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Abstract

During the period of 12/1/2005 - 5/30/2006, we expanded our research from generic wireless
sensor networks to radar sensor networks. For radar sensor networks, we performed the following
preliminary studies:

1. Waveform design and diversity in radar sensor networks with applications to automatic
target recognition without or with delay-doppler uncertainty. We used constant frequency
(CF) pulse waveform and linear frequency modulation (LFM) waveform in this study.

2. We proposed a Knowledge-based Ubiquitous and Persistent Sensor networks (KUPS) for
threat assessment, of which "sensor" is a broad characterization concept. It means diverse
data or information from ubiquitous and persistent sensor sources such as organic sensors
(e.g., radar) and human intelligence sensors.

3. Spatial-temporal-frequency diversity to improve the detection performance of Radar Sensor
Networks in the presence of certain types of interference (clutter, jamming, noise and
interference between radar sensors) was studied.

For non-radar sensor networks, we continuously conducted the following research tasks:

1. Channel Capacity of Virtual MIMO-Based Wireless Sensor Networks with Imperfect CSI;

2. Cross-Layer Design for MIMO-Based Wireless Sensor Networks;

3. Statistical Analysis in Wireless Sensor Networks with Application to Resources Allocation;

4. MAC Protocol Design for UWB-Based Wireless Sensor Networks;

5. and Query Processing Optimization in Wireless Sensor Networks.

Fourteen papers were produced during the past six months, and are attached to this report.

1 Studies on Radar Sensor Networks

1.1 Waveform Design and Diversity in Radar Sensor Networks

In [1][2], we performed some theoretical studies on constant frequency (CF) pulse waveform design
and diversity in radar sensor networks (RSN): (1) the conditions for waveform co-existence, (2) in-
terferences among waveforms in RSN, (3) waveform diversity combining in RSN. As an application
example, we applied the waveform design and diversity to automatic target recognition (ATR) in
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RSN and propose maximum-likehood (ML)-ATR algorithms for nonfluctuating target as well as

fluctuating target. Simulation results show that our waveform diversity-based ML-ATI{ algorithm

performs much better than single-waveform ML-ATR algorithm for nonfluctuating targets or fluc-

tuating targets. Conclusions are drawn based on our analysis and simulations and future research

works on this research topic are discussed.
In the above ATR using CF pulse waveform design and diversity, we assumed no delay-doppler

uncertainty. It is not true for ATR in target search phase because the target range and mobility
are not yet perfectly known, which results in delay-doppler uncertainty. In [3] [4], we studied linear
frequency modulation (LFM) waveform design and diversity, and applied it to ATR with delay-

doppler uncertainty using ML-ATR algorithm. Simulation results show that our RSN vastly reduces
the ATR error comparing to a single radar system in ATR with delay-doppler uncertainty.

In [6], we studied waveform design and diversity using some concepts from physical layer commu-
nications such as orthogonal, non-coherent detection, and coherent detection. We also used signal

representation from communication domain, i.e., taking its real part when carriers are considered.
We proposed orthogonal waveforms for RSN, which eliminates interference when no doppler shift
is introduced. Additionally, this approach applies the advantage of spacial diversity through equal
gain combination performed by clusterhead. When doppler shift is considered and interference is
unavoidable, we analyzed the performance of this design not only in coherent RSN, but in nonco-
herent systems as well. The latter scenario is more challenging as doppler-shift uncertainty results
in more complicated implementation. Monte Carlo simulation shows that our technique provides
much better detection performance than single radar for fluctuating targets, in terms of probability
of false alarm and miss detection. Conclusions are drawn based on our analysis and further related
research areas are discussed.

1.2 A Network Centric Warfare (NCW) Model: Knowledge-based Ubiquitous
and Persistent Sensor Networks for Threat Analysis

In current and future military operational environments, such as Global War on Terrorism (GWOT)
and Maritime Domain Awareness (MDA), warfighters require technologies evolved to support infor-
mation needs regardless of location and consistent with the users level of command or responsibility
and operational situation. To support this need, the DoD has developed the concept of Network
Centric Warfare (NCW), defined as "military operations that exploit state-of-the-art information
and networking technology to integrate widely dispersed human decision makers, situational and
targeting sensors, and forces and weapons into a highly adaptive, comprehensive system to achieve
unprecedented mission effectiveness."

In the spirit of this NCW concept, in [5], we proposed a Knowledge-based Ubiquitous and Per-
sistent Sensor networks (KUPS) for threat assessment, of which "sensor" is a broad characterization
concept. It means diverse data or information from ubiquitous and persistent sensor sources such
as organic sensors and human intelligence sensors. Our KUPS for threat assessment consists of
two major steps: threat detection using fuzzy logic systems and threat parameter estimation using
radar sensor networks. Our fuzzy logic systems can combine the linguistic knowledge from differ-
ent intelligent sensors. We proposed a maximum-likelihood (ML) estimation algorithm for target
RCS parameter estimation, and we showed that our ML estimator is unbiased and the variance
of parameter estimation matches the Cramer-Rao lower bound. Simulations further validate these
theoretical results.
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1.3 Spatial-Temporal-Frequency Diversity in Radar Sensor Networks

In [7], spatial-temporal-frequency diversity to improve the detection performance of Radar Sensor
Networks in the presence of certain types of interference (clutter, jamming, noise and interference
between radar sensors) was studied. Besides the interference between radar sensors, performance
of the network depends largely on other interference, especially clutter, which is extended in both

angle and range, and is spread in Doppler frequency. By using the spatial-temporal diversity, we
can suppress effects of these interference. In [7], we also proposed a receiver for diversity combining
in RSN. As an application example, we applied the spatial-temporal-frequency diversity scheme to
improve the detection performance or reduce the miss-detection probability at a low false alarm
probability. Simulation results for both non-fluctuating targets and fluctuating targets show that
the performance of our proposed scheme is superior to that of the single radar with the spatial-
temporal diversity only.

2 Studies on Non-Radar Sensor Networks

2.1 Channel Capacity of Virtual MIMO-Based Wireless Sensor Networks with
Imperfect CSI

Multiple-input multiple-output (MIMO) has recently emerged as one of the most significant tech-
nical breakthroughs in modern communications. A key feature of MIMO systems is the ability
to turn multipath propagation, traditionally a pitfall of wireless transmission, into a benefit for
the user. In existing works on MIMO for wireless sensor networks, virtual MIMO schemes based
on the space-time block codes (STBC) have been widely used, and it's demonstrated that the
full diversity and full rate are achieved which enhances power/bandwidth efficiency and reliability.
However, all the existing works have generated substantial insight into the applications of MIMO
to wireless sensor networks design for certain simplified models of the communication environment,
such as complete channel state information (CSI), absence of interference generated by other users
in the network, and persistent, homogeneous traffic from the physical layer point of view. In [8],
we studied channel capacity of virtual MIMO-based wireless sensor networks with imperfect CSI.
We compared the channel capacities of using equal power allocation and waterfilling strategy and
considered different channel models with imperfect CSI.

2.2 Cross-Layer Design for MIMO-Based Wireless Sensor Networks

The multiple-input and multiple-output (MIMO) system can be used to increase throughtput
through multiplexing or to improve PLR (Packet Loss Ratio) throught diversity. Besides phys-
ical layer factors (such as diversity gain, bandwidth, and SNR), the MAC layer and network layer
protocols also affect the throughput and PLR, for example, larger number of transmitters will lead
to higher link failure which may require MAC layer re-transmission and network layer re-routing.
In [9], we studied cross-layer design for MIMO system considering physical layer, MAC layer and
network layer design. Simulation results show that theoretical result based on pure physical layer
design such as larger number of transmitters have better diversity gain and multiplexing gain does
not hold when the MAC layer and network layer are also considered, which indicates that some
theoretical results on MIMO may need to be revisited.
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2.3 Statistical Analysis in Wireless Sensor Networks with Application to Re-
sources Allocation

In [11], we modeled the end-to-end distance for a given number of hops in dense planar Wireless
Sensor Networks. We derived that the closed-form formula for single-hop distance and postulate
Beta distribution for 2-hop distance. When the number of hops increases beyond three, the multihop
distance approaches Gaussian. The Gaussian approximation model is also applied to ranging, which
achieves less distance error than Hop-TERRAIN and APS (Ad hoc Positioning System). Our error
analysis also shows the distance error is be minimized by using our model.

In [10], we addressed a fundamental problem in Wireless Sensor Networks, how many hops
does it take for a packet to be relayed for a given distance? For a deterministic topology, this
question reduces to a simple geometry problem. However, a statistical study is needed for randomly
deployed WSNs. We proposed a Maximum Likelihood decision based on the conditional pdf of
f(rlHi). Due to the computational complexity of f(rlHi), we also proposed an attenuated Gaussian
approximation for the conditional pdf. We showed that the approximation visibly simplifies the
decision process and the error analysis. The latency and energy consumption estimation are also
included as application examples. Simulations show that our approximation model can predict the
latency and energy consumption with less than half RMSE, compared to the linear models.

2.4 MAC Protocol Design for UWB-Based Wireless Sensor Networks

In [12], we proposed a MAC protocol: throughput-maximized MAC protocol (TM-MAC), based
on the characteristics of ultra wideband (UWB) technology. In UWB communication systems, the
transmission parameters are tunable to match the requirements of data flow. In TM-MAC, we
implement concurrent multiuser access instead of mutual exclusion method, such as TDMA and
random access. For multiuser interference, we established a model to adaptively adjust the data
transmission rate to ensure a satisfied signal to noise ratio (SNR) at receiver side. We also analyzed
the relationship among the theoretical maximum channel capacity, the achievable maximum channel
capacity and the maximum data transmission rate. According to the network topology, TM-
MAC re-divides network into subsets, in which communication pairs can make communication
simultaneously to enhance throughput and to exploit as fast as possible data transmission rate for
reliable communication. For subset formation, we proposed a general analytical framework, which
captures the unique characteristics of shared wireless channel and allows to model a large class
of systemwide throughputmaximization issue via the specification of per-link utilization functions.
Simulation results demonstrate that TM-MAC can implement throughput maximization to shorten
latency and to enhance network processing capability.

2.5 Query Processing Optimization in Wireless Sensor Networks

Query processing has been studied extensively in traditional database systems. But few existing
methods can be directly applied to wireless sensor database systems due to their characteristics, such
as decentralized nature, limited computational power, imperfect information recorded, and energy
scarcity of individual sensor nodes. In [13], we extended our previous work: quality-guaranteed
and energy-efficient algorithm (QGEE) for wireless sensor database systems. We introduced radius
of covering disk from point spread function (PSF) aspect and sample size for query quality and
energy consumption control. PSF introduces ambiguity into query answers, since the sensitivity of
nodes is nonuniform within monitoring region. Sample size determination refers to the process of
determining exactly how many samples should be measured in order that the sampling distribution
of estimators meets users' pre-specified target precision. In this paper, we formulated the criteria to
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determine the optimum radius and sample size according to users' requirements on query answers.
Simulation results demonstrate that the impact of sample size and monitoring coverage on query
answers in terms of root mean square error (RMSE).

In [14], we proposed two methods to substitute cosine measure for vector similarity: Cosine-
Length Measure (CLM) and Joint-Deference Measure (JDM). Through considering the impact of
vector length on vector similarity, CLM alleviates the disadvantage of traditional VSM, in which the
confidence of query answer may be degraded since truly similar nodes cannot be elected according to
users' requirement. JDM upgrades the accuracy and degrades the complexity for the computation
on similarity coefficient through simplifying the measure from vector domain to scalar domain.
In addition, with the distributions of measurement error and environment noise known and/or
unknown respectively, we formulated the criteria to determine the optimum sample size to meet
users' pre-specified target precision. Through simulation, we checked the validities and sensitivities
of cosine measure, CLM and JMD methods on answer quality and network lifetime. Furthermore,
our simulation results, in this paper, form a set of criteria for method selection based on specific
applications.
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Abstract

In this paper, we perform some theoretical studies on constant frequency (CF) pulse wave-

form design and diversity in radar sensor networks (RSN): (1) the conditions for waveform

co-existence, (2) interferences among waveforms in RSN, (3) waveform diversity combining in

RSN. As an application example, we apply the waveform design and diversity to automatic

target recognition (ATR) in RSN and propose maximum-likehood (ML)-ATR algorithms for

nonfluctuating target as well as fluctuating target. Simulation results show that our waveform

diversity-based ML-ATR algorithm performs much better than single-waveform ML-ATR algo-

rithm for nonfluctuating targets or fluctuating targets. Conclusions are drawn based on our

analysis and simulations and future research works on this research topic are discussed.

Index Terms : radar sensor networks, waveform diversity, automatic target recognition,

maximum-likelihood, interferences, ambiguity function.

1



1 Introduction and Motivation

The network of radar sensors should operate with multiple goals managed by an intelligent platform

network that can manage the dynamics of each radar to meet the common goals of the platform,

rather than each radar to operate as an independent system. Therefore, it is significant to perform

signal design and processing and networking cooperatively within and between platforms of radar

sensors and their communication modules.

Waveform diversity is the technology that will allow one or more sensors on board a platform

to automatically change operating parameters, e.g., frequency, gain pattern, and pulse repetition

frequency (PRF) to meet the varying environments. It has long been recognized that judicious use

of properly designed waveforms, coupled with advanced receiver strategies, is fundamental to fully

utilizing the capacity of the electromagnetic spectrum. However, it is only relatively recent advances

in hardware technology that are enabling a much wider range of design freedoms to be explored. As

a result, there are emerging and compelling changes in system requirements such as more efficient

spectrum usage, higher sensitivities, greater information content, improved robustness to errors,

reduced interference emissions, etc. The combination of these is fuelling a worldwide interest in the

subject of waveform design and the use of waveform diversity techniques.

In the existing works on waveform design and selection, Fitzgerald [5] demonstrated the inap-

propriateness of selection of waveform based on measurement quality alone: the interaction between

the measurement and the track can be indirect, but must be accounted for. Bell [3] used infor-

mation theory to design radar waveform for the measurement of extended radar targets exhibiting

resonance phenomena. In [2], singularity expansion method was used to design some discriminant

waveforms such as K-pulse, E-pulse, and S-pulse. Sowelam and Tewfik [20] developed a signal selec-

tion strategy for radar target classification, and a sequential classification procedure was proposed

to minimize the average number of necessary signal transmissions. Intelligent waveform selection
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was studied in [1][9], but the effect of doppler shift was not considered. In [11], the performance of

constant frequency (CF) and linear frequency modulated (LFM) waveform fusion from the stand-

point of the whole system was studied, but the effects of clutter was not considered. In [19], CF and

LFM waveforms were studied for sonar system, but it was assumed that the sensor is nonintelligent

(i.e., waveform can't be selected adaptively). All the above studies and design methods were focused

on the waveform design or selection for a single active radar or sensor. In [17], cross-correlation

properties of two radars are briefly mentioned and the binary coded pulses using simulated anneal-

ing [4] are highlighted. However, the cross-correlation of two binary sequences such as binary coded

pulses (e.g. Barker sequence) are much easier to study than that of two analog radar waveforms.

In this paper, we will focus on the waveform diversity and design for radar sensor networks using

constant frequency (CF) pulse waveform.

The rest of this paper is organized as follows. In Section 2, we study the co-existence of

radar waveforms. In Section 3, we analyze the interferences among radar waveforms. In Section 4

we propose a RAKE structure for waveform diversity combining and propose maximum-likelihood

(ML) algorithms for automatic target recognition (ATR). In Section 5, we provide simulation results

on ML-ATR. In Section 6, we conclude this paper and provide some future works.

2 Co-existence of Radar Waveforms

In radar sensor networks (RSN), radar sensors will interfere with each other and the signal-to-

interference-ratio may be very low if the waveforms are not properly designed. We will introduce

orthogonality as one criterion for waveforms design in RSN to make them co-existence. Besides,

the radar channel is narrow-band, so we will also consider the bandwidth constraint.

In our radar sensor networks, we choose CF pulse waveform. The CF pulse waveform can be
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defined as

x(t) = exp(j27r,8t) - T/2 < t < T/2(1

In radar, ambiguity function (AF) is an analytical tool for waveform design and analysis that

succinctly characterizes the behavior of a waveform paired with its matched filter. The ambiguity

function is useful for examing resolution, side lobe behavior, and ambiguities in both range and

Doppler for a given waveform[15]. For a single radar, the matched filter for waveform x(t) is x*(-t),

and the ambiguity function of CF pulse waveform is

T/2
A(T, FD) - - x(t) exp (j2WrFDs)x*(t - 7-)dt

J -T/2+r-

Esin[WrFD(T - ITI)] T < T < T (2)
T~r FD

Three special cases can simplify this AF:

1. When-=0,

A(, FD)= E sin(7rFDT) .
T( ) ' (3)

2. and when FD = 0,

A(T, 0)- E(T-I-I)" . (4)
T

3. and

A(0,0) = E (5)

However, the above ambiguity is for one radar only (no co-existing radar).

For radar sensor networks, the waveforms from different radars will interfere with each other.

We choose the waveform for radar i as

xi(t) exp[j27r(/3 + bi)t] - T/2 < t < T/2 (6)
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which means there is a frequency shift Ji for radar i. To minimize the interference from one waveform

to the other, optimal values for Ji should be determined to have the waveforms orthogonal to each

other, i.e., let the cross-correlation between xi(t) and xn(t) be 0,

/2 xi(t)x*(t)dt = E IT exp[j2r(f + 5i)t] exp[-j27r(13 + ± )t]dt (7)

T/2 T -T/2

= Esinc[r(Ji - Jn)T] (8)

If we choose

5i. (9)

where i is a dummy index, then (8) can have two cases

f T/2 JE i=n
T/2 x(t) x- (t) dt =(10)

T/2
0 i:ýrn

So choosing i =i in (6) can have orthogonal waveforms, i.e., the waveforms can co-exist if the

carrier spacing is 1/T between two radar waveforms. i.e., orthogonality amongst carriers can be

achieved by separating the carriers by an interger multiple of the inverse of waveform pulse duration.

With this design, all the orthogonal waveforms can work simultaneously. However, there may exist

time delay and doppler shift ambiguity which will have interferences to other waveforms in RSN.

3 Interferences of Waveforms In Radar Sensor Networks

3.1 RSN with Two Radar Sensors

We are interested in analyzing the interference from one radar to another if there exist time delay

and doppler shift. For a simple case where there are two radar sensors (i and n), the ambiguity
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function of radar i (considering interference from radar n) is

Ai(ti, t., FDj, FDJ) I [xi(t) exp(j27rFDit) + xn(t - t,) exp(j27rFDnt)]x4(t - ti)dtl (11)

ST/2+mxn(ti,tý) Xn(t - tn) exp(j27rFD, t)x* (t - ti)dt-- J -T/2±max(ti ,tn)

,~T/2
+ i xi(t) exp (j27rFD~t)x*(t - ti)dt (12)

f - -T/2+m nti 

( 12)

_ T/2+max(tnt) X(t - tn) exp(j27rFD, t)xi*(t - t-)dt

Esin[7rFD, (T - It I)] (13)
±TirFDj 13

To make analysis easier, we assume ti = tn = -r, then (13) can be simplified as

Ai(T, FD,, FD) z IEsinc[7r(n - i + FDnT)]I + Esin[7rFD,(T -I)] (14)
T7rFDj

Some special cases of (14) are listed as follows:

1. If FD, = FDý = 0, and 6i and J, follow (9), then (14) becomes

Ai(-, 0, 0) E(T - ITI)] (15)
T

2. If T = 0, then (14) becomes

Ai(O, FDj, FD) "Esinc[Tr(n - i + FDnT)]I + E sin(7rFDT) 1(16)
T'h1FDj

3. If FDj = FD, = 0, T = 0, and 6i and 6, follow (9), then (14) becomes

Ai(0,0,0) z: E (17)

3.2 RSN with M Radar Sensors

It can be extended to an RSN with M radars. Assuming time delay T for each radar is the same,

then the ambiguity function of radar 1 (considering interferences from all the other M - 1 radars
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with CF pulse waveforms) can be expressed as
M E sin[rFD, (T - IT )] (18)

A (T),FD,... , FDM) • I jEsinc[7r(i - 1 + FDiT)]I + TWrFD,
i=2

Similarly, we can have three special cases,

1. If FD1 = FD2 , .. FDM = 0, and frequency shift 6i in (6) for each radar follows (9), then

(18) becomes

A,(T)0,0,... ,0) E(T - -TI)] (19)
T

comparing it against (3), it shows that our derived condition in (6) can have a radar in RSN

get the same signal strength as that of a single radar (no co-existing radar) when the doppler

shift is 0.

2. If 7- = 0, then (18) becomes
M Esin(IFFDT) (20)

A1 (0, FD1 , FD2 ,... , FDM) zzS IEsinc[r(i - 1 + FD T)]I + T7FD1

Comparing to (4), a radar in RSN has more interferences when unknown doppler shifts exist.

3. FD1 = FD 2 ..... FDM = 0, T = 0, and 6i in (6) follows (9), then (18) becomes

AI(0,00,,'". ,0) E (21)

4 Waveform Diversity and Combining with Application to Auto-

matic Target Recognition

In RSN, The radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireline backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggest a hierarchical organization of radar
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sensor networks with the lowest level in the hierarchy being a cluster. As argued in [10] [7] [6] [13],

in addition to helping with scalability and robustness, aggregating sensor nodes into clusters has

additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for

only the nodes in attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their waveform parameters such as Ji to their clusterhead radar,

and the clusterhead radar can combine the waveforms from its cluster members.

In RSN with M radars, the received signal for clusterhead (assume it's radar 1) is

M

rl(u, t) = a c(u)xi(t - ti) exp(j27rFDjt) + n(u, t) (22)
i=1i

where oz(u) stands for radar cross section (RCS) and can be modeled using non-zero constants for

nonfluctuating target and four Swerling target models for fluctuating target[15]; FDj is the doppler

shift of target relative to waveform i; tj is delay of waveform i, and n(u, t) is additive white Gaussian

noise (AWGN). In this paper, we propose a RAKE structure for waveform diversity combining, as

illustrated by Fig. 1.
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According to this structure, the received ri (u, t) is processed by a bank of matched filters, then

the output of branch 1 (after integration) is

IZ1(u;tl,... ,JMFDI, ... , FDM)]

J T/2-T/2 r (u, t)x* (t - tl)ds (23)

T/2 M

[ J oi(u)xi(t - ti)exp(j27rFDit) + n(u, t)]x*(t - tl)dtl (24)
-T/2 i=1

where ~T/2 n(u, t)x*(t - tl)dt can easily be proved to be AWGN, so
where J-T/

In(uti)I T n(ut)xt(t - ti)dt (25)

follows Rayleigh distribution. Assuming t- t2 tM = T, then based on (18),

M

IZi (u; T, FD 1," ,FDM)I Ej Ia(u)Esinc[7r(i - 1 + FDT)]I
i=2

+ ja(u)Esin[WrFD,(T- TI)] + In(u,-)I (26)
T+,FD,

Similarly, we can get the output for any branch m (m = 1, 2,... , M),

M
IZm(u; T, FD 1 ,'.. ,FDM)[ > E Ia(u)Esinc[7r(i-m + FDjT)]I

i=i,i3m

+ c -(u)Esin[-wFD_(T-j Ti) + In(u, -r) (27)

So IZm (u; T, FDj,' , FDM) I consists of three parts, signal (reflected signal from radar m waveform):

a(u)E sin[7rFDm (T- I1-)] ,interferences from other waveforms: ZMIijm Ia(u)Esinc[7r(i - m + FDiT)]I,I T•rFD_

and noise: In(u,7)I.

We can also have three special cases for I Zm (u; T-, FD ...' , FDM) :

1. When FD, . FDM = 0,

I T + In(u,T)l (28)

9



which means if there is no doppler mismatch, there will be no interference from other wave-

form.

2. If -= 0, then (27) becomes

lZ,•(u; 0, FD1,-."IFDm)l
M ]a(u) Esin [7FD. T]]

"•I(u)Esinc[Tr(i - m + FDT)]I + TE [FD, T + In(u)I (29)
i=1l ,i~rn

3. If• =0, and FD, .... FDM = 0, then (27) becomes

IZm(u; 0, 0, 0,'". , 0) l• IEa(u)l + In(u)I (30)

Doppler mismatch happens quite often in target search where target velocity is not yet known.

However, in target recognition, generally high-resolution measurements of targets in range

(T = 0) and doppler are available, so (30) will be used for automatic target recognition.

How to combine all the Zm'S (m = 1,2, ... , M) are very similar to the diversity combining

in communations to combat channel fading, and the combination schemes may be different for

different applications. In this paper, we are interested in applying RSN waveform diversity to

automatic target recognition (ATR), e.g., recognition that the echo on a radar display is that of an

aircraft, ship, motor vehicle, bird, person, rain, chaff, clear-air turbulence, land clutter, sea clutter,

bare montains, forested areas, meteors, aurora, ionized media, or other natural phenomena. Early

radars were "blob" detectors in that they detected the presence of a target and gave its location in

range and angle, and radar began to be more than a blob detector and could provide recognition

of one type of target from another[17]. It is known that small changes in the aspect angle of

complex (multiple scatter) targets can cause major changes in the radar cross section (RCS). This

has been considered in the past as a means of target recognition, and is called fluctuation of radar

cross section with aspect angle, but it has not had much success[17]. In this paper, we propose
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a maximum likelihood automatic target recognition (ML-ATR) algorithm for RSN. We will study

non-fluctuating target as well as fluctuating target.

4.1 ML-ATR for Non-fluctuating Targets

In some sources, the non-fluctuating target is identified as "Swerling 0" or "Swerling 5" model[18].

For non-fluctuating target, the RCS am(u) is just a constant a for a given target. In (30),

In(u, T)l follows Rayleigh distribution since n(u,T) is a Gaussian random variable for given T-,

so IZm(u;0,,... ,0)I follows Rician distribution because signal Ela is a constant. Let Ym =

IZm(u; 0, 0,"" ,0)I, then the probability density function (pdf) of Ym is

S2y, (y2 + A2) ](2Aym)

f(y. ) =I (--- xp ',)U (31)

where

A= Elal, (32)

a 2 is the noise power (with I and Q sub-channel power U2 /2), and Io(.) is the zero-order modified

Bessel function of the first kind. Let y = [Y1, Y2," YM], then the pdf of y is

M

f(Y) = J f (Y.) (33)
m=1

Our ATR is a multiple-category hypothesis testing problem, i.e., to decide a target category

(e.g. aircraft, ship, motor vehicle, bird, etc) based on r1 (u, t). Assume there are totally N categories

and category n target has RCS an, so the ML-ATR algorithm to decide a target category C can

be expressed as,

C = argmaxn=1 f(yJA=EJanl) (34)

= arg max_ 1 I1 2 expt- (35)
m=1
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4.2 ML-ATR for Fluctuating Targets

Fluctuating target modeling is more realistic in which the target RCS is drawn from either the

Rayleigh or chi-square of degree four pdf. The Rayleigh model describes the behavior of a complex

target consisting of many scatters, none of which is dominant. The fourth-degree chi-square models

targets having many scatters of similar strength with one dominant scatter. Based on different

combinations of pdf and decorrelation characteristics (scan-to-scan or pulse-to-pulse decorrelation),

four Swerling models are used[151. In this paper, we will focus on "Swerling 2" model which is

Rayleigh distribution with pulse-to-pulse decorrelation. The pulse-to-pulse decorrelation implies

that each individual pulse results in an independent value for RCS o.

For Swerling 2 model, the RCS Ic(u)l follows Rayleigh distribution and its I and Q subchannels

follow zero-mean Gaussian distributions with variance _y2 . Assume

oe(u) = ai(u) + jeQQ(u) (36)

and n(u) = nI(u) + jnQ(u) follows zero-mean complex Gausian distribution with variance a 2 for

the I and Q subchannels. According to (24), (27), and (30),

IZm(u;0,0,0,.. ,0)1 I jEe(u) +n(u)I (37)

is a more accuate approximation. Since a(u) and n(u) are zero-mean complex Gaussian random

variables, so Ea(u) + n(u) is a zero-mean Gaussian random variable with variance E2%2 + cr2 for

the I and Q subchannels, which means ym Z IZm(u; 0, 0, ... ,0)1 follows Rayleigh distribution with

parameter 'E 2 ,2 + 0,2 ,

f ()exp( E2-P (38)
fY)=E2 7 2 + or E2 72 + 2

E22 and variance is (4--r)(E 2-y2 +_ 2 )
The mean value of Ym is 2 _ ,sThe variance of signal is

(4-7r)E 2'y2  . (4 7)2
2 and the variance of noise is -2
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Let y • [Y1,Y2," ,YM], then the pdfof y is

M

f(Y) = H f(Ym) (39)
m=1

Assume there are totally N categories and category n target has RCS a,(u) (with variance -Y2), so

the ML-ATR algorithm to decide a target category C can be expressed as,

C = argmaxN= 1f(yJY=-Yn) (40)

M 2N Ym exp( Y ym (41)
= arg maxn=1 1- E2,+2 + x, E22n2 (41

rn=1

5 Simulations

Radar sensor networks will be required to detect a broad range of target classes. Too often, the

characteristics of objects that are not of interest (e.g., bird) will be similar to those of threat objects

(e.g., missile). Therefore, new techniques to discriminate threat against undesired detections (e.g.

birds, etc.) are needed. We applied our ML-ATR to this important application, to recognize a

target from many target classes. We assume that the domain of target classes is known a priori (N

in Sections 4.1 and 4.2), and that the RSN is confined to work only on the known domain.

For non-fluctuating target recognition, our targets have 5 classes with different RCS values,

which are summarized in Table 1[17]. We applied the ML-ATR algorithms in Section 4.1 (for

nonfluctuating target case) to classify an unknown target as one of these 5 target classes. At each

average SNR value, we ran Monte-Carlo simulations for 105 times for each target. The average

SNR value is based on the average power from all targets (signal variance), so the actual SNRs

for bird and missile are much lower than the average SNR value. For example, at the average

SNR=16dB, the bird target SNR=-33.1646dB, and missile target SNR=0.8149dB; and at average

SNR=20dB, the bird target SNR=-29.1646dB, and missile target SNR=4.8149dB. In Fig. 2(a)(b),

we plotted the probability of ATR error in bird and missile recognition when they are assumed
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as nonfluctuating targets. Observe both figures, single radar system can't perform well in both

recognitions, and their probability of ATR error is above 10%, which can't be used for real-world

ATR. However, the 5-radar RSN and 10-radar RSN can maintain very low ATR errors. In Fig.

2(c), we plotted the average probability of ATR error for all 5 targets recognition. Since the other

3 targets (different aircrafts) have much higher SNRs, so their ATR error is lower, which makes the

average probability of ATR error lower.

For fluctuating target recognition, we assume the fluctuating targets follow "Swerling 2" model

(Rayleigh with pulse-to-pulse decorrelation), and assume the RCS value listed in Table 1 to be

the standard deviation (std) -'y of RCS an(u) for target n. We applied the ML-ATR algorithm

in Section 4.2 (for fluctuating target case) for target recognition within the 5 targets domain.

Similarly we ran Monte-Carlo simulations at each SNR value. In Fig. 3(a)(b)(c), we plot the ATR

performance for fluctuating targets and compared the performances of single radar system, 5-radar

RSN, and 10-radar RSN. Observe that the two RSNs perform much better than the single radar

system. The ATR error for missile is higher than that of bird because Rayleigh distribution of

missile has lots of overlap with its neighbor targets (aircrafts). Comparing Fig. 2(a)(b)(c) to Fig.

3(a)(b)(c), it is clear that higher SNRs are needed for fluctuating target recognition comparing to

nonfluctuating target recognition. According to Skolnik[171, radar performance with probability of

recognition error (p,) less than 10% is good enough. Our RSN with waveform-diversity can have

probability of ATR error much less than 10% for each target ATR as well as the average ATR for

all targets. However, the single radar system has probability of ATR error much higher than 10%.

Observe Fig. 3(c), the average probability of ATR error of single-radar is impossible to be less than

10% even at extreme high SNR. Our RSN with waveform diversity is very promising to be used for

real-world ATR.
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6 Conclusions and Future Works

We have studied constant frequency pulse waveform design and diversity in radar sensor networks.

We showed that the waveforms can co-exist if the carrier frequency spacing is 1/T between two

radar waveforms. We made analysis on interferences among waveforms in RSN and proposed a

RAKE structure for waveform diversity combining in RSN. As an application example, we applied

the waveform design and diversity to automatic target recognition (ATR) in RSN and proposed

maximum-likehood (ML)-ATR algorithms for nonfluctuating target as well as fluctuating target.

Simulation results show that RSN using our waveform diversity-based ML-ATR algorithm performs

much better than single radar system for nonfluctuating targets and fluctuating targets recognition.

In our future works, we will investigate the ATR when multiple targets co-exist in RSN, and

the number of targets are time-varying. In this paper, we used spatial diversity combining. For

multi-target ATR, we will further investigate spatial-temporal-frequency combining for waveform

diversity in RSN.
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Figure 1: Waveform diversity combining by clusterhead in RSN.
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Abstract-In this paper, we perform some theoretical content, improved robustness to errors, reduced interfer-
studies on constant frequency (CF) pulse waveform design ence emissions, etc. The combination of these is fuelling a
and diversity in radar sensor networks (RSN): (1) the worldwide interest in the subject of waveform design and
conditions for waveform co-existence, (2) interferences among
waveforms in RSN, (3) waveform diversity combining in RSN. the use of waveform diversity techniques.

As an application example, we apply the waveform design In the existing works on waveform design and selection,
and diversity to automatic target recognition (ATR) in RSN Fitzgerald [5] demonstrated the inappropriateness of selec-
and propose maximum-likehood (ML)-ATR algorithms for tion of waveform based on measurement quality alone:
nonfluctuating target as well as fluctuating target. Simulation the interaction between the measurement and the track
results show that our waveform diversity-based ML-ATR
algorithm performs much better than single-waveform ML- can be indirect, but must be accounted for. Bell [3] used

ATR algorithm for nonfluctuating targets or fluctuating information theory to design radar waveform for the mea-
targets. Conclusions are drawn based on our analysis and surement of extended radar targets exhibiting resonance
simulations. phenomena. In [2], singularity expansion method was used

to design some discriminant waveforms such as K-pulse,
I . INTRODUCTION AND MOTIVATION E-pulse, and S-pulse. Sowelam and Tewfik [13] developed

a signal selection strategy for radar target classification,
The network of radar sensors should operate with mul- and a sequential classification procedure was proposed to

tiple goals managed by an intelligent platform network minimize the average number of necessary signal trans-
that can manage the dynamics of each radar to meet the missions. Intelligent waveform selection was studied in
common goals of the platform, rather than each radar [1][6], but the effect of doppler shift was not considered.
to operate as an independent system. Therefore, it is In [7], the performance of constant frequency (CF) and
significant to perform signal design and processing and linear frequency modulated (LFM) waveform fusion from
networking cooperatively within and between platforms of the standpoint of the whole system was studied, but the
radar sensors and their communication modules. Wave- effects of clutter was not considered. In [12], CF and
form diversity is the technology that will allow one or LFM waveforms were studied for sonar system, but it was
more sensors on board a platform to automatically change assumed that the sensor is nonintelligent (i.e., waveform
operating parameters, e.g., frequency, gain pattern, and can't be selected adaptively). All the above studies and
pulse repetition frequency (PRF) to meet the varying en- design methods were focused on the waveform design or
vironments. It has long been recognized that judicious use selection for a single active radar or sensor. In [10], cross-
of properly designed waveforms, coupled with advanced correlation properties of two radars are briefly mentioned
receiver strategies, is fundamental to fully utilizing the and the binary coded pulses using simulated annealing
capacity of the electromagnetic spectrum. However, it is [4] are highlighted. However, the cross-correlation of two
only relatively recent advances in hardware technology that binary sequences such as binary coded pulses (e.g. Barker
are enabling a much wider range of design freedoms to be sequence) are much easier to study than that of two analog
explored. As a result, there are emerging and compelling radar waveforms. In this paper, we will focus on the
changes in system requirements such as more efficient waveform diversity and design for radar sensor networks
spectrum usage, higher sensitivities, greater information using constant frequency (CF) pulse waveform.



The rest of this paper is organized as follows. In Section correlation between xi(t) and x,,(t) be 0,
II, we study the co-existence of radar waveforms. In rT/2
Section III, we analyze the interferences among radar / xj(t)x*(t)dt
waveforms. In Section IV we propose a RAKE structure T/2
for waveform diversity combining and propose maximum- = E f exp[j2,(o + 6j)t] exp[-j27r(/ + 6.)t]dt
likelihood (ML) algorithms for automatic target recogni- T T/2

tion (ATR). In Section V, we provide simulation results = Esinc[7r(6i- 6n)T] (4)
on ML-ATR. In Section VI, we conclude this paper and w cse
provide some future works. If we choose

(5)
T

where i is a dummy index, then (4) can have two casesII. CO-EXISTENCE OF RADAR WAVEFORMS fT/ i E

f xi (t)x* (t)dt -= i =n (6)

In radar sensor networks (RSN), radar sensors will -T/2 n0 io n
interfere with each other and the signal-to-interference- i in (3) can have orthogonal waveforms,
ratio may be very low if the waveforms are not properly So choosing 5 T = i

designed. We will introduce orthogonality as one criterion i.e., the waveforms can co-exist if the carrier spacing

for waveforms design in RSN to make them co-existence. is lT between two radar waveforms. i.e., orthogonality

Besides, the radar channel is narrow-band, so we will also amongst carriers can be achieved by separating the carriers

consider the bandwidth constraint, by an interger multiple of the inverse of waveform pulse
duration. With this design, all the orthogonal waveforms

Inveourmradar sensorsnetworksmweachooseeCFn pulse can work simultaneously. However, there may exist time

delay and doppler shift ambiguity which will have inter-

ferences to other waveforms in RSN.

x(t) = E exp(j27r/3t) - T/2 < t < T/2 (1) 111. INTERFERENCES OF WAVEFORMS IN RADAR

SENSOR NETWORKS

In radar, ambiguity function (AF) is an analytical tool for A. RSN with Two Radar Sensors
waveform design and analysis that succinctly characterizes We are interested in analyzing the interference from one
the behavior of a waveform paired with its matched filter. radar to another if there exist time delay and doppler shift.
The ambiguity function is useful for examing resolution, For a simple case where there are two radar sensors (i

side lobe behavior, and ambiguities in both range and and n), the ambiguity function of radar i (considering
Doppler for a given waveform[9]. For a single radar, interference from radar n is
the matched filter for waveform x(t) is x*(-t), and the
ambiguity function of CF pulse waveform is Ai(ti, tn, F FD,,) (7)

T/2 = I [xi(t) exp(j27rFDt) + xn(t - tn) exp(j27rFD t)]A 7,F) f 1+rx(t) exp (j27rFD s)x* (t -- 7.)dtri( --oo dj 8
-r FD/= T/minx(t-- ,t,)dt

Esin[7rFD(T - I)] - T < T < T(2) < / Xn(t - tn) exp(j27rFDnt)x*(t - ti)dt
TirFD - -T/2+max(t ,tj)

f T/2

However, the above ambiguity is for one radar only (no + -T/2 x(t)exp (j27rFDt)x!(t - ti)dt (9)

co-existing radar). J T/2+t, 9

For radar sensor networks, the waveforms from differ- fT/2+min(ti,t.) t)x (t - ti)dt

ent radars will interfere with each other. We choose the a- T/2+max(t(,t n t)) exp(j27rF ( t
waveform for radar i as

Esin[7rFD, (T - [til)] (10)

xi(t) = exp[j27r(O3 + 6j)t] - T/2 < t < T/2 (3) TiFFD(
To make analysis easier, we assume tj = t,, = T, then (10)

which means there is a frequency shift 6i for radar i. To can be simplified as

minimize the interference from one waveform to the other, Aj(7-, FDe, FD) I jEsinc[7r(n - i + FDjT)]j
optimal values for 6i should be determined to have the Esin[rFD, (T- 17-) (11)
waveforms orthogonal to each other, i.e., let the cross- + TTrFDi
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B. RSN with M Radar Sensors of branch I (after integration) is

It can be extended to an RSN with M radars. Assuming
time delay -r for each radar is the same, then the ambiguity Zl(U;t, • •• ,tMFD1, ' FD)

function of radar 1 (considering interferences from all the fT/2

other M - 1 radars with CF pulse waveforms) can be-- _ rl(u,t)xt(t- t)ds (14)
expressed as M~T/2M

M -E[j cai(u)xi(t - ti) exp(j27rFD t)
A, (T, FD,"" , FDM) Z lEsinc[7r(i - 1 + FD, T)]I i1

i=2 +n(u, t)]x,(t - tl)dtl (15)
Esin[TrFD,(T- I1)] (12) T/2t,

+ T~rFD( where fT/2 n(u, t)x*l(t - t)dt can easily be proved to

be AWGN, so

IV. WAVEFORM DIVERSITY AND COMBINING WITH

APPLICATION TO AUTOMATIC TARGET RECOGNITION In(u, tl) I fT/2nut~zlit - t1 )dt (16)

In RSN, The radar sensors are networked together in an
ad hoc fashion. Scalability concern suggest a hierarchical
organization of radar sensor networks with the lowest level follows Rayleigh distribution. Assuming tl = t2

in the hierarchy being a cluster. In RSN, each radar can tM = r-, then based on (12),

provide their waveform parameters such as 5i to their
clusterhead radar, and the clusterhead radar can combine IZl (u; r, FDI , ,FDM)

the waveforms from its cluster members. In RSN with M

M radars, the received signal for clusterhead (assume it's E [a(u)Esinc[7r(i - 1 + FDT)]I

radar 1) is i=2

+ I+ a(u)Esin[7rFD1 (T - IM)] + In(u,n-)I (17)
rl (u, t) a(u)xi(t - ti) exp(j27rFDmt) + n(u, t) TirED1

(13) Similarly, we can get the output for any branch m (m =

where a(u) stands for radar cross section (RCS) and can be 1, 2,. M),

modeled using non-zero constants for nonfluctuating target
and four Swerling target models for fluctuating target[9]; Z.(U; -, FD, I FDM)

FD, is the doppler shift of target relative to waveform i; M

ti is delay of waveform i, and n(u, t) is additive white E ja(u)Esinc[7r(i- m + FDT)]I

Gaussian noise (AWGN). In this paper, we propose a i=1,iom

RAKE structure for waveform diversity combining, as + 5(u)Esin[7rFDm(T - TI)] + jn(u,nr)j (18)
illustrated by Fig. 1. T7rFDm

So IZm(u;T, FD.,''' ,FDM)I consists of three parts,

signal (reflected signal from radar m waveform):

T7rFDm interferences from other

waveforms: Ja1 IQ(u)Esinc[7r(i - m + FDT)II,
Combinin, and noise: In(u,

(t t- We can have three special cases for

IZm(u;n, FD 1,"'" ,FDM)A:

S1) When ED, FDm 0,

IZmr(U; T, 0, '' ,O))

Fig. 1. Waveform diversity combining by clusterhead in RSN. T 17-1)] + In(u,nr)I (19)

According to this structure, the received rl (u, t) is which means if there is no doppler mismatch, there
processed by a bank of matched filters, then the output will be no interference from other waveform.
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2) Ifr = 0, then (18) becomes o 2 is the noise power (with I and Q sub-channel power
rFDM) a 2 /2), and Io(') is the zero-order modified Bessel function

M of the first kind. Let y = [Y1, y2,' , YM], then the pdfof

MMZ I(u)Esinc[lr(i -m +FDT)]I i Mi=a,i4M f(Y) =1 f (Ym) (24)
+ e(u)E sin[1rFDm T]

+ rFD, T + In(u)1 (20) m=1
T7rFDrn Our ATR is a multiple-category hypothesis testing prob-

3) If -r = 0, and FD, .. FDM = 0, then (18) lem, i.e., to decide a target category (e.g. aircraft, ship,
becomes motor vehicle, bird, etc) based on ri (u, t). Assume there

IZm(u;0,0,0,. 0)1 IE a(u)I + In(u)l (21) are totally N categories and category n target has RCS
ac, so the ML-ATR algorithm to decide a target category

Doppler mismatch happens quite often in target C can be expressed as,

search where target velocity is not yet known. How- N

ever, in target recognition, generally high-resolution C = argmaxN=1 f(y1\= EIcan)

measurements of targets in range (r- = 0) and N M 
2 ym (ylm + E 2cn) 11  2EIanIYm

doppler are available, so (21) will be used for au- = argmax 1  or 2 ] o

tomatic target recognition. m=1

How to combine all the Zm's (m = 1,2,. ,M) are

very similar to the diversity combining in communations B. ML-ATR for Fluctuating Targets

to combat channel fading, and the combination schemes Fluctuating target modeling is more realistic in which
may be different for different applications. In this paper, the target RCS is drawn from either the Rayleigh or

we are interested in applying RSN waveform diversity to chi-square of degree four pdf. The Rayleigh model de-
automatic target recognition (ATR), e.g., recognition that scribes the behavior of a complex target consisting of
the echo on a radar display is that of an aircraft, ship, motor many scatters, none of which is dominant. The fourth-

vehicle, bird, etc. Early radars were "blob" detectors in that degree chi-square models targets having many scatters

they detected the presence of a target and gave its location of similar strength with one dominant scatter. Based on
in range and angle, and radar began to be more than a different combinations of pdf and decorrelation character-

blob detector and could provide recognition of one type istics (scan-to-scan or pulse-to-pulse decorrelation), four
of target from another[10]. It is known that small changes Swerling models are used[9]. In this paper, we will focus
in the aspect angle of complex (multiple scatter) targets on "Swerling 2" model which is Rayleigh distribution with

can cause major changes in the radar cross section (RCS). pulse-to-pulse decorrelation. The pulse-to-pulse decorre-
This has been considered in the past as a means of target lation implies that each individual pulse results in an

recognition, and is called fluctuation of radar cross section independent value for RCS ca.
with aspect angle, but it has not had much success[10]. In For Swerling 2 model, the RCS Ia(u)l follows Rayleigh
this paper, we propose a maximum likelihood automatic distribution and its I and Q subchannels follow zero-mean

target recognition (ML-ATR) algorithm for RSN. We will Gaussian distributions with variance -y2. Assume

study non-fluctuating target as well as fluctuating target. () = (+ jcsQ(U) (25)

A. ML-ATR for Non-fluctuating Targets and n(u) = nh(u) + jnQ(u) follows zero-mean complex

In some sources, the non-fluctuating target is identified Gausian distribution with variance a.2 for the I and Q

as "Swerling 0" or "Swerling 5" model[l 1]. For non- subchannels. According to (15), (18), and (21),

fluctuating target, the RCS Oam(U) is just a constant c for a IZm(u; 0,0, 0, ,0)1 I IEca(u) + n(u)l (26)
given target. In (21), In(u, 7-)l follows Rayleigh distribution
since n(u, T-) is a Gaussian random variable for given r, is a more accuate approximation. Since a(u) and n(u)

so IZm(u; 0, 0, 0)1 follows Rician distribution because are zero-mean complex Gaussian random variables, so

signal EI a is a constant. Let Ym = IZm(u; 0, 0,'' ,0)I, Ea(u) + n(u) is a zero-mean Gaussian random variable
then the probability density function (pdf) of Ym is with variance E 2

y
2 

+ U
2 for the I and Q subchannels,

A2 y, (°2 + \
2) which means Ym = IZm(u; 0, 0,' , 0)l follows Rayleigh

f(Yn) = exp[- 2 (m) (22) distribution with parameter /E 2' 2 + C2 ,

where = EIcl, (23) f = E 2( 2 + a2 exp( 2 2  (27)
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The mean value of Ym is V!(E 2
_+a

2 ) and variance is

(4-7r)(E
2

"
2

+o
2

) The variance of signal is (4--r)E
2

-y
2 and ,02 ' r ~~2

the variance of noise is 2

Let y = [Yl, Y2,' ,YM], then the pdf of y is

f(Y) = fi f(ym) (28)
m=1 1

0 
10 18 10 20 21 22

Assume there are totally N categories and category n A-.rao1 SNR (dB)

target has RCS a,,(u) (with variance y 2), so the ML-ATR (a)

algorithm to decide a target category C can be expressed
as,

C = argmaxn=lf(yY7 ="70) (29)
Al 2 0N _ _ Ym exp( _Y_-

argmaxN 1 fI E2 2 + U2 +U _xE2_n2 0r2

V. SIMULATIONS 1o-, 7 7 20 21 22

Radar sensor networks will be required to detect a Aerge SNR (dB)

broad range of target classes. Too often, the characteristics (b)

of objects that are not of interest (e.g., bird) will be
similar to those of threat objects (e.g., missile). Therefore, 10,'

new techniques to discriminate threat against undesired
detections (e.g. birds, etc.) are needed. We applied our ML-
ATR to this important application, to recognize a target 0`
from many target classes. We assume that the domain ofr
target classes is known a priori (N in Sections IV-A and 10' ° 0

IV-B), and that the RSN is confined to work only on the ___

know n dom ain. , 7 'a ,A o s o ,0 2

TABLE I (c)

RCS VALUES AT MICROWAVE FREQUENCY FOR 5 TARGETS. Fig. 2. Probability of ATR error for nonfluctuating targets at different

average SNR (dB) values. (a) bird, (b) missile, (c) the average probability
Index ni Target RCS (m ) of ATR error for 5 targets.

I Bird 0.01
2 Conventional unmanned winged missile 0.5
3 Small single-engine aircraft 1
4 Small flighter aircraft or 4 passenger jet 2 missile are much lower than the average SNR value. For

example, at the average SNR=16dB, the bird target SNR=-
33.1646dB, and missile target SNR=0.8149dB; and at

For non-fluctuating target recognition, our targets have average SNR=20dB, the bird target SNR=-29.1646dB, and
5 classes with different RCS values, which are summa- missile target SNR=4.8149dB. In Fig. 2(a)(b), we plotted
rized in Table I[10]. For fluctuating target recognition, we the probability of ATR error in bird and missile recognition
assume the fluctuating targets follow "Swerling 2" model when they are assumed as nonfluctuating targets. Observe
(Rayleigh with pulse-to-pulse decorrelation), and assume both figures, single radar system can't perform well in
the RCS value listed in Table I to be the standard deviation both recognitions, and their probability of ATR error is
(std) -y. of RCS acs(u) for target n. We applied the above 10%, which can't be used for real-world ATR.
ML-ATR algorithms in Section IV-A (for nonfluctuating However, the 5-radar RSN and 10-radar RSN can maintain
target case) and Section IV-B (for fluctuating target case) very low ATR errors. In Fig. 2(c), we plotted the average
to classify an unknown target as one of these 5 target probability of ATR error for all 5 targets recognition.
classes. At each average SNR value, we ran Monte-Carlo Since the other 3 targets (different aircrafts) have much
simulations for 105 times for each target. The average higher SNRs, so their ATR error is lower, which makes the
SNR value is based on the average power from all tar- average probability of ATR error lower. Similarly, we plot
gets (signal variance), so the actual SNRs for bird and the performance in fluctuating target recognition in Fig.
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1°°0 ' We showed that the waveforms can co-exist if the carrier
,o-'jo o Ifrequency spacing is 11T between two radar waveforms.

We made analysis on interferences among waveforms
in RSN and proposed a RAKE structure for waveform
"diversity combining in RSN. As an application example,

lo` we applied the waveform design and diversity to automatic
target recognition (ATR) in RSN and proposed maximum-

01 
likehood (ML)-ATR algorithms for nonfluctuating target0-20 21 22 23 24 25 26

on... 2.. (dB) as well as fluctuating target. Simulation results show that

(a) RSN using our waveform diversity-based ML-ATR algo-
rithm performs much better than single radar system for

- nonfluctuating targets and fluctuating targets recognition.

S
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Abstract

Automatic target recognition (ATR) in target search phase is very challenging because the

target range and mobility are not yet perfectly known, which results in delay-doppler uncer-

tainty. In this paper, we firstly perform some theoretical studies on radar sensor network (RSN)

design based linear frequency modulation (LFM) waveform: (1) the conditions for waveform

co-existence, (2) interferences among waveforms in RSN, (3) waveform diversity in RSN. Then

we apply RSN to ATR with delay-doppler uncertainty and propose maximum-likekihood (ML)

ATR algorithms for fluctuating target and nonfluctuating target. Simulation results show that

our RSN vastly reduces the ATR error comparing to a single radar system in ATR with delay-

doppler uncertainty. The proposed waveform design and diversity algorithms can also be applied

to active RFID sensor networks and underwater acoustic sensor networks.

Index Terms : radar sensor networks, waveform diversity, automatic target recognition,

maximum-likelihood, interferences, delay-doppler uncertainty.
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1 Introduction and Motivation

The goal for any target recognition system is to give the most accurate interpretation of what a

target is at any given point in time. There are two classes of motion models of target, one for

maneuvering targets and one for non-maneuvering (constant velocity and acceleration) targets.

The area that is still lacking in target recognition is the ability to detect reliably when a target is

beginning a maneuver where its speed and range are uncertain. The tracking system can switch the

algorithms applied to the problem from a non-maneuvering set to the maneuvering set when a target

is beginning a maneuver. But when the tracker does finally catch up to the target after the maneuver

and then perform ATR, the latency is too high. In time critical mission situation, such latency in

ATR is not tolerable. In this paper, we are interested in studying automatic target recongition with

range and speed uncertainty, i.e., delay-doppler uncertainty, using radar sensor networks (RSN).

The network of radar sensors should operate with multiple goals managed by an intelligent platform

network that can manage the dynamics of each radar to meet the common goals of the platform,

rather than each radar to operate as an independent system. Therefore, it is significant to perform

signal design and processing and networking cooperatively within and between platforms of radar

sensors and their communication modules. In this paper, we are interested in studying algorithms

on radar sensor network (RSN) design based linear frequency modulation (LFM) waveform: (1)

the conditions for waveform co-existence, (2) interferences among waveforms in RSN, (3) waveform

diversity in RSN. Then we apply RSN to automatic target recognition (ATR) with delay-doppler

uncertainty.

In nature, diverse waveforms are transmitted by animals for specific applications. For example,

when a bat and a whale are in the search mode for food, they emit a different type of waveform than

when they are trying to locate their prey. The Doppler-invariant waveforms that they transmit

are environment dependent [8]. Hence, in RSN, it may be useful to transmit different waveform
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from different neighbor radars and they can collaboratively perform waveforms diversity for ATR.

Sowelam and Tewfik [21] developed a signal selection strategy for radar target classification, and

a sequential classification procedure was proposed to minimize the average number of necessary

signal transmissions. Intelligent waveform selection was studied in [1][9], but the effect of doppler

shift was not considered. In [12], the performance of constant frequency (CF) and linear frequency

modulated (LFM) waveform fusion from the standpoint of the whole system was studied, but the

effects of clutter was not considered. In [20], CF and LFM waveforms were studied for sonar system,

but it was assumed that the sensor is nonintelligent (i.e., waveform can't be selected adaptively). All

the above studies and design methods were focused on the waveform design or selection for a single

active radar or sensor. In [18], cross-correlation properties of two radars are briefly mentioned

and the binary coded pulses using simulated annealing [4] are highlighted. However, the cross-

correlation of two binary sequences such as binary coded pulses (e.g. Barker sequence) are much

easier to study than that of two analog radar waveforms. In [10], CF waveform design was applied

to RSN with application to ATR without any delay-doppler uncertainty. In this paper, we will

focus on the waveform design fusion for radar sensor networks using LFM waveform.

The rest of this paper is organized as follows. In Section 2, we study the co-existence of LFM

radar waveforms. In Section 3, we analyze the interferences among LFM radar waveforms. In

Section 4 we propose a RAKE structure for waveform diversity combining and propose maximum-

likelihood (ML) algorithms for automatic target recognition (ATR) with delay-doppler uncertainty.

In Section 5, we provide simulation results on ML-ATR with delay-doppler uncertainty. In Section

6, we conclude this paper and provide some future works.
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2 Co-existence of LFM Radar Waveforms

In radar sensor networks (RSN), radar sensors will interfere with each other and the signal-to-

interference-ratio may be very low if the waveforms are not properly designed. We will introduce

orthogonality as one criterion for waveforms design in RSN to make them co-existence. Besides,

the radar channel is narrow-band, so we will also consider the bandwidth constraint.

In our radar sensor networks, we choose linear frequency modulation (LFM) waveform. The

LFM waveform can be defined as

x(t) - Texp(j27r/3t2) - T/2 < t < T/2 (1)

In radar, ambiguity function (AF) is an analytical tool for waveform design and analysis that

succinctly characterizes the behavior of a waveform paired with its matched filter. The ambiguity

function is useful for examing resolution, side lobe behavior, and ambiguities in both range and

Doppler for a given waveform[16]. For a single radar, the matched filter for waveform x(t) is x*(-t),

and the ambiguity function of LFM waveform is[16]

T/2
A (T, FD) = f /2I x(t) exp (j27rFDt)x* (t - rd

SEsin[(FD + 1T)(T -- TI T < T (2)

TWr(FD + /3 T)

Three special cases can simplify this AF:

1. WhenT=0,

A(0,FD)= E sin( rFDT) .
TIr (FD) (3)

2. and when FD = 0,

A(T,O) - Esin[w/r(T- T-)] -T < T < T (4)

3. and

A(0, 0) = E (5)
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However, the above ambiguity is for one radar only (no co-existing radar).

For radar sensor networks, the waveforms from different radars will interfere with each other.

We choose the waveform for radar i as

xi(t) = exp[j27r2(3t2 + 3jt)] - T/2 < t < T/2 (6)

which means there is a frequency shift 6i for radar i. To minimize the interference from one waveform

to the other, optimal values for 6i should be determined to have the waveforms orthogonal to each

other, i.e., let the cross-correlation between xi(t) and xn(t) be 0,

I T/2T /2 xi(t)x*n(t)dt
-T/2

=- E I T/2 exp[j2w(,3t 2 + 6,t)] exp[-j27r(/Ot 2 + 5nt)]dtT _T/2

- Esinc[7r(6i - 3n)T] (7)

If we choose

i
Ti (8)

where i is a dummy index, then (7) can have two cases

T/2 E i=n

xj(t)x*(t)dt = (9)
-T/2 n 

(

10 ion

So choosing 6i = T' in (6) can have orthogonal waveforms, i.e., the waveforms can co-exist if the

carrier spacing is 1/T between two radar waveforms. i.e., orthogonality amongst carriers can be

achieved by separating the carriers by an interger multiple of the inverse of waveform pulse duration.

With this design, all the orthogonal waveforms can work simultaneously. However, there may exist

time delay and doppler shift ambiguity which will have interferences to other waveforms in RSN.
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3 Interferences of LFM Waveforms In Radar Sensor Networks

3.1 RSN with Two Radar Sensors

We are interested in analyzing the interference from one radar to another if there exist time delay

and doppler shift. For a simple case where there are two radar sensors (i and n), the ambiguity

function of radar i (considering interference from radar n) is

Ai (tiI tn, FDi , FD ý) (10)

= I j [xi(t)exp(j27rFD~t) + Xn(t - tn)exp(j27rFDt)]x*(t - ti)dtl (11)

]T/2+ma(tt) Xn(t - tn) exp(j27rFDt)x*(t - ti)dt

~"T/2

+ T/2 xi (t) exp (j27rFDit)x*(t - ti)dt (12)
J- T/2+ti
_ 2 mi •t,tn) x~ n

f T/2±max(tjt,) Xn(t - tn) exp(j27rFDnt)x*(t - ti)dt

+ Esin[r(FD, +,3ti)(T- Itil)] (13)+ TýT(FD, +/3ti)

To make analysis easier, we assume tj = t, = T, then (13) can be simplified as

Ai(T,FD,,FD,) :IEsinc[w(n - i + FDT)]I

+ Esin[7r(FD•+I,3)(T - in)] (14)T----(FKj +T)•](4

Some special cases of (14) are listed as follows:

1. If FDj = FDý = 0, then (14) becomes

Ai(-T, 0, 0) ýz- E sin [7r,-(T zT- I )T (15)

1 7rOTT

2. If -r = 0, then (14) becomes

Aj(0, FDj,FDj) :IEsinc[w(n- i + FDT)]I

+ IEsinc(wFDjT)I (16)
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3. If FDj = FD -= 0, T = 0, and 6i and 6, follow (8), then (14) becomes

Ai(0,0,0) z E (17)

3.2 RSN with M Radar Sensors

It can be extended to an RSN with M radars. Assuming time delay T for each radar is the same,

then the ambiguity function of radar 1 (considering interferences from all the other M - 1 radars

with CF pulse waveforms) can be expressed as

M

AI(,rFD1 ,"" ,FDM) : ZEsinc[wr(i - 1 + FDiT)]
i=2

+ jEsin[7r(FD1 +/5r)(T - TI)] (18)+ T~r(FD, + OT)

Similarly, we can have three special cases,

1. If FD1 = FD2 . FDM 0, then (18) becomes

Ai,0, 0," 0 E sin[7r,3T(T - IT1)] (19)
7r/3TT

comparing it against (3), it shows that our derived condition in (6) can have a radar in RSN

get the same signal strength as that of a single radar (no co-existing radar) when the doppler

shift is 0.

2. If T = 0, then (18) becomes

A1 (0, FD 1 , FD 2 ,"." , FDM) (20)

M

1 Esinc[7r(i - 1 + FDT + /3TT)]

Comparing to (4), a radar in RSN has more interferences when unknown doppler shifts exist.

3. FD1 = FD 2 .... FDM = 0, r- = 0, and 6i in (6) follows (8), then (18) becomes

AI(0,0,0,. 7 0) ; E (21)



4 Application to Automatic Target Recognition (ATR) with Delay-

Doppler Uncertainty

In RSN, The radar sensors are networked together in an ad hoc fashion. They do not rely on a

preexisting fixed infrastructure, such as a wireline backbone network or a base station. They are self-

organizing entities that are deployed on demand in support of various events surveillance, battlefield,

disaster relief, search and rescue, etc. Scalability concern suggest a hierarchical organization of radar

sensor networks with the lowest level in the hierarchy being a cluster. As argued in [11] [7] [6] [14],

in addition to helping with scalability and robustness, aggregating sensor nodes into clusters has

additional benefits:

1. conserving radio resources such as bandwidth;

2. promoting spatial code reuse and frequency reuse;

3. simplifying the topology, e.g., when a mobile radar changes its location, it is sufficient for

only the nodes in attended clusters to update their topology information;

4. reducing the generation and propagation of routing information; and,

5. concealing the details of global network topology from individual nodes.

In RSN, each radar can provide their waveform parameters such as 6i to their clusterhead radar,

and the clusterhead radar can combine the waveforms from its cluster members.

In RSN with M radars, the received signal for clusterhead (assume it's radar 1) is

M

rl(u, t) = > a(u)xi(t - ti) exp(j2wFDit) + n(u, t) (22)
i=1

where oz(u) stands for radar cross section (RCS) and can be modeled using non-zero constants for

nonfluctuating target and four Swerling target models for fluctuating target[16]; FDj is the doppler
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shift of target relative to waveform i; tj is delay of waveform i, and n(u, t) is additive white Gaussian

noise (AWGN). In this paper, we propose a RAKE structure for waveform diversity combining, as

illustrated by Fig. 1.

According to this structure, the received rl (u, t) is processed by a bank of matched filters, then

the output of branch 1 (after integration) is

IZ1(u;tli," ,tM, FD1 , ... , FDM)I

,"T/2

= [T/2 ri(u,t)x* (t t-)ds (23)
J -T/2

J T/2 M

= i [E ai(u)xi(t- ti) exp(j27rFDit) + n(u,t)]x*(t- tl)dtI (24)
T/2

where f T/ 2 n(u, t)x*(t - tl)dt can easily be proved to be AWGN, let
where jT/

n(u,ti) f j / n(u,t)x*(t - tl)dt (25)

follows Rayleigh distribution. Assuming tl = t2 =.... tM = T, then based on (18),

IZI(u;TFD1 ,'". ,FDM)I

M

" a S n(u)Esinc[7r(i - 1 + FDT)]
i=2

+ a(u)Esin[w(FD1 + 0,T)(T -17-)] +n(u,T)l (26)Tr (FD + )3T

Similarly, we can get the output for any branch m (m = 1, 2,... ,

IZm(u; T, FD," , FDM)l

M

"IE 5 a(u)Esinc[7r(i - m + FDiT)]
i=l,iom

+ a(u)E sin[wr(FD_ +/3T)(T - i-n)] + n(u, T) (27)T r(FD_ +,T

So I Zm (U; T, FDj, , FDM)I consists of three parts, signal (reflected signal from radar m waveform):
o•(u)E sin[7r( FDm +pT)(T-]"rI)] 1

T1T(FDm +/3T) interferences from other waveforms: Eim=l'jo IQ(u)Esinc[7r(i - m + FDiT)]I,
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and noise: In(u, r)I. Delay-doppler uncertainty happens quite often in target search and recognition

where target range and velocity are not yet perfectly known.

We can also have three special cases for IZm(u;T, FD ," , FDM)I:

1. When FD .. .FDM = 0,

JZ,,(u;-r, 0, 0,... 0)1

SIa(u)Esin [V3r(T - •)] + n(u,-r) (28)

2. If T-= 0, then (27) becomes

IZm(u;O, FDi,. ,FDM)l

M

I Z (u)Esinc[w(i - m + FDT)] + n(u) 1 (29)
i=1

3. If -r= 0, and FD, .... FDM = 0, then (27) becomes

IZm(u; 0, 0, 0,... ,0)I z IEa(u) + n(u)l (30)

How to combine all the Zm's (m = 1,2,... , M) are very similar to the diversity combining

in communations to combat channel fading, and the combination schemes may be different for

different applications. In this paper, we are interested in applying RSN waveform diversity to

automatic target recognition (ATR), e.g., recognition that the echo on a radar display is that of an

aircraft, ship, motor vehicle, bird, person, rain, chaff, clear-air turbulence, land clutter, sea clutter,

bare montains, forested areas, meteors, aurora, ionized media, or other natural phenomena. Early

radars were "blob" detectors in that they detected the presence of a target and gave its location in

range and angle, and radar began to be more than a blob detector and could provide recognition

of one type of target from another[18]. It is known that small changes in the aspect angle of

complex (multiple scatter) targets can cause major changes in the radar cross section (RCS). This

10



has been considered in the past as a means of target recognition, and is called fluctuation of radar

cross section with aspect angle, but it has not had much success[18]. In this paper, we propose

a maximum likelihood automatic target recognition (ML-ATR) algorithm for RSN. We will study

both fluctuating target and non-fluctuating target.

4.1 ML-ATR for Fluctuating Targets with Delay-Doppler Uncertainty

Fluctuating target modeling is more realistic in which the target RCS is drawn from either the

Rayleigh or chi-square of degree four pdf. The Rayleigh model describes the behavior of a complex

target consisting of many scatters, none of which is dominant. The fourth-degree chi-square models

targets having many scatters of similar strength with one dominant scatter. Based on different

combinations of pdf and decorrelation characteristics (scan-to-scan or pulse-to-pulse decorrelation),

four Swerling models are used[16]. In this paper, we will focus on "Swerling 2" model which is

Rayleigh distribution with pulse-to-pulse decorrelation. The pulse-to-pulse decorrelation implies

that each individual pulse results in an independent value for RCS a.

For Swerling 2 model, the RCS Ia(u)I follows Rayleigh distribution and its I and Q subchannels

follow zero-mean Gaussian distributions with variance y2. Assume

a (u) = cei(u) + jaQ(u) (31)

and n(u) = nz(u) + jnQ(u) follows zero-mean complex Gausian distribution with variance o2 for

the I and Q subchannels. Observe (27), for given T, FD, (i = 1,... , M),

M + a(u)E sin[7r(FD _ + OT) (T -- I-rj)]
ac(u)Esinc[7r(i - m + FDIT)] + T)n (FDm +/3T) I

M sin[7r(FD_ ±/3T)(T - ITI)]]

a(u)E[ E sinc[Tr(i- m + FD T)] + s 7(FDm 7-) (32)
i=l,i3rn

follows zero-mean complex Gaussian distributions with variance E2 -Y2 1F'ii0msinc[ir(i - m +

FDjT)] + sin[7r(FD +,-r)(T--jIl)1] 2 for the I and Q subchannels. Since n(u, T) also follows zero-mean
T7Tr(FDm +OT)

11



Gaussian distribution, so IZm(u; i-, FD1 ,""* , FD,)I of (27) follows Rayleigh distribution. In real

world, the perfect values of T and FD, are not known in the target search phase and the mean values

of 7- and FDi are 0, so we just assume the parameter of this Rayleigh distribution b = /E 2y 2 + a2

(when T and FDi equal to 0).

Let y, = IZm,(u;-r, FD1," ,FDM)I, then

Ym ex( Y~m )(3

f(Ym) -E 2 ' 2 --. 2 ep E23'2±2 (33)

The mean value of Ym is •(E2•+r2), and variance is (4-7r)(E 2 ,y2+U2) The variance of signal is

Te m v

(4-ir)E 2_y2 and the variance of noise is (4-7)0-2
2 2

Let y = [Y1, Y2, ,YM], then the pdf of y is

M

/(Y) = H f(Ym) (34)
M=1

Our ATR is a multiple-category hypothesis testing problem, i.e., to decide a target category

(e.g. different aircraft, motor vehicle, etc) based on ri (u, t). Assume there are totally N categories

and category n target has RCS Czn(U) (with variance 7,2), so the ML-ATR algorithm to decide a

target category C can be expressed as,

C = arg max f,(yI-Y = Yn) (35)

M 2

= arg mYm exp(- y2m
=1.. n + E 2,2 + 0,2

4.2 ML-ATR for Non-fluctuating Targets with Delay-Doppler Uncertainty

In some sources, the non-fluctuating target is identified as "Swerling 0" or "Swerling 5" model[19].

For non-fluctuating target, the RCS a(u) is just a constant a for a given target. Observe (27), for

12



given T, FD, (i = 1,.. ,M),

M o(u)Esin[7r(FDm + O-T)(T - IT1)] (36)

Z a(u)Esinc[ir(i - m + FDiT)] + Th(FD +,3-)
i=1,i7£m

M sin[7r(FD,, +± 3T)(T - ITr)]] (37)

- aE[ E sin r(i-m+FDT)]+ T(FD T)
i.= ,i7rn

is just a constant. Since n(u, -r) follows zero-mean Gaussian distribution, so IZm(u; T, FD1 .... , FD)

of (27) follows Rician distribution with direct path value

M - + + sin[7r(FDm +-3-r)(T- TI)]] (38)I: Tsi -(FDF +T8T)

i=i,iim

Since T and FD, are uncertain and zero-mean, so we just use the approximation

A = (39)

which is obtained when T and FD, equal to 0.

ALet Ym = IZm(U; T, FD1,"", FDM)l, then the probability density function (pdf) of Ym is

2ym exp-(Y2 +A 2 )]1 (2Aym)

f(Ym) -- 2-- exp[- o 2  ] 2 (40)

where o2 is the noise power (with I and Q sub-channel power a 2/2), and Io(.) is the zero-order

modified Bessel function of the first kind. Let y = [YI, Y2," , YM], then the pdf of y is

M

f(Y) = 1] f(Ym) (41)
m=l

The ML-ATR algorithm to decide a target category C based on y can be expressed as,

C = arg max f(ylX=ElaI[)n=l,... ,N

M 2 ym (y 2 + E 2 on) 22 2EIOcnIYm)=arg max -[ exp[-

n=l ... ,N 2 0 0( 2
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5 Simulations

Radar sensor networks will be required to detect a broad range of target classes. In this paper, we

applied our ML-ATR to automatic target recognition with delay-doppler uncertainty. We assume

that the domain of target classes is known a priori (N in Sections 4.1 and 4.2), and that the RSN

is confined to work only on the known domain.

For fluctuating target recognition, our targets have 6 classes with different RCS values, which are

summarized in Table 1[18]. We assume the fluctuating targets follow "Swerling 2" model (Rayleigh

with pulse-to-pulse decorrelation), and assume the RCS value listed in Table 1 to be the standard

deviation (std) -yn of RCS can(u) for target n. We applied the ML-ATR algorithm in Section 4.1 (for

fluctuating target case) for target recognition within the six targets domain. We chose T = 0.1ms

and /3 = 106. At each average SNR value, we ran Monte-Carlo simulations for 105 times for each

target. In Fig. 2(a)(b)(c), we plot the average ATR error for fluctuating targets with different

delay-doppler uncertainty and compared the performances of single radar system, 5-radar RSN,

and 10-radar RSN. Observe these three figures:

1. The two RSNs vastly reduce the ATR error comparing to a single radar system in ATR

with delay-doppler uncertainty, e.g., the 10-radar RSN can achieve ATR error 2% comparing

against the single radar system with ATR error 37% at SNR = 32dB with delay-doppler

uncertainty T C [-0.1T,0.1T] and FDj E [-200Hz,200Hz].

2. Our LFM waveform design can tolerate reasonable delay-doppler uncertainty which are tes-

tified by Fig. 2(b)(c).

3. According to Skolnik[18], radar performance with probability of recognition error (Pe) less

than 10% is good enough. Our 10-radar RSN with waveform-diversity can have probability

of ATR error much less than 10% for the average ATR for all targets. However, the single
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radar system has probability of ATR error much higher than 10%. Our RSN with waveform

diversity is very promising to be used for real-world ATR.

4. Observe Fig. 2(a)(c), the average probability of ATR error in 2(c) is not as sensitive to

the SNR as that in 2(a), i.e., ATR error curve slope becomes flat with higher delay-doppler

uncertainty, which means the delay-doppler uncertainty can dominate the ATR performance

when it's too high.

For non-fluctuating target recognition, our targets have 6 classes with different RCS values,

which are summarized in Table 1[18]. We applied the ML-ATR algorithms in Section 4.2 (for

nonfluctuating target case) to classify an unknown target as one of these 6 target classes. We chose

T = 0.lms and 3 = 106. At each average SNR value, we ran Monte-Carlo simulations for 105

times for each target. In Fig. 3(a)(b)(c), we plotted the probability of ATR error with different

delay-doppler uncertainty. Observe these figures,

1. The two RSNs tremendously reduce the ATR error comparing to a single radar system in ATR

with delay-doppler uncertainty, e.g., the 10-radar RSN can achieve ATR error 9% comparing

against the single radar system with ATR error 22% at SNR = 22dB with delay-doppler

uncertainty T- E [-0.2T, 0.2T] and FDj E [-500Hz, 500Hz].

2. Comparing Fig. 2(a)(b)(c) against Fig. 3(a)(b)(c), the gain of 10-radar RSN for fluctuating

target recognition is much larger than that for non-fluctuating target recognition, which means

our RSN has better capacity to handle the fluctuating targets. In real world, fluctuating

targets are more meaningful and realistic.

3. Comparing Fig. 3(a)(b)(c) against Fig. 2(a)(b)(c), the ATR needs much lower SNR for

nonfluctuating target recognition because Rician distribution has direct path component.
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6 Conclusions and Future Works

We have studied LFM waveform design and diversity in radar sensor networks (RSN). We showed

that the LFM waveforms can co-exist if the carrier frequency spacing is 11T between two radar

waveforms. We made analysis on interferences among waveforms in RSN and proposed a RAKE

structure for waveform diversity combining in RSN. We applied the RSN to automatic target

recognition (ATR) with delay-doppler uncertainty and proposed maximum-likehood (ML)-ATR

algorithms for fluctuating target and non-fluctuating target. Simulation results show that RSN

using our waveform diversity-based ML-ATR algorithm performs much better than single radar

system for fluctuating targets and nonfluctuating targets recognition. It is also demonstrated that

our LFM waveform-based RSN can handle the delay-doppler uncertainty which quite often happens

for ATR in target search phase.

The waveform design and diversity algorithms proposed in this paper can also be applied to

active RFID sensor networks and underwater acoustic sensor networks because LFM waveforms

can also be used by these active sensor networks to perform collaborative monitoring tasks. In

this paper, the ATR is for single target recognition. We will continuously investigate the ATR

when multiple targets co-existence in RSN and each target has delay-doppler uncertainty. In our

waveform diversity combining, we have used spatial diversity combining in this paper. We will

further investigate spatial-temporal-frequency combining for RSN waveform diversity.
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Table 1: RCS values at microwave frequency for 6 targets.

Index n Target RCS

1 Small single-engine aircraft 1

2 Large fiighter aircraft 6

3 Medium bomber or jet airliner 20

4 Large bomber or jet airliner 40

5 Jumbo jet 100

6 Pickup truck 200
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Figure 1: Waveform diversity combining by clusterhead in RSN.
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delay-doppler uncertainty. (a) no delay-doppler uncertainty, (b) with delay-doppler uncertainty,
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Abstract- Automatic target recognition (ATR) in target operatively within and between platforms of radar sensors
search phase is very challenging because the target range and their communication modules. In this paper, we are
and mobility are not yet perfectly known, which results in interested in studying algorithms on radar sensor network
delay-doppler uncertainty. In this paper, we firstly perform
some theoretical studies on radar sensor network (RSN) (RSN) design based linear frequency modulation (LFM)
design based linear frequency modulation (LFM) waveform: waveform: (1) the conditions for waveform co-existence,
(1) the conditions for waveform co-existence, (2) interferences (2) interferences among waveforms in RSN, (3) waveform
among waveforms in RSN, (3) waveform diversity in RSN. diversity in RSN. Then we apply RSN to automatic target
Then we apply RSN to ATR with delay-doppler uncertainty recognition (ATR) with delay-doppler uncertainty.
and propose maximum-likekihood (ML) ATR algorithms reonitio( r) withfdelay e urainty.
for fluctuating target and nonfluctuating target. Simulation In nature, diverse waveforms are transmitted by animals
results show that our RSN vastly reduces the ATR error for specific applications. For example, when a bat and a
comparing to a single radar system in ATR with delay- whale are in the search mode for food, they emit a different
doppler uncertainty, type of waveform than when they are trying to locate their

prey. The Doppler-invariant waveforms that they transmit
are environment dependent [8]. Hence, in RSN, it may be

I. INTRODUCTION AND MOTIvATION useful to transmit different waveform from different neigh-
The goal for any target recognition system is to give bor radars and they can collaboratively perform waveforms

the most accurate interpretation of what a target is at any diversity for ATR. Sowelam and Tewfik [21] developed
given point in time. There are two classes of motion models a signal selection strategy for radar target classification,
of target, one for maneuvering targets and one for non- and a sequential classification procedure was proposed to
maneuvering (constant velocity and acceleration) targets. minimize the average number of necessary signal trans-
The area that is still lacking in target recognition is the abil- missions. Intelligent waveform selection was studied in
ity to detect reliably when a target is beginning a maneuver [1][9], but the effect of doppler shift was not considered.
where its speed and range are uncertain. The tracking In [12], the performance of constant frequency (CF) and
system can switch the algorithms applied to the problem linear frequency modulated (LFM) waveform fusion from
from a non-maneuvering set to the maneuvering set when the standpoint of the whole system was studied, but the
a target is beginning a maneuver. But when the tracker effects of clutter was not considered. In [20], CF and
does finally catch up to the target after the maneuver and LFM waveforms were studied for sonar system, but it was
then perform ATR, the latency is too high. In time critical assumed that the sensor is nonintelligent (i.e., waveform
mission situation, such latency in ATR is not tolerable. In can't be selected adaptively). All the above studies and
this paper, we are interested in studying automatic target design methods were focused on the waveform design or
recongition with range and speed uncertainty, i.e., delay- selection for a single active radar or sensor. In [10], CF
doppler uncertainty, using radar sensor networks (RSN). waveform design was applied to RSN with application to
The network of radar sensors should operate with multiple ATR without any delay-doppler uncertainty. In this paper,
goals managed by an intelligent platform network that can we will focus on the waveform design fusion for radar
manage the dynamics of each radar to meet the common sensor networks using LFM waveform.
goals of the platform, rather than each radar to operate The rest of this paper is organized as follows. In Section
as an independent system. Therefore, it is significant to II, we study the co-existence of LFM radar waveforms. In
perform signal design and processing and networking co- Section III, we analyze the interferences among LFM radar



waveforms. In Section IV we propose a RAKE structure If we choose
for waveform diversity combining and propose maximum- 3i = (5)
likelihood (ML) algorithms for automatic target recogni- T

tion (ATR) with delay-doppler uncertainty. In Section V, where i is a dummy index, then (4) can have two cases
we provide simulation results on ML-ATR with delay- .T/2 E
doppler uncertainty. In Section VI, we conclude this paper _ xi(t)x* (t)dt = 0 (6)
and provide some future works. T/2 0 i n

II. CO-EXISTENCE OF LFM RADAR WAVEFORMS So choosing 6i = T in (3) can have orthogonal waveforms,

In radar sensor networks (RSN), radar sensors will i.e., the waveforms can co-exist if the carrier spacing

interfere with each other and the signal-to-interference- is 1/T between two radar waveforms. i.e., orthogonality

ratio may be very low if the waveforms are not properly amongst carriers can be achieved by separating the carriers

designed. We will introduce orthogonality as one criterion by an interger multiple of the inverse of waveform pulse

for waveforms design in RSN to make them co-existence. duration. With this design, all the orthogonal waveforms

Besides, the radar channel is narrow-band, so we will also can work simultaneously. However, there may exist time

consider the bandwidth constraint, delay and doppler shift ambiguity which will have inter-

In our radar sensor networks, we choose linear frequency ferences to other waveforms in RSN.

modulation (LFM) waveform. The LFM waveform can be
defined as III. INTERFERENCES OF LFM WAVEFORMS IN RADAR

SENSOR NETWORKS

z (t) = T exp(j27r/3t 2) - T/2 < t < T/2 (1) A. RSN with Two Radar Sensors

In radar, ambiguity function (AF) is an analytical tool for We are interested in analyzing the interference from one
waveform design and analysis that succinctly characterizes radar to another if there exist time delay and doppler shift.
the behavior of a waveform paired with its matched filter. For a simple case where there are two radar sensors (i
The ambiguity function is useful for examing resolution, and n), the ambiguity function of radar i (considering
side lobe behavior, and ambiguities in both range and interference from radar n) is
Doppler for a given waveform[16]. For a single radar,
the matched filter for waveform x(t) is x*(-t), and the Ai(ti,tn, FD,, FD) (7)

ambiguity function of LFM waveform is[16] I j[xi(t) exp(j27rFD=t) + x•(t - tn) exp(j2IrFDt)]
fT/2 -- 0 "r~)ep~2r~t)+xt-dt x~j7F~)

A(7, FD) = f/ r(t) exp (j27rFDt)x*(t - r)dt x*(t - ti)dtI (8)
VT/27-f T/2 Tmin( ti,t. )

E sin[7r(FD + 0-r)(T - ITI)]< I x n (t - t,,) exp(j27rFD. t)x* (t - ti)dt

Tlr(FD +-•T) _ T < - <(23T/2

However, the above ambiguity is for one radar only (no + T xi(t) exp (j27rFD~t)x*(t - t)dt(9)
co-existing radar). -T/2q-+t(

For radar sensor networks, the waveforms from differ- fT/2+min(ti,t.)
ent radars will interfere with each other. We choose the = / Xn(t - t ) exp(j27rFD t)xj*(t -ti)dt

waveform for radar i as -T/2+max(t,,tý)

S2 t Esin[7r(FD, + O3ti)(T - Itil)] (10)
t) = ~ exp[j2ir(j~t2 +t)] -T/2 < t < T/2 (3) + T~r(FD, + ,ti)

which means there is a frequency shift 6i for radar i. To To make analysis easier, we assume tj = t,, = r, then (10)
minimize the interference from one waveform to the other, can be simplified as
optimal values for 6i should be determined to have the Ai(,r,FDi,FD,) z jEsinc[7r(n-i+FDT)]j
waveforms orthogonal to each other, i.e., let the cross-
correlation between xi(t) and xj(t) be 0, + E sin[7r(FD, + /37)(T - I)(]11)

~T/2 Tr(FD, +4 pT)

_ xi(t)x* (t)dt
T/2 B. RSN with M Radar Sensors

=- fT/2 exp[j27r('3t 2 + 6it)] exp[-j27r(/3t 2 + 3nt)]dt It can be extended to an RSN with M radars. Assuming
T T/ 2  time delay r for each radar is the same, then the ambiguity

= Esinc[7r(6i - 6n)T] (4) function of radar 1 (considering interferences from all the
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other M - 1 radars with CF pulse waveforms) can be
expressed as M (tt .. t IZ I

A1 (TI FD1, , FDM) Esinc[ir(i 1 + FDT)] r,(u,t) It x(t --)
•: E sinc[7r --- 1-+ Z21I Diversity

Si=2 JOdt Combining

+ E sin[lr(FD, +/37r)(T -: ,(t •t)--+ Ti (FD +: 0-r 1Z, I__

IV. APPLICATION TO AUTOMATIC TARGET xtt-tM)

RECOGNITION (ATR) WITH DELAY-DOPPLER
UNCERTAINTY

In RSN, The radar sensors are networked together in an Fig. 1. Waveform diversity combining by clusterhead in RSN.

ad hoc fashion. They do not rely on a preexisting fixed
infrastructure, such as a wireline backbone network or of branch 1 (after integration) is
a base station. They are self-organizing entities that are
deployed on demand in support of various events surveil- IZi(u;tl,." , tM, FD,," , FDA
lance, battlefield, disaster relief, search and rescue, etc. T/2
Scalability concern suggest a hierarchical organization of =- / ri(u, t)xl (t - tl)ds (14)
radar sensor networks with the lowest level in the hierarchy
being a cluster. As argued in [11] [7] [6] [14], in addition to T/2 M

helping with scalability and robustness, aggregating sensor = T/2 [Zai(u)xi(t - ti) exp(j21rFD~t)
nodes into clusters has additional benefits: i=i

1) conserving radio resources such as bandwidth; +n(u, t)]xt(t - tl)dtj (15)

2) promoting spatial code reuse and frequency reuse; where f T/ 2 n(u, t)xl(t - tl)dt can easily be proved to
3) simplifying the topology, e.g., when a mobile radar be AWGN, let

changes its location, it is sufficient for only the

nodes in attended clusters to update their topology n(u, tj) 6 j n(u, t)i1(t - t1 )dt (16)
information; _J-T/2

4) reducing the generation and propagation of routing follows Rayleigh distribution. Assuming t 1 = t2
information; and, tM = r then based on (12),

5) concealing the details of global network topology
from individual nodes. IZ, (u;r, FD1 ,"" ,FDM)I

In RSN, each radar can provide their waveform parameters M

such as bi to their clusterhead radar, and the clusterhead 1 1Z a(u)Esinc[wr(i - 1 + FDT)]

radar can combine the waveforms from its cluster mem- i=2

bers. + a(u)Esin[lr(FD, + 0-r)(T- IM)] + n(u,,r117)
In RSN with M radars, the received signal for cluster- TTr(FD1 +37T)

head (assume it's radar 1) is Similarly, we can get the output for any branch m (m

M 1,2,... ,M),
r, (u, t) = a(u)xi(t - ti) exp(j27rFDt) + n(u, t) IZm(u;r, FD,"" FDA

i= 1

(13) M
where ac(u) stands for radar cross section (RCS) and can be zi I a a(u)Esinc[7r(i - m + FDjT)]
modeled using non-zero constants for nonfluctuating target i=1,i~m
and four Swerling target models for fluctuating target[16]; a(u)E sin[lr(FDm + ,/r)(T - Jrl)] + n(u, ro18)
FDj is the doppler shift of target relative to waveform i; T~r(FDm + /

3
T)

t2 is delay of waveform i, and n(u, t) is additive white So IZm(u; 1, FD,,.. , F ) consists of three parts,
Gaussian noise (AWGN). In this paper, we propose a signal (reflected signal from radar m waveform):
RAKE structure for waveform diversity combining, as (u)Esin[7r(FDm_+±)(T-j-r)] interce frmote
illustrated by Fig. 1. T1r(FDm +Oi) interferences from other

According to this structure, the received rl(u,t) is waveforms: :i=l, im ta(u)Esinc[7r(i - m + FD,T)]1,
processed by a bank of matched filters, then the output and noise: In(u,-T)I. Delay-doppler uncertainty happens

3



quite often in target search and recognition where target different combinations of pdf and decorrelation character-
range and velocity are not yet perfectly known. istics (scan-to-scan or pulse-to-pulse decorrelation), four

We can also have three special cases for Swerling models are used[16]. In this paper, we will focus
IZm (u;Tr, FDi,," , FD )I: on "Swerling 2" model which is Rayleigh distribution with

1) When FD1 ..... FDM = 0, pulse-to-pulse decorrelation. The pulse-to-pulse decorre-
lation implies that each individual pulse results in an

IZm(u;-r,0,0,.. ,0)1 independent value for RCS a.
a(u)E sin[lr-3T(T - +TI) -)( 1) For Swerling 2 model, the RCS la(u)i follows Rayleigh

"+ n * r)-19) distribution and its I and Q subchannels follow zero-mean

2) If 7- = 0, then (18) becomes Gaussian distributions with variance -y2. Assume

IZm(u; 0, FD1 , FDM)I a(u) = al (u) + jaQ(u) (22)

M and n(u) = ni (u) + jnQ(u) follows zero-mean complex

,z:I S a(u)Esinc[r(i - m + FDT)] + n((O2)) Gausian distribution with variance Ur2 for the I and Q sub-
i=1 channels. Observe (18), for given 7, FDi (i = 1,... , M),

3) If -T = 0, and FD1  .... FDM = 0, then (18) M
becomes E a(u)Esinc[7r(i - m + FDiT)]

IZm(u; 0,0,0,,. ,0)1 z IEQ(u)+ n(u)l (21) a(u)Esin[lr(FDm +

How to combine all the Zm's (m = 1, 2,.., M) are T1r(FDm +,3T)
very similar to the diversity combining in communations M
to combat channel fading, and the combination schemes ca(u)E[ 5 sinc[7r(i - m + FDmT)]
may be different for different applications. In this paper, i=l,iom
we are interested in applying RSN waveform diversity + sin[r(FDm + O-)(T- I-rl)]
to automatic target recognition (ATR), e.g., recognition T~r(FD+] (23)
that the echo on a radar display is that of an aircraft, follows zero-mean complex Gaussian distributions with
ship, motor vehicle, bird, person, rain, chaff, clear-air variance E2y2[ZM ,ismSinc[7r(i - m + FDT)] +
turbulence, land clutter, sea clutter, bare montains, forested sin[C(FD_ +)3,)(T--ri•m2 for the I and
areas, meteors, aurora, ionized media, or other natural T"(m +3) 1 Q subchannels. Since
phenomena. Early radars were "blob" detectors in that they n(u, -r) also follows zero-mean Gaussian distribution, so

detected the presence of a target and gave its location IZm(U;Tr, FD1,'. , FD)I of(18) follows Rayleigh distri-
in range and angle, and radar began to be more than a bution. In real world, the perfect values of - and FD, are

blob detector and could provide recognition of one type not known in the target search phase and the mean values
of target from another[l 8]. It is known that small changes of -r and FD, are 0, so we just assume the parameter of
in the aspect angle of complex (multiple scatter) targets this Rayleigh distribution b = VE" 2 + o.2 (when r- and

can cause major changes in the radar cross section (RCS). FD, equal to 0).

This has been considered in the past as a means of target Let y,, IZm (u; 7, FD 1 ,... , FDm), then
recognition, and is called fluctuation of radar cross section 2
with aspect angle, but it has not had much success[18]. In f(Ym) Y' exp( 2Ym 2) (24)
this paper, we propose a maximum likelihood automatic E 2y 2 +o02

target recognition (ML-ATR) algorithm for RSN. We will The mean value of Y is E2+ , and variance is
study both fluctuating target and non-fluctuating target. (4-ir)(E2

-Y2+±
2) The variance of signal is (4-r) and

2 T 2
the variance of noise is (4-7r0o2

A. ML-ATR for Fluctuating Targets with Delay-Doppler to 2

Uncertainty Let y = [Y1, Y2,'.' ,YM], then the pdf of y is

Fluctuating target modeling is more realistic in which M
the target RCS is drawn from either the Rayleigh or f(Y) = J f(ym) (25)
chi-square of degree four pdf. The Rayleigh model de- m=1
scribes the behavior of a complex target consisting of Our ATR is a multiple-category hypothesis testing prob-
many scatters, none of which is dominant. The fourth- lem, i.e., to decide a target category (e.g. different aircraft,
degree chi-square models targets having many scatters motor vehicle, etc) based on ri(u,t). Assume there are
of similar strength with one dominant scatter. Based on totally N categories and category n target has RCS a,, (u)
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(with variance -y2,), so the ML-ATR algorithm to decide a The ML-ATR algorithm to decide a target category C
target category C can be expressed as, based on y can be expressed as,

C = arg max f(yly =-yn) (26) C = arg max f(yI,\=ElanI)
n=l,.. ,N n=l,-.. ,N

S1M y'2"172V (M 2 Ea')I(2 Elnv= arg m M Ym exp(- 2 - arg max M exp[- E 2 Q 2  
E __

n= ,... N .- F y + .
2  E 2 ' 2 
2- -U2  n= ,... ,N H '

M=1 m= 1

B. ML-ATR for Non-fluctuating Targets with Delay- V. SIMULATIONS

Doppler Uncertainty Radar sensor networks will be required to detect a broad

In some sources, the non-fluctuating target is identified range of target classes. In this paper, we applied our ML-
as "Swerling 0" or "Swerling 5" model[19]. For non- ATR to automatic target recognition with delay-doppler
fluctuating target, the RCS a(u) is just a constant a uncertainty. We assume that the domain of target classes
for a given target. Observe (18), for given T, FD, (i = is known a priori (N in Sections IV-A and IV-B), and that
1,... ,M), the RSN is confined to work only on the known domain.

M TABLE I

Z a(u)Esinc[7r(i - m + FDT)] RCS VALUES AT MICROWAVE FREQUENCY FOR 6 TARGETS.
i~1,i~rn

a(u)Esinl[r(FDm + ,3r)(T - In)] [Index n [ Target I RcsI
+ Tir(FD_ +)3-r) (27) 1 Small single-engine aircraft 1

M 2 Large flighter aircraft 6

3 Medium bomber or jet airliner 20
= WE[ E sinc[lr(i- m + FDIT)] 4 Large bomber or jet airliner 40

i=l1,im 5 Jumbo jet 100
+ sin[r(FD, +3r)(T - 17-1)] (26 Pickup truck 200

+ 5f[(D+ r)T-T) 1 (28)
T7r(FD + 130-)

is just a constant. Since n(u, -r) follows zero-mean For fluctuating target recognition, our targets have 6
classes with different RCS values, which are summarizedGau)followss ian distribution, so th direct pah Fv e o in Table I[18]. We assume the fluctuating targets follow
"Swerling 2" model (Rayleigh with pulse-to-pulse decor-

M relation), and assume the RCS value listed in Table I to be
A = aE[ y sinc[r(i - m + FDT)] the standard deviation (std) -n of RCS a,(u) for target n.

i~li~ra We applied the ML-ATR algorithm in Section IV-A (for

+ sin[Ir(FDr +/13r)(T - TI)] (29) fluctuating target case) for target recognition within the six
TIr(FDm + O3) targets domain. We chose T = 0.1ms and 0 = 106. At

Since 7- and FD, are uncertain and zero-mean, so we just each average SNR value, we ran Monte-Carlo simulationsusine the androxmarnn afor 105 times for each target. In Fig. 2(a)(b)(c), we plot

the average ATR error for fluctuating targets with different
A = aE (30) delay-doppler uncertainty and compared the performances

of single radar system, 5-radar RSN, and 10-radar RSN.
which is obtained when r and FD, equal to 0. Observe these three figures:

/,,
Let ym = IZ (u; 7, FD .'. , FDM)I, then the proba- 1) The two RSNs vastly reduce the ATR error com-

bility density function (pdf) of ym is paring to a single radar system in ATR with delay-

2ym exp[. (y2 + A2 )Io(2Ay ( doppler uncertainty, e.g., the 10-radar RSN can

C'= "-ep- "2 ].(2 ) (31) achieve ATR error 2% comparing against the single
radar system with ATR error 37% at SNR = 32dB

where u 2 is the noise power (with I and Q sub-channel with delay-doppler uncertainty -r E [-OlT, 01T]
power u 2/2), and Io(') is the zero-order modified Bessel and FD, E [-200Hz, 200Hz].

A
function of the first kind. Let y = [Yl, Y2,"" , yM], then 2) Our LFM waveform design can tolerate reasonable
the pdf of y is delay-doppler uncertainty which are testified by Fig.

M 2(b)(c).

f(Y) = fi f(Y.) (32) 3) According to Skolnik[18], radar performance with

m=1 probability of recognition error (P,) less than 10%
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is good enough. Our 10-radar RSN with waveform-n
diversity can have probability of ATR error much
less than 10% for the average ATR for all targets.
However, the single radar system has probability of 5 Redins

ATR error much higher than 10%. Our RSN with
waveform diversity is very promising to be used for
real-world ATR.

4) Observe Fig. 2(a)(c), the average probability of ATR
error in 2(c) is not as sensitive to the SNR as that
in 2(a), i.e., ATR error curve slope becomes flat 2326 27 28 29 30 31 32

with higher delay-doppler uncertainty, which means A-oag.oSNR dS)

the delay-doppler uncertainty can dominate the ATR (a)

performance when it's too high. 10

For non-fluctuating target recognition, our targets have 6
classes with different RCS values, which are summarized
in Table I[18]. We applied the ML-ATR algorithms in
Section IV-B (for nonfluctuating target case) to classify an ,0
unknown target as one of these 6 target classes. We chose
T = 0.1ms and 3 = 106. At each average SNR value, we
ran Monte-Carlo simulations for 10' times for each target. SingleRadar51 Radars

In Fig. 3(a)(b)(c), we plotted the probability of ATR error 10Rd...

with different delay-doppler uncertainty. Observe these 10 26 27 28 29 30 31 32

fi gu res, Av. rag. SNR (dB)

1) The two RSNs tremendously reduce the ATR error (b)

comparing to a single radar system in ATR with
delay-doppler uncertainty, e.g., the 10-radar RSN can
achieve ATR error 9% comparing against the single
radar system with ATR error 22% at SNR = 22dB
with delay-doppler uncertainty T- G [-0.2T, 0.2T] -
and FDj E f-500Hz, 500Hz].

2) Comparing Fig. 2(a)(b)(c) against Fig. 3(a)(b)(c), the
gain of 10-radar RSN for fluctuating target recog- SingletRadar

nition is much larger than that for non-fluctuating 10 Radar,

target recognition, which means our RSN has better 27-2802` 30 31 32

capacity to handle the fluctuating targets. In real AverageSNR(dsB

world, fluctuating targets are more meaningful and (c)
realistic.

3) Comparing Fig. 3(a)(b)(c) against Fig. 2(a)(b)(c), Fig. 2. The average probability of ATR error for 6 fluctuating
targets with different delay-doppler uncertainty. (a) no delay-doppler

the ATR needs much lower SNR for nonfluctuating uncertainty, (b) with delay-doppler uncertainty, r E [-0.1T, 0.1T] and

target recognition because Rician distribution has FD, E [-200Hz,200Hz], and (c) with delay-doppler uncertainty,

direct path component. r E [-0.2T, 0.2T] and FDj E [-500Hz, 500Hz].

VI. CONCLUSIONS AND FUTURE WORKS

We have studied LFM waveform design and diversity in using our waveform diversity-based ML-ATR algorithm
radar sensor networks (RSN). We showed that the LFM performs much better than single radar system for fluc-
waveforms can co-exist if the carrier frequency spacing tuating targets and nonfluctuating targets recognition. It
is l1T between two radar waveforms. We made analysis is also demonstrated that our LFM waveform-based RSN
on interferences among waveforms in RSN and proposed a can handle the delay-doppler uncertainty which quite often
RAKE structure for waveform diversity combining in RSN. happens for ATR in target search phase.
We applied the RSN to automatic target recognition (ATR) In this paper, the ATR is for single target recognition.
with delay-doppler uncertainty and proposed maximum- We will continuously investigate the ATR when multiple
likehood (ML)-ATR algorithms for fluctuating target and targets co-existence in RSN and each target has delay-
non-fluctuating target. Simulation results show that RSN doppler uncertainty. In our waveform diversity combining,
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Abstract--In this paper, we propose a Knowledge-based group analysis was proposed. A situation/threat assessment
Ubiquitous and Persistent Sensor networks (KUPS) for threat fusion system was proposed in [2]. Other approaches
assessment, of which "sensor" is a broad characterization include multiple attribute decision making[3], bayesian
concept. It means diverse data or information from ubiqui- networks[17], etc.
tous and persistent sensor sources such as organic sensors and
human intelligence sensors. Our KUPS for threat assessment Current shortfalls in warfighting functionality result
consists of two major steps: threat detection using fuzzy logic from limitations in technology. For example, accurate and
systems and threat parameter estimation using radar sensor timely information about battlespace objects and events
networks. Our fuzzy logic systems can combine the linguistic is not available to support warfighter decision making,
knowledge from different intelligent sensors. We propose a (includes reliable location, tracking, combat identification,
maximum-likelihood (ML) estimation algorithm for target
RCS parameter estimation, and we show that our ML esti- and targeting information). Too often, the characteristics of
mator is unbiased and the variance of parameter estimation objects that are not of interest will be similar to those of
matches the Cramer-Rao lower bound. Simulations further threat objects. The conventional approach to false alarm
validate these theoretical results. control is to reduce sensitivity of the radar in areas of

clutter, using Sensitivity Time Control (STC) [21]. How-

I. INTRODUCTION AND MOTIVATION ever, this approach is not effective for small and slow
objects. In [9], we proposed a maximum-likelihood (ML)

In current and future military operational environments, automatic target recognition (ATR) algorithm using con-
such as Global War on Terrorism (GWOT) and Maritime stant frequency (CF) waveform design and diversity, and
Domain Awareness (MDA), warfighters require technolo- perfect delay-doppler are assumed in ATR. In [10], we ap-
gies evolved to support information needs regardless of plied linear frequency modulation (LFM) waveform design
location and consistent with the users level of command and diversity to ATR with delay-doppler uncertainty. The
or responsibility and operational situation. To support this above two approaches assumed that different targets in the
need, the DoD has developed the concept of Network domain-of-classification have different radar cross section
Centric Warfare (NCW), defined as "military operations (RCS), e.g., bird has RCS value 0.01m 2 and conventional
that exploit state-of-the-art information and networking unmanned winged missle has RCS value 0.5m 2 . However,
technology to integrate widely dispersed human decision different targets may have the same RCS values, e.g., a man
makers, situational and targeting sensors, and forces and and a small single-engine aircraft have the same RCS value
weapons into a highly adaptive, comprehensive system to 1m 2 at microwave frequencies [21]. Besides, different
achieve unprecedented mission effectiveness." threat targets, such as missile and large aircraft, may need

Some works have been reported on threat assessment. In different combat action, so we have to classify the threat
[5], an intelligent threat assessment processor using genetic target type. In this paper, we propose Knowledge-based
algorithms and fuzzy logic was proposed. In [16], threat Ubiquitous and Persistent Sensor networks (KUPS) for
assessment was studied in tactical airborne environments. Threat Assessment.
In [8], neural network was applied to threat assessment The rest of this paper is organized as follows. In
for automated visual surveillance. In [4], an intelligent Section II, we introduce a new concept, Knowledge-based
assistant to provide automatic situation and threat advice Ubiquitous and Persistent Sensor networks (KUPS); in
in the Air Defence Ground Environment was proposed. Section III, we propose Situation-Aware Knowledge-Based
In [1], a situation and threat assessment model based on Threat Assessment Using INT Sensors; in Section IV, we



propose a maximum-likelihood estimation algorithm for target RCS parameter value using radar sensor net-
threat target RCS parameter estimation using radar sensor works. Based on the estimated RCS parameter, the
network and provide Monte Carlo simulation results. In KUPS will advise what kind of target this threat
Section V, we conclude this paper and discuss future is. The ML estimation algorithm can help to esti-
research, mate the RCS parameter 0 (parameter in Rayleigh

distribution for fluctuating target). However, same

II. INTRODUCTION TO KNOWLEDGE-BASED RCS parameter may mean different targets, threat

UBIQUITOUS AND PERSISTENT SENSOR NETWORKS or non-threat. For example, for 0 = 2, the target can
(KUPS): A NEW CONCEPT be a small flighter aircraft, a small pleasure boat, a

bicycle[21], or any other similar size target. So we
In this paper, we propose a Network Centric Warfare have to use Step 1 to make decision first, and only

model, Knowledge-based Ubiquitous and Persistent Sensor threat target requires further classification for further
networks (KUPS), of which "sensor" is a broad character- action.
ization concept. It means diverse data or information from We will discuss these two steps in the following sections.
ubiquitous and persistent sensor sources such as

"* Organic sensors (e.g., radar, electro-optic and infrared, III. SITUATION-AWARE KNOWLEDGE-BASED THREAT
acoustic, and non-acoustic) deployed on air, ground, ASSESSMENT USING INT SENSORS
surface, or unattended platforms. In knowledge-based threat assessment using INT sen-

"* Signals Intelligence (SIGINT) including Electronic sors, fuzzy rules are used to represent the linguistic and
Intelligence (ELINT) and Communication Intelli- numerical knowledge uncertainties from INT sensors, and
gence (COMINT), for example, it can assign mean- fuzzy logic systems are used to perform knowledge-based
ingful metadata to each collection, and metadata is decision making on threat assessment. We give a brief
the standardized characterization of data providing introduction on fuzzy logic systems first.
descriptors (such as stability, activity, membership, or
structure). A. Overview of Fuzzy Logic Systems

"* Human Intelligence (HUMINT), e.g., to identify spe-
cific people/cells/groups and relationships. Figure I shows the structure of a fuzzy logic system

"• Measurement and Signatures Intelligence (MASINT), (FLS) [12]. When an input is applied to a FLS, the
e.g., to provide specific weapon system identifica- inference engine computes the output set corresponding
tions, chemical compositions and material content. to each rule. The defuzzifer then computes a crisp output

"* Imagery Intelligence (IMINT), e.g., to track vehicles from these rule output sets. Consider a p-input 1-output
through urban area. FLS, using singleton fuzzification, center-of-sets defuzzi-

"* Open Source Intelligence (OSINT), e.g., to provide fication [14] and "IF-THEN" rules of the form
text data collection. R' : IF x, is F1 and x2 is F1 and ... and x is Ft

All these sources of information need to be integrated via THEN y is G1.
"sensor networking" to accomplish a mission. In this paper, Assuming singleton fuzzification, when an input x' =

we apply KUPS to threat assessment, and the organic
sensors we use are pulse doppler radars. {x, Xp} is applied, the degree of firing corresponding

Our KUPS for threat assessment is a hierarchical archi- to the lth rule is computed as

tecture which consists of two major steps: hF'(X4) *"PF1 (X2) .. "Fp (X') = 7tl/FL (Xý) (1)

1) Step 1: Perform situation-aware knowledge-based where * and T both indicate the chosen t-norm. There are
threat assessment using INT sensors (e.g. SIGINT, many kinds of defuzzifiers. In this paper, we focus, for il-
HUMINT sensors). Fuzzy rules are used to rep- lustrative purposes, on the center-of-sets defuzzifier [141. It
resent the linguistic knowledge uncertainties from computes a crisp output for the FLS by first computing the
HUMINT sensors, and fuzzy logic systems are used centroid, cG,, of every consequent set G1, and, then com-
to perform knowledge-based decision making on puting a weighted average of these centroids. The weight
threat assessment (e.g., threat or non-threat), If it is corresponding to the lth rule consequent centroid is the
assessed as a non-threat, then stops; if it is assessed degree of firing associated with the lth rule, Ti=IFI (Xi),

as a threat, then go to the next step to classify what so that
kind of target this threat is.

2) Step 2: Perform target RCS value estimation us- Ycos(X') = '--•k cGTi=I/'FJ,(xD (2)
ing radar sensor networks. We propose a maximal- I=1 '1 F (XZ)

likelihood (ML) estimation algorithm to estimate where M is the number of rules in the FLS.
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FUZZY LOGIC SYSTEM

and High. The consequent - the possibility that this target
RLES • is a threat - was divided into 5 levels, Very Strong, Strong,

CRSPCRISP Medium, Weak, Very Weak. So we need to set up 33 = 27
, ....__~ rR DEFZ OuT..UT (because every antecedent has 3 fuzzy sub-sets, and there

are 3 antecedents) rules for this FLS. Table I summarizes

IOFTPN the fuzzy rules we used in this paper. We used trapezoidalSr i FUZZY OUTPUT

..... ZYINPUT L ---------------- SETS membership functions (MFs) to represent low, and high,
and triangle MFs to represent moderate. We show these

Fig. 1. The structure of a fuzzy logic system. MFs in Fig. 2.

TABLE I

B. Situation-aware Knowledge-based Threat Assessment FUZZY RULES USED IN THE KUPS. ANTE I IS THE NUMBER OF

Using Fuzzy Logic Systems SWITCHES FROM NON-MANEUVERING SET TO THE MANEUVERING

In our FLS design for threat assessment, we will con- SET OR VICE VERSA; ANTE 2 THE FREQUENCY OF APPEARANCE OF

sider the following knowledge-based antecedents: SUCH TYPE OF TARGET; ANTE 3 IS THE IMPORTANCE OF

1) The number of switches from non-maneuvering set GEOLOCATION OF THIS TARGET; AND CONSEQUENT IS THE

to the maneuvering set. When a target is begin- POSSIBILITY THATTHIS TARGET IS A THREAT.

ning a maneuver from a non-maneuvering class, the Rule # Ante I Ante 2 Ante 3 Consequent

tracking system can switch the algorithms applied 1 low low low Weak

to the problem from a non-maneuvering set to the 2 low low moderate Medium
3 low low high Strong

maneuvering set. The errors in distance from where 4 low moderate low Very Weak

the tracker estimates the position of a target and 5 low moderate moderate Weak

the actual position can be very large when the 6 low moderate high Medium

incorrect motion models are applied to the problem. 7 low high low Very Weak
8 low high moderate Weak

Additionally, when the tracker does finally catch up 9 low high high Medium

to the target after the maneuver, the track will "jump" 10 moderate low low Medium

across the operator's scope giving a very unrealistic 11 moderate low moderate Strong
12 moderate low high Very Strong

and unreliable picture of what that target is actually 13 moderate moderate low Weak
doing. So a threat target will quite often switch from 14 moderate moderate moderate Medium

a non-maneuvering set to the maneuvering set, and 15 moderate moderate high Strong

vice versa, to avoid being tracked all the time. This 16 moderate high low Very Weak
17 moderate high moderate Weak

knowledge can be used as an antecedent to make 18 moderate high high Medium

threat assessment. 19 high low low Medium

2) The frequency of appearance of such type of target 20 high low moderate Strong

based on some a priori knowledge such as archival 21 high low high Very Strong
22 high moderate low Weak

radar data. Generally threat targets are new compar- 23 high moderate moderate Medium

ing to archival radar data. 24 high moderate high Strong

3) The importance of geolocation of this target based 25 high high low Very Weak
26 high high moderate Weakon the geographical information systems (GISs). 27 high high high Moderate

Examples of important geolocations include large
metroplex, landmarks, military bases, airport, etc.
Threats happen quite often in such areas. For every input (x1 , X2, X3), the output is computed

The above three antecedents are all knowledge-based using
and it can be collected from the INT sensors. A typical
rule using the above three antecedents can be ) 71 (Xl)bFp (X2 )ppF (x3)elav9

IF the number of switches from non-maneuvering set to X2, X 3 ) (3)= PF(X1)AF 2 (xX3)~
the maneuvering set is High, and the frequency of I I

appearance of such target is Low, and the importance of By repeating these calculations for Vxi e [0, 10], we
geolocation of such type of target is High, THEN the obtain a hypersurface y(xl, X2, X3). Since it's a 4-D surface
possibility that this target is a threat is Very Strong. (X1 , x 2 , x 3 , y), it's impossible to be plot visually.

The linguistic variables used to represent each an- If we have x3 = 1, and two other antecedents, x, and
tecedent were divided into three levels: Low, Moderate, X2 are variables, for every input (x l, X2, 1), the output is

3
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Fig. 2. The MFs used to represent the linguistic labels. (a) MFs for
antecedents, and (b) MFs for consequent. (b)

Fig. 3. The threat assessment surface for fixed importance of geolocation

of this target (x3 ), (a) when x3 = 1, and (b) when X3 = 9.

computed using

IV. TARGET RCS VALUE ESTIMATION USING RADAR

y1 :2 71F (x1)IIF• (r2)ThF~ (1)Clos SENSOR NETWORKS

= X2, 1)(E271 1 (4) A. RCS and RCS Voltage for Fluctuating Target•1=1 AF,ý (Xl)AF2 (X2)]PF3(1

Most radar analysis and measurement programs em-
phasize RCS measurements, which are proportional to

By repeating these calculations for VXl E [0, 10] and received power. RCS is the fictional area over which the
Vx 2 E [0, 10] , we obtain a hypersurface y(x1, X2, 1), as transmitter power density must be intercepted to collect
plotted in Fig. 3(a). In contrast, if we have X 3 = 9, and two a total power that would account for the received power
other antecedents, x, and X2 are variables, similarly we density. Typical values of RCS for targets of interests range
obtain another surface y(x1, x 2, 9), as plotted in Fig. 3(b). from 0.01m 2 to hundreds of square meters[21]. Fluctuating
Observe Fig. 3ab, the importance of geolocation of a target target modeling is more realistic in which the target RCS
(X3 ) makes a big difference in threat assessment, and is drawn from either the Rayleigh/exponential or chi-
the number of switches from non-maneuvering set to the square of degree four pdf. The Rayleigh/exponential model
maneuvering set or vice versa (x 1) and the frequency of describes the behavior of a complex target consisting of
appearance of such target (x 2) also play very important many scatters, none of which is dominant. The fourth-
role even when the importance of geolocation (x 3) is the degree chi-square models targets having many scatters
same. of similar strength with one dominant scatter. Based on
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different combinations of pdf and decorrelation character- 4) reducing the generation and propagation of routing
istics (scan-to-scan or pulse-to-pulse decorrelation), four information; and,
Swerling models are used[20]. In this paper, we will focus 5) concealing the details of global network topology
on "Swerling 2" model which is exponential distribu- from individual nodes.
tion with pulse-to-pulse decorrelation. The pulse-to-pulse In RSN, each radar can provide their waveform parameters
decorrelation implies that each individual pulse results in such as 5i to their clusterhead radar, and the clusterhead
an independent value for RCS. Sometime the RCS voltage radar can combine the waveforms from its cluster mem-
value (square root of RCS), is of interest, particularly for bers.
use in simulations to model the composite echo from a In RSN with M radars, the received signal for cluster-
multiple scatterer target. The RCS voltage value is the head (assume it's radar 1) is
square root of RCS, so the probability density function
of RCS voltage follows Rayleigh distribution[20]. In this M
paper, we apply radar sensor network to estimate the RCS rj (u, t) = Za(u)xi(t - ti) exp(j27rFDjt) + n(u, t) (6)
value. i=1

where xi(t) is the transmitted CF waveform; a(u) stands
B. Introduction to Radar Sensor Networks for voltage of radar cross section (RCS); FD, is the

doppler shift of target relative to waveform i; ti is delayIn [9], we performed some theoretical studies on con- of waveform i, and n(u, t) is additive white Gaussian
stant frequency (CF) pulse waveform design and diversity noise (AWGN). In [91, we proposed a RAKE structure for

in radar sensor networks (RSN): (1) the conditions for wave divesit cobiin, as a by Fig. 4.
waveormco-eistnce,(2)intrfernce amog wve- waveform diversity combining, as illustrated by Fig. 4.waveform co-existence, (2) interferences among wave-

forms in RSN, (3) waveform diversity combining in RSN.
For radar sensor networks, the waveforms from differ-

ent radars will interfere with each other. We choose the I ,Z-
waveform for radar i as -T )

1 N21[ Diversity

xi(t) = exp[j27r(/3 + 6j)t] - T/2 < t < T/2 (5) [,Odt Combining: x;(,_,,)
which means there is a frequency shift 6i for radar i. To
minimize the interference from one waveform to the other, ° _ I
optimal values for Ji should be determined to have the
waveforms orthogonal to each other, i.e., let the cross-

correlation between xi(t) and xr(t) be 0, we showed that
choosing 3, = in (5) can have orthogonal waveforms, Fig. 4. Waveform diversity combining by clusterhead in RSN.
i.e., the waveforms can co-exist if the carrier spacing is
1/T between two radar waveforms. According to this structure, the received rl (u, t) is

In RSN, The radar sensors are networked together in an processed by a bank of matched filters, then the output
ad hoc fashion. They do not rely on a preexisting fixed of branch 1 (after integration) is[9]
infrastructure, such as a wireline backbone network or
a base station. They are self-organizing entities that are IZi(u;ti,',t, EtMFD1  ,FDm)l

deployed on demand in support of various events surveil- T/2

lance, battlefield, disaster relief, search and rescue, etc. / ri(u, t[rt(t - tl)ds (7)
Scalability concern suggest a hierarchical organization of J-T/2
radar sensor networks with the lowest level in the hierarchy = T/2 M

being a cluster. As argued in [11] [7] [6] [18], in addition to T I Z i(u)xi(t - ti) exp(j27rFDt)
helping with scalability and robustness, aggregating sensor
nodes into clusters has additional benefits: +n(u, t)]x*(t - tl)dtl (8)

1) conserving radio resources such as bandwidth; T/2 ,
2) promoting spatial code reuse and frequency reuse; where fT/2 n~u, t)x*(t - tl)dt can easily be proved to
3) simplifying the topology, e.g., when a mobile radar be AWGN, so

changes its location, it is sufficient for only the
nodes in attended clusters to update their topology In(u, t1) I n(u, t)at(t - tl)dt (9)
information; J-T/2
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follows Rayleigh distribution. Assuming t = t2 =.. = to combat channel fading, and the combination schemes
tM = T, then according to interference analysis in [9], may be different for different applications. In this paper,

we are interested in applying RSN waveform diversity to
IZi(u; r, FD ,, FD.)I estimate the RCS parameter, -y2 . In this paper, we pro-
m ipose a maximum likelihood algorithm for RCS parameter

E a(u)sinc[7r(i - 1 + FD, T)][ Iestimation.
i=2

+ ca(u) sin[TrFD, (T - In)] + In(u, r)j (10) C. Maximum Likelihood Algorithm for RCS Parameter
ThrFD, Estimation

Similarly, we can get the output for any branch m (m = For Swerling 2 model, the RCS voltage jQ(u)l follows
1, 2,. ,M), Rayleigh distribution and the I and Q subchannels of a(u)

IZm (u; T, FD ,"" , FDM)l follow zero-mean Gaussian distributions with variance -Y2

M (the RCS average power value). Assume

Z Ia(u)sinc[7r(i - m + FDT)]I a(u) = ai(u) + jacQ(u) (15)i~l,i~m

a(u) sinitrFD,, (T - I -I)] and n(u) = nI(u) + jnQ(u) follows zero-mean complex
+ TFrFD,, + ln(u,-T)f (11) Gaussian distribution with variance a 2 for the I and Q

subchannels.

So IZm(u;T-,FDi,' ',FDM)I consists of three parts, According to (8), (11), and (14),
signal (reflected signal from radar m waveform):

(u)Esin[7rFDi(T _ef nc)] IZm(u;0,0,0,"" ,0)1 z:Ica (u)+ n(u)I (16)
I,, T-FDM II interferences. . from other is a more accuate approximation. Since a(u) and n(u)
waveforms: Ti=liorm Ia(u)Esinc[7r(i - m + FDT)]I, are zero-mean complex Gaussian random variables, so
and noise: In(u, T)1. a(u) +n(u) is a zero-mean Gaussian random variable with

We can have three special cases for variance -y2 + o.2 for the I and Q subchannels, which means

I Zm(u;W 7, FiD ,= , FDM)y = Zm(u; 0, 0,' ., 0) 1 follows Rayleigh distribution
1) When ED= ..... FDM = 0, with parameter -/2 + .2,

IZm(u;-,0,0," 0) 1 Ym ,_ 2__)
ac(u)(T -I1r-)] + In(u,,)I (12) Ym 2 + U2 2 ( 2 + 2 )
ST

which means if there is no doppler mismatch, there The mean value of Ym is , and variance is
will be no interference from other waveform. (4-•)(' 2 +a2 ) The variance of signal is 2 and the

2 "2
2) If 7- = 0, then (11) becomes variance of noise is 2A

IZm(u; 0, FD1 ,"" , FDM)I Let y = [Y1, Y2,•• ,YM], then the pdf of y is
M M

E Ia(u)sinc[r(i - m + FDT)]I f(Y) = 17 f(y.) (18)
i=1 ,1im m=1

a(u) sin[WFDmT] so the ML algorithm to estimate the RCS average value
+ TirED_ + In(u)I (13) (_Y2), let

3) If r = 0, and FD, .. FDM = 0, then (11) 0=' 2  (19)
becomes then (18) can be expressed as,

IZm(u;O0,O0,0, ,0)1 I (u)I + In(u)1 (14) OML(Y) = arg sup f(y) (20)
OER+

Doppler mismatch happens quite often in target Al

search where target velocity is not yet known. How- arg sup lI Y+2 exp. y2( + ]
ever, in target recognition, generally high-resolution OER+ m=1

measurements of targets in range (T = 0) and Maximizing f(y) is equivalently to maximizing
doppler are available, so (14) will be used for RCS log f(y) (natural logarithm),
value estimation. M2

How to combine all the Zm's (m = 1,2, .. ,M ) are logf(y) = 2~log( 0-- 2) 2( rm )] (21)
very similar to the diversity combining in communations +=+
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since it is a continuous function for Ym > 0 and 0 > 0, so for each realization. In Fig. 5, we plotted the variance of
a necessary condition for the ML estimation is the RCS ML estimator with different number of radars in

EM 1 2M(O + U2) RSN. Observe that
lo=g f (- =M +2) -0 1) the actual variance of 0 matches exactly with the0log f(y)o=L(y) 2(0 + 2)22) CRLB for different number of radars in RSN, which

which has the unique solution validates our theoretical results: our ML estimator
on RCS parameter is an unbiased estimator and the

6ML(Y) U2 (23) variance of parameter estimation matches CRLB.
2M 2) the actual variance of 0 reduces as M increases, and

Considering 0 > 0, numerically it is reverse proportional to M as we
shown in Section IV.

OML(Y) = max E[ ýl yrn2 o (24)2M Varianc for 1 Radar
9 CRLB for 1Radar

Since variance for 5 Radars
8- CRLB for 5 Radars02 4m3 8Variance for 10 Radars

a0 lofY4=M~)= M 2) •z•.. CRLB for 10 Radars-1 l y)2

this solution gives the unique maximum of log f(y). The 9-
expectation of 0ML(Y) is

E coMLy) l y2m f(yn)dy .2 3

2M

EM 2  2
Em=iYm, Ym exp[- Y ]d -

or 2M 0+0a2 2 (0 +U 2 ) 1C5. ... 15= 0 %1'0 16
Average SNR (dB)

so it's an unbiased estimator.
Fisher's information for this case can be computed via Fig. 5. Variance of the RCS ML estimator with different number of

radars in RSN.
a2 [M(O + 0.2) M  2E

10 = -Eo[-- log f(y)] = -E6 (0 +2)3 j
a (28) V. CONCLUSIONS AND FUTURE WORKS

The mean value of ym is r(°-r
2+ and variance is We have proposed a Knowledge-based Ubiquitous and

(4-7)0(+02) -Persistent Sensor networks (KUPS) for threat assessment,
2 so the Cramer-Rao lower bound (CRLB) is of which "sensor" is a broad characterization concept,

1 (0 + 0.2)2 and it can be organic sensors, HUMINT sensors, SIGINT
Varo[O(y)] >_ - - (29)

Io M sensors, etc. Our KUPS for threat assessment consists
of two major steps: threat detection using fuzzy logic

Since o log f(y) in (22) is of the form k(0)[OML(Y) - systems and threat parameter estimation using radar sensor

Eo[0(y)] for networks. Our fuzzy logic systems can combine the lin-

k(0) - 4M(O + 1 2)2 (30) guistic knowledge from different intelligent sensors which
contains lots of uncertainties. We propose a ML estimation

we conclude that OML (Y) can achieve the CRLB theo- algorithm for target RCS parameter estimation. Theoreti-

retically [13]. From 29, it's clear that CRLB is inverse cally we show that our ML estimator is unbiased and the

proportionally to the number of radars M in RSN, which variance of parameter estimation matches the Cramer-Rao

means RSN with larger M will have much lower CRLB. lower bound. Simulations further validate these theoretical
results.

The proposed techniques will increase the sensitivity
D. Simulations and performance of existing and future NCW, enhancing

For fluctuating target with RCS parameter 0 = 2 ship self defense modes against stealthy, sea skimming,
(Rayleigh distribution), we ran Monte Carlo simulations anti-ship cruise missiles. In future works, we will also
for 106 realizations at each SNR value, and we applied infer intent of objects/entities, or groups of objects, in
the ML estimation algorithm to estimate the parameter 0 the regions of interest. We will also study methods for
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constructing and learning a wide variety of models of [18] C. E. Perkins, "Chapter 4, Cluster-Based Networks," Ad Hoc
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Abstract-In radar sensor networks (RSN), radar sensors are managed by an intelligent clusterhead that combines waveform
likely to interfere with each other if their waveforms are not diversity in order to satisfy the common goals of the network
properly designed. We propose orthogonal waveforms for RSN, other than each radar operate substantively.
which eliminate interference when no doppler shift is introduce.
Additionally, this approach applies the advantage of spacial diver- Apart from better performance, RSN are capable to solve
sity through equal gain combination performed by clusterhead. blind speed problem. Radar blind speed occurs when the
When doppler shift is considered and interference is unavoidable, doppler shift is equal to the same or a multiple of the pulse
we analyzed the performance of this design not only in coherent repetition frequency (PRF). Under these circumstances, target
RSN, but in noncoherent systems as well. The latter scenario
is more challenging as doppler-shift uncertainty results in more return is suppressed so that a zero signal is obtained [7]. As

complicated implementation. Monte Carlo simulation shows that for RSN, if PRF of each member is properly designed, for
our technique provides much better detection performance than instance, co-prime to each other, the probability of blind speed
single radar for fluctuating targets, in terms of probability of occurrence will be tremendously reduced.
false alarm and miss detection. Conclusions are drawn based on
our analysis and further related research areas are discussed. Although the idea of multistatic radar which employs mul-

tiple transmitters or receivers to sample the target static scat-

I. INTRODUCTION AND MOTIVATION tering behavior is not new, spatial diversity is still neonatal to
radar research. Fishler et al. presented statistical MIMO radar

Itosissenown toCS) aeull t slow fluctuatio target rades, sar system in [5]. Their system applied target spatial diversity,
cross section (RCS) result in radar target fades, which is a thus obtained approximately constant average received energy
main factor in performance degradation [8]. Faced with the and superior detection performance to that achieved through
challenge from weak RCS targets, such as cruise missiles and coherent processing. However, effects of doppler shift and
stealth targets, moden radar sensors demand higher capability clutter were not considered. In [4], Liang performed theoretical
of accurate target detection and range estimation. In order studies on constant frequency (CF) pulse waveform design and
to satisfy this requirement, much attention has been paid to proposed maximum-likehood (ML) automatic target recogni-
waveform design. tion (ATR) approach for both nonfluctuaing and fluctuating

Among the existing works, Bell [1] applied information targets. Nevertheless these studies also assumed no delay-
theory to design radar waveforms. He demonstrated that when doppler uncertainty.
the transmitted radar waveform is scattered by the target, This paper leans heavily on prior research on radar wave-
larger SIR is achieved, so in order to better detect target, form design and spacial diversity. What distinguishes it is its
distributing energy may be a perfect choice. Sowelam and detailed performance analysis for both coherent and nonco-
Tewfik [2] studied signal selection procedure for sequential herent RSN when doppler shift is considered. The rest of
radar target classification. In their design, the criterion to this paper is organized as follows. Section si describes our
chose signal is whether it maximizes the Kullback-Leiber in-
formation numbers. Their research focused on two-class signal propagation models. Section III and IV analyzes coherent andseletio an Ga ssin u equl me n trge mo els In [3] noncoherent detection respectively. Simulations are given inselection and Gaussian unequal mean target models. In [3] Section V and Section VI concludes the paper.
Sun et al. applied several fusion schemes to study constant
frequency (CF) and linear frequency modulated (LFM) wave-
forms, which improved detection probability and estimation
accuracy. However, all the above research involves only single II. WAVEFORM MODEL AND PROBLEM FORMULATION
radar.

In nature, a network of multiple radar sensors can been We assume our RSN consists of N radars networked
introduced to combat performance degradation of single radar together in a self-organizing fashion. Their propagation and
along with waveform optimization. These radar sensors are target model is shown in Fig.1. The ith radar transmits a



radar i where c is the speed of light, and 0 follows uniform distribu-
tion within [0, 27r]. As f, > Ai,

fdi •- vft. cOStrj (5)
c

In addition, the estimated instant range to the target is Ri =

__ 2-' [6].Intc rference I it erfevirwnc As all of the radar sensors are transmitting signals, the ith
frcm rardar I trnm vadi' X radar not only receives its own back-scattered waveform, but

also scattered signals generated by other radars, and therefore
under the condition of timing synchronization, interference

I(ov i nY waveforms received by the ith radar can be modeled as
['11rget

N 2
1i(t) = E Bk (t) . cos[27r(f, + Ak + fdk)(t-- ti)]

radar I radar N k~lkýi

(6)
Fig. 1. Propagation and target model for RSN where Bk(t) is the amplitude of interference from the kth

radar, which also follows Rayleigh distribution, and fdk is the
doppler shift for kth radar. This is illustrated in Fig.1. As

waveform typically modeled as the interference from other radars is the dominant interference
that results in target fade, we may ignore clutter under these

F2 circumstances. Apart from interference, the ith radar also
Si(M)= A •1 t W - cos[27r(fc + Ai)t] (1) receives additive white Gaussian noise (AWGN) ni(t) with

mean value zero and variance No/2. Therefore, the combined
where tilde on Si denotes that the signal has been received waveform for the ith radar is
modulated. A8 i(t) is the constant amplitude pulse enve-
lope [7]. 2 is a normalization factor to ensure that R (t) + I(t) + ni(t) (7)
foT • cos[2ir(f, + Ai)t]} dt 1. Here Tp is the time After introducing our propagation and target model, further

duration for radar pulses and each oscillator of radar works at analysis on coherent and noncoherent RSN are carried out
a different frequency: fi = fe + Ai, f, >> Ai, where f, is the respectively.
system carrier frequency and Ai must satisfies the following
equation: III. COHERENT DETECTION

Ak - Ai = (k - i) (2) In coherent RSN, radar members are smart enough to extract
the knowledge of the exact doppler shift introduced by moving

Here k and i are unequal integers to provide orthogonality targets, so based on the a-priori information, the demodulator
waveform for each radar member [9]. of each radar can be constructed as shown in Fig.2. According

Consider a point moving target at an instant range Ri.
ti second after transmitting the pulse, the ith radar receives r YTp--- tIy•
waveforms of useful back-scattered radiation from the target Ri()-__ X -_._ (
with inteference from other radar sensors as well as clutter T
and noise. The useful signal can be modeled as . cos[2yr(f, +A+f,1)(t-A)]

2X140 Diversity
S(t) = Ai(t). cos[27r(f + Ai + fdi)(t - ti)] (3) 7tvii I' Combining

T 
FfoT

where Ai(t) represents amplitude of the returned useful signal. IT2
As a fluctuating target is more realistic than nonfluctuating .(,,t)---- l] I)1
object, it is more reasonable to apply "Swerling II" model in T2/
our situation and thus Ai(t) follows Rayleigh distribution [8]. -•cos[2n, +Ar+fv)(t-t1N)]
The target mobility introduces doppler shift in returned signal,
which is denoted by fdi. Assume the target is moving at the
speed v, than fdi is Fig. 2. Coherent RSN demodulation and waveform combining

fdi c cos (4) to this structure, the combined received waveform Ri(t) is

C



processed by its corresponding matched filter. The output of so when there is a moving target, the pdf for IYi(t)I is
the ith branch Yi(t)is 2) (1,

ft p +T f -1Yi)= exp(- -,) (19)
Yi~t M Rij(t)' cos[27r(f + A + fdj)(t -- ti)]dt

T The mean value of yj is aiV"12 and variance is (2 - ',a?
(8) The variance of useful signal is (2 - j) _2 aIt cn aso b reresetedas ) r~ and the vaiance

It can also be represented as of noise is (2 - ')o,. Therefore, SNR is 2 and it is worth

mentioning that SIR for coherent RSN is .
where Si(t), Is(t), ni(t) denotes the output of useful signal, After equal gain diversity combination, tle synthesized pdf

interference and noise respectively, becomes N 2
ti +T f F2(y) H - Yi YS( (0

Si(t) [ -i+ s M(t). • cos[27r(f,+Ai+fdi)(t-ti)]dt fi Y2exp(- -- ) (20)

(10) In case of no target, i.e. there exits only noise , and hence the
It can be easily derived that pdf of IYd(t)I is given by

Si(t) = Ai(t) (11) = 2 (21)

Similarly, Ii(t) is given by T ex I

i 2 and accordingly the synthesized pdf becomes
=~() / I~ T cos[2ir(f, + Aj + fdi)(t - ti)]dt N .

"t (12) f.(y) Y1 I exp(- 2 ) (22)

Simplifies the above equation, we can obtain that =
Based on the knowledge of pdf, we apply Bayesian's rule toNIs(t) = N Bk(t)sin[27r(fdk - fdi)Tp] (13) obtain our decision criterion ,which is

E 27r [(k - i) + (fdk -fdi)Tp] (3 .9t ..2i~2ý
k=1,k~i

As for noise, it can be easily proved that ni(t) is still an fM(Y) nt e (23)
AWGN with mean value zero and variance N0 /2. Therefore f no target

the output of the ith radar is where Pn, denotes the probability of no target but noise and
P, represents the probability of target occurrence.

N

IYj(t)= IA=(t)+ E Bk(t)sin[22i+(fdk - fds)Tp] +n_(t)l IV. NONCOHERENT DETECTION
k=1,ksi 2 ((k As far as noncoherent RSN is concerned, the difference

Assume each radar works at the same level of detection from the above system is that radars have no knowledge of
accuracy, the RSN clusterhead can apply equal gain combining the accurate doppler shift introduced by moving targets, so
algorithm before making a final decisiona each matched filter applies the same frequency as transmitted

Since Swerling II models is applied, Ai(t) follows Rayleigh carrier. Although this situation is more complicated to handle,

distribution, which can be modeled as as for modem military it is more practical. Our construction
of RSN demodulators is shown in Fig.3.

Ai(t) = A,(t) + jA9 (t) (15) In terms of this structure, the received signals of the ith

In the same way, noise is given by radar is first multiplied by separate cosine and sine waveforms
generated by the local oscillator. The receiver then sums of the

ni(t) = n!(t) + jn? (t) (16) sine and cosine correlations, extracts its envelope, and then

both I and Q subchannels of Ai(t) and ni(t) follow zero- transmits the result to RSN cluterhead, which will make final

mean Gaussian distribution with corresponding variance -2 decision based on the combined information colletcted by each
and or? [4]. Assume each Bk(t)sinf27r(fdk--fadiT]I in above radar member. It is obvious that because of not knowing the

27r[(k-i)+(fdk-fdi)TW' doppler shift, this system involves nonlinear operations unlike
equation follows Rayleigh distribution with variance /32 for its the coherent RSN in the above section.
I and Q subchannels, then IYd(t)I follows Rayleigh distribution As for the ith radar, the output of inphase branch is
with parameter 

T
C,=V ?2 + (17)? + U2? F2

wtp t + + Y(t) = f _(t) ý-cos[27r(f,+Aj)(t-tj)]dt (24)

where P
N Similar to equation(9), it can be also represented as

3i2 (18)

k=i,k k( Y¾'(t) = S[(t) + I[(t) + n'(t) (25)



x )2 Sf( Ai(t)sin2o, (35)SIW. tL___J ,, W"J _ 0i

;2i) --" cos 2( -- + -)(t-t1 )] + N B (t)sin2 0k (36)

9 O2t ( ) k=1,kji
7 sn' 2 7r (f, + 1 (r 2, (t(-)1,

- Tp +)t2 Based on the above equations and the construction in Fig.3,
()dt it can derived that

A(IT) 2 1401) Diversity

P T2 li0"•'(g+ Z•1= ()l t 1 2Ai(t)Bk (t)=in6jsin~kea(0i-0k)
0,2 ° --)] Nl,kVi [sr(k-i)+Ok]Oj

N B~sin29k N 2BrnBjsinOrnsinOjcos(O_-Oj)
v,,r( Yk=l,k~i [r(k-i)+±k] 2 + Ernjoi m-i)+O-][Tr(j-i)+Oj]

ANl) r2 0 , NV")[ +n? (t)TC •012r +•x,)(1t,) + (37)

----- (_ -'"- I '-t x ) We can have two special cases as follows:

2 1) If there is no doppler shift, i.e. fdi = 0 and 0i = 0, thensint2'r (c + •)(t-tar)si --

Ti =Q1 and thus equation(37) becomes

Fig. 3. Noncoherent RSN demodulation and waveform combining IYi W)I = A (t) + n.(t) (38)
2) If there is only one radar, then equation(37) becomes

where lYI(t)= A?(t) -Z- +Snl(t) (39)
SIl(t) = Ai(t) " sinc(27rfdiTp) (26) Oi

N Similar to coherent system, in equation(37) we may assumeA" -1 vj--g 2A(it)Bk(t)sinOisinOkeos(Oi-Ok)-

jI (t) = Bk(t)sinc [27T(A - Ai + fth)p)] (27) nat 1, E N.1,koi 2Ai (k--i)+Okli +
k=i,koi E-•N B2

sin20k . N 2B B-in sinsicos(Om-Oj)
L-•k=l,k- [t(k-i)+Ok]ý + E.j~ i +[1r(-i)+-m],7r(j-i)+Oj]

And nf (t) is the noise in inphase branch. In the same way, and Ini(t)l follow Rayleigh distribution with variance -yr,
the output of quadrature branch is 7? and u? for their corresponding I and Q subchannels, and

Stherefore IYi (t)j follows Rayleigh distribution with parameter

Y(t) R(t) 2isin[2r(f Ai)(t-ti)]dt (28) = 2 2
iti T + 77 + U? (40)

which can also be given as Similarly, we may apply the equation(19)(20) (21)(22)(23)
in coherent RSN to analyze the dection performance and in

Y•O(t) = S9 (t) + I 5 (t) + n9 (t) (29) noncoherent RSN, SIR is Y.

where
S (t) - Ai(t) [cos(27rfdiTp) - 1] (30) V. SIMULATIONS

27rfdiTp In order to study the performance versus the number of

N radars in RSN under the condition of doppler shift, we apply
9  E(t) = z Bk(t) {cos[27r(Ak - Ai + fdk)Tp] -1} our waveform models and equal gain combination technique

k=l,k6i 27r(Ak -- Ai + fdk)Tp in our simulation with following parameters:
(31) 1) EL 5000Hz, i.e. (fdi)max = 5000Hz

and n9(t) is the noise in quadrature branch. 2) Tp = Ims
To simplify the computation, we can define 3) P. Ps

4) the mean value and variance of Bk(t) are equal to those
Oircf diTp (32) of Ai (t)

so equation(26)(27)(30)(31) are also respectively given by 5) 106 Monte-Carlo simulations

The average SNR value refers to the average SNR of all
) Ait)sin.icosei (33) the members in RSN. Specifically SNR of each member is

Oi the power of received useful back-scattered signal to that of
N noise.

I[(t) = Bk(t)sin~kc-+Ok (34) The performance of the envelope detector in single radar,
k=l,koi 7 (k - i) + Ok 3-radar and 6-radar coherent RSN are compared in Fig.4 and



Fig.5, in terms of the probability of false alarm and probability 10o

of miss detection respectively. Fig.4 shows that, to achieve the
same PFA = 0.1, single radar requires about 7dB greater than
the SNR of 6-radar RSN. In latter system, even SNR is ldB,
PFA is around 0.1, which is good enough [6].

Observe Fig.5, we can see that PM of single radar is
much larger than 0.1 even SNR reaches 10dB. When PM = < -,
0.1, SNR of 3-radar and 6-radar are around 8.3dB and 4dB a_ 10.

respectively. These two figures demonstrate that our coherent
RSN could provide superior detection performance to that of - 1 radar

single radar. -i-w 3 radars
--y 6 radars

10l
1°- 2 3 5 6 7 8 o1

Average SNR (dB)

Fig. 6. Probability of false alarm for noncoherent RSN

100

Average SNR (dB)

14 1rrada

Fig. 4. Probability of false alarm for coherent RSN -a-3.rdar

-4-~~i' 6 radars-----

10' -

1 2 3 4 5 6 7 8 9 10
"Average SNAverage SNR (dB)

10 Fig. 7. Probability of miss detection for noncoherent RSN

= or even equal to 10dB. Clearly, even 3-radar RSN could not
1-2 -4- 1 radar provide enough performance improvement. Applying 6-radar

10,

3 radarsRSN, performance has been improved a lot compared to single

6 2radars7 8 1

radar. Here PEA 0.1 is achieved when SNR is greater than

3dB and to satisfy -PM • 0.1, SNR must be increased to
around 5.3 dB.

10- 7 8 9 l Meanwhile, it is clear to see no matter how many radars
Average SNR (dEO) have been exploited in our RSN, the performances of nonco-

herent RSN are worse the coherent system, i.e., noncoherent
Fig. 5. Probability of miss detection for coherent RSN RSN demand higher energy in order to achieve the same

performance.
In noncoherent RSN, the probability of false alarm and From the above figures, it is obvious that although doppler

probability of miss detection are shown in Fig.6 and Fig.7. shift generates interference between each radar sensor, promis-

These two figures clearly illustrate that performance of non- ing detection performance has been obtained applying our

coherent single radar is extremely worse than that of coherent orthogonal waveform and combination technique. Particularly,

system and it can not work properly while SNR is below this design provides greater performance in case of noncoher-



ent 10-radar RSN.

VI. CONCLUSION AND FUTURE WORKS

We have studied orthogonal waveforms and spacial diversity
under the condition of doppler shift in radar sensor networks
(RSN). Both cases of coherent detection and noncoherent
detection have been analyzed. In case of no doppler shift,
our orthogonal waveforms eliminate interference between each
member. However, when there is doppler shift, there exists
interference that can not be avoid. Simulation results show
that applying equal gain combination technique through clus-
terhead to our signal models, better detection performance than
single radar is achieved for fluctuating targets. This design
not only satisfies higher demanding criterion for detection
accuracy in modern military and security affairs, but also offers
advantage to combat the blind speed problem.

One can extend the above procedure in several directions:

1) In this paper we only considered constant frequency
(CF) pulse waveform design. Naturally, we would like
to extend our results to other forms, such as linear
frequency modulation (LFM) and binary phase-coded
pulse, and analyze their performances.

2) For simplicity, we assumed perfect timing here, so
the performance of RSN can be studied when timing
ambiguity is considered.

3) In our model, we only assume there is one moving target
and thus multiple targets co-existence and corresponding
performance can be further investigated.
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Abstract-In this paper, the spatial-temporal-frequency di- performance. However, when deploying the RSN, we have to
versity to improve the detection performance of Radar Sensor solve some challenging problems such as networking between
Networks (RSN) in the presence of certain types of interference radar sensors, canceling effects of interference, power efficient
(clutter, jamming, noise and interference between radar sensors)
is studied. In order to reduce the interference between radar communication, and reducing complexity of signal processing
sensors and maximize the signal-to-interference-plus-noise ratio schemes, etc. Only few work doing research on these aspects
(SINR), we propose a method using the orthogonality criterion has been developed. Recently, S. Kadambe [1] proposed a
to design waveforms for radar sensors in the network. Besides minimax entropy-based technique to reduce the processing
the interference between radar sensors, performance of the complexity in the RSN. In [2], relative merits of the RSN and
network depends largely on other interference, especially clutter, the balance between increased performance, complexity, and
which is extended in both angle and range, and is spread in
Doppler frequency. By using the spatial-temporal diversity, we cost were discussed. In this paper, we will propose a method
can suppress effects of these interference. In this paper, we also to design the waveform in order to cancel the interference be-
propose a receiver for diversity combining in RSN. As an applica- tween radar sensors and maximize the signal-to-interference-
tion example, we apply the spatial-temporal-frequency diversity plus-noise ratio (SINR). In research literature on the waveform
scheme to improve the detection performance or reduce the miss-
detection probability at a low false alarm probability. Simulation design, Fitzgerald [3] demonstrated the inappropriateness of
results for both non-fluctuating targets and fluctuating targets waveform selection based on measurement quality alone: the
show that the performance of our proposed scheme is superior interaction between the measurement and the track can be
to that of the single radar with the spatial-temporal diversity indirect, but must be taken into account. Bell [4] used the
only. information theory to design waveform for the measurement

of extended radar targets exhibiting resonance phenomena.

I. INTRODUCTION Baum [5] used the singularity expansion method to design
some discriminant waveforms. However, these design methods

Radar sensor network (RSN) consists of collaboratively were used for the single radar only. In [18], radar sensor
operating radar sensors which are deployed ubiquitously (pos- networks for automatic target recognition was studied, but
sibly randomly placed) on airborne, surface and sub-surface clutter and jammer were not considered.
unmanned vehicles. Each sensor in the network has capabil- Performance of the RSN depends largely on the interference
ities for radar sensing, signal processing and wireless com- which is extended in both angle and range, and is spread in
munication. Autonomous radar sensors operating in the mi- Doppler frequency because of motion of the platform and
crowave spectrum are used to detect, classify and track visible, target. Space-Time Adaptive Processing (STAP) or spatial-
obscured or hidden targets such as tactical weapons, aircraft, temporal diversity has become an excellent technique to sup-
ships, spacecraft, vehicles, people, and the natural environment press effects of interference. STAP refers to the simultaneous
in the presence of both noise and interference (clutter, jamming processing of the spatial samples from an array antenna and the
and interference between sensors). Information about a target temporal samples provided by the echoes from multiple pulses
is wirelessly forwarded to the central processor, where target of a coherent processing interval (CPI). A considerable amount
identification and network-wide tracking are conducted using of work has been done to develop STAP for processing data
sensor data from every sensor in the network, along with their from airborne or space-borne radars to reliably detect moving
position and timing information, targets of interest in the presence of strong clutter returns

In the radar sensor network, radar sensors are networked and jamming [6] - [9]. By combining waveform design and
together in an ad-hoc fashion, i.e., they do not depend on any spatial-temporal diversity, we can perform spatial-temporal-
preexisting infrastructure. They are self-organizing entities that frequency diversity in RSN. Studies in this paper will show
are deployed on demand in support of various events such that using our proposed diversity scheme will improve the
as surveillance, battlefield, disaster relief, search and rescue, detection performance with a low false alarm probability.
etc. RSN has advantages compared to a single radar system The remainder of this paper is organized as follows. In
in improving the system sensitivity, reducing obscuration section II, we propose a method to design waveforms. Spatial-
effects and vulnerability as well as increasing the detection temporal diversity and interference analysis are discussed in



the section III. In section IV, we propose a diversity combining Antenna 1 Antenna 2 Antenna N

scheme and analyze detection performance for non-fluctuating V,913\5 es T 2 T T. T
targets as well as fluctuating targets using our proposed T T , -i XKN

diversity scheme. Simulation results and performance analysis x X X X x WNK
are discussed in section V, and in section VI, we conclude the W .. w,
paper. + + +

II. WAVEFORM DESIGN

In radar sensor networks, radar sensors will interfere with
one another and SINR will be very low if waveforms are not y wx
properly chosen. In order to have waveforms designed properly
and coexisted in the network, we propose orthogonality as one
criterion to design waveforms. Fig. 1. Space-time beamformer consisting of an N-element ULA and a

coherent processing interval (CPI) comprising K pulses with a fixed PRI [9]In our radar sensor networks, we choose constant frequency

(CF) pulse waveform. The CF waveform can be defined as

III. SPATIAL - TEMPORAL DIVERSITY AND INTERFERENCE

x(t) = r exp(j27rft) 0 < t < T (1) ANALYSIS
A. Spatial - Temporal diversity

where E is the energy of the waveform and T is the waveform At each radar sensor, we use a receiver with an array
pulse duration. antenna as shown in Fig. 1. This array consists of an N-

We know that the waveforms from different radar sensors element ULA with inter-element spacing di (spatial degrees
will interfere with one another. We choose the waveform for of freedom) and K pulse repetition interval (PRI) time taps
radar i as (temporal degrees of freedom). Now, we consider a signal

E si(t) = Aejilt impinging on the array. If the wave's angle
x(t) = -exp(j27r(f + Ai)t) 0 < t < T (2) of arrival relative to the array is 0, the signal observed at the

=nT nth array element is

which means that there is a frequency shift Aj for the radar mn(t) = Ae j[Qt-ndjsin°/c)+0o] n = 0, 1, ... N - 1 (5)
sensor i. In order to minimize the interference between radar
sensors, we will find a set of frequency shifts {A.}M-1 (M where the phase offset 00 accounts for the absolute phase at
is the number of radar sensors) for which the waveforms are the first element. We consider N samples formed from N array
orthogonal. Let R(k, 1) denote the cross-correlation between elements at a time to and map these N element samples into
the waveforms xk(t) and xt(t). a vector form to have a snapshot of the array at a fixed time.

T m = A [1 e-j27djsin°/Xj ... -J27r(N-1)djsinO/Xj]1
R(k,l) = ]Xk(t)x*(t)dt (3)jo I= AaA (6)

= Esinc[(Ak - A,)T]exp[j7r(Ak - A)T] where A1 = Aej(O1it+0¢°), -i = disinO/Ai is the normalized
angle, (.)' denotes the transpose operation, and as(9O) is theIf ir(Ak - A1)T = iTr, the waveforms xk(t) and xj(t) are spatial steering vector.

orthogonal, i.e.,

a1) 0 k a,(0) =[1 ej272 i ... e-J27r(N-1)O0]' (7)
E k =l Since the target is in motion, the normalized Doppler shift at

the target induced on the radar sensor i at an angle 0 is
So, we can choose a set of frequency shifts {Ai•'M-' as 9,,. '

below [18]: fdi sinO = /30i (8)

Ai=AkLA= = 0, 1. M - 1 (4) where vi is the velocity of the radar sensor i and0 = 2 iT=

T Id- _ Each vector of array outputs from successive

Based on (4), we can confirm that the waveforms can co-exist pulses due to the target will have a temporal linear phase
if the frequency shift is i/T between two waveforms, i.e., progression, i.e., at the kth PRI, snapshot of the target takes
orthogonality among waveforms can be achieved by separating the form [9], [10]
frequencies of waveforms by multiplying an integer with the j2rck.17d%,(\ k 2, .. , K (9)
inverse of the waveform pulse duration. So, we will choose the e(Oifdi) = ea'k- )
waveforms by this method to get radar sensors coexisted in the If K pulses are to be processed in a coherent pulse interval
network. Moreover, by using this waveform design method, we (CPI), the KN dimensional space-time steering vector (snap-
can perform a frequency diversity in the RSN. shot) corresponding to a possible target at look angle 0 and

2



Doppler frequency fdi is given by 2) Jamming: Jamming signals are generated by hostile

e(Oi, fdi)= bt (fdi) 0 a, (0i) (10) interfering signal sources that seek to degrade the performance
of radar sensors by mechanisms such as degrading SINR

where 9 denotes the Knonecker product and bt(-di) is the by increasing the noise level, or generating false detections
K-dimensional Doppler steering vector to overwhelm the radar with false targets. One of the most

bt(-fdi) = [1 eJ 2
di ... ej27r(K-1)fdi] (11) common forms of jamming is a simple noise jammer that

radiates a relatively high-power waveform at the victim radar
By introducing the complex weighting vector wi, the output sensor from a specific platform. A commonly employed model
response of the space-time beamformer can be maximized for for Nj jamming signals [6]
any desired angle of arrival. More specifically, let xi and yi
denote the received data at the radar sensor i and beamformer N3

output, respectively. J = Zm ® aj(-m) (17)

Yi = wixi (12) m=1

In any case, the optimum weight vector, wi E CNK, that where Zm contains voltage samples of the mth jammer
maximizes SINR, satisfies the Weiner-Hopf equation waveform taken at PRI. The different jammer waveforms are

Wi = Rdie(Oi, fdi) (13) uncorrelated with each other.
dis 3) Interference between radar sensors: When we deploy

where Rdi E CNK×NK is the interference-plus-noise covari- the radar sensor network, interference between radar sensors
ance matrix. need to be studied. In [18], interference between radar sensors

However, in practice, the covariance matrix Rdi is unknown was analyzed in detail. Since radar sensors operate at different
and must be estimated. To solve this problem, researchers frequencies, they will interfere one another. To suppress this
have produced extensively algorithms [12] - [15] to choose interference, we should choose waveforms correctly. In this
an optimal set of complex space-time weights wi in order to paper, we choose the orthogonality criterion to design the
maximize SINR. waveforms.

B. Interference analysis in Radar Sensor Networks 4) Noise: The echo signal received from a target or clutter
inevitably competes with noise. Noise can be received through

1) Clutter: Clutters generate unwanted radar returns that antenna from external sources or generated in the radar re-
may interfere with the desired signal. Parasitic returns that ceiver itself. Of these various sources, thermal noise due to
enter the radar through the antenna's main-lobe are called ohmic losses at the radar receiver is normally dominant. We
main-lobe clutter; otherwise they are called side-lobe clutter, can use the Gaussian process to model the thermal noise.
Clutter can be classified into two main categories: surface
clutter (including trees, vegetation, ground terrain, man-made
structures, and sea surface) and volume clutter (including IV. DIVERSITY COMBINING AND TARGET DETECTION
chaff, rain, birds, and insects). Surface clutter changes from A radar sensor network is composed of many radar sensors
one area to another, while volume clutter may be predictable. deployed in a large geographical area. The radar sensors
In many scenarios, the dominant interference is not noise, but (nodes) are networked together in an ad-hoc fashion, i.e.,
clutter. Consequently, the signal-to-clutter ratio (SCR) is often they do not depend on any preexisting infrastructure. In
of more important than the signal-to-noise ratio (SNR). fact, they are self-organizing entities that are deployed on

The integrated clutter can be generally approximated as the demand to perform various tasks such as surveillance, disaster
sum of N, elemental clutter patches. For clutter patch i, the relief, search and rescue, etc. Scalability concerns suggest a
space-time data vector [9] is hierarchical organization of the radar sensor networks with

Pi = 'yibt(fdj,) 9 a,(-Oci) = yiui (14) the lowest level in the hierarchy being a cluster. The clusters

where -yj is a complex scalar random variable that accounts are independently controlled and dynamically reconfigured as

for the amplitude and phase of the ith clutter patch, ui = nodes move. Thus, this network architecture has some main

bt(fd.i)®as(-ci). bt(-fd) and a,((Oci) are temporal vector and advantages as follows [161

spatial vector of clutter signal from clutter patch i, respectively. 1) Using the radio resources efficiently. For example, band-

fdo, and Oci are the normalized Doppler shift and angle of width can be shared or reserved in a controlled fashion
arrival of the ith clutter patch, respectively. The total clutter in each cluster.
vector equals to 2) Providing spatial and frequency reuse due to node clus-

N, N, N. tering.

Xc = -P2  Z-yibt(-fd) 9 a,('Oci)= •-iui (15) 3) Robustness with topological changes caused by node
i=1 i=1 j~l motion, node failure, and node insertion/removal.

The covariance matrix of the clutter [9] is given by 4) Concealing the details of global network topology from
individual nodes.

N. N, N,

Re = E{XX~c} = E i'Juiul = Guu In this paper, we perform the waveform design for radar
i=1 j=l i=1 sensors in the network. Each sensor in the network will be

(16) assigned a waveform with specific parameters. Radar sensors
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ZI(u) f r(ut)st(t -rl)dtl (21)

s:(t-r,) M f

r(u,t) ,' - Diversity IY u)Lj(Oifd.)Osi(t - ri)s*(t --rl)dt
X Jd Combining

and i=1
Detection M T

sO(t-r2) + + Z st t-T1DidtI

= IZ11(u) + Z 12(u)I (22)

S' (t - ) where Z,1(u) and Z12 (u) are defined as below

M T

Fig. 2. Receiver at the clusterhead for diversity combining Z11 (u) - E °ei(u)Li(i, fdi) O si(t - 7-i)s*(t - Trl)dt
i= 1M fT

can provide their parameters about waveforms to the cluster- E ai(u)Li(ki fdi) o si(t - "i)s*(t -- rl)dt
head. Cluster-head will collect and combine waveforms from i=2

cluster members. + Eo1(u)L1(01,fd1) (23)

The received data at each radar sensor i consists of the A fT

desired signal and interference, i.e., Z1 2 (u) i= ]o s*(t - rl)Didt (24)
i=1

xi(u,t) = ai(u)e(Oi,fdi)Si(t -- i) + Ci + Ji + Ii + ni Based on (4), Zil(u) can be rewritten as

= ai(u)e(,f.di)Si(t - Ti) + di (18) Zii(u) =- EQ1 (U)L (01, fdl) (25)

where di = Ci + Ji + Ii + ni presents the overall interference,
i.e., the sum of the clutter vector Ci, the jammer vector Ji, Assuming that waveforms are designed properly. So, the
the interference between radar sensors Ii, and the background interference between radar sensors is negligible. Since the

white noise ni. ai(u) is a random variable that models the detection performance of RSN is greatly affected by the clutter,

radar cross section (RCS), e(Oi, fdi) is a spatial-temporal we consider the clutter the primary interference source. The

steering vector that models the target return for a specific overall interference can be given by

angle-Doppler, and si(t - Ti) is the return of waveform with N.

delay ri. di= Ci(f de, Oci) + ni = "yijuij + ni (26)
The data at the output of the ith sensor is the multiplication j=1

of the received data xi (u, t) and the spatial-temporal weight where uij = bt (-fdj) ® a (Ocij). Thus, Z12 (u) becomes
vector wi, i.e.,

, ~ ~M fT, ,
yi(u,t) = w ixi(u,t) Z12 (u) = M T- )dt (27)

= wi[ai(u)e(Oi, fdi)si(t -Ti) +di] i=( a

= ai(u)si(t- ri)Li(Oi,fd)+Di (19) Since hij is a complex random variable, we assume yij is a
where , -' complex Gaussian random variable. So, it is not difficult to

where Di widi and Li(Oi, fdi) = wi e(Oi, fdi)" prove that Z 12 is a complex Gaussian noise n(u). The output
Assuming the radar sensor network with M radar sensors, of the branch 1 becomes

the received signal r(u, t) at the cluster-head is
M Zl(u) IEcvl(U)Ll(O1, fdl) +-} n(u)I (28)

r(u,t) = yi(u, t) Similarly, the output of the ith branch (i = 1, 2 ... , M) is

M Zi(u) IEai(u)Li(Oi, fdi) + n(u)I (29)

= E ai(u)si(t-- ri)Li(Oi,fdi) + Di} (20) Based on (29), we can recognize that the output of the ith

i=1 branch is composed of the signal from the radar sensor i and
Note that ai(u) can be modeled using non-zero constants for noise. Note that when we compute Zi(u), we still have to
non-fluctuating targets and four Swerling target models for estimate the interference-plus-noise covariance matrix.
fluctuating targets [17]. Target fluctuation lowers the probabil- Now, our objective is to combine all the outputs of all
ity of detection, or equivalently reduces SINR. branches. We will use diversity combining method to combine

At the cluster-head, we propose a receiver [18] as shown in these outputs. In this paper, we are interested in using the
the Fig. 2 to combine waveforms. According to this receiver, spatial-temporal-frequency diversity in RSN to solve the target
the received signal r(u, t) is processed by a bank of matched detection problem. The purpose of detection problem is to
filters. After integration, the output of the branch 1 is given figure out the presence and motion of the desired targets such
by as missiles, tanks, fighter aircrafts, other tactical weapons from
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the enemy, illegal intruders at the border of the country, over- B. Fluctuating targets

speeded vehicles or strange ships at sea, etc. In this paper, we In practice, RCS is normally fluctuating. Based on different
will apply the spatial-temporal-frequency diversity to improve cnmpratice, of is normal atin Base o differen

the etetio peformnceandusea maimu lieliood combinations of pdf and decorrelation (pulse to pulse or scan
criterion to analyze the detection performance of RSN for both to scan), Swerling [17] proposed four Swerling models. He

also showed that the statistics associated with Swerling I and
non-fluctuating targets and fluctuating targets. The detection II models are applied to targets consisting of many small
problem in RSN can be formulated as follows: RCS scatters of comparable RCS values, while the statistics

H0  : Target is not present associated with Swerling III and IV models are applied to

H,: Target is present (30) targets consisting of one large scatter and many small equal
RCS scatters [11].

In this paper, we focus on the Swerling II model. The mag-

A. Non-fluctuating targets nitude Ic(u)I of Swerling II targets fluctuates independently
from pulse to pulse according to a chi-square probability

Non-fluctuating targets can be modeled as the Swerling density function with two degree of freedom, i.e., a Rayleigh
0 or equivalently Swerling V [11], [17]. The radar cross
section (RCS) ai(u) of non-fluctuating targets is constant

and unknown. We assume that al(u) = a2(U) = .... a(u) = a (u)+j Q(u) (37)
aM(U) = a(u). Under hypothesis Ho, Zi(u) follows the

Rayleigh distribution. The probability density function (pdf) where az(u) and acQ(u) follow Gaussian distribution with the

of Zi is variance p2/2 for each branch I, Q. Under hypothesis H0 ,

f2(zIHO) "exp[i (31) Zi(u) follows the Rayleigh distribution. The pdf of Zi(u) is

Under hypothesis H1 , Zi(u) follows the Rician distribution. f(zdIHo) = -i-exp[--] (38)

The pdf of Zi with the parameter mi is U 0

fzj =2z- z? + M? ]1(2m, z, Under hypothesis H 1, Zi(u) follows the Rayleigh distribution.
f(zilHo) -- - 2exp[] - (32) The pdf of Zi(u) is given by

2zi •
where mi = Ea(u)Li(Oi,fdi), a 2/2 is the noise power for f(z2tgl) ---•-exp(---) (39)

each branch I, Q, and Io(.) is the zero-order modified Bessel . .

function of the first kind. We assume that Z1 , Z2 , ... , Zm are

AA
independent random variables. Let Z =x [ZI, Z2,...-,ZM], the where ai = /( i'Od))p+ r.We assume ta

joint pdf of the variable Z for each hypothesis: ZA, Z 2 , ... , Zm are independent random variables. Let Z =

M 2Zi Z2 [Z1,Z 2 ,...,ZM], the joint pdf of the variable Z for each
f(zlHo) = i -T2exp[-' (33) hypothesis:

/=1

M 2 22 .+ M2 M 2zi
ff0"=exp1 i ]I0( ) (34) f(zlHo) = f--exp[--_Z] (40)

= 2  
0

2  
i=1

M 2 z . Z . ,

Our objective is to decide whether or not a target is present f(zlHi) = fl--texp[-t] (41)
based on the received signal at the cluster-head. Using the = "]

maximum likelihood criterion, we can derive the detection
threshold T, false alarm probability PFA and miss-detection Our objective is to decide whether or not a target is present

probability PMD. based on the received signal at the cluster-head. Using the

maximum likelihood criterion, we can derive the detection

PFA = ZM e-zdz threshold T, false alarm probability PFA and miss-detection

IT, (M- 1)! probability PMD.

= 1-I(( ,,M- 1) (35)0 P-E Ae-zdz

' VfM_ PFA IT, (M -1)!
PMD = 1 - )(M-1)M2e-z-MxIM-1(2v-Mxz)dz T

1 - I(-, M - 1) (42)
(36) zM -

where x is the average signal-to-clutter-plus-noise ratio PMD 1- (+x)M(M (+x)dz(43)

(SCNR), IM-1(.) is the (M - 1) order modified Bessel

function of the first kind, and I(a, b) is the incomplete gamma where x is the average SCNR, and I(a, b) is the incomplete

function. gamma function.
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V. SIMULATION RESULTS AND PERFORMANCE ANALYSIS the probability of miss-detection PMD as a function of SCNR

A. Simulated data model and PEA = 10-6 while Fig. 4(b) presents the miss-detection

In this paper, we use the modified Joint Domain L d probability PMD as the function of false alarm probability

(JDL) algorithm proposed by Adve et.al [12] to determine PEA, SCNR 10dB and SCNR 12dB for fluctuating

the space-time weights at sensors. The data generation scheme targets.

uses the physical model presented by Ward [8].
As mentioned in the section III, the clutter is modeled --°

as a sum of the contributions of many discrete far field 1-"

sources. In this paper, amplitude of each discrete source is
a complex Gaussian random variable whose average power is - - -
set by a chosen clutter-to-noise ratio (CNR). The normalized 10--
Doppler shift associated with each clutter source depends on -- -0-

the velocity of the platform. 
-.

Thermal noise is modeled as a Gaussian white noise pro- 10--
cess. The average power is set to unity allowing the clutter and

target powers to be referenced to the white noise power. Sim- I --
-e-- single radar sensor--- - --- - --ulations do not consider the effects of Jammers. Parameters 10" 2radarsensors

used in simulations are listed in the Table I [12]. 5 radar sensors

5 6 7 8 9 10 11 12 13 14 15 16
TABLE I - PARAMETERS USED IN SIMULATIONS SNCR (dB)

PARAMETERS VALUES _0_____--__-----

Array elements 8 -----

Pulses 8 10 ----- --- - -- ---

Element spacing A- /2, .--
P u lse 2 --_ -....-- ---

Pulse Repetition Frequency (PRF) 1024 Hz 10--.

The number of clutter sources 181

Target normalized Doppler shift 1/3
Thermal noise power Unity l,-
Clutter to noise ratio (CNR) 50 dB single sensor SCNR =dB

The number of Doppler bins in LPR 3 -0"- -_--_-nire sensr CN 1-0d-e- 2 sensors, SCNFI =dB - -----
The number of Angle bins in LPR 3 2 sensors SCNR lidB

(LPR: Local Processing Region) ° -- sensors, SCNR dB

The interference-plus-noise covariance matrix Rd is given 1o'° 10 10 10 10, 100

Rd = RN +-pc(k)Rc (44) (b)

where RN is the covariance of noise, R, is the clutter Fig. 3. Non-fluctuating target models: (a) Probability of miss-detection
covariance computed in (16), and p,(k) is a random variable PMD as a function of SCNR, PFA = 10-6, (b) Miss-detection probability
used to model the clutter power of the kth range cell. pc(k) PMD as the function of false alarm probability PFA, SCNR = 8dB and
often follows Weibull or gamma distribution [19] [20]. In SCNR = 10d1B

homogeneous environments, the average clutter power does
not depend on k. We assume the average CNR equals 50 dB. Based on these results, we recognize that the probability

of miss-detection PMD at the same SCNR decreases when
the number of radar sensors in the network increases, e.g., at

B. Detection performance analysis of the radar sensor net- SCNR=10 dB, PMD of the 5-radar RSN is much lower than
work that of the 2-radar RSN. It is desirable for PMD to be as low as

In RSN, each radar sensor transmits a known waveform, possible. In the real world, PMD less than 10% is reasonable.
This waveform is reflected back from the target toward the We can observe that it is very difficult to achieve this PMD
receiving sensor. RSN's tasks are to detect the existence of with a single radar at low PFA and if possible, the SCNR
the target and to estimate its unknown parameters, e.g., range must be very high. However, the 5-radar RSN can maintain
speed and direction. In this paper, we use the spatial-temporal- very low PMD at a low PFA.
frequency diversity in RSN to improve the detection perfor- We also notice that it requires more SCNR with fluctuating
mance. Fig. 3(a) presents the probability of miss-detection targets than with non-fluctuating targets to achieve the same
PMD as a function of SCNR and PFA = 10-6 while Fig. 3(b) PMD. For example, when we use 5 radar sensors and PMD is
presents the miss-detection probability PMD as the function of about 10%, SCNR is 9.3 dB for fluctuating targets but less than
false alarm probability PFA, SCNR = 8dB and SCNR = 9 dB for non-fluctuating targets. At the same values of PMD
10dB for non-fluctuating targets. Similarly, Fig. 4(a) presents and SCNR, PEA for non-fluctuating targets is lower than for
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10 ---------- ----------.. investigate methods to solve the above restrictions and de-
--- ------ ------------ ---- - ---- --- velop our scheme to solve advanced problems in radar sensor

10" networks: target search and target recognition.
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Abstract- Virtual multiple-input multiple-output (MIMO) of antenna elements. However, MIMO channel capacity
communication architecture is popularly used in Wireless depends heavily on how accurately we know the channel.
Sensor Networks (WSN) recently to counteract the severe Specifically, when the instantaneous channel gains, called
communication. Channel state information (CSI) is a crucial
factor to MIMO communication system. Waterfilling strategy channel state information (CSI), are known perfectly at
based on the CSI at transmitter (CSIT) is an optimal both the transmitter and the receiver of the MIMO system,
power allocation scheme, especially at low signal-to-noise the transmitter can adapt its transmission strategy relative
ratio (SNR) scenario. However, CSIT is usually imperfect in to the instantaneous channel state, so the maximum MIMO
practice. In this paper, we will analyze the how the estimation channel capacity can be achieved.
error would impact the channel capacity for the MIMO
system at low SNR region. Channel capacity for MIMO channel has been inten-

Index Terms--Wireless sensor networks, channel capacity, sively studied in different scenarios since the pioneer
channel state information, estimation error, work by Winters [18] and Telatar [17]. Most of them

modeled the channel as fully scattering, i.e., Rayleigh

I. INTRODUCTION fading channel. The Rayleigh fading model is a reasonable
assumption for many fading environments encountered in

The infusion and maturation of the Micro Mechan- practical communication systems. However in some other
ical System(MEMS), computations, and wireless com- cases, (e.g., in WLAN application, and for sure, WSN
munication technologies has advanced the development fits in this scope), there is a strong deterministic Line-
of Wireless Sensor Networks (WSN). In WSN, a large Of-Sight (LOS) component between the transmitter and
amount of low cost sensor nodes are densely deployed to receiver, which gives rise to Rician fading model. The
monitor the environment of interest. Due to the various Rician distribution is characterized by the Rice factor,
applications [7] [16], WSN has generated flurry of research k, which reflects the relative strength of the direct LOS
activity, path component. When k = 0, this model reduces to

The sensor nodes are miniature devices equipped with Rayleigh fading and k -- cc the model reduces to AWGN
a sensor, a transceiver and the necessary electronic cir- channel. The capacity of a Rician channel with receiver
cuites and able to collect and forward information[10]. CSI but without any knowledge even the Rice factor at
These nodes are designed to be deployed randomly or the transmitter has been studied in [8] [61. [13] assumes
strategically in area and left operating until their battery that there is perfect CSI at receiver (CSIR), meanwhile the
is totally used up. Obviously, WSN is power, bandwidth, transmitter has partial CSI, i.e., the knowledge of the value
and complexity limited. of the Rice factor.

Virtual multiple-input multiple-output (MIMO) commu-
nication architecture have recently been applied in energy- In this paper, we assume that the transmitter has

constraint, distributed WSN so as to economize energy full/partial CSI, however, there is error of the CSI. We
consumption [5] [14] [15]. In these implementations, the will investigate how the error impact the channel capacity.
underlying MIMO concepts include the simple Alamouti The remainder of this paper is organized as follows.
scheme [1] and the virtual Bell Labs Layered Space-time In section II we briefly present the relay virtual MIMO
(V-BLAST) architecture [231. architecture for WSN and the underlying one-hop MIMO

In addition to the potential advantage of energy effi- system model. Whereafter, we investigate the channel
ciency in MIMO , the theoretical capacity gain of MIMO capacity with imperfect CSI in sectionlIl. The numerical
channels is also enormous. It has been proved that MIMO results will be presented in sectionlV. And we make the
capacity nominally increases linearly with the number conclusion and propose the future work in sectionV.



II. VIRTUAL MIMO ARCHITECTURE AND SYSTEM y(i) is the NR x 1 vector of received signal on the
MODEL NR receiving sensor nodes, and 77(i) is the NR x 1

A. Virtual MIMO architecture additive receiver noise vector. We assume the components
of the noise q(i) to be independent, zero-mean, circularly

In this section, we will first briefly review the virtual symmetric complex Gaussian with independent real and
MIMO architecture applied in WSN.

The nodes in a WSN is usually of small dimensions, imaginary parts having equal variances. The noise is also
Thuseitmay notdbes i ealistic t ssuay tesme dinensio, assumed to be independent with respect to the time index,Thus it may not be realistic to assume these inexpensive and R77 = E[?7(i)•7(i)H] = U2 IN , where IN, G CNRxNR

sensor nodes are equipped with multiple antennas. [5] first denotes the identity matrix, and AR denotes the hermitian

proposed to realize MIMO communication architecture in a dotes the matrix a.

WSN consisting of single-antenna sensor nodes via sensor conjugate of the matrix A.

cooperation. The MIMO architecture applied here is shown The CSI is the channel matrix H(i) e CNRe NT. The

in Fig. 1 (in n)-th element of the matrix H(i) represents the fading
coefficient value at time i between the m-th receiving

WRELESS SENSOR NETWORK sensor node to the n-th transmitting sensor node. The
- -H(i) corresponding to each channel use is assumed to be

* ,- independent from that of other uses, i.e., H(i) and H(j)
trim % P .. are independent when i 54 j. In this sense, the time index

.- -. "i can be dropped so as to simplify notation.
--------- .In Rician fading the elements of H are nonzero mean,

complex Gaussian variables. Hence, we can model the

channel matrix H as a sum of two components, a fixed
Fig. I. Virtual MIMO architecture in WSN (LOS) component and a variable (or scattered) component,

There is a transmitter cluster, which is composed of H = + H (2)
a group of NT cooperative sensor nodes, communicating and
with a receiver cluster, which is compose of a set of NR
cooperative sensor nodes. In order to fulfil the communi- H = E{H}

cation, the transmitter cluster should do: _I( (3)
"° broadcasting the data within the cluster, so that all the-721

active sensor nodes inside the cluster can encode and where q''NNT is defined as the NR x NT matrix of
send out the data during the MIMO transmission; all ones. E{.} is an expectation operation. H is a com-

"* transmitting the data via the NT *NR MIMO channel. plex distributed matrix with zero-mean, denoted as H ,
These two functionalities should be carried out in two A/, (0, IN, E •), with the probability density function

orthogonal channel. Here, we assume time division (TD) (pdf) [4] [12]
scheme is applied. These two TD channels are referred 1 etT[LuiFIH],
as Intracluster channel and Intercluster channel. For Intr- fjA (H-) NTN,, NT (4)
acluster channel, it is falling into the broadcast capacity
region. In the Intercluster, the NT sensor nodes jointly where tr denotes the trace of a matrix, E is the Hermitian
transmit data to the receiver cluster by using a NT * NR covariance matrix of the columns (assumed to be the same
virtual MIMO channel. So, we will mainly focus on the for all the columns) of H,
Intercluster MIMO channel. E = 2 u-2 INn. (5)

B. System model The strength of the LOS component can be indicated by
the Rician K factor,

In this paper, we only consider single user scenario. NT 2

transmitter sensor nodes and NR receiver sensor nodes K = 10 log9o(L'L F) dB. (6)
equal to NT transmitting antenna and NR receiving an-

tenna respectively. Throughout, we assume that NR >_ NT. In the case of Rayleigh fading, which is an extreme
The discrete-time received signal in such a system can be scenario of Rician fading, K = 0, which also implies that
modeled in matrix form as p = 0. The parameters should be normalized as

y(i) = H(i)x(i) + 77(i) (1) IdL2 + 2 U2 = 1, (7)

where at symbol time i, x(i) is the NT x 1 vector of so that the signal-to-noise ratio (SNR) will not be scaled
transmitted signal on the NT transmitting sensor nodes, by the channel. We also assume that the channel is block



fading [3], i.e., H remains constant over T > NT symbol maximize capacity. The power constraint condition
periods and changes in an independent fashion from block can be mathematically presented as,
to block. E(P) = E(tr(Q)) < P. (10)

III. ONE HoP CHANNEL CAPACITY OF MIMO RICIAN * Either there exist a perfect and instantaneous feedback

FADING CHANNEL channel from the receiver to the transmitter, or the
delay from the obtaining reverse-channel information

The CSI is the channel matrix H. Based on different to applying the information to the forward-link is
knowledge of the CSI, we can get different system perfor- negligible. So the only error we consider is the
mance, including channel capacity. estimation error in (8).

A. Error Model B. Channel Capacity with Perfect CSIR and CSIT

In a realistic scenario, however, the CSI is generally If CSI is known both at the transmitting and receiving

imperfect. The receiving sensor node can estimate the CSI, sensor nodes, the transmitting sensor nodes can adapt its

i.e., the matrix H, using training sequences, e.g., pilot transmission strategy according to this CSI. The channel

symbols. For CSIT, basically there are two ways [2], capacity of such a MIMO system with perfect CSIR and

" The transmitting sensor nodes can estimate the chan- CSIT is nothing but the average of the capacities achieved

nel using the signals received in the reverse link, and with each channel realization. The formula is given in [9]

use it as an estimate in the forward link, because of the C=EH[ max log 1INR + HQHHI] (11)

channel reciprocity principle. During the procedure Q:tr(Q)=P

of estimation, estimation error will be introduced where Q is the input covariance matrix as
without doubt. Suppose the estimation is unbiased, Q = E(xxH). (12)
the estimated CSI, H can be formulated as

ft = H + ý (8) C. Optimal power allocation strategy: waterfilling

where ý is the estimation error. The entries of ý With CSI at both the receiver and the transmitter,

are assumed to be i.i.d. and zero-mean circularly optimal power allocation strategy based on the H should

symmetric complex Gaussian. ý is independent from be applied to maximize the channel capacity in (11) [22].

the real channel realization. The joint singular value decomposition (SVD) and water-

" The transmitter can obtain the CSI through a feedback filling power allocation technique provides the optimum

channel from the receiver to the transmitter. Besides solution [20].
The SVD of the channel matrix H is presented as

the Gaussian estimation error at the receiver, due

to the finite capacity of the feedback channel, the H= U A VH (13)
channel response has to be quantized, which will CNR×NR

introduce the another quantization noise to the CSIT. where U e CN V N is an unitary matrix of orthonormal-
The receiving sensor nodes can uniformly quantize the ized eigenvector of HHT, V e CNT X NT is an unitary
real and imaginary parts of all the entries of the CSI CNm I Nx is a rectangular matrix whose diagonal elements
matrix H. Suppose the quantization step size is Aq, a non-ntis e reanular ati whose diagonal ele
assume that there will be no error in the transmission, are non-negative real numbers and whose off-diagonal el-
the quantization signal-to-noise ratio SNRq is given ements are o Te diagonal elements oH 1, an 2 ,. A , A ,in [19] as, denotes the ith singular value of H, and .k1 -> A2 > ... >

i[2AN. > 0, where Nmin = min(NT, NR).

SNRq = A2 (9) The MIMO channel can then be represented as a parallel
q channel [22] based on the ordered singular value Ai as

where u• is the variance of each component of H.wher =h i.,i +- ýi, i = 1,'' Nmin (14)

Notice that when the Aq is sufficiently small, the
quantization SNRq will be very large. and

We will focus on the Gaussian estimation error in the fol- R = VHx,
lowing analysis. And we make the following assumption. H

• The transmitting sensor nodes have a total power = uHr7.
constraint P, however, they can adapt their power
allocation according to the channel fading so as the Substituting (13) into (11), we can get
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where (A)+ max(0, A), and p is the waterfilling level
which should be chosen so that the total power constraint 1 ..- --

is satisfied: 5.5. . . .

(17) -- _ _ _

tc5 SNR(dB)

Therefore, the maximum channel capacity can be ob-
tained as: Fig. 2. Average Channel Capacity for NT NR = 3 in Rician fading

S0 +( MIMO system with K = 10.
Cmarn = 3 ktg(1 + i) (18)

i,pi>O 77
We can see clearly that the waterfilling scheme performs

much better than the equal power allocation scheme, which
does not need CSIT, even with estimation error, especially

When there is error in the estimation as discussed in at the low SNR. At high SNR, the difference between
section III-A, what the transmitter knows is the estimated waterfilling and equal power allocation scheme becomes
channel matrix Ht in (8). Hereby, the decomposition of the slimmer.
MIMO channel and the application of waterfilling strategy We then set the Rice factor K = 0 for all the sub-
in section 111-C are both based on fl, which contains zero- channels, which means it is Rayleigh fading. The results
mean Gaussian Noise. Apparently, the singular value Aj are shown in Figure 3.
obtained from ft will be different from Ai. Consequently,
the maximum channel capacity in (18) is no long tenable 4

because the power allocation is not optimized. we will _ _ _ _ _,

show how the estimation error impact the channel capacity 3 -s- Equal Power Allocation
_ aterfilling Capaciywith perfect CSIT

in section IV. _ =e.1 t

ý=O 25

IV. NUMERICAL RESULTS AND DISCUSSIONS 9. "

Numerical results are presented to show how Gaussian Q:,

estimation errors degrade the channel capacity in i.i.d. . ...

Rician fading MIMO channel based on Monte-Carlo sim- I ..
ulations.

Two MIMO systems, where NT = NR = 3 and ..... .... ....
NT = NR = 6, respectively were simulated. The MIMO .
channels were treated as 9 and 36 i.i.d. single-input- 0.5 .

single-output (SISO) Rician channels applying the Jakes's
model [211 [11]. -10 -5 SNR(dB) o

In Figure 2, we compare the average channel capacity
using equal power allocation, wate-filling strategy with Fig. 3. Average Channel Capacity for NT NR = 3 in Rayleigh
perfect CSIT, and waterfilling strategy with channel es- fading MIMO system.
timation error as 4r = 0.1,0.25,0.5,1 respectively in a
NT = 3, NR = 3 MIMO system with the Rician fading For Rayleigh fading MIMO channel, channel capacity
parameter as K = 10 for all the independent 3 x 3 = 9 is more sensitive to the SNR, but less sensitive to the
sub-channels, and fd is randomly chosen from 0 -,' 30Hz estimation error.
for sub-channels. Figure 4 5 show the results of the simulation of NT =



NR =6 system. NT = NR = 6 MIMO system is much larger than the one
of the NT = NR = 3 MIMO system.
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We notice that the average channel capacities of equal Fig. 7. Average Channel Capacities for NR = 3, NT = 6 and NR =

power allocation strategy are larger than the ones of 6, NT = 3 MIMO systems.

waterfilling strategy at high SNR. When we perform the
waterfilling scheme, some of the decomposed parrallel For equal power allocation algorithm, the channel capac-
channels may not be assigned any power, so that some fttes for the two systems are exactly the same. However,
of the diversity gain is lost. for waterfilling strategy, more gains can be obtained from

We compare the average channel capacities of NT the receiving part.
NR = 3 and NT = NR = 6 MIMO systems at
Figure 6. The Rician fading parameters K and fd for V. CONCLUSIONS AND FUTURE WORKS

each independent sub-channel are chosen from 0 ,- 10 A. Conclusions

and 0 "- 30Hz respectively. Virtual MIMO structure is very attractive to WSN due to
Without any doubt, the average channel capacity of the its potential huge diversity gain. WSN is power constraint,
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Abstract--The multiple-input and multiple- systems. However, direct application of multi-antenna
output(MIMO) system can be used to increase throughtput techniques to sensor networks is impractical duo to the
throught multiplexing or to improve PLD(Packet Loss limited physical size of a sensor node that is typically
Ration) throught diversity. However, the throughtput and can only support a single antenna. Fortunately, if we
PLR will also be determined by MAC layer and network allow individual single-antenna nodes to cooperate on
layer protocols. In this paper, we coordinate physical
layer, data-link layer and network layer for cross-layer information transmission and/or reception, a cooperative
design. Performance analysis and simulations show that MIMO system can be constructed such that energy
throughput and packet performance will have different efficient MIMO scheme can be deployed [2].
performance compared with only consider the MIMO Using cooperative MIMO, we show that the end-to-
scheme in physical layer as the increase of the number of end performance can be dramatically improved. More-
transmitters. over, the novel approach of distributed Alamouti [3]

1. INTRODUCTION coding provides diversity gain with no local information
exchange, as is typically required in node cooperation.

The demand for energy efficiency and Quality of However, the routing and MAC layer protocols have
Service (QoS) in wireless sensor networks is growing different effects on network performance compared with
in a rapid speed. A strict layered design is not flexible cooperative MIMO technique. Performance analysis and
enough to cope with the dynamics of the wireless sensor simulation results have been illustrate this situation
networks [I]. To enhance the energy efficiency and QoS, The remainder of this paper is structured as following.
we consider the combination of physical layer, data-link In section II, we introduce the preliminaries. In section
layer and network layer together, a cross-layer approach. III, we make the performance analysis for all the layers.
Cross-layer design could introduce the layer interdepen- In section IV, we make the performance analysis for
dencies to optimize overall network performance. cross-layer model. Simulation results and discussions are

The general methodology of cross-layer design is to presented in section V. In section VI, we conclude the
maintain the layered architecture, capture the impor- paper.
tant information that influence other layers, exchange II. PRELIMINARIES
the information between layers and implement adaptive
protocols and algorithms at each layer to optimize the A. IEEE 802.1la OFDM PHY
performance. The physical layer is the interface between the wire-

However, cross-layer design can produce unintended less medium and the MAC [4]. The principle of OFDM
interactions among protocols, such as an adaptation is to divide a high-speed binary signal to be transmitted
loops. It is hard to characterize the interaction at different over a number of low data-rate subcarriers. A key
layers and joint optimization across layers may lead to feature of the IEEE 802.11 a PHY is to provide 8 PHY
complex algorithm. modes with different modulation schemes and coding

MIMO systems can support higher data rate under rates, making the idea of link adaptation feasible and
the same transmit power budget and bit-error-rate perfor- important. BPSK, QPSK, 16-QAM and 64-QAM are the
mance requirement as single-input-single-output (SISO) supported modulation schemes. The OFDM provides a



data transmission rates from 6 to 54MBPS. The higher numbers to ensure the freshness of routes. It is loop-
code rate of 2/3 and 3/4 are obtained by puncturing the free, self-starting, and scales to large numbers of mobile
original rate 1/2 code. nodes.

AODV builds routes using a route request/route reply
B. IEEE 802.11 MAC query cycle. As long as the route remains active, it will

The 802.11 MAC uses Carrier-Sense Multiple Access continue to be maintained. A route is considered active

with Collision Avoidance (CSMA/CA) to achieve au- as long as there are data packets periodically travelling
tomatic medium sharing between compatible stations, from the source to the destination along that path. Once
In CSMA/CA, a station senses the wireless medium to the source stops sending data packets, the links will time
determine if it is idle before it starts transmission. If out and eventually be deleted from the intermediate node
the medium appears to be idle, the transmission may routing tables. If a link break occurs while the route is
proceed, else the station will wait until the end of active, the node upstream of the break propagates a route
the in-progress transmission. A station will ensure that error message to the source node to inform it of the now
the medium has been idle for the specified inter-frame unreachable destinations.
interval before attempting to transmit. Multicast routes are set up in a similar manner. AODV

Besides carrier sense and RTS/CTS mechanism, an maintains routes for as long as the route is active. This
acknowledgment (ACK) frame will be sent by the re- includes maintaining a multicast tree for the life of the
ceiver upon successful reception of a data frame. Only multicast group. Because the network nodes are mobile,
after receiving an ACK frame correctly, the transmitter it is likely that many link breakages along a route will

assumes successful delivery of the corresponding data occur during the lifetime of that route.
frame. The sequence for a data transmission is: RTS- D. Billiard Mobility
CTS-DATA-ACK.

Pick a uniform random direction, advance in that
A mobile node will retransmit the data packet when direction. A new random direction is selected every T

finding failing transmission. Retransmission of a signal seconds, where T is exponentially distributed. Bound-
packet can achieve a certain probability of delivery. aries are reflecting, i.e. a node bounces off as off of a
There is a relationship between the probability of de- mirror.
livery p and retransmission times n [5]:

1 E. Node Mobility and Channel Fading
n = 1.45 In p(1) Mobility of a mobile node generates a doppler shift,

which is a key parameter of fading channel. The doppler
The IEEE 802.11 standard requires that the transmit- shift is

ter's MAC discard a data frame after certain number fd = vf (2)
of unsuccessful transmission attempts. According to the C
requirement of probability of delivery, we choose the where v is the ground speed of a mobile node, c is the
minimum number of retransmission. The advantage is speed of light (3 x 10 8m/s), and f, is the carrier. In our
we can save energy through avoiding unnecessary re- simulation, we used the carrier is 6GHz. For reference,
transmission, and ensure probability of delivery, if a node moves with speed lOm/s, the doppler shift is

200Hz.
C. Network Layer We model channel fading in wireless sensor networks

The Ad hoc On Demand Distance Vector (AODV) as Rayleigh fading. Rayleigh fading occurs when there is
routing algorithm is a routing protocol designed for ad a strong specular (direct path or line of sight component)
hoc mobile networks [6]. AODV is capable of both uni- signal in addition to the scatter (multipath) components.
cast and multicast routing. It is an on demand algorithm, For example, in communication between two infrared
meaning that it builds routes between nodes only as nodes, there exist a direct path. The channel gain,
desired by source nodes. It maintains these routes as long g(W = 9i M + JgQ(W (3)
as they are needed by the sources. Additionally, AODV
forms trees which connect multicast group members. The can be treated as a wide-sense stationary complex Gaus-
trees are composed of the group members and the nodes sian random process, and g9(t) and gQ(t) are Gaussian
needed to connect the members. AODV uses sequence random processes with zero means; and they have same



w2

variance a2 , then the magnitude of the received complex 1) MIMO Diversity Gain: The multiple antennas at
envelop has a Rayleigh distribution, the transmitter and receiver can be used to obtain di-

versity gain: This scheme is also referred to as MIMO

p, (x) =x exp{-p -} > 0 (4) beamforming [9] [10]. Beamforming provides diversity
-2a 2  gain via coherent combining of the multiple signal paths.

This kind of channel is known as Rayleigh fad- Channel knowledge at the receiver is assumed, since
ing channel. A Rayleigh channel is characterized by this is required for coherent combining. A beamforming

parameter, the Doppler spread (or single-sided fading strategy corresponds to the precoding and shaping ma-

bandwidth) fd. The Rayleigh fade generator is based on trices being just column vectors: V=v and U = u.The

Jakes' model [7] in which an ensemble of sinusoidal transmit symbol x is sent over the ith antenna with

waveforms are added together to simulate the coherent weight vi. On the receive side, the signal received on
the ith antenna is weighted by u!. The resulting received

sum of scattered rays with Doppler spread fd arriving th it anten iTn
from different directions to the receiver. signal is given by:

For the values of M for MPSK(Mary phase shift H

keying), one can use the approximate BER expression Y - uHvx + un (8)

obtained by Lu et al [8]. For the AWGN(Additive white The performance gain then depends on whether or not
Gaussian niose), which is accurate for a wide range the channel is known at the transmitter. When the chan-
of SNRs, again making the substitution -ylog 2M forEofollowedbyga vermaging over the PDFstitutiof 7 M U g nel matrix H is known, the received SNR is optimized byEb/NO followed by averaging over the PDF of -y. Using choosing u and v as the principal left and right vectors

the alternative form of the Gaussian Q-function, it is oo u and v as the peft and r ctrevalution of the channel matrix H. That is, the reveived SNR can
straightforward to show that the result of the evaluation tis given by: ~ ~be shown to equal -y = amaxp, where UO'.ax ste ags
is given by: singular value of H.

When the channel is not known to the transmitter, for
P(E) - 2 max(-,1) (5) Mr=2 the Alamouti scheme described in [3] can be usedrnax(log2 M,2) Z.-i=l rr (5)
ofi M( n1 Eb log 2 M sin 2 (2i-1)dO to extract an array gain of M, and the maximum diversity

oM gain of 2Mr.

where M.,(s) is the MGF(Moment generating func- Two-Branch Transmit Diversity with one receiver the

tion)of the instantneous fading power y. For a Rayleigh scheme uses two transmit antennas and one receive

fading channel, we obtain the following analogous to: antenna and may be defined by the following three
functioin: the ending and transmission sequence of infor-

Pb(E) m�'�x~ Mmax(M,1) mation symbols at the transmitter; the combining scheme
maEZloga M =l at the receiver; the decision rule for maximum likelihood
Ebt°92 M 2(2i- )1 (6) detection.

1 - +b•'2O2 M Sin" (S3l )) The encoding and transmission sequence: at a given
V N0  M symbole period, two signals are simultaneously tans-

For BPSK, we get the result: mitted from the two antennas. The signal transmitted
from antenna zero is denoted by cl and from antenna

1 • one by c2. During the next symbol period signal (-
Pb(E)- -- --N (7) c*) is transmiited from antenna zero, and signal c is

2 -l-N0  transmitted from antenna one where * is the complex
conjugate operation.

III. PERFORMANCE ANALYSIS

A. MIMO rl =hice + h2c 2 + ni (9)

It is wildly understood that in a system with multiple r2= -hic + h2 ct + n2 (10)
transmit and receive antennas, the spectral efficiency is
much higher than that of the conventional single-antenna where r, and r2 are the received signals at time t
channels, i.e., a MIMO system can provide two types of and t+T and n, and n 2 are complex random variables
gains: diversity gain and multiplexing gain. representing receiver noise and interference.



We will build the following two combined signals that 0.,•
are sent to the maximum likelihood detector:

el = (a2 + a2)c1 + h*rnl + hln* (11)

= (a2 + C22)c 2 + hin* + htnl (12) .""Mt-rliP¢r,

The combined signals are then sent to the maximum
likelihood detector, uses the decision rule to decide the M ,J,,o ,, =V. VSNR 1

signals cl or c2.
It is further shown that the scheme may easily be gen- Fig. I. Diversity-multiplexing trade-offs

eralize to M transmit antennas and one receive antenna
to provide diversity gain M.

2) MIMO Multiplexing Gain. One mechanism for randomly but is held fixed for all time. This nonergodic
utilizing to improve wireless system performance is to channel can be written as:
obtain gain by decomposing the MIMO channel into VLS--:Rý
parallel channels and multiplexing different data streams Yt= SR + w+ (17)
onto these channels. By multiplexing independent data m

onto these independent channels, we get an increase in where xt E C' Yt G C' are the transmitted and
data rate in comparison to a system with just one antenna received signal at time t, and wt E C' is the additive
at the transmitter and receiver. This increased data rate Gaussian noise. An outage is defined as the event that
is called multiplexing gain. the mutual information of this channel does not support

3) MIMO Diversity-Multiplexing Gain Tradeoffs: The a target data rate:
MIMO diversity-multiplexing gain tradeoffs is essen-
tially the tradeoff between the error probability and the H: I(xt; ytIH = H) < R (18)
data rate of a system.

A. Optimal Tradeoff Curve The mutual information is function of the input dis-
A schemec(SNR)is said to achieve spatial multiplex- tribution P(xt) and the channel realization. Without loss

ing gain r and diversity gain d if the data rate [11]: of optimality, the input distribution can be taken to be

Gaussian with a covariance matrix Q, in which case

lim R(SNR) SNR
SNR-oo log SNR (1) I(xt;ytIH = H) = logdet(I + HQH+) (19)

and the average error probability
Optimzing over all input distributions, and on the scale

lim log Pe(SNR) - d (14) of interest, the bounds are tight, we have
SNR--oo log SNR

For each r, the optimal diversity gain dopt(r) is maxi- Pout(R) - P[logdet(I + SNRHH+) < R] (20)

mum diversity gain that can be achieved by any scheme. For the multiple-antenna channel, let the data rate be

dop t(r) = (Mt - r)(Mr - r) (15) R= rlog SNR, with r < mim(Mt, Mr). The outage
probability satisfies

0 < r < min(Mt, Mr) (16) Pt(rlogSNR) SNR ,d'C~) (21)

Equation(15)(16) are plotted in Figure 1.
This figure implies if we use all transmit and receive where

antennas for diversity then we get full diversity gain min(Mt,M.)
MtMr and we can use some of these antennas to increase dor (r) = inf 2i - 1 + IMt - Mrlai (22)
data rate at the expense of diversity gain. aEA

B.Outage Formulation
Channel outage is usually discussed for nonergodic

fading channels, i.e., the channel matrix H is choosen ai= -log pi/ log SNR (23)



B. IEEE 802.11 MAC Protocol The average queue length, blocking probability, and

Pc is the probability of a collision seen by a packet average waiting time including MAC sevice time are

being transmitted on the medium [12] [13] [14]. Assum- given by,

ing that there are n stations in the wireless LAN we are K

considering, we observe that p, is also the probability L = E i x pi (28)

that there is at least one packet transmission in the i=o

medium among other (n-l) stations in the interference
range of the station under consideration. This yields: PB = 1 1 (29)

Pc = 1 - [1 - (1 -- po)T]n-1 (24) 7ro + P

where P0 is the probability that there is no packet W L (30)
ready to transmit at the MAC layer in wireless station un- W (1 -Pb)

der consideration, and r is the packet transmission proba-
bility that the station transmits in a randomly chosen slot If we know the blocking probability PB, then the
time given that the station has packets to transmit at the throughput S can be computed easily by:
MAC layer. In non-saturated scenario, Pc mainly depends
on the total number of packets attempting to transmit by S = (1 - PB)(1 - pc+l) (31)

all neighbouring stations. However, in saturated scenario,
i.e. the stations always have packets to transmit, the total where a is the maximum retransmission times, p'+1 is
number of packets attempting to transmit equals to the the packet discard probability due to tranmission failure.
total number of neighboring stations, hence Pc is mainly Suppose a is constant, as n increase, Pc increase, the
dependent on the total number of neighboring stations, he packet discarding probability at MAC layer increase.

A queue model can be characterized by the service Throughput linearly increases with the offered load at
time distribution and the arrival process in addition to the the non-saturated status and maintains a constant value
service dicipline. In this paper, we assume that the packet with different total number of transmitting stations at the
arrivals at each mobile station follow the Poisson process saturated status. As the n increases, the constant value
or a deterministic distribution with average arrival rate decrease.
A. The packet transmission process at each station can
be modeled as a general single server. The buffer size C. AODV Routing Protocol
at each station is K. Thus the queueing model for each
station can be modeled as an M/G/1/K when Poisson Using the Opnet and NS-2, we could conduct an
arrivals of packets are assumed. extensive set of performance experiments for the AODV

Let Pn represent the steady-state probability of n routing protocol [16] [17] [18].
packets in the queueing system, and let 7rn represent the 1) With the increase of number of hops, throughput
probability of n packets in the queueing system upon degrades due to the higher delay.
a departure at the steady state, A' is the average arrival 2) With the increase of loads (i.e. application traffic),
rate, T, is the duration of time taken for a state transition throughput can again be degraded due to the loss
from the start state ( beginning to be served) to the end at the link layer. Link layer losses could be due to
state (being transmitted successfully or discarded after problems of hidden/exposed node or collisions in
maximum a times retranmission failures), p is the traffic the wireless media.
internsity p = A'TS. For the finite system size K with 3) the connectivity between nodes decreases,
Poisson input [15], we have throughput also decrease.

P0 = P0 (25) 4) the mobility increase, throughput decrease.
7ro + p

= Pn (26) IV. CROSS-LAYER ANALYSIS

iro + p When we combine the Physical layer, MAC layer

1 and network layer, we need to analyze two performance
PK + p (27) and loss7to+ pparameters: throughput adpacket losratio(PLR).



1) Throughput: From the performance analysis of the packets. The source sensor nodes need to set up paths

physical layer, MIMO scheme could achieve multiplex- to the destination sensor node. There are three phases
ing gain to increase the throughput as the number of T, during the packets transmissions.
increases. 1) MIMO scheme for physical layer.

For the CSMA/CA MAC protocol, in non-saturated 2) set up the link in MAC layer.
scenario, throughput linearly increases with the offered 3) routing path discovery in network layer.
load, i.e., the throughtput will increase, as the number of We use Matlab to obtain the BER-SNR curves for
T, increase. As the Tz increases, it will be the saturated MIMO schemes. We run 1000 Monte-Carlo simulations
scenario. The throughput will decrease as the number of to get the physical layer curves.
TF increases. We implemented the cross-layer model using theFor AODV routing protocol, if we increase the number P E mo e r.T e s ul t n rgi n s10 0x 0 0OPNET modeler. The simulation region is 1000x 1000
of Tx, we need more routing paths, the connectivity meters. The wireless communcation range is 300 meters.
between nodes dreases, throughtput decrease. There were 49 mobile nodes in the simulation model,

2) Packet Loss Ratio: MIMO scheme could achieve and the nodes were roaming independently with variable
diversity gain to increase the performance as the number ground speed between 0 to 10 meters per second. The
of T, increases. So the BER will decrease. If each bit mobility model was called billiard mobility model. the
inside the L length packet has the same BER and bit- maximum retransmission times is 7 and arriving packet
errors are uncorrelated, the PER can be related to the distribution is Poisson. The modulation scheme is BPSK.
BER through [19]: 3) Throughput: Figure 3 is the throughput perfor-

PER = 1- (1 - BER)L (32) mance for the cross-layer model. It shows when the
throught is maximum when the number the transmitter

We could conclude that for MIMO scheme, the PER will is 11. As the number of T, increases, throughput will
decrease as the number of T, increase, increase for the MIMO scheme. For the MAC layer,

For CSMA/CA MAC protocol, as T, increases, the to- when T
tal number of packets attempte to transmit will increase, t increase, thp wlncrase. Whenari.is

the collision probability will increase, suppose blockWhen T is
thecolisionprobability iswgiventximm inretranisesiponlarge enough, it is the saturated scenario. As the T,
probability is given, the maximum retransmission times increases, throughput will decrease. For AODV protocol,
is constant, the packet discard probability will increase the collision probability will increase as the the T,
shown in equation (31). increases. The simulation result is consented with the

In AODV routing protocol, the node density keeps analysis result.
unchanged as the increase of the number of the trans-
mitters. It is hard to establish enough routing paths. The
buffer size in each sensor node is constant, the arriving
packets rate is constant, more packets will be discarded
when the buffer is full.

V. SIMULATIONS

I 02

Fig. 3. Throughput Vs Number of Transmitters

4) Packet Loss Ratio: Figure 4 is the packet loss rate
Fig. 2. System Architecture for cross-layer design performance for the cross-layer model. The change of

curve in fig.4 is instability, but the best performance for
Figure 2 illustrates the system architecture for cross- PLR was achieved when the number of transmitter is 10.

layer design. Only the source sensor nodes send out the As the T, increases, BER decreases, so PER decreases,



more packets will be discarded, PLR decreases. For [2] Cui, S.; Goldsmith A.J.; " Cross-Layer Optimization of Sensor

MAC layer protocol, when T, increases, the probability Networks based on Cooperative MIMO Techniques with Rate

of collision will increase. The packet loss ratio will Adaptation," Proceedings: IEEE workshop on Signal Processing
fcollision wAdvances in Wireless Communications (SPAWC), New York, NY,

keep stable for retransmission could solve the collision pp. 960-964, Jun 2005.

problem. If the number of T. is big enough, retransmis- [3] Almouti, S.; "A simple Transmit Diversity Technique for

sion number will exceed the maximum retransmission Wireless Communications", IEEE Journal on Select Area In
Communication, Vol. 16, No. 8, October 1998 .

number a, large number of prackets will be discarded, [4] D. Qiao, S. Choi, and K. G. Shin, " Goodput Analysis and Link

the PLR will increase sharply. For AODV protocol, as Adaption for IEEE 802.1 la Wireless LANs", IEEE Transactions

the increase of the T,,, it is hard ro set up enough On Mobile Computing, Oct. 2002.
routing pathes. Large number of packets will jam in [5] Bao, L.H.; Garcia-Luna-Aceves, J.J.; " Hybrid Channel Access
roufing te-sie Lfrg oe pScheduling in Ad Hoe Networks", IEEE Computer Society,

the finite-size buffer, more packets will be discarded. Washington, DC, USA.

The simulation result matched well with the performance [6] Chakeres, I. etc; "The Ad hoe On Demand Distance Vector

analysis. (AODV) routing algorithm", University of California at Santa
Barbara , Santa Barbara , CA, USA.

[7] G.L. Stuber; "Principles of Mobile Communcation" Kluwer
Academic Press, 2001.

[8] k. Simon, et al, "Digital Communication over Fading Channels,"
Wiley Interscience, 2005.
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Abstract

In this paper, we address a fundamental problem in Wireless Sensor Networks, how many

hops does it take for a packet to be relayed for a given distance? For a deterministic topology,

this question reduces to a simple geometry problem. However, a statistical study is needed for

randomly deployed WSNs. We propose a Maximum Likelihood decision based on the conditional

pdf of f(rlHj). Due to the computational complexity of f(rIHi), we also propose an attenuated

Gaussian approximation for the conditional pdf. We show that the approximation visibly simplifies

the decision process and the error analysis. The latency and energy consumption estimation are also

included as application examples. Simulations show that our approximation model can predict the

latency and energy consumption with less than half RMSE, compared to the linear models.

I. INTRODUCTION

The recent advances in MEMS, embedded systems and wireless communications enable

the realization and deployment of wireless sensor networks (WSN), which consist of a

large number of densely deployed and self-organized sensor nodes [1]-[3]. The potential

applications of WSN, such as environment monitor, often emphasize the importance of

location information. Fortunately, with the advance of localization technologies, such location

information can be accurately estimated [4]-[7]. Accordingly geographic routing [8]-[10]

was proposed to route packets not to a specific node, but to a given location. An interesting



question arises as "how many hops does it take to reach a given location?" The prediction of

the number of hops is important not only in itself but also in helping estimating the latency

and energy consumption, which are both important to the viability of WSN.

The question could become very simple if the sensor nodes are manually placed. However,

if sensor nodes are deployed in a random fashion, the answer is beyond the reach of simple

geometry. The stochastic nature of the random deployment calls for a statistical study.

The relation between the Euclidean distance and network distance (in terms of the number

of hops) catches a lot of research interest recently. In [11], Huang, Lu and Roman defined

the F-compactness of a geometric graph G(V, E) to be the minimum ratio of the Euclidean

distance to the network distance,

. d(i,j)
"7 = am -(1)

i,jEvh(i, j)

where d(ij) and h(ij) are the Euclidean distance and network distance between node i

and j, respectively. The constant value -y is a good lower bound, but might not be enough to

describe the non-linear relation between Euclidean distance and network distance. Fortunately,

a lot of probabilistic study has been applied to this question. In [12], Hou and Li studied

the 2-D Poisson distribution to find an optimal transmission range. They found that the

hop-distance distribution is determined not only by node density and transmission range but

also by the routing strategy. They showed results for three routing strategies, Most Forward

with Fixed Radius, Nearest with Forward Progress, and Most Forward with Variable Radius.

Cheng and Robertazzi in [13] studied the one-dimension Poisson point and found the pdf

of r given the number of hops. They also pointed out the 2-D Poisson point distribution is

analogous to the 1-D case, replacing the length of the segment by the area of the range.

Vural and Ekici re-examined the study under the sensor networks circumstances in [14],

and gave the mean and variance of multi-hop distance for 1-D Poisson point distribution.

They also proposed to approximate the multi-hop distance using Gaussian. Zorzi and Rao

derive the mean number of hops of the minimal hop-count route through simulations and

analytic bounds in [10]. Chandler [15] derives an expression for t-hop outage probability

for 2-D Poisson node distribution. However, Mukherjee and Avidor [16] argue that one of

Chandler's assumptions is flawed and thus his expression is in fact a lower bound on the

desired probability. They also rigorously derive the pdf of the minimal number of hops for a

given distance in a fading environment. Although the exact analytic results are available in

the literature, their monstrous computational complexity limits their applications. Therefore,

2



we try to approximate the hop-distance relation and simplify the decision process and error

analysis in this paper. Considering the application of resource allocation, only large-scale

path loss is considered and thus the fading is ignored.

The rest of this paper is organized as follows. We provide some preliminaries on skewness

and kurtosis in Section II. The number of hops predication problem is addressed and solved

in Section III. Since this problem has no closed-form solution, we propose an attenuated

Gaussian approximation and show how to simplify the error analysis in Section Ill-A.

Application examples are shown in Section IV. Section V concludes this paper.

II. PRELIMINARIES :SKEWNESS AND KuRTosIs

In this section, we provide some preliminaries on statistical methods [17]. Skewness is a

measure of symmetry, or more precisely, the lack of symmetry. A distribution, or sample set,

is symmetric if it looks the same to the left and right of the center point.

Definition 1: [17] For a given sample set X,

M3 = X) 3 /n, (2)

M2 = E(X- (3)

where X is the sample mean of X, and n is the size of X. Then a sample estimate of

skewness coefficient is given by

M3m1 3 (4)

Skewness is zero for a symmetric distribution. Positive skewness indicates right skewness

and negative indicates left.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Definition 2: [17] A sample estimate of kurtosis for a sample set X is given by

g2 = M4/M - 3, (5)

where m4 = E(X - X) 4/n is the fourth-order moment of X about its mean.

Skewness and kurtosis is useful in determining whether a sample set is normal. Note that

the skewness and kurtosis of a normal distribution are both zero; significant skewness and

kurtosis clearly indicate that data are not normal.

3



III. ESTIMATION OF NETWORK DISTANCE BASED ON EUCLIDEAN DISTANCE

Suppose the sensor nodes are placed on a plane at random at an average density of A

nodes per square meters. Let N(A) be the number of nodes in area A, it can be shown that

N(A) is a two-dimensional Poisson point process with density A. The problem of interest is

to find the number of hops, denoted Hi needed to reach a specific destination r from a given

source node. We can make a Maximum Likelihood (ML) decision,

kH= arg max f(rlHi), i = 1, 2,3,... , (6)

where Hi can also be described as "the minimum number of hops is i from the source to

the specific node with Euclidean distance r". In the following discussion, we are trying to

approximate f(rlHi) for 2-D Poisson distribution. Note that r < R --* H1, we are more

interested in multiple-hop distance relation, especially for i is relatively large.

A. Attenuated Gaussian Approximation

TABLE I

STATISTICS OF f(rlHi)

Number of Hops Mean Std Skewness Kurtosis

1 19.991 7.0651 -0.57471 -0.58389

2 45.132 7.8365 -0.16958 -1.0763

3 72.01 8.2129 -0.10761 -1.0332

4 99.45 8.391 -0.07938 -0.97857

5 127.14 8.5323 -0.06445 -0.93104

6 154.96 8.6147 -0.05341 -0.9004

7 182.68 8.573 -0.07738 -0.91687

Since f(rIHi) is awkward to evaluate even using numerical methods, we use histograms

collected from Monte Carlo simulations as substitute to the joint pdf. All the simulation

data are collected from such a scenario that N sensor nodes were uniformly distributed in

a circular region of radius of RBoud meters. For convenience, polar coordinates were used.

The source node was placed at (0, 0). The transmission range was set as R meters. For each

setting of (N, RBoud, R), we ran 300 simulations, in each of which all nodes are re-deployed

at random. We ran simulations for extensive settings of node density A and transmission range

R. Due to space constraints, only the histograms for (N = 1000, RBoud = 200, R = 30)
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Fig. 1. Histograms of hop-distance joint distribution. (N 1000, RBo,,d = 200, R = 30)

are plotted in Fig. 1, which approximately shows that f(rIHi) approach the normal when

Hi increases. Table I lists the first-, second-, third- and fourth-order statistics of f(H, r).

The skewness and kurtosis clearly satisfy the Gaussianity condition within tolerance of error.

Furthermore, The postulated distribution and histogram are drawn together in Fig. 2 (d)(e)(f),

which clearly shows a close match for each case.

Thus, the objective function can be approximated by

f(rlHi) = a•nA(mn, u0 )
a n (r- rn)2

- e 2 (7)27or

where a is the equivalent attenuation base, mn and on are the mean and standard de-

viation(std), respectively. The specific values of these parameters can be estimated from

simulations. Our extensive simulations show that, even for only relatively large Hi, f(rlHi)

has following properties,

1) urn P o-a-, which means the neighboring joint pdf's have similar spread.

2) mn - mn-I ran!1 - mn, which means the joint pdf's are evenly spaced.
3) 3 < m'-mr-. < 5, which means the overlap between the neighboring joint pdf's is

a'n

small but not negligible. (As a rule of thumbs, Q(3) is considered relatively small and

Q(5) is regarded negligible.)
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Fig. 2. The histogram vs. postulated distribution for end-to-end distances for given number of hops. (a) Three-hop. (b)

Four-hop. (c) Five-hop. (d) Six-hop.

4) r >-m _2 » 5, which means the overlap between the non-neighboring joint pdf's is

negligible.

5) a < 1. For large density A, a --+ 1. Along with Property 1, this tell us that the

neighboring joint pdf's have nearly identical shape.

As shown in the following discussion, these properties largely simplify the decision rule

and the error analysis. Another interesting observation, besides these properties, is that the

following equations do not stand true.

Mn = nm1  (8)

m, = nR (9)
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mn = (n- 1)R+R/2 (10)

Although these equations sound plausible, they all give visible errors. The aforementioned

estimator [r/R] + 1 for Hi, though widely used, is not good in the new light shed by this

study.

B. Decision Boundaries

H,., H Hn+1

d1  nr,

dn-1 dnr

Fig. 3. Gaussian Approximation,

Following (6), and observe the f(rIHi) in Fig. 3, the decision is needed only between

neighboring Hi, that is,

f(r1H,) Z f (r1Hn + 1). (1
n+1

This is because, for a specific value of r, there are only two values of Hi with dominating

f(rIHj), compared to which f(rIHi) for other values of Hi is negligible. Substitute (7) into

(11), we obtain the decision boundary dn between the regions Hn and H! + 1.

B + VB 2 +±AC)

A
A 2 2

B 2B= ?Tn fn+1 -- TMn+10rn

C= 2 2 2 2 2 2C renn+ 1 - mn+lan + 2onan+ Ilna (12)
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Using Property 1,
Tn+l -i n 2 -- 2o-2 In a

2(m 2+l - r+n) (13)

For large density A, Property 5 is applicable, (12) simplifies to

2 2

dn = 2 -1- +lm2  (14)
-n2 -- On+1

Applying Property 1 to (14),
mn2 + nn+il

d, M (15)2

No matter which approximate solution we choose for dn,, the decision rule is given by

n+1

r Z dn. (16)
n

In other words,

we decide ft if d 1-i < r < df,. (17)

C. Error Performance Analysis

For our decision rule, a decision error occurs only when Hn, but we decide fi $r n. Thus,

the probability of error for a specific r is

p(clr) = Ef(HnIr), (18)

where f(HIr) is related to f(rIHi) by the Bayesian rule. The total probability of error is

obtained by integrating (18) over all possible r.

p(6) = I p(cjr)fr(r)dr (19)

According to Property 4, only f(rIH = n - 1) and f(rIH = n + 1) could have outstanding

value over the decision region [d7 -,, d 2].

00 di,

p(E) E J f(rIH = n - 1)p(H7 - 1) + f (H 72 + 1)p(H. + 1)dr
n=2 dn_1

-E •a _p(H _ 1)[Q(adI-,n_2 )Q(ad-,•m_ 2 )]
n=2 O'n-1 O'n-1

+±en+lp(Hn + 1)[Q(m2n+l - dn)_ Q(mn+- - dn-1

O-n+l O-n+l

(20)
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Note that

dn - mi1 dn- 1 - 7nn-1

Und• 1 -- 1

- > (21)

O'n-1

therefore, Q(dn-mn-1) is negligible compared to Q(d_,- _•n)-1) Similarly, Q(mý+l-d4) is

negligible. (20) is approximated by

p- 0c 3p(H 3 )Q( -2) + E[n-lp(Hn - 1)Q( tn-l-rMn-1)0`3•)(' n=3 U-1

+±a+lp(H + 1 )Q(Mn+l - dn)]O'n+1

00

= a2p(H 2)Q(d2 - M_2 ) + ZanP(Hn)[Q(m, - dn-)
0`2 n=3 O'n

+Q(d, - m,
a~n

(22)

Substituting an appropriate solution of dn into (22) would give us the probability of error

within required accuracy. For example, if we choose (15),
00

p(E) ,z a2p(H2)Q( Ma 2 ) + Za'•p(Hn)[Q(mn -mfn )
ri3

+Q(Tnn+l - Mn)
2u0

(23)

IV. APPLICATION EXAMPLES

We provide two application examples, latency and energy estimation, in this section. To

emphasize the role of the number of hops in the estimation, we use general time and energy

models. On how to derive the parameters such as Tr,, Ttjor a specific routing scheme, readers

are referred to [18], [19].

A. Latency Estimation

We use a simple time model, in which the latency increases linearly with the number

of hops [20]. Suppose it takes Trx, Tt• for a sensor node to process 1 bit of incoming and

9



mT, mT,,

Fig. 4. Time model.

outgoing message, respectively. And Tpr is the required time to transmit 1 bit of message

through a band-limited channel. Therefore, the latency introduced for each hop is

Thop = Ttx + Tpr + Trx (24)

Shown in Fig. 4, given the end-to-end distance r, we can find the required number of hops

ft according to (16), thus, a good estimator of the total latency of a 1-bit message is

lhThop (25)

B. Energy Consumption Estimation

The following model is adopted from [21] where perfect power control is assumed. To

transmit 1 bits over distance r, the sender's radio expends

( lEetec + lfsr2 r < ro

Et( )=(26)

LlEjee + lcmpr 4  r > ro

and the receiver's radio expends

E, (1, r) = 1E,,1c. (27)

Eele is the unit energy consumed by the electronics to process one bit of message, Efs and

CmP are the amplifier factor for free-space and multi-path models, respectively, and do is the

reference distance to determine which model to use. The values of these communication

energy parameters are set as in Table II.

Let s, denote the single-hop distance from the (n- 1)th-hop to the nth-hop. Obviously,

s,n < R. In our experimental setting, R = 30m < do so that the free space model is always

used. This agrees well with most applications, in which multi-hop short-range transmission

10



TABLE II

ENERGY CONSUMPTION PARAMETERS

Name Value

ro 86.2m

Eelc 5OnJ/bit

EDA 5nJ/bit

Cef lOpJ/bit/m
2

6mp 0.O013pJ/bit/m
4

is preferred to avoid the exponential increase in energy consumption for long-range trans-

mission. Naturally, the end-to-end energy consumption for sending 1 bits over distance r is

given by
ft

Etotai(1, r) = Etx(1,ri) + Er.(1)} (28)
1

where fi is the estimated number of hops for given r and r, is the single-hop distance because

the message is relayed hop by hop.

On the average,

Etota(l,0r) = il(Eeiec + EfSE[r2] + Ee1ec)

= fil(2Ej1 • + ffs(m2 + U2) (29)

C. Simulation

We used the same scenario described in Section III-A and varied the node density A and

transmission range R. In each simulation, the number of hops is estimated for each node

using (14) and (16), and then the latency and energy consumption are estimated using (25)

and (29), respectively. As comparison to our proposed statistic-based estimator, we chose a

widely used linear estimator.

Linear Estimator 1 ft = [r/R] + 1,

Linear Estimator 2 ft = [r/R] + 2, (30)

where r is the given distance, R the transmission range and [r/R] is the maximum number

less than r/R. We plot the average of latency and energy consumption in Fig.5(a) (b) and

the RMSE in Fig.6(a) (b), respectively. The latency is plotted in units of Thop while the

11



energy consumption in units of Joules. The ripple shape of RMSE is due to the fact decision

errors occurs more often in the overlapping zones of neighboring f(rIHi). Fig.5 show that

the linear estimator 1 performs well at the shorter range but suffers visibly at larger range,

while the linear estimator does the opposite. The linear estimators, no matter what value

their parameters take, may significantly underestimate or overestimate the latency and energy

consumption as already pointed out in Section III-A, while our statistic-based model keeps

close to the actual latency and energy consumption at all ranges except for the border. This

is also verified by Fig.6, which also shows that our model can reduce RMSE to at least

half for both latency and energy consumption. These results show that linear models cannot

identify network behavior accurately, as also confirmed by our extensive simulations for

different settings of node density and transmission range, which is not shown here due to

space constraints.

x 010'

Actual - Actual
-- Statistical - - Statistical

Linear 2 Linear 2
nea 2 

n ar2-+.,

7 7 -
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40 6 
0 B C 2 4 6 8 0

2 

52'
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3 5

2 Z ;..

40 60 60 000 120 140 160 06 200 40 60 60 000 120 140 160 180 206
r r

(a) (b)

Fig. 5. Estimation Average. (a) Latency. (b) Energy consumption.

V. CONCLUSION

To address the fundamental problem "how many hops does it take for a packet to be

relayed for a given distance?", we make both probabilistic and statistic studies. We proposed

a Bayesian decision based on the conditional pdf of f(rIHj). Since f(rIHi) is computationally

complex, we also proposed an attenuated Gaussian approximation for the conditional pdf,

which visibly simplifies the decision process and the error analysis. We also show that several

linear models, though intuitively sound and widely used, may give significant bias error.
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Fig. . MiEstimation RMSE. (a) Latency. (b) Energy consumption.

We apply our approximation to the latency and energy consumption estimation in dense

WSN. Simulations show that our approximation model can predict the latency and energy

consumption with less than half RMSE, compared to the aforementioned linear models.
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by the area of the range. Vural and Ekici reexamined the Nk, that fall in the kth interval, and the expected number
study of 1-D Poisson distribution under the sensor networks ink.

circumstances in [9], and proposed to approximate the multi- D 2 
= >K (Nk - ink) 2  (7)

hop distance using Gaussian. In this paper, we study the hop- k=1 Mk
distance relation in the planar WSN.distace rlatin inthe lana WS• 4. The hypothesis is rejected if D 2 > t"', where t,,

The rest of this paper is organized as follows. We provide
some preliminaries on statistical methods in Section II.The is a threshold determined by a given significance level.

probabilistic study is presented in Section III and statistical Otherwise, the fit is considered good.

analysis in Section IV. Section V concludes this paper. III. MODELING END-TO-END DISTANCE FOR GIVEN
NUMBER OF HoPs

II. PRELIMINARIES
A. Problem Formulation

In this section, we provide some preliminaries on statisticalmethods [10]. We assume a general beacon scenario, in which anchors
sends out beacon packets informing other nodes about

A. Skewness and Kurtosis their locations. These beacon packets are also relayed so
that nodes outside the anchors' transmission range could

Skewness is a measure of symmetry, or more precisely, the also received the beacons. Suppose the sensor nodes are
lack of symmetry. A distribution, or sample set, is symmetric placed on a plane at random at an average density of A
if it looks the same to the left and right of the center point, nodes per square meters. Nonetheless, clarifications about

Definition 1: [10] For a given sample set X, several terms are necessary, because they have been used

M3 = E(X- ')3/n, (3) in a wide variety of senses.
Firstly, our study on end-to-end distance for given number

m2  - (X- X) 2 /n (4) of hops is based on local coordinate system, which

where X is the sample mean of X, and n is the size of X. could be translated into a global coordinate system if

Then a sample estimate of skewness coefficient is given by enough nodes in the local coordinate system have known
global coordinates. In previous research, anchors referin3gl = - (5) to beacons, whose locations are known and broadcast to

m2 other nodes. However, in our study, an anchor is simplyT2
Skewness is zero for a symmetric distribution. Positive skew- a specific node used in establishing the local coordinate
ness indicates right skewness and negative indicates left. system. An anchor could have global coordinates or not,

Kurtosis is a measure of whether the data are peaked or flat which is of no interest to our study. Therefore, our
relative to a normal distribution, study is applicable to both anchor-based and anchor-free

Definition 2: [10] A sample estimate of kurtosis for a approaches.
sample set X is given by Secondly, we assume the beacon packets are distributed

in an ad hoc fashion. Although better routing, such as
92 = M4/M2 - 3, (6) geographic routing, are proposed for WSN, they are not

where M 4 = E(X - X)4 /n is the fourth-order moment of ) suitable for relaying beacon packets, because during this

about its mean. phase, most nodes have no knowledge about locations

Skewness and kurtosis is useful in determining whether a of their own and neighbors'. Under such circumstances,

sample set is normal. Note that both the skewness and kurtosis we have to assume the beacon packets are simply flooded

of a normal distribution are zero; significant skewness and throughout the sensor network, except that nodes can only
kurtosis clearly indicate that data are not normal. relay the beacon packets incoming with least number ofhops and discard those via more hops.

B. Chi-Square Test Let N(A) be the number of nodes in area A, it can be
shown that N(A) is a two-dimensional Poisson point

Chi-square test is widely used to determine the goodness of process with density . One property of the Poisson
fit of a distribution to a set of experimental data. It works as process is that if the number of nodes occurring in the
follows: area A is N, then the individual outcomes are distributed

* 1. Partition the sample space into the union of K disjoint independently and uniformly in the area A. That is, if
intervals. N nodes are placed at random in the area A, then the

* 2. Compute the probability bk that an outcome falls in the probability of a specific node in the subarea B is B/A,
kth interval under the postulated distribution. The Mk= given B E A.
nbk is the expected number of outcomes that fall in the Assume the area A is large enough so that none of the
kth interval in n repetitions of the experiment, anchor nodes is near the border and the transmission

* 3. The chi-square statistic is defined as the weighted range is R. The problem of interest is to find the distance
difference between the observed number of outcomes, from a specific node to the anchor given this node is
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TABLE I ~r2 is determined by
DEFINITION OF VARIABLES

r2 = 1/(t1 )
2 + (t 2 )

2 
- 2tlt 2 COS, (16)

Variable Definition
F = (r, 6) the polar coordinates of a node where 0 is the angle between t1 and t2 and uniformly
ti the distance from the (i - 1)-hop node to the i-hop node distributed in [-02, 02]. Although it is possible to derive
Hi the event "the specific node is within i hops, but beyond (i - 1 t

hops from the source." the pdf of r 2 from (16), it is awkward to evaluate
explicitly. Furthermore, note that rr, depends on -
a nested integral as in (17) is generally required for such

within i hops from the anchor. The definitions of variables evaluations. Thus, for the end-to-end distance for two and

are listed in Table I. Note that the event Hi can also more hops, we will postulate their distribution from the

be described as "the minimum number of hops from the collected simulation data in the next section.

anchor to the specific node is i". (n-1)R(n-2)R R

B. Single-Hop Case p(r.IH) I f ... fp(rn1r-,r2, ,rn 1,H)

Consider the first hop case, the conditional cdf can be f(r-lrl,r2,... 0

expressed by f (ri IH)dr r2, dr 2 dr, (17 )

T2P[rl < nIH 1] = P[rl <rilnl < R] = - (8)

Taking derivative, 2-Hop

2r
f(rsIHT)(r) = 2 (9)

And the conditional mean and variance are 2R/3 and .' ''

R2 /18, respectively, which are solely determined by -- oP

the transmission range R and irrelevant to the node /
distribution density A. This is due to the uniform node /

distribution; no matter how large the density could be, / / *

it would not give any bias to the conditional mean and ,
variance.

C. Two-Hop Case Fig. 1. Two-hop distance.

Conditional on the value of rl, the cdf for t 2 is
B

P(t2 < t~rlH 2 ) =7rR 2 , (10) IV. STATISTICAL ANALYSIS

where B is the area of the region inside the circle of All the simulation data are collected from such a scenario
center F'i but outside the circle of center F0'. B is equal that N sensor nodes were uniformly distributed in a
to circular region of radius of 300 meters. For convenience,

1 1 2 1 polar coordinates were used. The anchor node was placed
7r (t) - sin 201) - (t 2 ) (02 - 2 sin 2•2), at (0, 0). We ran simulations for extensive settings of node

(11) density A and transmission range R. And for each setting
where of (N, R), we ran 300 simulations, in each of which all

=cos- I(I - (t2 )2 •(12) nodes are re-deployed from the beginning.

2tl)2 t A. Single-Hop Distance
0 2 COS t  (13) We plot the histogram of single-hop distance collected

from simulations and compare with the theoretical result

The conditional pdf of t2 is obtained by taking the (9) in Fig. 2 (a), which clearly shows that (9) fits the

derivative of (10). experimental data very well. Furthermore, a chi-square

d B test was carried out to determine the goodness of fit of

ft2IH(r) dt 7rR2(14) (9) to the experimental data. The threshold for 30-1 = 29

By taking expected value of (14), degrees of freedom at a 1% significance level is 49.59.
Compared to this, D2 = 28.8728 is well within the

f, d B threshold. Thus, we establish that the data is in good
ft2 IH2(t) = fr1(S)-j-.-ds, (15) agreement with (9).
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TABLENI

MEANS AND STDS FOR THREE-AND-MORE-HOP END-TO-END

DISTANCES

Number of Hops Mean Std Skewness Kurtosis
3 72.01 8.2129 -0.10761 -1.0332
4 99.45 8.391 -0.079383 -0.97857
5 127.14 8.5323 -0.064453 -0.93104
6 154.96 8.6147 -0.053416 -0.9004

(a) (b)

(See Fig. 2 (d)(e)(f)). For a more formal analysis about
its Gaussianity, we list their skewness and kurtosis in
Table II. Note that both skewness and kurtosis are well
within tolerance, we postulate Gaussian distribution for
three-and-more-hop end-to-end distance. The mean and

S.. . . . .. . .. .. std can be estimated from the experimental data (see
(c) (d) Table II). We plot the postulated Gaussian distribution

and histogram together in Fig. 2 (d)(e)(f), which clearly
show a close match for each case.

D. Optimum Estimation and Error Analysis

Once the condition pdf is known, the distance estimation
is straightforward. The optimum unbiased estimator is

. . ............ . . . ............ . E[rnHn], and accordingly, the RMSE can be minimized

(e) (f) to %/VAR[rnlHn]. In APS/Hop-TERRAIN, the distance

Fig. 2. The histogram vs. postulated distribution for end-to-end distances for is assumed to increase linearly with the number of hops,

given number of hops. (a) One-hop. (b) Two-hop. (c) Three-hop. (d) Four-hop. and thus, a linear estimator, n * ml, is used to estimate

(e) Five-hop. (f) Six-hop. nth-hop distance. Accordingly, the MSE of the linear

estimator is given by

B. Two-Hop End-to-end Distance MSE(Hn) = E[(rn - nml)2 ]

Since there is no closed-form formula for the conditional = VAR[rnIHn] + (inn - nmi) 2(20)

pdf of end-to-end distance for two and more hops, we The minimum RMSE and the biased RMSE given by

have to find a fit for it. We postulate the following pdf APS/Hop-TERRAIN estimator are plotted together in
for the conditional pdf of two-hop end-to-end distance Fig.3, which increases drastically even when n is only

according to the experimental data plotted in Fig. 2 (b), moderately large. As discussed in the Introduction, there
whose characteristic curve clearly shows a Beta distribu-
tion shape. The general pdf of Beta distribution is RS

-- Mi~r~mmRMS

fx(x) = C(x - a) 1-'(b - x)"-1, (18) 40 "-....E

where p and q are the shape parameters, a and b are the 35

lower and upper bounds, and C is a numerical factor to
make the complete probability one. The bounds a and b 30

w
can be easily determined as a = 0 and b = 2R. Since '25

the maximum of (18) occurs at b(p - 1)/(p- 1 +q- 1),

which is at 3R/2 in Fig. 2 (b), therefore, p = 4 and q = 2 20

would be a good guess. The remaining parameter C is 1s

determined by

f2R (2R - s)s 3  0 Z .

C = R 3(4, 2)(2R)5  (19) ,5s
1 2 3 Numbor'of Hops 6 7

The postulated Beta distribution and histogram are drawn
together in Fig. 2 (b), which clearly shows a close match. Fig. 3. The RMSE bias vs. the number of hops. R=30m

C. Three-And-More-Hop End-to-end Distance exists a lower bound of distance error for the RSS-

When the number of hops increases beyond three, the based ranging technology. According to [3], the median

end-to-end distance distribution approaches Gaussian localization error of commodity 802.11 technology is

4



lOft ,,z 3.05m. The RMSE we obtain in our simulations
is around 8 meters, which is in the same order of mag-
nitude as the distance error bound in [3]. Furthermore,
in environment with irregular terrain, obstacles or other
clutters, the shadowing effect may cause higher distance
error. Since hop-based distance technology is immune to
shadowing effect, it may outperform RSS-base ranging
in these kinds of environment.

V. CONCLUSIONS

In this paper, we study the modeling of the end-to-
end distance for given number of hops in WSN. The
experiments showed that the distance does not increase
linearly with the number of hops. Therefore, the distance
should be analyzed for each number of hops. We derived
the distribution for single-hop distance and also showed
that the complexity of derivation for multiple-hop dis-
tance is beyond practical interest. Thus, we postulate Beta
distribution for two-hop end-to-end distance and Gaussian
distribution for three-and-more-hop end-to-end distance.
Computer simulations showed our postulated distribu-
tions agree well with the histograms. We also show that
the distance error can be minimized by exploiting the
distribution knowledge.
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Abstract-In this paper, we propose a MAC protocol: black box offering the service of transferring bits in the form of
throughput-maximized MAC protocol (TM-MAC), based on the signals appropriate for channel. From this view, there are some
characteristics of ultra wideband (UWB) technology. In UWB MAC protocols appeared for UWB communication systems. In
communication systems, the transmission parameters are tun-
able to match the requirements of data flow. In TM-MAC, European funded project U.C.A.N (Ultra wideband Concepts

we implement concurrent multiuser access instead of mutual for Ad-hoc Networks), a TDMA-based MAC protocol is
exclusion method, such as TDMA and random access. For proposed. This MAC protocol is an adaptation for UWB
multiuser interference, we establish a model to adaptively adjust from IEEE 802.15.3 [2] draft standard for narrow-band wireless
the data transmission rate to ensure a satisfied signal to noise personal area network (WPAN). In [3], they proposed a single
ratio (SNR) at receiver side. We also analyze the relationship
among the theoretical maximum channel capacity, the achievable transceiver approach for UWB and a companion MAC layer

maximum channel capacity and the maximum data transmission based on busy tone multiple access (BTMA). BTMA reduces
rate. According to the network topology, TM-MAC re-divides the time and the energy spent on collision as compared to
network into subsets, in which communication pairs can make handshaking protocols.
communication simultaneously to enhance throughput and to However, the design of a truely efficient MAC protocol
exploit as fast as possible data transmission rate for reliable
communication. For subset formation, we propose a general for UWB systems should investigate some possible MAC
analytical framework, which captures the unique characteristics enhancements that will take into account the inherent ad-
of shared wireless channel and allows to model a large class of vantages of UWB technology. In [4], they proposed scheme
systemwide throughput maximization issue via the specification of providing distributed medium access through pulse sense,
per-link utilization functions. Simulation results demonstrate that which is similar to carrier sense in narrowband systems.
TM-MAC can implement throughput maximization to shortenlatency and to enhance network processing capability. Moreover, UWB is flexible in the reconfiguration process of

data transmission rate. Thus, opposite to mutual exclusion

I. INTRODUCTION MAC protocols, another approach for MAC protocol design is

A wireless sensor network (WSN) can be thought as an issued. This kind of MAC protocol for UWB systems allows
ad hoc network consisting of sensor nodes linked by a wire- simultaneous transmission and adapts to multiuser interfer-
less medium to perform distributed sensing tasks. Distributed ence. F. Cuomo et al. [5] outlined key issues to design a multi
WSNs have increasing potential applications because they hold access scheme based on UWB. They selected a distributed
the potential to revolutionize many segments of our economy mechanism to handle radio resource sharing, and presented a
and life, from environmental monitoring and conservation to general framework of radio resource sharing to UWB wireless
manufacturing and business asset management. Ultra wide- ad hoc networks.
band (UWB)[1] is an attractive technology for WSNs due to In this paper, starting from the inherent characteristics of
its extremely high data transmission rate, low radiated power, UWB technology and cross-layer design approach, we propose
accurate range resolution, precision distance and/or positioning a MAC protocol: throughput-maximized MAC protocol (TM-
measurement capabilities, relatively immune to multipath can- MAC). We combine MAC layer and physical layer together
cellation effects, as well as simple UWB transceiver devices, to optimize network throughput. At MAC layer, network is

As a general principle, the role of medium access control re-divided into subsets based on TM-MAC. In each subset,
(MAC) module is to allow multiple users to share a common communication pairs can make communication simultaneously
resource. Most of existed wireless MAC protocols assume to enhance throughput and to exploit as fast as possible
that simultaneous transmissions result in transmission errors data transmission rate for reliable communication. In subset
and thus employ mutual exclusion mechanisms to avoid them. formation, we propose a general analytical framework that
Moreover, from layered architecture aspect, the functions exe- captures the unique characteristics of shared wireless channel
cuted by MAC should be defined without taking into account and allows to model a large class of systemwide throughput
the underlying physical layer, which is seen by MAC as a maximization issue via the specification of per-link utilization



functions. At physical layer, we analyze the connection among transmitted at the pulse repetition time, Nh is the number of
the theoretical maximum channel capacity, the achievable frames (pulses) per information bit and T, is the bin duration.
maximum channel capacity and data transmission rate. For 1
multiuser interference, we establish a model to adaptively R- N.NhT. (2)

adjust the maximum data transmission rate to ensure a satisfied
signal to noise ratio (SNR) at the receiver side. Note that, UWB is flexible in the reconfiguration process of

The remainder of this paper is organized as follows. In data transmission rate due to the availability of a number of
Section II, we summarize motivations for our work. We
analyze the impact of simultaneous transmission on system's transmission parameters, such as Nr Nh and Tt , which cantransmission capability in Section III. Section IV describes be tuned to better match the requirements of a data flow.
ouransmissioncapablgity . Simtion I Sesutio ae giesribs Therefore, for UWB systems, a consequence of rate adaptation
our TM-MAC algorithm. Simulation results are given in is that an arbitrary level of interference is possible. That is,
Section VI. Section VI concludes this paper. for a given level of interference at the receiver side, a sender

II. OUR MOTIVATION can tune its rate by adjusting the code, in order to achieve a

A. Energy Constraint desired bit error rate (BER).

One of the biggest challenges for designers of WSNs III. THEORETIC ANALYSIS ON THROUGHPUT

is to develop systems that will run unattended for years. A Network Model
This calls for not only robust hardware and software, but
also lasting energy resources. However, current generation of The network model assumed in this paper is that of "pi-
sensor nodes is battery powered, whose available energy is conet" or clustered architecture. We assume that we can set
limited, and replacing or recharging batteries, in many cases, up this hierarchical topology for a randomly deployed network
may be impractical or uneconomical. Thus, protocols and through certain existing methods, such as energy-efficient self-
applications designed for WSNs should be highly efficient organization (ESO) [12] algorithm. In each piconet, there is a
and optimized in terms of energy. For WSNs, communication, cluster head and a multitude of normal nodes. Communication
not only transmitting, but also receiving, or merely scanning range determines the radius of piconet. Two nodes, which are
the channel for communication, can use up to half energy[6]. only one hop apart, are neighbors and can communicate with
Therefore, recently, some researchers have begun studying the each other directly. Our proposed algorithm is responsible for
problem of reducing power consumption on wireless interface, controlling wireless medium (or the common channel) access.

Considering that UWB is a low radiated power communi- B Ph
cation scheme. The research in [7] points out that a bit rate
of 10OKbps over 5 meters with no more than I mW power In this paper, we utilize binary PPM-TH-UWB to generate
consumption. UWB is the idlest choice in terms of energy ef- the transmitted signal x(t). That is, we utilize pulse position
ficiency for energy-constraint WSNs. However, seldom WSNs modulation (PPM) to implement modulation and time hopping
take advantage of properties of UWB technology because of (TH) to shape the spectrum of the generated signal.
the lack of an efficient MAC technology. 00

Related with energy constraint problem for WSNs, we have x(t) = p(t - jTf - ciTe - aje) (3)
done some work in [8] and [9]. Our proposed energy-efficient j=_0
MAC protocols: A-MAC and ASCEMAC, not only reserve
energy to extend network lifetime but also own the capability where p(t) denotes a unit-energy pulse. Tf is the frame
to solve accumulative clock drift problem without network duration. cj is the dedicated pseudorandom code. aj is the
synchronization. While, both of them only suit narrow-band binary bit of transmitted symbols. e is transmission time delay
communication systems well. In this research, we extend our for each pulse.
previous work into UWB communication systems. We consider the multi-path-affected UWB radio channel

for signal propagation. In this paper, we use IEEE 802.15.3a
B. Physical Layer Property channel model[13]. The signal r(t) at the receiver side can be

In UWB communication systems, even though bandwidth expressed as following:
is finite, the bandwidth is at least 500MHz or the transmitted
signal has a lOdB bandwidth larger than 20 percent of L(t)

its center frequency based on FCC standard[l]. Compared r(t) = E Qj(t)x(t - rj) + w(t) + n(t) (4)

to narrowband systems, information-theoretic results in [10] j=1

and [11] show that a Shannoncapacity of a multipath fading where aj(t) and Trj(t) are the channel gain and the delay
AWGN wideband channel is a linear function of SNR as measured at time t for the jth path. L(t) is the number of
shown in (1). path observed at time t. w(t) is the multiuser interference.

C x SNR ( n(t) is AWGN noise.
Moreover, for UWB systems, data transmission rate R can Considering a network with N communication pairs com-

be formulated using (2). Here N. is the number of pulses posed of UWB terminals, each pair consists of one transmitter,



one receiver and uses one pseuodorandom code. If N links are Ra-max,i(i = 1,... , N). In this case, the achieved channel
active, then the signal to interference and noise ratio (SINR) capacity for each pair can also be determined by (7). Thus,
at the ith link's receiver at time t is formed as following[5]: the acquired throughput (THpt) of this piconet at time t is

=Pigii calculated as following:

SINR = {?-I + TfU2 EN (5) NT (Ek=l,k~i Pkgkil THput =(8)Pgi
- ,• 2 EN-1 , 8

where Ri is the data transmission rate of the ith link; Pi is i=1 P + Tf 2 ..'jil~k~i -kgki

the average power emitted by the ith link's transmitter; gij is For this existed piconet, if we add m more communication
the path gain from the ith link's transmitter to the jth link's pairs. What is the influence on the throughput? Through
receiver; qj is the background noise energy plus interference analyzing the change of throughput when adding different
from other non-UJWB systems; a2 is an adimensional param- number of communication pairs or picking up same number
eter depending on the shape of monocycle, of communication pairs but located at different positions, we

In this case, the total multi-path gain g, which measures the obtain criteria for forming simultaneous transmission subset
total amount of energy collected over L pulses, is determined to improve throughput.•L 2

as following: g = a, c~j 12. Note that g is related Without making any influence on analysis, we let Uj =

with the attenuation suffered by the transmitted pulses during Tfo,2 N-,1kli kgki and the newly added communication

propagation. In multi-path environments, g decreases with pairs are pair N + 1 to pair N + m. The impact of adding
distance according to the path-loss model as following[14]: more simultaneous transmissions on throughput is evaluated

go (6) by the change of it, noted as ATHpt and calculated using
0 -(9).

ATHput =THput - THput
where go is the reference value for power gain evaluated at N -

do = 1m and/3 is the exponent of power or energy attenuation N / _ Pigii

law. L: q + U, + Tfo2 .N+m k
--k=N+l ki

C. The Impact of Simultaneous Transmission on Network N+nm

Th rolughpukt+i Pkgk+

Within a network, piconets can be treated as independent i=N+l ?li PT2"N

with each other, since the distance among piconets is far igii
enough to permit us ignore the interference among them Vi + ui (9)
(piconet formation scheme can ensure this assumption to be

held). Therefore, the analysis on network throughput can be We also obtain the relationship between the new data trans-

simplified into the independent analysis on the throughput mission rate R' maxi and the original data transmission rate

for individual piconets. Then combining all results together Ra-max,i for existed communication pair i (i = 1, .. , N) as
Tf_2 E N +_ Pkgk,linearly, we can obtain the impact of simultaneous trans- following: + -N + , 1 Note

, a--maVgii
mission on network throughput. Thus, in the following part, that, adding some communication pairs into an existed network
the discussion mainly focuses on the impact of simultaneous will decrease Raa-ma, since iN +positivewil dcrasesice k=N+1 Pkiis positive.
transmission on throughput within a piconet. While, how much Ra-max will be degraded is determined by

In this paper, the theoretic maximum channel capacity the sum interference coming from all simultaneous users.

Ct-max is defined as the largest channel capacity implied From (9), we found that, when adding communication
by channel situation, and the achievable maximum channel Fo 9,w on ht hnadn omncto
bychannlcsit uat-,,,isdfion, an the lachievablesm channel cpairs, the change of throughput of a piconet is related with
capacity Ca-max is defined as the largest channel capacity the negative influence degrading ~a~max for existed corn-

which is acquired through a data transmission rate which can municationvpairslandthedpositive influenc for eritting

ensure reliable communication. From (1) and (5), note that
transmission more communication pairs work concurrently. Thus, from

a wnetwork perspective, letting more communication pairs work
rate for yig o noted as to achieve our goal - concurrently does not definitely mean enhancing/degrading
trying to not only enhance data transmission rate to shorten the throughput. There is a watershed for it. That is, when the
transmission latency but also ensure reliable communication negative influence is smaller than or equals to the positiveisnnegativeeinfuencekishsmallepthanToreequalstofthe positiv
and enhance network throughput. The value of Ra-ma, i influence of adding some communication pairs into an existed
calculated as following: network, system performance in term of throughput will be

Ra. improved, or at least not be degraded. That is /THpt > 0.
Ra-max (7) First, we consider the N = 1 and m = 1 scenario asS+ •k=k#i Pkgk the our analysis basis. We assume that the distance between

In a piconet where there are N pairs of communica- transmitter and receiver is same for each communication pair
tion terminals making communication simultaneously at rate (i.e., dii = d), and each communication pair can use same



power to make transmission. Moreover, the noise floor for communication pairs can make communication simultaneously
communication is fixed. Thus (9) is simplied into (10). to maximize throughput, so that to improve better energy

A Pgo efficiency and spectrum utilization.
ATHput r jd•2' + Tf- 2P9o(• I) A. Modelling Network

77 2 Pgo The network is represented as a directed graph G = (V, E).
+ _dl1 V is the set of nodes in a piconet. e = (u, v) is an edge

+ 2P )in E iff nodes u and v are transmitter and receiver of a

Pg0  (1 communication pair. Fig. l(a) shows an example, in which

(10) nodes A, C, E, G, I, K are transmitters, B, D, F, H, J, L are
receivers. In our algorithm the interference caused by newly

In this case, ATHput is a function of d 12 and d21 . Here, added communication pairs is untolerable when the created
d12 denotes the distance between the original existed commu- throughput is smaller than the original one. Otherwise, it
nication pair's transmitter and the added communication pair's is tolerable. The untolerable interference coming from other
receiver, and d21 stands of the distance between the added communication pairs are denoted by dotted lines. According
communication pair's transmitter and the original existed to the network topology, we utilize the conclusion acquired
communication pair's receiver, in (11) to determine the untolerable interference from other

Note that, to ensure the throughput to be enhanced when communication pairs.
adding one or more communication pairs, the shortest dis-
tance for d 12 and d21 should, at least, equal to a threshold
dmin, which is related with the choice of other parameters, G4 G("

such as transmission power P, environment noise strength q, . KL,,,

environment exponential /3, symbol time T7, monocycle shape
a2 , power gain go and communication range of node drag, but . EFO) , . .

the distance between the transmitter and the receiver of the (a) (b) (c)
originally existed communication pair. That is:

1dm)in =g{(() Fig. 1. (a) Network graph G, (b) Interference tolerable graph G' and
S--) (goTf 0 (c)Potential Group formation graph G"

drt

(11) B. Forming Interference-Tolerated Relationship

IV. THROUGHPUT-MAXIMIZED MAC PROTOCOL We consider all communication pairs in a piconet. We
(TM-MAC) DESCRIPTION generate the interference tolerable graph G' = (V', E').

We ever proposed an energy-efficient MAC protocol: V' C E, i.e., each node in G' is a communication pair in
ASCEMAC[8] for WSNs. ASCEMAC forces nodes power on G. e' = (u', v') is an edge in E' iff the achieved throughput
and off their batteries alternately to implement communication, is higher than the throughput generated by those two terminals
as well as to reduce energy consumption on collision and separately. Fig. 1(b) presents the inference tolerable graph for
idle listening to extend network lifetime. However, for UWB the graph in Fig. 1(a).
communication systems, TDMA-based and contention-based
mutual exclusion medium access control schemes are not the C. Forming Potential Subset
best choice any more. We propose our algorithm: throughput- We generate the potential subset forming graph G". G"
maximized MAC protocol specially for UWB communication (V1, V2 , E") is a bit-partite graph such that V1 = V', and each
systems. node in V2 presents all cliques and sub-cliques in G'. e" =

Inheriting the advantages of ASCEMAC, TM-MAC also (u", v0) is an edge in E" iffu" E V1, v" E V2, and u" belongs
divides the system time into four phases: TRFR-Phase, to one of cliques in G' represented by v". Fig. 1(c) represents
Schedule-Broadcast-Phase, On-Phase and Off-Phase. Off- the potential group formation graph for the inference tolerable
Phase is preserved for all nodes to power off their radios and graph shown in Fig. 1(b).
On-Phase is preserved for to power on their radios to carry Each clique in G' represents a potential subset of commu-
on communication. TRFR message, TRFR-Phase duration de- nication pairs which can make simultaneous communication
sign, matching schedule establishment, maintenance, schedule to enhance throughput. We represent each node in V1 as an
interval design and time-slot allocation mechanisms for TM- one-off source which is granted and must to be used once
MAC are similar to ASCEMAC's. But, in TM-MAC, during in a super-timeslot. Then, the subset formation in a piconet
On-Phase the further divided super-time-slots are individually represents the optimal classification for all nodes within a
occupied by subsets, a group of communication pairs. TM- piconet, and a node in 1V2 is permitted to occupy the channel
MAC, based on the network topology, is responsible for mutually excluded if and only if it can make contribute to
further dividing a network into a set of subsets in which achieve higher throughput and one-off source is still available.



TABLE I

Let lij be an indicator function such that Iij = I if the VAM RE I

node j E V2 is allocated with channel by node i E V1,

and Iij = 0 otherwise. Let THpt be the sub-throughput
generated by node j. Then the channel allocation problem can I 100 Ti or 1 X

be represented as a set of the following linear constraints. T 25 100 ns 1.9966 x 10r/ 2.568 x10-2 ' V'Zs P 1e IW
d Im rloge

Vi, E Ii -- 1 go 7.9433 x 10-b drag 20 m
J

Vj r= TH'uej, x i (12)

more chance to form 4-pair subset, i.e., there is 10% higher
Where rj is the sub-throughput generated by node j in probability for 40 communication pairs scenario than for 5

V2, Note that this set of constraints captures the location- communication pairs scenario.
dependent interference on piconet throughput characteristics Within a piconet, we make simulation to check the actual
of UWB communication systems. throughput achieved by different subsets. Under various node

density, we plot throughput versus various types of subset
D. Maximizing Piconet Throughput (See Fig. 2(a)). Note that, subset within which there are

Consider a utility function U(r) for a throughput r is more communication pairs making communication simulta-
defined as: neously acquires higher throughput. In 40 communication

U(r) = Lt (13) pairs scenario, the throughput achieved by 4-pair subset is
r 119.309kbps, which is around two times of the throughput

achieved by 1-pair subset. Moreover, with the node density
where Ltr stands of number of information bits waiting for increase, the largest throughput which can be achieved is
transmission. The unit for r is bits/sec. decreased since the interference coming from other users is

Since our goal for subset optimization is to improve pi- increased.
conet throughput as much as possible, maximizing piconet

of equations:

Minimize U (r)

subject to . .. .. . . . .. . . .. .
v , Ij 1Number 

If Comuiction Pair1, Subset Nme fCmuiainPl)(a) (b)

Vj, Vi, rj = THput, x Iij (14) Fig. 2. (a) Throughput Achieved per Subset and (b) Average Throughput

Achieved

V. PERFORMANCE EVALUATION We compare our TM-MAC against 802.15.3a, which uses a

We do a set of simulations to evaluate the performance mutual exclusion scheme to implement medium access control
of our algorithm: TM-MAC. A network with amount of - TDMA scheme. We check the throughput achieved, trans-
communication pairs is set up. Those communication pairs mission time needed for certain traffic load and longest latency
are deployed randomly in an area of 50 x 50m 2 and have for data packet for our TM-MAC and 802.15.3a (See Fig. 2(b),
no mobility. This network can be treated as one piconet in Fig. 3(a) and Fig. 3(b)). Note that, our TM-MAC can achieve
a large-scale system. Parameters for simulations are given in higher throughput than 802.15.3a around 5.97% to 25.358%.
Table I. Given same amount of traffic to networks which run TM-MAC

We deploy 5 to 40 communication pairs separately in the and 802.15.3a separately, the transmission time needed for
same region. Then, we form simultaneous transmission subsets TM-MAC is shorter than the one for 80.215.3a. The reduced
using our TM-MAC. We observe the number of generated ratio for various nodes density from 40 communication pairs to
subsets. We run Monte Carlo simulations and make average 5 communication pairs locates within the range from 10.358%
operation on results to remove the randomicity of simulation to 32.18%. Since 802.15.3a uses mutual excluded scheme
results. The results are shown in Table II. We also observe for medium access control, the communication for various
the chance for each communication pair being classified into communication pairs is carried out serially. While, for TM-
different subset (See Table III). MAC, some communication pairs can make communication

Note that, from Table II and Table III, three to four percent simultaneously. The longest latency for TM-MAC is shorter
of communication pairs being classified into 1-pair, 2-pair than 802.15.3a. The decreased ratio is from 18.554% to
or 3-pair subset. Even with node density increase, there is 65.869%.
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data transmission rate. According to the network topology, NODE DENSITY. I-PAIR SUBSET, 2-PAIR SUBSET, 3-PAIR SUBSET AND

TM-MAC re-divides network into subsets, in which com- 4-PAIR SUBSET SEPARATELY DENOTE THE SUBSET IN WHICH THERE IS

munication pairs can make communication simultaneously ONE COMMUNICATION PAIR, TWO COMMUNICATION PAIRS, THREE

to enhance throughput and to exploit as fast as possible COMMUNICATION PAIRS OR FOUR COMMUNICATION PAIRS.

data transmission rate for reliable communication. For subset
formation, we propose a general analytical framework, which

captures the unique characteristics of shared wireless channel 5 pairs 1 10 pairs 15 pairs 20 pairs 1 30 pairs 40 pairs
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Abstract-Query processing has been studied extensively in is interested in how imperfect information may be represented
traditional database systems. But few of existed methods can be in a database system. Turtle and Corft[5] in their discussion
directly applied to wireless sensor database systems due to their of uncertainty in information retrieval systems also argue that
characteristics, such as decentralized nature, limited computa-
tional power, imperfect information recorded, and energy scarcity the issue of imperfect information cannot be ignored.
of individual sensor nodes. In this paper, we extend our previous Uncertain information is typically handled by attaching a
work: quality-guaranteed and energy-efficient algorithm (QGEE) number, which represents a subjective measure of an uncertain
for wireless sensor database systems. We introduce radius of element according to some observer, to that element. The way
covering disk from point spread function (PSF) aspect and sample in which the number is manipulated depends upon the theory
size for query quality and energy consumption control. PSF
introduces ambiguity into query answers, since the sensitivity that underlies the number. There are possibilistic databases[6]
of nodes is nonuniform within monitoring region. Sample size and probabilistic databases[7][8][9]. Moreover, probabilistic
determination refers to the process of determining exactly how approach has started to be used by WSNs to process query
many samples should be measured in order that the sampling with limited information[10].
distribution of estimators meets users' pre-specified target pre- Most of algorithms for determining query processing strate-
cision. In this paper, we formulate the criteria to determine the
optimum radius and sample size according to users' requirements gies in WSNs are static in nature. In [11], Bodorik proposed
on query answers. Simulation results demonstrate that the impact aborted join last (AJL) method to substitute static mechanism
of sample size and monitoring coverage on query answers in with adaptive one, which owns low overhead delay to decide
terms of root mean square error (RMSE). when to correct a strategy. In AJL, the decision for correction

1. INTRODUCTION is computationally simple and, moreover, a corrective strategy
is already exist when it is decided to correct. Acquisitional

Recent developments in integrated circuit technology have query processing (ACQP)[12], compared with typical meth-
allowed the construction of low-cost sensor nodes, which ods, focuses on betaking the significant new query processing
are generally equipped with sensing capabilities, wireless opportunity that arises in WSNs: smart sensor nodes have the
communication and limited power supply, CPU and memory. capability to control over where, when, and how often data is
These devices are expected to be embedded into environment physically acquired (i.e., sampled) and is delivered to query
to create very dense networks[l]. High level tasks, such as processing operators.
monitoring specific events, are accomplished by cooperation Considering energy constraint issues, some energy efficient
of multiple nodes to collect and process information. Wireless solutions are proposed. Query processing based on random
sensor networks (WSNs), which operate in unattended mode, walk technique[13] is an alternative scheme to implement
represent an emerging type of network. WSNs are intended failure recovery in dynamic environment. The robustness of
for a broad range of environmental sensing applications this approach under dynamic situation follows the simplicity
from weather data collection to vehicle tracking and habitat of processing, which only requires the connectivity of moving
monitoring[2][3]. neighbors. In-network query processing is critical for reducing

The goal of monitoring through sensor nodes is to infer network traffic when accessing and manipulating data. It
information about objects from measurements made from requires to place not only a tree of query processing operators
remote locations. Since inference processes are always less such as filters and aggregations but also correlations onto
than perfect, there is an element of uncertainty regarding nodes in order to minimize the amount of data transmitted
answers. When viewed from this perspective, the problem over the network. In [14], an adaptive and decentralized
of uncertainty, which stands for the quality of query answer, algorithm is proposed. This algorithm progressively refines the
is central to monitoring applications. Thus, to build useful placement of query processing operators by walking through
information systems, it is necessary to learn how to represent neighbor nodes. Thus, an initial arbitrary placement of query
and reason with imperfect information. As a result, Motro[4] processing operators can be progressively refined toward an



optimal placement. From four aspects, QGEE implement quality control:
Existing query processing systems for WSNs, including Query Vector Space Model (VSM) Design and Active

Directed Diffusion[15], TinyDB[12] and Cougar[16], provide Nodes Selection. VSM is employed by us to combine all
high-level interface that allows users to collect and process considering factors, such as node location, measurement
such continuous streams. Note that they are especially at- quality and remaining battery capacity, to select the most
tractive as ways to efficiently implement monitoring applica- related nodes to participate query processing. When a
tions without forcing users to write complex, low-level code query submitted, the related top-end node fixes on optimal
for managing multihop network topologies or for acquiring locations for this query and translates the query into a
samples from sensor nodes. TinyDB, Directed Diffusion and query VSM vector. Query VSM vector and information
Cougar are relatively mature research prototypes that give on optimal locations will be flooded over the whole
some ideas on how future query processing system will network. A query correlation is designed to express

the correlation between each node and a query. Query
Our previous work: quality-guaranteed and energy-efficient correlation is a function of query quality requirement,

algorithm (QGEE) for wireless sensor database systems[17], nodes' energy, measurement quantify and location. The
considers the energy constraint problem and quality require- criterion for active nodes choosing is the decision-which
ment from active nodes election, information collection and nodes are active to respond queries-is based on their
query answer expression. QGEE utilizes in-network query query correlations. That is, nodes with highest query
processing method to task wireless sensor database systems correlation among their one-hop neighbors are chosen to
through declarative queries and uses confidence interval strat- participate in related query processing. In QGEE, active
egy to determine the closeness of a query answer to the nodes are chosen locally leveraging cooperations among
true value. Through further study, we extend QGEE in this nodesa
paper. We introduce radius of covering disk from point spread Odes.• Optimal Location Determination." We model the problem-
function (PSF) aspect and sample size for query quality and determining optimal locations for a query, as a k-partial
energy consumption control. PSF introduces ambiguity into set cover problem. It is a NP problems which requires
query answers, since the sensitivity of nodes is nonuniform
within monitoring region. Sample size determination refers an approximation algorithm: SETCOVER[ 18], which canto aneapproximationealgorithm:exETtlyEh[w8manwhichpcan
to the process of determining exactly how many samples acquire the solution during polynomial time, to determine
should be measured in order that the sampling distribution the value of k and the locations of these k disks on a
of estimators meets users' pre-specified target precision. In plane. In QGEE, we choose centers of those k disks as
this paper, we formulate the criteria to determine the optimum our optimal locations.
radius and sample size according to users' requirements on Query Answer Expression: Since a statistic measure-query nse Eprssanswers.satsicmesue
query answers. ment on samples can rarely, if ever, be expected to be

The remainder of this paper is organized as follows. Sec- exactly equal to a parameter, it is important that an
tion 11 summarizes our previous work on QGEE algorithmu estimation is accompanied by a statement which describes
Our extending work is discussed in Section III. the precision of this estimation. We utilize confidence
results are given in Section IV. Section V concludes this paper. intervals[19] to state both how close the value of a

II. QUALITY-GUARANTEED AND ENERGY-EFFICIENT statistic being likely to be value of a parameter and the
(QGEE) QUERY PROCESSION PROTOCOL chance of being close.

QGEE employs an in-network query processing method to Information Collection: After active nodes are chosen,

task networks through declarative queries, which is critical a data centric routing algorithm, EM-GMR[20] is em-
forareducing networks tho lraffichen qeeshing a manipulating ployed, which is a multipath, power-aware and mobility-for reducing network traffic when accessing and maiuaig aware routing scheme. It is used to establish route-tree

sensor data. In QGEE algorithm, only a subset of nodes within from active nodes to front-end nodes for query answer

a network will be chosen to acquire readings or samples rrn. active n etwor approachei

corresponding to the fields or attributes referenced in queries. re t find s es rou te n etwhe n a pproage i n

The oalof ur pprachis o reuceintrfeenc coing which it finds a route only when a message is to beThe goal of our approach is to reduce interference coming delivered from source to destination. EM-GMR considers

from measurements with extreme errors and to minimize

energy consumption by providing service that is considerably distance, remaining battery capacity, and mobility of each

necessary and sufficient for the needs of application. Moreover, sensor node during route path setting up. This scheme

according to the analysis and classification on sources of could tremendously reduce frame loss rate and link failure
imperfccrdingformatheanalysion, we plo bass iiction mhou s to rate since mobility is considered, so that incompletenessimperfect information, we employ probabilistic method to information caused by poor link quality can be reduced

formulate the distribution of them in terms of probability dis- -atocertin degree.

tribution function (PDF). Finally probabilistic query answers

are acquired on uncertain data. The probability in a query In energy consumption control, first, in the query SVM
answer allows users to place appropriate confidence in it as design, node location is included besides measurement quality
opposed to having an incorrect answer or no answer at all. and remaining battery capacity, since it -is directly related to



the necessary number of active nodes to cover the whole at the edge of disk, then we can ensure that the measurements
monitoring region. Through solving optimal location problem, of active nodes can represent the situation within this disk at
we can employ as few as possible nodes to cover as large least with p confidence.
as possible monitoring region in order to carry out energy Considering the impact of PSF on the uncertainty of query
reservation task. Second, we tremendously reduce the frame answer, we adaptively adjust the radius r of disks according
loss rate and link failure rate through choosing more suitable to users' quality requirements instead of fixing it. We assume
nodes to set up route-tree for queries. With this improvement, that PSF (g(d)) of nodes in a WSN is defined by (1) and
we can reduce energy consumption for route-tree maintenance confidence of query answer is required to be at least p.
and information retransmission. 1 2

g(d) e (1)
III. EXTENDING WORK FOR ENERGY AND QUALITY

AWARE QUERY PROCESSING where d is the distance between a point and the center on a

As a motivation for our work, we describe a scenario: disk. a 2 is the variance of d. g(d) has the similar form as
A great multitude of temperature sensor nodes are ran- shown in Fig. 1(a).
domly deployed in a region we are interested. Individual We derive (2) from (1) to determine r.
sensor nodes (or in short, nodes) is connected to other r = Ux/ln(20r, 2 (1 -p) 2) (2)
nodes in its vicinity through wireless communication
interface, and it uses a multihop routing protocol to Note that r is a function of standard deviation of PSF a and
communicate with nodes that are spatially distant. All query quality requirement p. If we fixed a, r will decrease
nodes are interconnected to at least one powered PC with increasing of p. That means, with higher query quality,
(front-end node) directly or through intermedial nodes. smaller disks are used to search the optimum locations and
Front-end nodes are in charge of processing data, on the more active nodes are needed for a query processing.
opposite direction, disseminating queries to related nodes. B. Sample Size Control for Data Sensing
Within this WSN, each node owns equal computing andsensing capabilities, buth mdeawsurem qualt forg snsr We have chosen a set of nodes to respond a query. However,sen sin g cap ab ilities, bu t m easu rem ent qu ality for sen sor ,H w m n m e s r e ts h o l b e i c u d i n ne a -parts may be not identical. "How many measurements should be included in one sam-

ple?" is the question we will answer in this Section. Sample
A. Radius Control for k-Partial Set Cover Problem (any subset of a population) size determination refers to the

Point spread function (PSF) of nodes introduces ambiguity process of determining exactly how many samples should be

into query answers. Our temperature monitoring application is measured/observed in order that the sampling distribution of
interested in the temperature over a region instead of one point estimators meets users' pre-specified target precision[21].

pon t sSince nodes' readings are subject to many small and random
in space. But considering operation feasibility, cost and speed, errors which are caused by limitations of device's hardware

sampling method is widely used instead of completely mea- and environmental noise, uncertainty is inherent regarding to

suring. In this aspect, another imperfect information source

is raised - PSF. PSF is caused by nonuniformn sensitivity true values. Hence nodes reading (x) can be expressed as:

within nodes' local space. In general, nodes exhibit sensitivity X = v + em + 17 (3)
variation similar to what is shown in Fig. 1. Note that, nodes
are more sensitive to the center of their regions than toward where v is the true value, em is the measurement error
the edge. introduced by limitations of device's hardware, and 77 is

the environmental noise which is considered as added white
Gaussian noise in this paper and 77 -N(, N2 ). Based

_ ,on central limit theorem[22], the probability distribution of
Sensitivity measurement errors complies with a normal distribution. That

is, em ,-' N(0, az). Generally, in product's technical datasheet,
manufactories supply the information on measurement error.
"For example, the bias for CXM539 is ±lGauss with 0.95

(a) (b) confidence[231. That means for sensor nodes CXM593, o-2

0.1302. For general cases, if we know the maximum bias 6
Fig. 1. (a) 1-Dimension Gaussian model of a PSF and (b) 2-Dimension and its confidence p, we can obtain the general expression of
Gaussian model of a PSF

2~ That is

Among various locations within a disk, measurements of Ta= 62
active nodes own the lowest sensitivity/confidence when they e [Q-1( 2_ P)]2 (4)
stand for the situation at this disk's edge. This nature inspires
us to acquire the criterion to calculate suitable value for r. where Q(x) stands for Q-Function, defined as Q(x) =

That is, if the sensitivity/confidence equals to or higher than p 2e dy
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-- Minimize Operationa

reading also complies with a normal distribution withz-mean /i-veagie Operato a

and 0- -standard deviation given in (5). 20 .. .. .... :: .... . . ......... . ... ......

Ax and oxN (5)

Therefore the PDF fx (x) of node reading x is
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Using sample mean to estimate the mean of a random
variable is an unbiased estimation. That means the estimator
aims at the true value or is correct average[24]. In (5), the 0.2- 0.4 0.6 0.8 1 1.2 .4. .6 1.8 2

Radios (Meter)

mean y. of samples x equals to the true value v. Moreover,

we choose the sample mean as our estimator for true value v, Fig. 2. Error Corresponding to Query Result Caused by Radius of Covering

i.e. 0v, = 1 En I xj. Thus, we do an unbiased estimation on Disk

true value v. Here n is the sample size. In this case, the PDF
of 0,n is f, (iv) with pon = [tx and u?, = ash2in ~ ~ ~ ~ ~ ~ v (7) V x, as shown ie. M E=VEF

in (7). i.e., RMSE = x/•_a1(ýi - v) 2. Here, k is the number of
P. - 0 2 Monte Carlo simulation.

f%, (On•) = e (7) For MAXIMUM, MINIMUM and AVERAGE data aggre-
2 +r(0 N2 + -) gation operations, we check the error caused by the size of k-

partial set cover disk and the sample size. In Fig. 2 and Fig. 3,
We let Ax as the margin between the estimator (0,) and we plot radius and sample size versus error corresponding to

the true value (v) to reflect the target precision of queries, and query results separately. We can see that with radius of k-
we specify our capability, ensuring the estimation error to be partial set cover disk increasing, the error of query results,
within this margin, is not to smaller than p. The criterion for expressed by root mean square error (RMSE), is enlarged

sample size determination is simply stated as: around tens times. Large sample size can make the acquired

Pr{[Dn. - v1 < Ax} Ž> p (8) query results be more close to true values, i.e., the RMSE for
30 sample size scenario is only 30% to the one for 2 sample

Since we have known the PDF of $,, the probability that size scenario. Moreover, the impact of radius of disk and
the estimation error is not larger than Ax is sample size for AVERAGE data aggregation is much smaller

AX than for MAXIMUM and MINIMUM data aggregations. The
Pr{Ifin - vi < Ax} = 1 - 2Q( ) (9) reason is, for normal random variable, the mean operation

for all samples can counteract some errors during estimation.

Solving (8) and (9) for sample size n, we obtain Furthermore, we note that the impact from PSF on query

answers is much bigger than the impact from sample size.

n + [Q2 (10) Based on (2) and (10), we acquire the optimum values for

Since too large sample size implies a waste of resources, and radius of k-partial set cover disk and sample size, as shown

too small sample size will diminish the utilization of results. in Table I. Observe that in order to monitoring same region

In this paper, we exploit the smallest value that satisfies (10) to interested, the number of active node needed when p equals

specify the value of sample size during information sensing, to 0.95 is 2 times when p equals to 0.5. In addition, more

so that we can acquire enough samples to meet users' pre- samples are needed to satisfy the predefined precision on

specified target precision, and reduce energy consumption for query answers, such as the sample size for p=O.95 is 10 times

data sensing. to p=0.5. Note that, there is a tradeoff between the energy
consumption and the quality of answer.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

In our simulations, 100 nodes are randomly deployed in an V. CONCLUSIONS

area of 10 x 10ml2 , and sensing range for individual nodes Query processing has been studied extensively in traditional
is Im. We run Monte Carlo simulations to remove the ran- database systems. But few of existed methods can be directly

domicity of simulation results. We evaluate the performance applied to wireless sensor database systems due to their

of our extending work. In all experiments, we assume that characteristics, such as decentralized nature, limited compu-
the true value is known to us. We define the root mean tational power, imperfect information recorded, and energy

square error (RMSE) to express the error of query results, scarcity of individual sensor nodes. In this paper, we extend
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Abstract- Starting from the characteristics of newly appeared reason with imperfect information effectively and efficiently.
wireless sensor networks, such as decentralized nature, limited Uncertain information is typically handled by attaching a
computational power, imperfect information recorded, and en- number, which represents a subjective measure of an uncertain
ergy scarcity of individual sensor nodes, we have done some
works to solve energy constraint and quality required problems element according to some observers, to the answer. The way
from active nodes election, information collection to query in which the number is manipulated depends upon the theory
answer expression perspectives. In this paper, extending our that underlies the number. There are possibilistic databases[4]
previous works, we propose two methods to substitute cosine and probabilistic databases[5][6][7]. Moreover, probabilistic
measure for vector similarity: Cosine-Length Measure (CLM) approach has started to be used by WSNs to process query
and Joint-Deference Measure (IJDM). Through considering the
impact of vector length on vector similarity, CLM alleviates the
disadvantage of traditional VSM, in which the confidence of Most of algorithms for determining query processing strate-
query answer may be degraded since truly similar nodes cannot gies in WSNs are static in nature. In [9], Bodorik proposed
be elected according to users' requirement. JDM upgrades the aborted join last (AJL) method to substitude static mechanism
accuracy and degrades the complexity for the computation on with adaptive one which owns low overhead delay to decide
similarity coefficient through simplifying the measure from vector
domain to scalar domain. In addition, with the distributions when to correct a strategy. Acquisitional query processing
of measurement error and environment noise known and/or (ACQP)[101, Compared with typical methods, focuses on
unknown respectively, we formulate the criteria to determine the betaking the significant new query processing opportunity that
optimum sample size to meet users' pre-specified target precision, arises in WSNs: smart sensor nodes have the capability to
Through simulation, we check the validities and sensitivities of control over where, when, and how often data is physically
cosine measure, CLM and JMD methods on answer quality and
network lifetime. Furthermore, our simulation results, in this acquired (i.e., sampled) and is delivered to query processing
paper, form a set of criteria for method selection based on specific operators.
applications. In energy constraint and quality required problems for query

processing, we have done some works from active nodes
election, information collection to query answer expression

I. INTRODUCTION perspectives. QGEE[12] utilizes in-network query processing
Recent developments in integrated circuit technology have method to task wireless sensor database systems through

allowed the construction of low-cost sensor nodes, which declarative queries and uses confidence interval strategy to
are generally equipped with sensing capabilities, wireless determine the closeness of a query answer to the true value.
communication and limited power supply, CPU and memory. However, vector space model (VSM) is one of very efficient
These devices are expected to be embedded into environment methods to quantify the correlation between a query and
to create very dense networks[l]. High level tasks, such as all candidate documents, but traditional cosine measure for
monitoring specific events, are accomplished by cooperation similarity calculation is not a method that reflects the similarity
of multiple nodes to collect and process information. Wireless among vectors accurately or completely (i.e., only from the
sensor networks (WSNs), which operate in unattended mode, angle aspect to express similarities). Moreover, sample size
represent an emerging new type of network. WSNs are in- determination is another important issue for energy reservation
tended for a broad range of environmental sensing applications and quality control. "How many measurements should be
from weather data collection to vehicle tracking and habitat included in one sample (any subset of a population)?" is an
monitoring[2][3]. essential question to be answered.

The goal of monitoring through sensor nodes is to infer In this paper, we propose two methods to substitute cosine
information about objects from measurements made from measure: Cosine-Length Measure (CLM) and Joint-Deference
remote locations. Since inference processes are always less Measure (JDM). Through considering the impact of vector
than perfect, there is an element of uncertainty regarding length on vector similarity, CLM alleviates the disadvantage
answers. When viewed from this perspective, the problem of of traditional VSM, in which the confidence of query answer
uncertainty, which stands for the quality of query answers, is may be degraded since truly similar nodes cannot be elected
central to monitoring applications. Thus, to build useful infor- according to users' requirement. JDM upgrades the accuracy
mation systems, it is necessary to learn how to represent and and degrades the complexity for the computation on similarity
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coefficient through simplifying the measure from vector do- • Information Collection: After active nodes are chosen,
main to scalar domain. In addition, knowing and/or without a data centric routing algorithm, EM-GMR[15] is em-
knowing the distributions of measurement error and environ- ployed by QGEE, which is a multipath, power-aware and
ment noise respectively, we formulate the criteria to determine mobility-aware routing scheme. It is used to establish
the optimum sample size to meet users' pre-specified target route-tree from active nodes to front-end nodes for query
precision. Moreover, we check the validities and sensitivities answer return. EM-GMR uses reactive networking ap-
of cosine measure, CLM and JMD methods for quality and proach, in which it finds a route only when a message
network lifetime through simulation. The most important thing is to be delivered from source to destination. EM-GMR
is that, the availability for those simulation results is not considers distance, remaining battery capacity, and mo-
limited to the scenario for our specifical simulations. Since bility of each sensor node during route path setting up.
during the design of query vector, we remove the dependence This scheme could tremendously reduce frame loss rate
on the absolute values related with network scenario and query, and link failure rate since mobility is considered, so that
our results, in this paper, form a set of criteria for method incompleteness information caused by poor link quality
selection based on specifical applications, can be reduced at certain degree.

The remainder of this paper is organized as follows. Sec- In energy consumption control, first, in the query SVM design,
tion II summarizes our previous work on QGEE algorithm, node location is included besides measurement quality and
Our extending works are discussed in Section III. Simulation remaining battery capacity, since it is directly related to the
results are given in Section IV. Section V concludes this paper. necessary number of active nodes to cover whole monitoring

region. Through solving optimal location problem, we can

II. QUALITY-GUARANTEED AND ENERGY-EFFICIENT employ as few as possible nodes to cover as large as possible
(QGEE) QUERY PROCESSION PROTOCOL monitoring region in order to carry out energy reservation

task. Second, we tremendously reduce the frame loss rateQGEE employs an in-network query processing method to and link failure rate through choosing more suitable nodes

task networks through declarative queries, which is critical to set up ro te foues Who this m pre mentwe
for eduingnetorktraficwhe acessng nd aniulaing to set up route-tree for queries. With this improvement, we

for reducing network traffic when accessing and manipulating can reduce energy consumption for route-tree maintenance and

sensor data. In QGEE algorithm, only a subset of nodes within information retransmission.

a network will be chosen to acquire readings or samples

corresponding to the fields or attributes referenced in queries.
The goal of our approach is to reduce interference coming
from measurements with extreme errors and to minimize A. Query Vector Space Model (VSM) Redesign
energy consumption by providing service that is considerably In information retrieval, VSM is one of very efficient
necessary and sufficient for the needs of application, methods to quantify the correlation between a query and all

From four aspects, QGEE implement quality control: candidate documents. If we treat all sensor nodes as candidate

"* Query Vector Space Model (VSM) Design and Active documents for a query, the correlation between a query and
Nodes Selection: In QGEE, VSM is employed by us to nodes can be determined by utilizing the same principle in
combine all considering factors to select the most related information retrieval. But we should redesign the VSM vector.
nodes to participate query processing. A query correlation Following factors are considered by us:
is designed to express the correlation between each node • Location
and a query. Moreover, query correlation is computed by Given a piece of space, number and location of nodes
nodes through a distributed way, and active nodes are determine the monitoring coverage. In order to employ
chosen locally leveraging cooperations among nodes, as few as possible nodes to cover as large as possible

"• Optimal Location Determination: We model the problem- area, we should select those nodes located at some special
determining optimal locations for a query, as a k-partial locations, called optimal locations.
set cover problem. It is a NP problems which requires • Measurement Quality
time that is exponential to the problem size. We exploit Since the cost and the measurement quality of sensor
an approximation algorithm: SETCOVER[13], which can node are related to each other, sensor nodes owning
acquire the solution during polynomial time, to determine various qualities are always deployed simultaneously in
the value of k and the locations of these k disks on a a WSN for economical reasons. Furthermore, through a
plane. In QGEE, we choose centers of those k disks as query, database users supply not only what information
our optimal locations. they are interested in, but also the expectation on query

"• Semi-Manufactured Query Answer Acquisition: Since a answers' quality, i.e., the confidence of query answers.
statistic measurement on samples can rarely, if ever, be In this case, we should select suitable nodes to response
expected to be exactly equal to a parameter, it is important queries.
that an estimation is accompanied by a statement which • Battery
describes the precision of this estimation. We utilize Remaining battery capacity of sensor node is the third
confidence intervals[14] to state both how close the value factor, but not the least important one. When the battery
of a statistic being likely to be value of a parameter and of a node is used up, the uncertainty of query answer,
the chance of being close. at some degree, will increase since data collected by this
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node is missed. It inspires us to select those nodes with i'., ..... C
as high remaining battery capacity as possible, so that all

expected information can be collected with best effort. a" - a

We employ VSM to incorporate above all factors into the d i

selection of the most related nodes for query processing. We ,ii '
call those nodes active nodes. Vector T is designed as T , -

S •" f.
{LC, QC, RBC} to represent each candidate node. ''e

"* LC stands for the location correlation. It is the indicator . .

of the distance between the location of a sensor node at (a) (b)

(x,y) and the optimal location at (xo,yo). Smaller value
of LC indicates a node is closer to a optimum location Fig. 1. (a) 2-dimension space for vector similarity and (b) 3-dimension space
It is defined as LC = /(X-Xc) 2 +(y-yo)

2 R is a constant for vector similarity
R

to uniform LC. Usually, we choose nodes' sensor ranging
as R. of cosine measure, which takes the length difference between

"* QC stands for the measurement quality correlation. It is two vectors into account for similarity coefficient calculation.
defined as QC = 1 - MEQ. MEQ is the confidence There are two ways to implement CLM. One is that we project
of measurement bias. For example, for speed detecting the fiducial vector onto the measured vectors to calculate the
sensor nodes, CXM539 [16], the bias is +lmGauss and length difference of vectors. As shown in Fig.l(a), fiducial
owns 0.95 confidence. In this case, MEQ = 0.95. vector B is projected onto the measured vector A and C

"* RBC stands for the remaining battery capacity correla- individually, then ad stands for the length difference between
tion. It is defined as RBC - BT-O_-BT BT is the A and B, as well as ed stands for the length difference betweenBTm,,•

remaining battery level. BTmax is the biggest value for C and B. We call this method CLM I. The other is that we
BT can be. project the measured vector onto the fiducial vector. As shown

As we know that, the typical composite vector similarity in Fig.l(a), A and C are separately projected on B, then be
measure is the cosine measure, which represents the cosine of stands for the length difference between A and B and fb stands
the angle between a query and a document as shown in (1). for the length difference between C and B. We call this method

CLM II.
simvs(q, xi) = Q. Xi =v (1) Considering that a vector is a directed quantity that can

ZE 1 (vý).ZP 1 (w2 .) be resolved into components/elements and the similarity of
vector is the combination of all elements, JDM separately

where mi is the number of unique terms in a document measure the similarity on each direction/element through

collection. Document weight wij and query weight vj are measuring length difference, then linearly combine them
together to achieve the joint similarity to act as the similarity

wij = fijwij = fijlog(N/dj) and coefficient. For instance, as shown in Fig.l(a), a'b' stands for

= lo9(N/dj) yj is a term in q the length difference between A and B at x axis, and a"b"
= otherwise. (2) stands for the length difference at y axis. Similarly for C and

B, eb' and c"b" stand for the length difference at x and y
However, we found that, besides the angle between two axis respectively.
vectors, the length difference of vectors (the length of vector
h is defined as I h 1) impacts the similarity of two vectors as 1) Cosine-Length Measure I (CLM I):
well. We try to compare the similarity among several vectors
in a 2-dimension space, noted by bold letters A, B and C (See SCctmI(Q, T) - 1co +?9 1(AI)}
Fig.l(a)). Observe that the angles between A and B, C and B 2
are same, noted as angle 0. Based on the concept of cosine 2 1(1+ V) _ H) is held
measure for vector similarity, hence, A and C have same 1 (1 + M) _ 1 r Eqw (3)
similarity coefficient with B. Therefore, the cosine measure Qotherwise
cannot identify vectors, which own same angle to the fiducial
one. In this case, the function blind area of cosine measure where Ho is I T 1 Q I - tq . di(Al) is the
will impact the performance of VSM. That is, the confidence part corresponding to the length difference Al of vectors.
of query answer may be degraded since truly similar nodes In this paper, t equals to 3 based on the definition on
cannot be elected according to users' requirement. query vector T. 0 E [0, f], since LC, QC and RBC

Note that, cosine measure is not a method that reflects the are all positive numerics.
similarity among vectors accurately or completely (i.e., only For the i9i(Al) term in (3), we exploit the uniformed
from the angle aspect to express similarities). In this paper, we length difference between the node vector T and the
propose two substitute methods to alleviate this disadvantage query vector Q at T's direction. In CLM I, opposite
of traditional VSM. They are: Cosine-Length Measure (CLM) to cosine measure, even though the angle of measured
and Joint-Deference Measure (JDM). CLM is a modification vectors to a fiducial vector might be equal, the



4

TABLE I
difference introduced by length is not always identical VECTOR SIMILARITY MEASUREMENT USING COSINE MEASURE,

too. Therefore, CLM I method can successfully remove COSINE-LENGTH MEASURE AND JOINT-DIFFERENCE MEASURE.

the function blind area of cosine measure, For instance,
shown in Fig.l(a), SCo,, of A does not equal to C's
any more based on CLM I, since obviously the length SC Q A B C D

difference da for A and B is shorter than dc for C and B. (x, y) (m) (10,10) (10,10) (10,10) (10,10) (10,10)
Measure Quality(%) 90 90 98.04 75 95

2) Cosine-Length Measure II (CLM II): Battery Level (J) 5.0 4.5 4.902 3.751 4.5025
LR (m) 0.0 0.0 0.0 0.0 0.0

Similarly to CLM I, but we project the measured vectors MQ (%) 0.1 0.1 0.0196 0.25 0.05
onto the fiducial vector. Then the similarity coefficient RBL (J) 0.0 0.1 0.0196 0.2448 0.0995
calculation is modified as in (4). COSINE 0.7071 0.7071 0.7071 0.449

CLM I 0.6036 0.6386 0.4538 0.4261
1 + CLM II 0.8536 0.4516 0.6415 0.4745

SCctmI2(Q, T) {cosO + O91 (Al)} JDM 0.9667 0.9637 0.8612 0.9483

2 + Q) Ho is held

!(1 + -Q/) otherwiteand e are same (i.e., SC=0.7071). However, CLM and JDM

CLM ii canmethods can successfully identify the similarities to query qHere Ho is I Q >1ýJ W I .!lrjq], 5. CLM 11 can gain cnt ur
H Q/Ž s=;,rýtq2 for noes a - d individually. We let A, B and C has the

the same advantage as CLM I, since obviously the length same angle with Q, but, the distance from B to Q is the
difference eb for A and B is shorter than ef for C and B. shortest one among A, B and C at node vectors' direction,

and the distance from A to Q is the shortest one among A,
3) Joint-Deference Measure (JDM): B and C at q's direction. Note that, node b's SC is bigger

t than a and c's for CLM I (i.e., 0.6386 > 0.6036 and 0.4538)

SCjdm(Q,T) = t( SIMi) (5) and node a's SC is bigger than b and c's for CLM II (i.e.,
0.8536 > 0.4516 and 0.6415). Furthermore, we let the angle
from D to Q is bigger than the one from A to Q, while

JDM simplifies the problem of measuring vector sim- the distance from D to Q is same as A to Q. Observe that,
ilarity into measuring scalar similarity, i.e., SCjdm is node a's SC is larger than node d's for CLM I and CLM

decomposed into amount of parts - SIMi along indi- II (i.e., 0.6036 > 0.4261 and 0.8536 > 0.4745). All above
vidual elements of vector. The factor 1 in front of (5) observations are consist with our analysis when we designing

comes from the equal gain combination combination CLM and JDM methods.
for acquiring the joint similarity according to all vector
elements. In this paper, based on the query vector design, B. Sample Size Determination
(5) is specified as in (6). We have chosen a set of nodes, i.e., active nodes, to respond

SCjdm(Q, T) = (SIMI, + SIMqc + SIMrbc) a query. Then, the situation on the region of interest can be
3 1 ILO -LCq I QC - QOq ipferred from the data obtained in a sample generated by

1 - a{ + ]Q ctive nodes. While, "How many measurements should be
3 LCq QCq included in one sample (any subset of a population)?" and

+ I RBC - RBCq (Iow should the answer be presented with more information

RBCq on confidence?" are two targets in this Section. Sample size

determination refers to the process of determining exactly how
where SIM,,, SIMq, and SIMrbc are the similarities many samples should be measured/observed in order that the
between a node and a query at the location, measurement sampling distribution of estimators meets users' pre-specified
quality and battery aspects separately. target precision [17]. Moreover, a statistic measurement on
Note that, SCjdm is a linear combination of similarities samples can rarely, if ever, be expected to be exactly equal
at all elements. Instead of treating each element equally, to a parameter, thus it is important that an estimation is
we can easily change the weights of elements to imple- accompanied by a statement which describes the precision of
ment adaptive combination based on users' expectation. this estimation.
That can be a future work of us. As a matter of fact, nodes' readings are subject to many

To evaluate the performance of our CLM and JDM methods, small and random errors which are caused by limitations
we set up a network scenario, in which there are 4 candidate of device's hardware and environmental noise. Consequently,
nodes a - d for a query q. Query vectors, noted by A -, D uncertainty is inherent regarding to true values. In this paper,
and Q, for all nodes and query are shown in Table I. We use a node's reading x is formulated as:
cosine measure, our CLM and JDM to calculate their similarity X = V + em + 77 (7)
coefficients individually. The results are shown in Table I.

Note that, cosine measure can only differentiate node d and where v is the true value, em is the measurement error
nodes a - d's similarities to query q, since SCs for nodes a, introduced by limitations of device's hardware, and r/ is the
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environmental noise. We assume em and 71 are independent determines the length of the CI. The length of CI expresses the
random variables and the mean for both of them is zero. amount of uncertainty. Summary, there are four main factors

Statistical inference is any procedure by which one gener- affect the length of CI. There are: sample size, sample mean,
alizes to a population from the data obtained in a sample. In confidence level and sample standard deviation. In practice,
the precision description of the estimation, confidence interval when one computes a confidence interval with specified con-
(CI)[?] provides a method of stating both how close the value fidence and width, one must decide the sample size to use. This
of a statistic being likely to be value of a parameter and the decision involves a trade-off between energy consumption and
chance of being close. A CI of an attribute denoted by Uj estimation confidence. In QGEE, given the margin Ax of error
is a interval [1i, hi] such that 1i and hi are real-valued, and between the estimator f), and the true value v, to specify our
that the condition hi > 1i holds. In the following, we discuss capability for ensuring this error not to be smaller than p, the
the determination of confidence interval and sample size under criterion for sample size determination is stated as:
knowing or unknowing the distribution information separately.

1) Knowing the distribution of em and •7: Based on the Pr{LWn - v1 <_ Ax} > p (12)

Central Limit Theorem, we assume ,,- N(0, -,) and Solving (12) and (11) for sample size n, we obtain (13). In
S , . Generally, in product's technical datasheet, other words, with the sample size determined by (13), we can

manufactories supply the information on measurement errors.
For example, as we mentioned above, the bias for CXM539 is tae thate il be o orethat the precisin of
±lGauss with 0.95 confidence. That means for sensor nodes thepestimate is ngth or t er
CXM593 2 = 0.1302. For general cases, if we know the proportion to the length of CI.
maximum bias Ax and its confidence p, we can obtain thez_2 (aU2 + NQ)

general expression of ao. That is 2

2 AX2  (13)
.2 AX[ 2  (8) 2) Without knowing the distribution of em and 7'

)2 In some cases, it is not feasible to acquire the information

where Q(x) stands for Q-Function, defined as Q(x) n on the distribution of em and q. The method designed above
20 1 2 may not be available any longer to determine the confidence

fx e ý dy. interval and sample size in this circumstance. We extend
Therefore, node reading also complies with a Gaussian our work into scenarios with large sample and small sample

distribution with px-mean and ax-standard deviation given in individually.
(9). The PDF of node reading fx(x) is shown in (10). i Large Sample Scenario:

d ax - V + N0  Even though, we have no idea on the distributionjux = v 2n •= +N (9)
2 of em and 77. The Central Limit Theorem specifies

2
that f,-, N(0, A-). Here s is the sample standard

1 2(,2+_a)2 variance. Since s is almost certainly close to ax, the
fx(x) = e o)2 (10) quantity v is approximately normal with mean 0

+and variande 1. Therefore, we can safely substitute

To infer the situation on the region of interest from the ax with s in (11) and (13), so that to determine the
remote sensing, we do point estimates for the population mean confidence interval and sample size with specified

with sample mean ýn = - =l xj, which is an unbiased confidence and width. They are:
estimation (i.e., the estimator aims at the true value or is zl_=S zI_=as
correct average [18]) through random sampling. Here n is P2{f - 2 < v < •3, + 2 }>p (14)
the sample size. Note that, the sampling distribution of O, v•

has mean lix and standard deviation 02. Also, the quantity ZI-Js
has a normal distribution. Consequently, in p percent of n = ( )zj (15)

the samples the interval from n - to Vn + -f- will ii Small Sample Scenario:
include the value of v. Here, z=.- is the 100( 2 percentile Since, for small sample size, s may not be close to
obtained from the normal distrution. That is, ax, and f•n may not be approximately normal. But

ZPP{X z Z<-z (1x the quantity v._,v even though which will not have
2 < V< 'bn + 2 p (11)

-n a normal distribution any more, has the Student's t
z1-a_ distribution with n - 1 degrees of freedom, which

With (11), we obtain a bounded value, i.e., [iPn Vm- ' we denote tn-1. Consequently, we have
Z I . -. ax

On + I ], which owns p confidence (not probability). We PS{-t 1  (n-1)-- <v < ¢nt_ (n-l)s--q} > p
call this kind of query answers from active nodes as "semi- r •n/t-• 2

manufactured" query answers. (16)
The margin of error of a confidence interval is defined to The adequate sample size, which ensures the length

be the value added or subtracted from the estimator which ofCI, i.e., [bn-t (n- 2n+, 8],
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is 2Ax with p confidence, should satisfy (17). IV. SIMULATIONS AND PERFORMANCE EVALUATION

We run Monte Carlo simulations to remove the randomicity
____ > - (17) of simulation results and to compare the performance of cosine

t __2 P (n -1) EAx measure and our CLM and JDM methods. In our simulations,

100 temperature sensor nodes are randomly deployed in a area
1A (10 x 1Or 2). Individual sensor nodes is connected to other

C. Confidence Computation on Query Answer nodes in its vicinity through wireless communication interface,

" MAXIMUM Aggregation. In MAXIMUM aggregation and it uses a multihop routing protocol (i.e., EM-GMR[15]) to

operation, we have design (18)[12] to acquire the final communicate with nodes that are spatially distant. All nodes
confidence interval. are interconnected to a front-end node directly/indirectly.

Queries are injected into this WSN through this query operator,

Imax = arg max{/l}, and hmax = arg max{hi} (18) and, on the opposite direction, collected data are returned to
this query operator to obtain query answer for users. Within
this WSN, each node owns equal computing and sensing

Since Zmax bay maxi(,), the confidence of Zmto x capability (i.e., sensor ranging is Im), but measurement quality
being covered by the confidence interval according to (18) for sensor parts may be not identical.
is Assume the query operator receives a total of M data

Pmax = Fz_.. (hmax) - Fz,, (lmaf) samples originated from active nodes elected by different
Va SVM methods in A. We utilize the data sample from each

= I I 'Q( V'ni(hma. -- xi) active node to represent the true value within the disk region

=1 u monitored by this active node. We define the reconstruction
0/ distortion as in (24) to evaluate the performance for individual

- IjIQ( V"n (1max 'xi)) (19) methods.

Z = {S(x) - S(X)} x G (24)
"MINIMUM Aggregation: In MINIMUM aggregation op- i=1
eration, we have design (20) [12]to acquire the final Here S(x) is the source of interest in A. When S(x) stands
confidence interval. for the answer's quality, reconstruction distortion - stands for

the distortion between the expected quality and the actually
lmi= argmin{li}, arid hmin = argnin{hi} (20) achieved quality for query answers. The positive value of

e means even though higher quality answer is expected by

Since Zmin = argminm(On,), the confidence of Zmin users the confidence for answer actually achieved is some
being covered by the confidence interval according to (20) poorer/lower - negative distortion, and negative value means
is more confident answer is acquired than the expected one -

positive distortion. Under various expected qualities from 0.55
Pmin = Fz, (hm.in) - Fz_,, (Imin) to 1.0, we obtain a branch of curves for cosine measure, CLM

= , H{_ (l(Zmn - t,)) and JDM separately (See Fig.2).

- ' yJ Q(\/"~i(hmin xi)}_______

i.=1
- f~iQ(\/(m u iI) (21)

AVERAGE Aggregation: In AVERAGE aggregation op-
eration, we have design (22) [12]to acquire the final 04.

0
confidence interval. C 0.3 .. .. . .

lav19 ; 'Zli, and havg = (22) .2

j=1 -

Since Z0,,g = 1 1 01,ni, the confidence of Za g being -0 . 0. '
covered by the confidence interval according to (22)is Expected Query Answer Quality

h,,,

Pavy = fz,, (zavg)dzavg Fig. 2. Reconstruction Distortion for Query-Answer Quality Caused by
1" Different SVM Methods Utilized

Q( - P•') ) Q(-(h 0 g - ) Note that, CLM and JDM surpass cosine measure in terms
Uv, 0r, of quality distortion, since the e for cosine measure is around
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0.5375-0.1375 x 100 = 74.42% larger than the ones for CLM methods based on the specifical applications. For instance,0.5375

and JDM. That is, it is more difficult for cosine measure to when expected quality is not smaller than 0.8, CLM I can
make the confidence of answer satisfy users' expectation than be used to reach the middle point, which achieves not only
CLM and JDM. We also observe that CLM I can achieve more some higher confidence answer, but also some longer network
confident answer when expected quality is smaller than 0.75, lifetime.
while wore answers when expected quality is larger than 0.75 In Table II, we compare the answer qualities for MAX-
than by CLM II and JDM. In addition, the stabilities for CLM IMUM, MINIMUM and AVERAGE data aggregations. In
II and JDM are better than cosine measure and CLM I with addition, we also check the impact of sample size (from 5
the expected quality changed, i.e., the biggest changes are just to 100) on answer quality. pi is the probability that the true
0.0625. answer locate within the confidence interval obtained through

When S(x) stands for the network lifetime that is defined (18), (20) and (22). p2 is computed through the PDF acquired
as the period all nodes used up their batteries, reconstruction through (19), 21) and (23).
distortion E stands for the distortion between the expected
network lifetime and the actually achieved network lifetime. In TABLE II
our simulations, we set the expected network lifetime 50000
seconds. Under various expected qualities from 0.55 to 1.0, MAXIMUM MINIMUM AVERAGE

Pi 29 V1 V2 1 P29we obtain a branch of curves for cosine measure, CLM and 5 0.955 0.95825s 0.965 0.95839 0.747 0.73641
JDM separately (See Fig.3). 20 0.955 0.96017 0.96 0.96068 0.981 0.9746

50 0.96 0.96123 0.964 0.9611 1.0 0.99959
6 __00D _______________OS 100 0.955 0.96118 0.97 0.96217 1.0 1.0

4000 .... I Note that, the very small difference between Pi and P2, even
,•~ ~ ~ ~ ~~~~. ......... ...... .. .. .. -.: corcn s ofc ni e c inevl ad P F o m aue et

at various sample size and data aggregation, demonstrates the
correctness of confidence interval and PDF of measurement

:DOD ... we designed.

S5 0 . V. CONCLUSIONS
C 2000.. . . . .. .. . . . . .. . . . Z.. . . .

0° Starting from the characteristics of newly appeared wire-
2 .. .. less sensor networks, such as decentralized nature, limited

computational power, imperfect information recorded, and
energy scarcity of individual sensor nodes, we have done some

55 0 6 05' 06 7.75 0.o 085 01 '0, works to solve energy constraint and quality required problems
Expected Query Answer Quality from active nodes election, information collection to query

answer expression perspectives. In this paper, extending our
Fig. 3. Reconstruction Distortion for Network Lifetime Caused by Different previous works, we propose two methods to substitute cosine
SVM Methods Utilized measure for vector similarity: Cosine-Length Measure (CLM)

Note that, generally cosine measure surpasses CLM and and Joint-Deference Measure (JDM). Through considering the

JDM in terms of network lifetime distortion, except that CLM impact of vector length on vector similarity, CLM alleviates

I achieves longer lifetime when expect quality is higher than the disadvantage of traditional VSM, in which the confidence

0.9. In addition, cosine measure owns higher stability with of query answer may be degraded since truly similar nodes

the change of expected qualities than CLM and JDM, i.e., cannot be elected according to users' requirement. JDM

the largest change is only 125 seconds. Among CLM 1, CLM upgrades the accuracy and degrades the complexity for the

II and JDM, it is a watershed where expected quality equals computation on similarity coefficient through simplifying the

0.62. That is, JDM can elect higher remaining battery nodes measure from vector domain to scalar domain. In addition,

to responde query than CLM I and CLM II at the left side with the distributions of measurement error and environment
of 0.62, while CLM I performances better than CLM 11 and noise known and/or unknown respectively, we formulate the
JDM for the rest circumstances. criteria to determine the optimum sample size to meet users'

From above simulation results, we note that cosine measure, pre-specified target precision. Through simulation, we check

CLM and 1DM methods show various sensitivity for answer the validities and sensitivities of cosine measure, CLM and

quality and network lifetime, although we consider measure- JMD methods on answer quality and network lifetime. Fur-
ment quality, node location and battery equally. Hence, JDM thermore, our simulation results, in this paper, form a set of

method should be the first choose if answer quality is the best criteria for method selection based on specific applications.

consideration for query processing, otherwise cosine measure
should be the choose when hoping to achieve the longest ACKNOWLEDGEMENT

network lifetime, especially when the expected quality is This work was supported by the U.S. Office of Naval
less than 0.9. Therefore, there is a tradeoff between answer Research (ONR) Young Investigator Program Award under
quality and network lifetime. We should choose the SVM Grant N00014-03-1-0466.
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following research: 1) Channel Capacity of Virtual MIMO-Based Wireless Sensor Networks with Imperfect CSI; 2) Cross-Layer
Design for MIMO-Based Wireless Sensor Networks; 3) Statistical Analysis in Wireless Sensor Networks with Application to
Resources Allocation; 4) MAC Protocol Design for UWB-Based Wireless Sensor Networks; 5) Query Processing Optimization in
Wireless Sensor Networks. Fourteen papers were produced during the past six months, and are attached to this report.
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