absolutely summable, the two sums Gp = ¥, hp(n) >0
and Gy = T, hn(n) < 0 are finite real numbers. If Gp = 0, hp(n) = 0 for all n, and
Y = Y. Likewise, if Gy = 0, then ¢ = ¢p. Avoiding the trivial case where h(n) = 0 for
all n, at least one of Gp and Gy must be nonzero. If Gp > 0, then we can realize ¥p as a
filter ¢ 5 with impulse response h}(n) = hp(n)/Gp > 0 Vn, followed by the gain factor Gp.
Likewise, if Gy < 0, we can realize ¥y as a filter ¢} with impulse response k¥ (n)/Gny >0
Vn, followed by the gain factor Gy. The filters 15 and ¥} satisfy the requirements of
Theorem 8 or 9 and, hence, can be represented exactly as suprema of erosions. Thus the
proof is complete. Q.E.D.

The requirement for absolute summability of the impulse response in Theorem 10 is
equivalent to requiring that the LSI filter be stable in the bounded-input bounded-output
sense. In addition, the gains Gp and Gy mentioned in the above proof may be equal to
one, in which case we can rephrase Theorem 10 as follows. Any stable LSI filter can be
represented ezactly by the sum of (at most) two suprema of erosions.

The representations in (38) and (40) might be useful in analysis of LSI filters. They
are not useful, however, for exact practical realization because the LSI filters have an
infinite number of kernel or basis functions. In the case where a LSI-filter admits a
representation upon basis functions, if we quantize their amplitude and bound their range
between certain limits, the supremum operation in (40) will be replaced by the maximum

over a finite ensemble of basis functions. Of course, this realization will only approzimate
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the true response of the LSI filter. The advantages of such a realization of the linear
filter would be to realize it only by using max-min and additions and, thus, avoiding
multiplications. Naturally, there are many questions that arise: How to quantize and/or
bound the amplitude range of the basis functions, and how to quantify the approximation

error? The answers to these questions are still the object of continuing research.

5 CONCLUSIONS

Signals can be cilassiﬁed into sets (binary signals) and functions (multilével signals). Filters
can be classified into set-processing (SP) and function-processing (FP). Certain FP filters
are function- and set-processing (FSP). We provided necessary and sufficient conditions
for FSP filters to commute with thresholding, because then they can be interpreted as SP
filters. In this analysis we considered the set as the primary concept. Thus, a function can
be represented by an ensemble of sets (its cross-sections) or by a single set (its umbra).
Set operations on umbrae or cross-sections induce some isomorphic operations on the
respective functions.

The four basic morphological filters are the erosion, dilation, opening, and closing,
and they all stem from Minkowski set addition. We introduced two new morphological
filters, the open-closing and clos-opening, which behave sirﬂilarly to median filters (see
also Part2). These six filters are translation-invariant (with respect to shifts of both the
argument and the amplitude of signals), increasing, nonlinear, and generally noninvertible.
Several properties of FP morphological filters have been studied concerning the conditions
for commuting with thresholding, the fixed points of opening and closing, the invertibility
of erosions and dilations, and the difference between binary and multilevel structuring
functions. Some attractive features of morphological filters are: 1) Simplicity and par-
allel implementation of FSP filters (Pointwise min/max or Boolean AND/OR of shifted
versions of the signal); 2) Separability; i.e., if a 2-D function g is .the Minkowski sum
of two ‘1-D functions, then the 2-D morphological filtering by g reduces to a cascade of
two 1-D mbrphological filters; 3) Numerous applications in image processing and analysis;

4) Systematic detection and quantification of the shape and size of'geometrica.l features
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in signals; 5) Operate on signals of both discrete and continuous argument; 6) Duality,
for each morphological filter operating on a signal there is a dual filter operating on the
background of the signal; 7) Increasing morphological FSP filters commute with threshold-
ing; this reduces a multilevel to a binary signal filtering, which is easier to analyze and
implement; 8) Erosions or dilations are the prototypes of a large class of linear and nonlin-
ear filters; and 9) Morphological filters look at signals under study as sets and are defined
through logical relations rather than arithmetic ones; consequently, if a signal processing
problem is stated in terms of logical relations, then it can be expressed directly in terms
of mathematical equations containinig morphological operations.

The main difficulties in their analysis or design arise from their nonlinearity and the
lack of analytic criteria to choose a structuring set or. function.

We have related morphological to linear filters as follows. Linear translation-invariant
(LTI) filters are linear shift-invariant (LSI) filters with dc-gain equal to one. LSI filters
are increasing iff they have nonnegative impulse response. A LTI filter can be uniquely
characterized by the set of its kernel functions. An increasing LTI filter can be exactly
represented as a supremum of erosion by all its kernel functions; if, in addition, the filter
is discrete and its impulse response is of finite extent, then it can be represented as the
suprema of erosions only by its minimal kernel functions, which can be found by solving
a linear equation. Finally, any stable LSI filer is exactly represented as the sum of two
weighted suprema of erosions. The practical disadvantage of the above representation is
that it uses an snfinite number of kernel functions. The advantages are that linear convolu-
tions can be realized by using only rriin/max and additions (without any multiplications),

and that linear filters have been related to a large class of nonlinear filters.
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TABLE I

Isomorphic operations between functions, their cross-sections, and their umbrae

FUNCTIONS CROSS—SECTIONS UMBRAE
(all t € V)
fng X(f) N Xe(g) U(f)nUlg)
fvy RAERA) U(f)uUle)
minf(z) = —oo* o 2
pinf(z) = +oo* D E=DxV
f<g X(f) € Xilg) | U(f) € U(g)
*for all z € D.
TABLE 11

Properties of Set- and Function-Processing Filters

Properties SP filter ¥ FP filter ¢

translation-invar. | U(4,) = [¥(4)], Y fz—y) +e=(N(z—-y)+c*
increasing ACB = W(4) CUB) | f<g=b(f) < o)

extensive U(A) D A W(f) > f

anti-extensive V(A) C A Y(f)Lf

idempotent [ (4)] = ¥(4) Bl (f)] = (f)

*zyeDandceV.
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CAPTIONS OF FIGURES

Figure 1. A function f, its cross-section X;(f) at level ¢, and its umbra U(f).
Figure 2. Reconstruction of a function from its cross-sections.

Figure 3. (a) Umbra of a set B; (b) Umbra and graph of a function f.
Figure 4. Isomorphic operations between sgts and functions.

Figure 5. Erosion, dilation, opening, and closing of X by B (the shaded areas correspond
to the interior of the sets, the dark solid curve to the boundary of the transformed

sets, and the dashed curve to the boundary of the original set).

Figure 8. Dilations and erosions of discrete sets: (a) Minkowski subtraction, (b) Erosion,
(c) Minkowski addition, (d) Dilation, (e) Forming larger sets as the Minkowski sum

of simpler sets. (e = set points; + marks origin (0,0) of Z2.)

Figure 7. A 2-D structuri_ng element B, a 1-D structuring function ¢, a 1-D structuring

set S, and their umbrae.

Figure 8. Erosion, dilation, opening, and closing of a function by aset B = {-2,-1,0,1,2}.

(The dashed curve refers to the original function.)

Figure 9. Morphological filtering of a cosine coswz by the structuring function ¢(z) =

A(coswz —coswLl), - L<z< L. (L=0.397/w.)

Figure 10. A 1-D original function f and its morphological filtering by a rectangle (B =
{n € Z:-5<n <5}, adisk (¢g(n) = 5v/25—n? n € B), and a parabola
(h(n) = 2(25 —n?), n € B).

Figure 11. Geometric interpretation of the relation between the finite impulse response

h and the basis functions g of an increasing LTI discrete filter.
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