
Devanand K. Shenoy (PI), Elias Feresenbet, George Anderson and Enrico Dalcanale

Center for Bio/Molecular Science and Engineering
Naval Research Laboratory
Washington, DC 20375

@ Department of Organic and Industrial Chemistry
University of Parma, Italy

11/17/04
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 NOV 2004</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for Bio/Molecular Science and Engineering Naval Research Laboratory Washington, DC 20375</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UU</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19b. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

- Technology Gaps
- Goal, approach
- Cavitands for chemical vapor sensing
- Liquid Crystals for sensitivity amplification
- Label-free antibodies for SPR biosensing
- Conclusions
Technology Gaps

- **Chemical detectors**
 - limited sensitivity - still use canines for bomb detection
 - high false alarm rates - limited specificity
 - slow response time - due to sensing material used

- **Biological Detectors**
 - need reagents, labels, not real time

- **Separate Detectors**
 - for chem. and bio. threats increase logistical burden/cost
Goal

Develop an integrated SPR chem/bio detector with

False Alarm Rate < 10^{-3} for chem. and < 10^{-8} for bio.

Sensitivity - below permissible exposure level (PEL) for chem.
 - LOD of 100 organisms/liter of air for bacteria/viruses
 - LOD of 10 nanograms/liter of air for toxins

Response time - < 1 minute for chem. and < 10 min for bio.

Military and civilian need

Chem/Bio detectors with high sensitivity, specificity, stability, and speed in portable format for airborne threats
Approach

Technique - SPR spectroscopy

Sensing with - Cavitands for chem. threats
- Liquid Crystals for chem. threats
- Antibodies for bio. threats

- Sensitive optical transduction technique - part in 10^7 refractive index changes can be measured
Integration of chem/bio.

- Common optical and data processing platform
- Different front ends for chem. and bio. samples
- Isolated channels for chem. and bio. sensing layers

Top View of SPR substrate
Sensor Components:
TI Spreeta 2000 (3-channel)

- Spreeta 2000 SPR components developed in collaboration with UW
- Miniaturized, robust, high performance devices
- Inexpensive: ~$4 in large quantity
- Excellent manufacturing capabilities and quality control.

Spreeta 2000 SPR sensing chip
<table>
<thead>
<tr>
<th>Type of Agent</th>
<th>Examples of Agents of Interest</th>
<th>Current Direct Detection level</th>
<th>Amplification/ verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein toxins</td>
<td>SEB, Ricin, Botulinum toxin, B. Anthracis, B. Anthracis spores (simulant)</td>
<td>100 pM (2.8 ppb) 20 nM (64 ppb; current level) <50 nM (750 ppb, current level)</td>
<td>Yes (2.8 ppt) Not yet done Yes</td>
</tr>
<tr>
<td>Spores</td>
<td>Small pox, Marburg, Ebola, Encephalitis, Hemorrhagic fever Flu (as a model system)</td>
<td>~10⁵ cfu/ml (prelim) ~10⁹ pfu (prelim expts)</td>
<td>Not yet done Yes (prelim)</td>
</tr>
<tr>
<td>Viruses</td>
<td>Y. pestis, F. tularensis, E. Coli</td>
<td>In progress ~5x10⁴ cfu/ml (prelim) In progress</td>
<td>Yes Not yet done Yes</td>
</tr>
<tr>
<td>Microbial cells</td>
<td>VX, Soman, Sarin, tabun, DPMP (stimulant) Domoate, Cortisol, DNP</td>
<td>Antibodies tested at ECBC 50 nM (15 ppb) 750 pM (271 ppt) ~1 uM (340 ppb)</td>
<td></td>
</tr>
<tr>
<td>CW (organics)</td>
<td>VX, Soman, Sarin, tabun, DPMP (stimulant) Domoate, Cortisol, DNP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Furlong et al, U. Washington
Cavitand Selectivity

- Cavitand with deepest cavity shows largest response
- Selectivity for aromatic vapors confirmed
- PECH and PIB polymers for comparison

A B C

3.3 Å 4.6 Å 8.3 Å
MeCav PzCav QxCav

TOLUENE

100 ppm

Sensing Layer

Copolymers

BENZENE

100 ppm

Sensing layers
Concentration Dependence of Signal

- Saturation due to analyte “filling” of cavitands
- QxCav completely encloses benzene molecule within cavity
Materials Processing: Spin Coated vs Self-Assembled Cavitands

Devanand K. Shenoy, Elias B. Feresenbet, Roberta Pinalli, Enrico Dalcanale; Langmuir 2003, 19, 10454

- Cavitand Morphology does not effect signal response
- Signal response normalized for thickness
Cavitands for DMMP

- Cavitand shows high selectivity for DMMP
- Cavitand shows good reversibility
Liquid Crystal-based Sensing

- Liquid Crystal (LC) perturbation causes **signal amplification**
- **Nematic order** probed by optical method
- Optical signal directly proportional to amount of vapor
LC film deposition

One side
Adhesive
Mylar

punch

5mm
100um

Liquid crystal molecule

Liquid crystal Drop (1ul)

Polyimide coated on gold

Cover Glass
LC alignment

A uniform planar orientation achieved
LC exposure to benzene vapors

E. Feresenbet, F. Taylor, T. M. Chinowsky, S. S. Yee, D.K Shenoy,
Sensor Letters 2, 145-152, 2004

- Wavelength shift due to vapor exposure and resulting decrease in LC order
- Shift is reversible
Selectivity pattern of LC towards vapors

- LC shows differential response to chemical vapors
- Selectivity between isomers observed
LC exposure closer to phase transition

- Sensivity enhanced by two orders closer to phase transition
- Shift is reversible

<table>
<thead>
<tr>
<th>m-xylene</th>
<th>ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>270</td>
</tr>
<tr>
<td>2</td>
<td>380</td>
</tr>
<tr>
<td>3</td>
<td>680</td>
</tr>
<tr>
<td>4</td>
<td>850</td>
</tr>
</tbody>
</table>
Kinetics of Response

\[\frac{d\lambda}{dt} = k\lambda^2 \]
\[\lambda = \text{resonance wavelength} \ (\text{nm}) \]
\[t = \text{time} \ (\text{min}) \]
\[k = \text{rate constant} \]

- Second order kinetics describes data for vapor diffusion into LC
- Time response additional selectivity parameter

SPR Biosensing

- Neutravidin-Biotin mediated antibody immobilization

- Effect of blocking binding to thiol-biotin coated gold surface

- NeutrAvidin blocked by biotin binds poorly to the thiol biotin surface

- Effect on binding of biotinylated antibody

- Subsequent binding of the biotinylated antibody is also poor
Re-cycling the sensor surface

Neutravidin binding to different sensor surfaces

- Neutravidin binds as well after cleaning of the gold surface and re-application of the thiol biotin layer
SPR model immunoassay

Bt-Rabbit anti-Goat IgG binding Goat-IgG

Amplifier Donkey anti-Goat IgG binding

SPR Shift (nm)

Time (min)

- 0.0
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 4.5
- 5.0
- 5.5
- 6.0

SPR Shift (nm)

Time (min)

- 0.0
- 0.5
- 1.0
- 1.5
- 2.0
- 2.5
- 3.0
- 3.5
- 4.0
- 4.5
- 5.0
- 5.5
- 6.0

Concentrations:
- 0.01
- 0.1
- 1.0
- 10 ug/ml
Staphylococcal Enterotoxin B detection by SPR

SEB Direct Detection

Amplified Detection
Ricin detection by SPR

Direct Detection of Ricin

Ab-Amplified Detection of Ricin
Bacterial spore detection by SPR

Direct detection of B. globigii

- **SPR shift (nm)**
- **Time (min)**
- **0 spores/ml**
- **10^5 spores/ml**
- **10^6 spores/ml**
- **10^7 spores/ml**

Ab-Amplified Detection of B. globigii

- **SPR shift (nm)**
- **Time (min)**
- **0 spores/ml**
- **10^5 spores/ml**
- **10^6 spores/ml**
- **10^7 spores/ml**
Conclusions

- Cavitands show high selectivity for chemical vapors
- Cavitand film morphology does not affect signal response
- Liquid Crystal materials for sensitivity amplification
- Label-free, real-time SPR biosensing
- Integration of chem. and bio. approaches appears feasible
Team Members

Mr. Marco Busi, U. Parma, Italy
Prof. Enrico Dalcanale, U. Parma, Italy
Mr. Francis Taylor, U. Washington, Seattle
Prof. Tim Chinowsky, U. Washington, Seattle
Prof. Sinclair Yee, U. Washington, Seattle
Dr. T. Yu, UC Berkeley, CA
Dr. Francois Lagugne, UC Berkeley, CA
Prof. Y. Ron Shen, UC Berkeley, CA
Dr. Elias Feresenbet, formerly at NRL, Washington, DC
Dr. Charles Dulcey, NRL, Washington, DC
Dr. George Anderson, NRL, Washington, DC
Dr. William Barger, NRL, Washington, DC

Funding: Naval Research Laboratory, Joint Services