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Abstract

JHDL is a design tool for reconfigurable systems that
allows designers to express circuit organizations that dy-
namically change over time in a natural way, using
only standard programming abstractions found in object-
oriented languages. JHDL manages FPGA resources in
a manner that is similar to the way object-oriented lan-
guages manage memory: circuits are treated as distinct
objects and a circuit is configured onto a configurable com-
puting machine (CCM) by invoking its constructor, effec-
tively “constructing” an instance of the circuit onto the re-
configurable platform just as object instances are allocated
in memory with conventional object-oriented languages.
This approach of using object constructors/destructors to
control the circuit lifetime on a CCM is a powerful tech-
nique that naturally leads to a dual simulation/execution
environment where a designer can easily switch between
either software simulation or hardware execution on a
CCM with a single application description. Moreover,
JHDL supports dual hardware/software execution; parts
of the application described using JHDL circuit constructs
can be executed on the CCM while the remainder of the ap-
plication –the GUI for example– can run on the CCM host.
Based on an existing programming language (Java), JHDL
requires no language extensions and can be used with any
standard Java 1.1 distribution.

1 Introduction

When developing applications for configurable or
FPGA-based computing machines (CCM), designers must
perform two general tasks. First, they must design the cir-
cuitry that implements the necessary functionality for the

�Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) under contract number DABT63-96-C-0047. The U.S.
Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon.

yBrad Hutchings is currently on sabbatical leave at Hewlett Packard
Laboratories, Ltd, Applicance Computing Department, Filton Road,
Stoke Gifford, Bristol, UK BS12 6QZ

application. This is typically done using commercial CAD
tools such as VHDL synthesis or schematic capture in con-
cert with the back-end tools obtained from the FPGA de-
vice vendors. Second, designers must write a supervisory
program that controls the configurable-computingplatform
during the operation of the application. In some cases this
control program is relatively simple, just loading a single
configuration and then loading and retrieving data. In more
complex run-time reconfigured applications for example,
these control programs can be relatively complex, loading
a variety of configurations and data, on demand, as the ap-
plication proceeds. Currently, the control program and the
circuit description must be developed and simulated inde-
pendently; the designer is responsible for ensuring that the
these two pieces of software cooperate correctly, typically
through repeated download, execute and compile cycles on
the CCM.

This division between circuit description and control
program is really just a division of the application into its
constituent static and dynamic parts: the static part repre-
sented by a circuit library, and the dynamic part embod-
ied in a control program that chooses circuit configurations
from a library, configures devices, and executes the appli-
cation. However, given that dynamically changing hard-
ware is at the core of configurable computing, treating the
dynamic and static parts of the application independently
is awkward and limiting. What is needed is a single inte-
grated description that allows the designer to naturally ex-
press the dynamic and static parts of the application simul-
taneously. This paper describes a design approach/CAD
tool that focuses on the creation of such an integrated de-
scription. As the number of Hardware Description Lan-
guages (HDLs) is innumerable and as it is difficult and time
consuming to come up with pithy acronyms, we have cho-
sen to name this system, JHDL, for Just another HDL.

2 Project Goals

The primary objective of this research project is to de-
velop a tool-suite/design-environment for describing cir-
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cuit organizations that dynamically change their structure
over time. This project has the following additional re-
quirements and potential benefits.

1. It must use an existing programming language with
no extensions.This will make the tool accessible to a
wider range of programmers by allowing them to use
commercially-available compilers.

2. The CCM-control paradigm must be CCM indepen-
dent. CCM control details should be abstracted to a
higher level programming abstraction. This will make
CCMs more accessible to programmers and will also
ease the process of retargetting an applications to run
on a variety of different CCMs.

3. The description method must support run-time and
partial configuration.These are the most demanding
CCM applications and will be used from the outset to
stress the design environment.

4. The integrated description must serve for both simu-
lation and final execution with no modifications.For
simulation, it must support end-to-end simulation of
applications that may consist of many configurations.
For execution, it should be possible to switch trans-
parently from a software simulation to hardware ex-
ecution on the CCM simply by changing a software
switch.

3 Background

There have been several efforts to create textual CAD
tools for FPGA designs. In an early pioneering effort at
DEC PRL, Vuillemin and his group developed and used
Perle [9] to design CCM applications on DECPerle-1 and
more recently on the Pamette [7]. Perle is a C++-based
CAD tool that uses hierarchy and inheritance to describe
user circuits. A Perle description, when compiled and ex-
ecuted, generates a netlist that is then processed by Xilinx
place and route tools. Other similar examples of object-
oriented circuit-design languages include Spyder [4] and
Lola [2].

Run-time reconfiguration (RTR) has been receiving
more attention lately and a few efforts are starting to re-
port results with tools and run-time environments. Luk
and Shirazi [5] reported on compilation tools for RTR de-
signs. Their tools consist of a partial evaluator, an in-
cremental configuration calculator and a optimizer. One
of their goals is to automatically generate circuit overlays
that have been optimized for use in partially configured
applications. Burns and Donlin [1] reported on a run-
time system for dynamic configuration. They proposed

a run-time system that attempts to automatically manage
FPGA resources similar to the way a conventional OS man-
ages memory or CPU resources. The system as proposed
consists of a virtual hardware manager (for managing the
FPGA resources), a transform manager (for modifying cir-
cuits to accommodate available device resources), a con-
figuration manager (to manage the configuration process),
and a device driver. Gokhale and Gomersoll [3] reported
on their high-level compilation tools for fine-grained FP-
GAs such as the National CLAy device. These tools accept
a dbC (data-parallel C) version of the algorithm, partition
it into control and datapath and then implement the circuit
using parameterizable module generators that have been
optimized for fine-grained FPGAs. Lysaght has also re-
ported on a VHDL-based simulation environment for RTR
[6].

JHDL has some things in common with many of these
efforts. First, as a design tool, it has been designed to di-
rectly support run-time reconfiguration, both partial and
global, and it attempts to hide details of configuration from
the user. However, in contrast to other work, JHDL makes
no attempt to automatically identify partial configurations
nor does it address the run-time physical transformation
of circuits so that they will fit within available FPGA re-
sources. At present, JHDL is primarily a manual design
tool that combines CCM control and circuit design into
single integrated description. JHDL probably has more in
common with Perle as it uses hierarchy in a manner sim-
ilar to Perle. However, it differs from Perle in that it was
specifically designed to support run-time reconfiguration
and CCM control.

Note that Java is not critical to this project; almost any
object-oriented language would have sufficed. Java does
have some useful features that can be exploited for this
project, in particular, the portability and integrated GUI
API are useful, however, any language that supports ob-
ject construction and hierarchy would be a likely candidate
for this project.

4 Research Approach

The primary distinction of JHDL and indeed the pri-
mary goal of this project is the creation of a single inte-
grated API that allows the designer to express circuit or-
ganizations that dynamically change over time. Stated an-
other way, the primary goal is to allow the designer to spec-
ify, in a reasonably natural way, when hardware gets loaded
and removed from a CCM without exposing any of the de-
tails normally associated with CCM operation. Rather than
invent a new language feature to schedule the configura-
tion of circuits, we chose to adopt the object-instance con-
struction/destruction mechanism used in object-oriented



languages. Conventional object-oriented languages man-
age memory through object constructors and destructors.
Memory is allocated by invoking an object constructor that
allocates the necessary memory from the heap or stack and
sets object variables to initial values. Memory is reclaimed
by invoking an object destructor that frees the memory
back up to be used by other objects. JHDL manages FPGA
resources on CCMs in a similar manner. In JDHL, all cir-
cuits are developed hierarchically as distinct objects. Al-
locating FPGA resources, i.e., configuring the FPGA de-
vices, is performed by invoking the constructor for a cir-
cuit object and analogously, FPGA circuitry is reclaimed
by invoking the circuit’s destructor.

This approach of using object constructors/destructors
to control the circuit lifetime on a CCM is a powerful tech-
nique that naturally leads to a dual simulation/execution
environment where a designer can easily switch between
either software simulation or hardware execution on a
CCM with a single application description. When simu-
lating in software, the constructors/destructors communi-
cate with the JHDL simulation kernel. Constructors create
object instances in system memory; these object instances
are actually simulation models that interface with a simu-
lation kernel to provide a clock-by-clock simulation of the
user circuit. However, when executing in hardware (on the
CCM), the constructors/destructors communicate directly
with the CCM (through a JHDL interface layer) instead of
the simulation kernel. Instead of allocating system mem-
ory, constructors load circuit descriptions from a circuit li-
brary and control the execution of the CCM. Analogously,
destructors remove circuits by replacing existing circuits
with “blank” configurations, similar to the state that exists
when the FPGA is initially reset.

5 Overview

The system described in this paper is very much an ex-
periment in progress. In these early stages, the main goal
was to demonstrate feasibility of the constructor/destructor
mechanism as a means for controlling a CCM; feasibil-
ity of object-oriented languages as circuit design tools has
already been demonstrated by others. In its current state
JHDL implements a circuit simulator and the control API
for the Hotworks board from Virtual Computer Corpora-
tion (VCC). Netlisting capability is supported by an in-
ternal circuit graph data structure (hereafter referred to as
the circuit graph) that is maintained automatically by the
JHDL environment as circuits are constructed or destruc-
ted; however, an actual netlist format has not been deter-
mined at this point. (Note to reviewers: by the time of
FCCM, primitive netlisting will be in implemented.) As

such, all circuits for the ATR demonstration system dis-
cussed in this paper (the ATR shapesum circuits, for exam-
ple) were designed manually using schematic capture with
their matching simulation models written using the JHDL
primitives. In addition, because this application uses run-
time configuration with partial configuration of the 6200
devices on the Hotworks board, most circuits were hand
placed. Full simulation of the ATR application was per-
formed in JHDL and the results of the simulation com-
pletely match the hardware execution on the Hotworks
CCM. Note that the JHDL circuit description serves as the
solemeans of controlling the VCC CCM, controlling all
I/O and configuration sequencing.

6 The JHDL System

The current JHDL system is implemented as a set of
Java class libraries with functionality divided into two ba-
sic areas: circuit simulation and CCM runtime support.
Circuit simulation classes allow the designer to design cir-
cuit models that can be simulated at the clock level through
the JHDL simulation kernel. CCM runtime support classes
provide transparent access to CCM control functions via
the construction/destruction mechanism described earlier.

Designers develop circuits in JHDL by selecting from
a set of synchronous and combinational elements and
wiring these together to form any arbitrary synchronous
circuit. There are three different classes that can be used
to implement a circuit:CL (combinational),Synchronous
(clocked), andStructural (interconnection of combina-
tional or synchronous elements). When creating a new cir-
cuit, the designer decides whether the outputs of the circuit
are updated continuously, i.e., it is a combinational circuit
(a CL object), or are updated only on a clock edge, i.e., it
is a synchronous circuit (aSynchronousobject), or if it is
a structural circuit (Structuralobject), i.e., one that is just
a set of existing synchronous or combinational circuit ele-
ments interconnected together. In each case, the designer
defines a new class that inherits from the appropriate class
and implements the desired functionality in the constructor
and other methods. Individual circuits are interconnected
by instantiatingWireobjects and passing these to the object
as arguments to the object constructors.

Software Simulation under JHDL

The actual behavior of the newly defined circuit class
is specified differently, depending upon whether it is aCL
or Synchronousobject. ForCL objects, the designer must
write a propagate()method that will generate a new set
of outputs, based on the current inputs, each time it is
called. Thispropagate()method is automatically called



by the simulation kernel each time at least one of the in-
put wires connected to the circuit object registers a change
during simulation. ForSynchronousobjects, the designer
writes abehavior()method that will generate a new set of
outputs each time it is called. Thebehavior()method is
automatically invoked each time a new clock cycle is is-
sued by the simulation kernel. When designers are imple-
menting structural designs (as will be the case when a de-
sign library and netlisting capability is available), they only
need to derive a new class that inherits fromStructural, and
write a constructor that will wire up the necessary library
elements to achieve the desired function. Nopropagate()
or behavior()methods are written forStructural circuits
as their behavior is completely derived from the behaviors
of the interconnected constituent subcircuits. Any circuit
organization is possible and an arbitrary number of hierar-
chical levels are supported by JHDL.

Currently, the simulation kernel is limited to syn-
chronous, globally clocked circuits but as these are the only
kinds of circuits that consistently work on CCMs, this is
not a serious limitation1. However, if multiple clocks are
necessary, the simulation kernel can be easily modified to
support an arbitrary number of clocks. The JHDL simu-
lator was designed to handle circuits that are run-time re-
configured; at any point in the simulation run the clock can
be stopped, circuit elements added to or deleted from ex-
isting circuitry dynamically, and the simulation run contin-
ued from where it stopped. This allows JHDL to simulate
complete and partial configuration of circuits on CCMs.

The HWSystem Class

In order to access the JHDL simulation kernel and CCM
control layer, the user circuit is encapsulated in a top-level
class calledHWSystem, as shown in Figure 1. TheHWSys-
tem provides all of the functionality for simulation and
CCM control. In addition, theHWSystemprovides a means
of communicating with the external world or CCM host
over special wires, called “ports.” These ports synchro-
nize the input and output data with the global clock used
in JHDL. The user circuit itself may be composed of an ar-
bitrary number of JHDL circuit objects; only the top-level
object is encapsulated by theHWSystem.

The HWSystemis the essential link between hardware
execution and software simulation. It implements a simu-
lation kernel which invokes behavioral descriptions of cir-
cuit objects during software simulation. TheHWSystemis
also what implements the API to the CCM device drivers;
with this interface, it can coordinate the computation on the
CCM by configuring the appropriate circuits on the CCM,
loading data, etc. Similarly, theInPort or OutPort shown

1some would argue that this limitation is a strength.
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Figure 1: Top level view of a JHDL design

in the figure can either be simulated behaviorally, as soft-
ware buffers that are synchronized to a global clock, or
executed on the CCM, as actual hardware ports that com-
municate with a host or other hardware. This is shown
in Figure 2. Because of this duality, any circuit that can
be described in JHDL and compiled to a bitstream can
be run interchangeably in the simulation kernel and on a
hardware platform, without any modification of the source
code. This hardware-software abstraction is discussed fur-
ther in Section 6.

OutPort
Output

InPort

InPort

Device Drivers

CCM

User Circuit

HWSystem

Data

Data
Input

Figure 2: Top level view of JHDL system

Finally, once the circuit is described, the JHDL system
is designed to interface to back-end synthesis tools with



relative ease. When a JHDL object is constructed, JHDL
automatically maintains an internal circuit graph describ-
ing the circuit, including hierarchy and port types (includ-
ing width and direction). This was designed so that either
flat or hierarchical netlists could be easily generated from
the internal graph. In addition, this graph is also used by
the simulator to perform run-time checks of circuits during
simulation. It is also modified to be consistent as circuit el-
ements are added or deleted as when CCM devices are par-
tially or run-time reconfigured. As is the case with all CAD
tools, a library of circuit primitives must be provided but
once this is available and a netlist format determined, the
netlist for any structural circuit will be automatically gen-
erated for any structural circuit design. This is discussed
further in the future work section.

The Simulation Kernel

TheHWSystemobject tracks all the wire and logic objects
that it encapsulates. All input and output data to the top-
level circuit is passed via theInPort andOutPort classes,
respectively. These classes provide support for buffered
transfers of data. When each circuit object is constructed,
it registers itself on a wire list or clock fanout list in the
HWSystem. This allows the system to track all the point-
ers needed to perform simulation. TheHWSystemper-
forms a circuit simulation using the following simple al-
gorithm (assuming that the user has already initialized all
data buffers):

1. Cause eachInport to drive its wires with the next data
in its buffer.

2. Issue a “clock” to all synchronous logic (by calling
the behavior()method for everySynchronouscircuit
object).

3. Propagate all wires that were updated by the syn-
chronous logic.

4. Propagate all affected combinational logic (by invok-
ing thepropagate()methods of allCL objects in the
wires’ fan-outs).

5. Repeat 3-4 above until the network is stable.

6. Cause eachOutPortto write the state of its associated
wire into its buffer.

7. Repeat 1-6 above until the requested number of clocks
have been issued.

This algorithm is represented in Figure 3.
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Figure 3: Operation of the simulation kernel

Hardware Execution under JHDL

If the computation is to be performed in the FPGA hard-
ware, the computational steps change significantly. When
the HWSystemis constructed, it calls the device driver to
load in the initial bitstream to the device. Currently, the
user must provide theHWSystemwith the name of the
file containing the configuration bitstream. In the near fu-
ture when netlisting capability is implemented, this will be
handled automatically by JHDL. When theHWSystemre-
ceives the request to clock the circuit, it makes another de-
vice driver call to clock the device the requested number
of times. TheInPort andOutPortobjects make their own
driver calls to exchange input/output values with the de-
vice. The hardware execution cycle is as follows:

1. The user passes input data to theInPort buffer. The
InPort sends the data to the device via a driver call,
and the driver buffers the data.

2. The user requests a sequence of clocks. TheHWSys-
temmakes a driver call to issue the clocks.

3. The driver issues the clocks and buffers the data for
eachOutPort.

4. TheHWSystemwaits for the driver call to complete.
When it does, it requests the data for eachOutPort,
and loads the data into the appropriate objects.

This algorithm is represented in Figure 4.



InPort

OutPort

OutPort

CCM

1

Clock

4

2

3

InPort

HWSystem

Device Drivers

Figure 4: Operation of the hardware interface

Any hardware device can be used that supports the API
of the JHDL system. The driver is simply compiled to na-
tive code, and the driver calls are linked to the JHDL sys-
tem as native methods. The driver is loaded at run-time as
a shared library; changing the hardware platform is simply
a matter of loading a different library file. We implemented
a simple JHDL-compatible driver for the VCC HotWorks
board, which is based on a Xilinx XC6216-series FPGA.
The driver is a simple wrapper around a preexistent de-
vice driver which had been developed at BYU, which adds
buffering capability and exports the proper API. Further
consideration is underway for developing a similar driver
for other systems based on Xilinx XC4000-series parts.

7 Modeling Hardware Reconfiguration

In JHDL, circuits are configured and reconfigured on
CCMs via object constructors/destructors. However, Java
directly supports only explicit object construction; explicit
object deletion is not supported as all memory is reclaimed
automatically by a run-time garbage collector. In order to
support explicit object deletion, JHDL provides a delete()
method for each of the base circuit classes. When delete()
is invoked on an object, say object A, A and all of its con-
stituent objects and wires are removed from the internal
netlist graph (dereferenced so they can be garbage col-
lected) and marked as deleted. During hardware execution,
invoking delete() is a signal to the CCM that the device cur-
rently occupied by the given circuit should be reclaimed by
“blanking” out the appropriate locations in the proper de-

vice.
JHDL supports partial reconfiguration similar to the re-

configuration approach already mentioned through an ad-
ditional interface class, thePRSocket(Partially Reconfig-
urable Socket). This class is used to describe parts of the
circuit that require partial configuration. It maintains the
multiple configuration information and automatically pro-
vides the transparent switching between simulation and
hardware execution. The mnemonic implies that partial
reconfiguration is modeled as a discrete chip socket that
allows any chip with the right pinout to be “plugged in.”
The socket simply serves as a placeholder in the internal
JHDL netlist. The user connects the static logic in the cir-
cuit to this socket, and provides the behavioral description
of what goes on inside that socket later. ThePRSocketwill
allow any circuit with the proper interface to be “plugged
in”. The basic function of thePRSocketis illustrated in
Figure 5. When the computation is being performed in
the simulator, thePRSocketsimply dereferences all point-
ers to the underlying JHDL object and creates an instance
of the newly configured object. When the computation is
performed on the hardware platform, thePRSocketcom-
municates with the hardware drivers to load the new partial
configuration at the appropriate chip location.

logic
JHDL

logic
JHDL

JHDL
logic

logic
JHDL

(have the same interface)

JHDL
logic

JHDL
logic

JHDL Circuit

PRSocket

Potential reconfigurations

Figure 5: Describing partial reconfiguration

Partial Reconfiguration: Software Simulation

The user needs to tell thePRSocketin advance which
configurations it will encapsulate. This constraint helps the
PRSocketdevelop a netlist, and is also needed to facilitate



hardware execution. The list of configurations is encap-
sulated in an object called aConfigGroupby defining a
function that might look like this:

class myConfigGroup extends ConfigGroupf
...
/* A Node is the base class for all JHDL logic
Node getNewCircuit(int id, PRSocket sock)f
switch(id)f
case 1:
return new Circuit1(...);

case 2:
return new Circuit2(...);

case 3:
return new Circuit3(...);

...
g g g

This ConfigGroupobject is passed to thePRSocket
when it is constructed. Once thePRSocketis constructed,
the user connects it to the static logic just like any other
piece of logic. During circuit construction it serves as a
placeholder in the JHDL internal netlist.

When the user wants to reconfigure the circuit, he
tells the PRSocketto load configuration#n by calling
PRSocket.Reconfigure(n). ThePRSocketthen callsConfig-
Group.getNewCircuit(n)to get an instance of the desired
circuit object. The new object gets pointers to the static
interface wires from thePRSocket, and adds itself to the
global netlist as usual. It can then be controlled by the sim-
ulation kernel.

To complete the reconfiguration process, thePRSocket
must destroy the old logic that it contained. This is per-
formed by invoking the delete() method on the circuit to
be deleted. Before simulating again, the kernel sweeps
its global object lists and removes all references to deleted
objects. The partial reconfiguration process is depicted in
Figure 6. A more detailed look at the how to write JHDL
code for partial reconfiguration is given in Section 8.

7.1 Partial Reconfiguration: CCM Execution

The HWSystemkeeps track of all the partial config-
uration lists that are used in itsPRSockets. When it is
constructed, it instructs the CCM device driver to keep a
pointer to all partial configurations, as well as loading the
static configuration. When theReconfigure()method of a
PRSocket is called, it references the partial configuration
by an ID number and calls the device driver to load the ap-
propriate configuration into the corresponding part of the
circuit. This of course requires a hardware platform that
can perform partial configuration, like the Xilinx XC6200
series. For this project, the BYU device driver for the
VCC Hotworks board has been augmented to support par-
tial configuration.
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JHDL
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PRSocket

Figure 6: Partial reconfiguration during simulation

8 JHDL Examples

JHDL has already been used to describe and execute
several “real” applications, such as the “shapesum” and
“correlation” functions of the Chunky-SLD Automatic Tar-
get Recognition (ATR) problem [8]. These applications
have been implemented on the Xilinx 6200 using partial
reconfiguration, as well as on other platforms [10]. For
this initial feasibility study, the original circuits are being
used as they were originally implemented via schematic
capture and manual placement. The main difference is
that the entire circuit is now described in JHDL. This de-
scription provides a comprehensive simulation model of
the ATR application. This is itself noteworthy as the ATR
application consists of several partial configurations that
are loaded into FPGA devices as new images are corre-
lated [10]. In addition, thissameJHDL description is used
to directly control the VCC “Hotworks” CCM, replacing
the original Tcl/Tk program that was previously used for
controlling the CCM. Because netlisting capability is not
yet present in JHDL, the correspondence between JHDL
circuit object and configuration bitstream is managed man-
ually by the user through theConfigGroupas already dis-
cussed2. Even in these early stages, JHDL has proven to
be surprisingly effective at describing, simulating, and ex-
ecuting these systems, including the partial reconfiguration
required to change the image template.

Although the ATR examples are currently operational,
they are far too complex to serve as coding examples of

2In practice this means that the designer is responsible for generating
bitstreams with some tool and “telling” JHDL where these files are and
what circuit objects they are associated with. In the near future much of
this will be completely automated.



JHDL in this paper. As a more accessible example of
JHDL usage, consider the following FIR filter example
that will be used to demonstrate the salient features of
the JHDL system. For this example, assume that the tap
weights are compiled directly into the circuit and partial re-
configuration is used to modify the weights at runtime. At
the top level, the user would write standard Java to provide
the user interface, gather input data, and so forth. Assum-
ing that the FIR filter has already been designed (the next
section illustrates the FIR design), it would be “wired” into
the top-level system as shown below.

class myJavaCodef
SomeMethod(...)f
/* Create a new system*/
HWSystem system = new HWSystem();

/* Tell the system how to compute -- this time, we’ll simulate*/
system.setSWMode();

/* Create new wires to pass to the filter, 8 bits wide each.
The ‘‘system’’ reference helps the Wire class build the circuit
graph (‘‘system’’ is the parent)*/
Wire Input = new Wire(system, 8);
Wire Output = new Wire(system, 8);

/* Create a new filter object; pass in pointers to I/O wires.
Note that this configures when in hardware mode.*/

FirFilter filter = new FirFilter(system, Input, Output);

/* Encapsulate the I/O wires with ports. */
InPort inport = system.newInPort(Input);
OutPort outport = system.newOutPort(Output);

/* The object is now constructed and appropriately
encapsulated. Now, reconfigure the tap constants; this method
is user-defined.*/
filter.Reconfigure(GetNewTapConstants());

/* Now, initialize the input buffer with data.*/
inport.writeBuffer(InputData);
/* Allocate a new output buffer, same size as the data array*/
outport.newBuffer(InputData.length);

/* Now clock the circuit, and get the results.*/
system.Clock(somenumber);
int Results[] = outport.getBuffer();
...

The user can then take the results and process them as
needed. Now, let’s look at how the FIR filter circuit might
be described.

/* This is just a structural circuit - all behavior is de-
scribed in the fir taps*/
class FirFilter extends Structuralf
Wire[] data wire array, macwire array;

Wire fir zero, datainput, dataoutput, fir output;
PRSocket FirTaps[];
int tapCount;

/* This manages the partial reconfigurations for each fir tap*/
static FirConfigGroup config = new FirConfigGroup();

FirFilter(Node parent, Wire in, Wire out)f
/* Every object that inherits from Node must do this first to
build the netlist graph*/
super(parent);

/* Now, declare my inputs/outputs, 8 bits each*/
inPort(in, 8); outPort(out, 8);

fir zero = new Wire(this, 8);
... h initialize other wires in a similar manneri

for(i=1;i<TapCount;i++)f
FirTaps = new PRSocket(this, config);
/* Now we must declare the static interface to each PRSocket.
Each wire is assigned a ‘‘port number’’ for reference.*/
FirTaps[i].inPort(datawire array[i-1], 0);
FirTaps[i].inPort(macwire array[i-1], 1);
FirTaps[i].outPort(datawire array[i], 2);
FirTaps[i].outPort(macwire array[i], 3);
g
g

/* The user defines this to export a top-level Reconfigure
method to the outside world. However, the actual
reconfiguration of each individual circuit is handled by the
PRSocket.*/
public void Reconfigure(int tapconstants[])f
for (i=0;i<TapCount;i++)f
FirTaps[i].Reconfigure(tapconstants[i]);
g
g
g

The user of course has to define theFirConfigGroupso
that it returns the kind of object he wants. This could be
done as follows:

class FirConfigGroup extends ConfigGroupf
/* Tell the superclass how many ports (4) and potential
configurations (8 bit fir tap constant=) 256) are allowed.*/
public FirConfigGroup(HWSystem s)f super(s, 4, 256);g

/* Here, the reconfiguration is completely described by
returning pointers to new objects of the desired type. In our case,
the id just represents the tap constant and associated name of the
file containing the configuration to be loaded.*/
public Node getPRObject(int id, PRSocket sock)f
return new FirTap(sock, id);
g
g



Finally, the user must describe the behavior of the fir
tap. The logical choice is to make this aSynchronousob-
ject. It could be implemented as follows:

class FirTap extends Synchronousf
int tap constant;
Wire fir input, datainput, macoutput, dataoutput, d0d1;

public FirTap(PRSocket p, int constant)f
int tap constant;
Wire d0 d1;

/* The PRSocket is a Node, so it is the parent object.*/
super(p);

tap constant = constant;

/* Now, get a pointer to all the wires that interface to the static
logic. The datainput wire was assigned port #0; etc.*/
datainput = p.inConnect(0);
fir input = p.inConnect(1);
dataoutput = p.outConnect(2);
fir output = p.outConnect(3);

inPort(datainput, 8); ...
g

/* Here, we describe the actual computation of each tap.
This is executed by the HWSystem once per clock.*/

public void behavior()f

/* Multiply-accumulate the input value, and delay the input
value. Wire values are read and written using the get() and
put() methods, respectively. We pass a pointer to ‘‘this’’ with
every access, which is used to help enforce port directions
(necessary for netlisting).*/

fir output.put(this, tapconstant * d0d1.get(this)
+ fir input.get(this));

dataout.put(this, d0d1.get(this));
d0 d1.put(this, datain.get(this));
g
g

9 Evaluation and Conclusions

We believe that the constructor/destructor mechanism
has proven to be a feasible way to control configuration on
a CCM. In addition, JHDL met all of the project goals that
were defined at the outset of this research project:

1. JHDL is based on a popular language and requires no
language extensions for circuit design.

2. The CCM control paradigm is CCM independent,
adopting the object-instance construction metaphor
from object-oriented languages. The abstraction will
work with any standard CCM and work is now un-
der way to interface JHDL to other CCMs such as the
Wildforce system from Annapolis Microsystems.

3. JHDL supports both partial and global configuration
and demonstration applications from ATR have been
implemented to show this capability.

4. A JHDL application description serves as both sim-
ulation and execution for CCM applications. No
code modifications are required and switching be-
tween software simulation and hardware execution on
the CCM requires the setting of a single boolean vari-
able.

JHDL also provides additional benefits because it is
based on a commonly-used programming language and as
such all of the standard language features, such as I/O, are
accessible to the designer throughout the design process.
Unlike VHDL for example, it is quite easy to perform ar-
bitrary I/O in JHDL, both to the console and to files during
software simulation. Of course, some of these features are
only accessible during simulation mode in JHDL; however,
that is when they may be of the most use. For example, de-
signers can easily insert print statements in their code as a
debugging aid so that the internal state of the application
can be ascertained during a simulation run. Once netlist-
ing is fully implemented, these I/O statements will just be
ignored. Graphical User Interfaces (GUIs) can also be eas-
ily added to the program without the need for any complex
linking; they are just part of the JHDL application as the
complete Java API is available to the designer when writ-
ing JHDL applications. JHDL has the added advantage
that the GUI (or any other software written and integrated
with the application) may be run on the host even when the
circuit parts of the application are executing on the CCM.
This is possible because JHDL allows the application to
be divided into those parts that will run in software and
those parts that will run in hardware. When operating in
hardware execution mode, only those parts of the appli-
cation that are described using circuit classes will be exe-
cuted on the CCM platform. All other parts of the applica-
tion remain on the host, operating essentially as a separate
program that is communicating with the user-designed cir-
cuitry via the CCM device driver. In this way, JHDL allows
for both software and hardware descriptions to not only co-
exist but also to coexecute.



10 Future Work

In addition to continuing experimentation with JHDL
for CCM applications, two areas have been identified for
further work in JHDL: netlisting, to allow JHDL to func-
tion as a complete structural design tool, and behavioral
synthesis, to allow circuits to be expressed at a higher level.
Indeed, behavioral compilation was one of the first ideas
discussed in the early proposal phase of this project. How-
ever, because it was necessary to first prove feasibility of
the basic concept of using object-instance construction as
a metaphor for CCM control, further development in this
area had to be delayed. In addition, JHDL is showing
significant potential as a purely structural design tool and
there is now interest at BYU in further developing JHDL in
this direction as well. The need for netlisting has already
been discussed in this paper and the necessary internal cir-
cuit graph has already been fully implemented. What re-
mains is to select a netlist format and develop sets of circuit
libraries that are based on today’s popular FPGA devices.
This effort is already underway.

Behavioral synthesis will be designed to exploit indus-
try CAD tools such as VHDL synthesis. The approach is
based on a fourth circuit class,HWProcessthat is already
partially implemented. Similar to the way circuits are de-
fined using the otherCL and Structural classes, the de-
signer inherits from HWProcess when behavioral synthe-
sis is desired. The HWProcess class provides an additional
method,waitUntilClock(), that designers insert into their
behavior()methods. It provides the same basic behavior
as await() in a VHDL process. Designers will be able to
express circuits behaviorally with this class using a sub-
set of Java statements and developing a circuit description
that uses the commonwait until clockidiom found in most
VHDL synthesizable subsets. The subset of Java state-
ments will be limited to statements that can be supported
by synthesizable VHDL subsets This JHDL code will then
be translated to VHDL through a simple syntax-directed
textural substitution and processed with VHDL synthesis
tools. The advantage of this approach is that it allows the
circuit to be simulated in JHDL in a natural context with
other circuits but also provides a clear path to behavioral
synthesis that leverages currently available tools.
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