
Parallel SOR Iterative Algorithms
and Performance Evaluation on a Linux Cluster

Chaoyang Zhang, Hong Lan, Yang Ye Brett D. Estrade
University of Southern Mississippi Naval Research Laboratory

Hattiesburg, MS 39406 NASA Stennis Space Center, MS 39529

Abstract: The successive over-relaxation (SOR) how to quickly verify and generate a
iterative method is an important solver for linear multicoloring ordering according to the given
systems. In this paper, a parallel algorithm for the structure of a matrix or a grid. However, the
red-black SOR method with domain decomposition is multi-color SOR method is parallel only within
investigated. The parallel SOR algorithm is designed the same color. For some problems such as two
by combining the traditional red-black SOR and row
block domain decomposition technique, which reduces
the communication cost and simplifies the parallel Poisson equations, the Red-Black two-color SOR
implementation. Two other iterative methods, Jacobi method is preferred. Yanheh [4] showed that the
and Gauss-Seidel(G-S), are also implemented in Red-Black SOR method is more efficient and
parallel for comparison. The three parallel iterative smoother than the sequential SOR method. Xie
algorithm are implemented in C and MPI (Message proposed an efficient parallel SOR method
Passing Interface) for solving the Dirichlet problem (PSOR) using domain decomposition and
on a Linux cluster with eight dual processor 2.6ghz 32 interprocessor data communication techniques
bit Intel Xeons, totaling 16 processors. The [5]. It is shown that PSOR is just the SOR
performances of the three algorithms are evaluated in method applied to a reordered linear system, soterms of speedup and efficiency. that the theory of SOR can also be applied to the
Keywords: Parallel algorithm, successive over- analysis of PSOR. Other techniques such as
relaxation (SOR) iteration, Linux cluster, message pipeline of computation and communication and
passing interface (MPI). an optimal schedule of a feasible number of

processors are studied and applied to define
parallel versions of SOR for banded or dense

1. Introduction matrices problems [6] and they can be
implemented in parallel without changing the

The successive over-relaxation (SOR) sequential SOR method. The parallel SOR
iterative method is an important solver for linear method for particular parallel computers can also
systems. The SOR method is inherently be found in [7].

sequential in its original form. To take advantage Most of these early studies on parallel SOR
of the supercomputing resource with multiple methods focused on their mathematical properties
processors, several parallel versions of the SOR and were designed for MIMD machines. Due to
method have been proposed. One of the widely the demanding cost of supercomputers, Linux
used parallel versions is the multi-color SOR clusters have drawn more and more attention in
method which uses the multi-color ordering higher performance computing and have been
technique [1]. For complicated problems, two or used for solving a variety of computational
more colors are required to define a multicolor problems in science and engineering. The
ordering. Harrar II [2] and Melhem [3] studied performance of SOR methods on distributed

20060619021

memory platforms, e.g., Linux clusters, may be U2- +U, +u,- +uj -4u,, =h2fj in q (2)
quite different from that on shared memory
supercomputers, such as SGI Onyx 10000. The
actual performance of these algorithms depends where is the value of the function f(x, y)
on the hardware, interconnection of processors at the node (ij) and u1,j denotes the
and implementation. To design an efficient
parallel SOR method, task decomposition and approximation ofu(x,,y,).
task dependency must be investigated to achieve
the maximum degree of concurrency and to 2.1 Serial iterative methods
minimize the communication cost in parallel The Eq. (2) can be rewritten as a matrix form
computation. In this paper, a parallel version of Au = f where A is a matrix and both u and f
the SOR method is designed based on the widely- are vectors. The solution can be obtained using
used Red-Black SOR (RB-SOR) and row block iterative methods such as Jacibi method, G-S
domain decomposition. The parallel SOR method method and SOR method. After making an initial
is implemented in MPI and C language and tested guess of u, e.g., u(°), the Jacobi iterative method
on a Linux cluster. The interprocess gess o u e qg, nte ob itati od
communication and task dependency are generates a sequence of approximations
analyzed. The performance results such as uk = 1,2,3,..., to the solution. The

convergence rate, speedup and efficiency are approximation, u(k+I, at the (k+1) iteration is
given and also compared with other methods such computed using the results u(k) obtained in the
as Jacobi method and Gaussian-Seidel (G-S) kth iteration:
m eth o d . k+ 0 -I (k) (k) (k) (k) 2 f

4j 4 ,-f- 1 ,j+l i -ij ,+1j

2. Serial and Parallel SOR Methods where u(k+l) at node(i,j) of (k+l)th iteration

The SOR method is a widely used iterative relies on the values of the four neighboring

procedure to solve a linear system or a partial nodes(i-lj), (i+1,]), (i,-1) and (ij+1)

differential equation discretized by a finite obtained at the previous kth iteration.

difference method. Consider the Dirichlet The parallel Jacobi iterative method is easy to

problem implement in parallel, but its convergence rate is
very low. It is seen that if we update the

u,, + U, = f(x,y), (x,y) e Q u according to increasing values of subscripts i

ju(x,y)=g(x,y), (x,y) C and j, the most current values u(k+1) and u(k+1
I-Ij Ij-I

are already available when we compute the newwith •-- (0,1) x (0,1). Assuming a uniformparitionh e interval Assuming[,1 are dividd update u(k+l). This suggests us to make use of thepartition, the intervals Px = I'Y = [0, 1] are divided "j

most recent values at node (i-1,j) (i,j -1) to
ienerato a subintervs grid wh s g h ad update u(k+I) and it results in G-S iterative

generates a uniform grid with spacing h = . and method

nodal coordinates (x,,y,), where x, = (i-1)h uk~l) =I(u/k+) + dk) + _k+1 +u(k))_/hf. (4)
an 4 =i-I (j.1 -- ,J iji ,n

and y, = (j -1)h, i1 = 1, (n + 1) . The finite The convergence rate of G-S iterative method

difference method (FDM) is used to discretize the can be further improved by applying SOR
Eq.(1). We consider the 5-point approximation to iteration. For any co # 0, Eq. (4) can be rewritten
Eq.(1) on a unit square Qh and obtain the as

following finite different scheme at node (ij) jk+l) =Zdk)_O+(k+ 1
)+k) +4.k+)+k) j_4k)-_hIf4.) (5)

1 5 4 -J-I ___1 _V IJ ij

in which most recently computed values u(k+l)

and u(k+I) are used as soon as they are available. - -+-,-

The optimal value of co lies in (0, 2). The choice 40 J +"

of co = 1 corresponds to the Gauss-Seidel - j.1)(- 11

iteration.

2.2 Red-Black SOR method - - -

Eq. (5) can be implemented in parallel using [j black node to be to updated

the red-black ordering technique. The node red nodes used to update black nodes

(ij) is denoted red or black according to

whether i + j is odd or even. If i + j is odd, the (a) phase 1

node (ij) is marked red, and if i+j is even, -.

the node (ij) is marked black. The red-black - --

ordering is illustrated in Fig. 1. The evaluation of -- ,- -

each u(k+t), corresponding to red nodes involves Ij,- , ,

the values of black nodes only, and vice versa. i ,'(k 11, (i+ljI) ',

black nodes used to update red nodes

- red node where i+j is odd

(b) phase 2
y)D

"Y_• Fig. 2. Two phases of red-black implementation
of the SOR algorithm. (a) Phase 1: updating thevalues of the black nodes. (b) Phase 2: updating

•black node where i+j is even the values of the black nodes.
0 red node where i+j is odd
e boundary node In the phase 1, the computation of all red

Fig. 1 Red-black ordering technique nodes depends on the values of all black nodes
which are already available in the Phase 2 at the

Based on the red-black ordering technique, last iteration. Thus, the computation can be
the approximation u(k+l) can be updated in a partitioned into a number of independent tasks

tij and performed by multiprocessors. In the phase 2,

different order suggested by Eq. (5). Each the computation of all black nodes depends on
iteration of this method consists of two phases: the values of all red nodes which have been
(1) updating all the red values first and then (2) computed in the Phase 1. Similarly, it can also be
updating all the black values. The two phases are partitioned into a number of independent tasks
illustrated by Fig. 2(a) and Fig. 2(b), respectively, and performed by multiprocessors, as described

For red nodes where i + j is odd, we have in section 2.3. Multicolor SOR methods can be

ek+
t
) &k) •.(+k) +__k) +_k. +Cc4k) _dk)-f.) (6) derived in a similar way.

IJ IJ 4 ij-I Jt -, idIj id jij I + -1',"" -Ij4 ii I' Ij(6) 2.3 Domain decompositionFor black nodes where i + j is even, 23Dmi eopstoSince the SOR method is applied for all
d~k+t)=U.(1k)- +--k+t+ (k+l+(k,+-+(k+I-Z(k)-,) nodes in the computation domain, an intuitive

1J 'J 4 ,J14 "j-Ij " - ,- f (7) way to implement it in parallel is to divide the

nodes into a number of subsets and each process

performs the computation on one subset of nodes. communicate with the process P, . The last
This approach results in a domain decomposition. process p _ containing the last groups of rows
A rectangular computational domain can be
partitioned into a number of subdomains using only needs to communicate with the process pI_2
either row block partition or checkerboard Additionally, convergence is calculated once per
partition. In the checkerboard partition, each iteration using MPI Reduce and its
process needs to communicate with several (up to communication cost is t. log p. Ignoring the per-
four) adjacent processes and leads to more hop time and start-up time, the total
communication cost. In the row block partition, communication cost in Phase 1 and 2 of red-black
each process communicates with at most two SOR parallel algorithm for each iteration is
processes and the communication pattern is derived as given as follows
simple as we will see in the next section. Thus, a C-=Cpk +Cp, 2 +C,.,,.
row block domain decomposition method is (8)
employed in this study. Without loss of =t..m(p-11)+t.m(p-l)+t" logp
generality, the n rows of the mesh are divided where p is the total number of processes, m is
evenly into p consecutive blocks, where p is the the number of node on the inner boundary which
number of processes used. The entire is also equal to the node number in x direction,
computation is partitioned into p tasks, each of t, is the transfer time per word, and C is total
which is assigned onto one process for execution.
There are a total of mn/p nodes in each communication cost which is the sum of the
subdomain. The two adjacent processes must send-receive communication costs in phases 1
exchange the data of their local boundary nodes. and 2, and the communication cost of

MPIReduce operation at the end of each
2.4 Interprocess communication iteration.

To design an efficient parallel algorithm, we
need to reduce both the computation cost of each
task and the interprocess communication cost to Q
achieve high performance. At the end of each Pq

phase of red-black SOR algorithm, all processes (ij) i+lj)
are synchronized. Based on the row black domain "Z !
decomposition, row distribution is done to ensure '.1.. . . . 7(Ej-------------
that each processor gets an even amount of rows
in order to balance the computational load. Each Pq+J
process only needs to communicate with its
adjacent processes and sends them the most
recent values on the internal boundary, as shown
in Fig. 3. At the end of Phase 1, the process Pq o red nodes -- '- Subdomain boundary

sends the value of the red node (i, j) to the 0 black nodes t communication path
adjacent process PJl> and the sends the

values at red nodes (i - 1, j - 1) and (i + 1, j - 1) Fig. 3 Communications between two adjacent

to the nodes (i- 1, j) and (i + 1, j) on process P . processes (Phase 1)

At the end of Phase 2, the communication is quite
similar except that the direction of 2.5 Parallel SOR algorithms
communication is reversed. Based on the above design and analysis, the

Internal boundary rows are communicated algorithm of parallel SOR with domain
using a non-blocking MPI Isend and a blocking decomposition is developed, as shown in
MPIRecv. This ensures that deadlocks do not Algorithm I.
occur. Additionally, the root process Po
containing the top rows only needs to

procedure ParallelSOR(MyID co U_Cur, UNext) SOR is an iterative algorithm, at the end of each
begin iteration, the parallel computation is

<maxiter) { synchronized. The ROOT process determines
/* update U Curr which holds solution from whether the computation is convergent or not. If

previous iteration */ it is not convergent, the process continues and
U Curr = URNext; goes to the next iteration. Convergence is tested

(aboverow = getRabove(UCurr);} using the following criterion

if (MyID!= LAST) 1U(k+ - u(k) 1 < 6 (9)
(below-row = get.below(UCurr);}

/* Phase 1: solve for red values using black where u(k+l) is the nodal solution for the latest
values from the previous iteration */ (k) ti
solve red(UCurr, UNext, above-row, iteration, u the nodal solution for the
belowrow, co); immediately past iteration, and c is the

/* Phase 2: solve for black values using red convergence tolerance. The ROOT process sums
values for this iteration */ up the squared difference of the current and new
solve-black(UNext, UNext, above-row, value at each node, and takes the square root of
below_row, 6O); the total sum to test convergence.

/* determine if it is convergent*/
error local - Compute Erroro;
if (MyID = = ROOT) { 3. Implementation

isConvegent =
convergence control(err local);

H end while Many programming languages and libraries
result UNext from all processes have been developed for explicit parallel

end Parallel SORalgorithm programming. They differ in the view of the

address space, degree of synchronization and
multiplicity of programs. The message passing

Algorithm 1 Parallel SOR algorithm with domain interface (MPI) is a standard for writing message
decomposition for distributed memoiy platform e passing programs. MPI was originally targeted
cluster), in which MyID is the rank of each for distributed memory systems, such as a cluster
process, U Curr represents uan, U_Next of PCs, but it is supported on virtually all high
represents u(), and above_row and below_row performance computing (HPC) platforms,
are the two boundary rows in the subdomain used including shared memory platforms, e.g., SGI
for communication Origin. In this paper, MPI is chosen for

developing parallel computing applicationsIn this algorithm, the initial global data are because of its standardization, portability,

scattered onto multiple processors and each perane funtinltanda vailability.

processor only stores its local data. At the end of subroutines and functions in MPI are called from

the phases 1, synchronization is enforced since C code. The serial algorithm is implemented first,

the most recent values of all red nodes will be and then modified to support parallel computing.

used for computation of black nodes in phase 2. Both seria and parallel onproduce

Fig. 2 shows that the update of the values of all the same convergent results.

red nodes can be performed in parallel because For most iterative scientific computing

the values of all black nodes are available and the applications, when data decomposition technique

tasks corresponding to different subdomains are is employed, all processes execute the same code

independent, which simplifies the parallel but perform on different data sets. This is the

implementation. The same procedure is applied single program and multiple data (SPMD)

for updating the values of all black nodes in paradigm used for implementing parallel

phase 2. It is seen that for each phase of the SOR algorithms. Parallelism in MPI is explicit so

algorithm, the parallel computation is quite developers need to consider how different

similar to the Jacobi method. Synchronization is pesesoperform th taskd communt
alsoneeed t th en ofphae 2 or he ame processes perform their task and communicate

also needed at the end of phase 2 for the same with each other in the parallel algorithm design.
reason it is used with phase 1. Since the parallel

To validate the parallel SOR algorithm and
evaluate its performance in Linux cluster, the Iterations To Converge(Serial &Parallel)
connventional parallel Jacobi method is also
implemented using C and MPI. The Jacobi 15000 1
method is described by the Eq. (3), in which the o 10000 N 1O5xI00
new value u(k+), of any node at current iteration 5000x50

depends only on the old values u(,• . u)k) Jacobi G-S SOR

and u(k) of the four neighboring nodes at the Method

previous iteration. After a row block domain
composition is applied for the entire computation (a)
domain, the task corresponding to each Serial Time To Converge
subdomain is to update the values of all inner
nodes in this subdomain. Obviously, these tasks 2000
are independent and can be easily implemented in 1500
parallel. If the parameter coin the parallel SOR - 1000
algorithm is equal to 1, e.g., co=l, the parallel E 50x50
SOR reduces to the GaussSeidel parallel
algorithm. The parallel G-S is implemented in the Jacobi G-S SOR
same as the parallel SOR except for the value Method

parameter co.
All performance tests were conducted on (b)

eight dual processor 2.6ghz 32 bit Intel Xeons, Fig. 4. Performance comparisons of the Jacobi,
totaling 16 processors in all. The parallel G-S (co=1.0), and SOR (co = 1.9)iterative
computing platform containing these computers methods. (a) number of iterations with respect to
was a reambs switched Ethernet bus network different methods. (b) serial time with respect to
local area network. different methods.

4. Performance Results Performances are evaluated in terms of
speedup and efficiency. The speedup S is

The SOR, G-S and Jacobi iterative methods defined as S P=T/TT and the efficiency E is

are implemented in both serial and in parallel. defined as E = S/P where T and T• are serial
Globalized output files were validated for both execution time and parallel execution time,

serial and parallel implementations of each respectively, and P is the number of processors.
method, and were found to be identical for all The performance results with respect to the

three methods on the domain with a 50 x 50 mesh 50x50 and l0ox100 meshes and three methods

and a 100 x 100 mesh. All three methods agree to are given in Fig. 5 and Fig. 6.
the 1000d' place. Fig. 4 shows the comparison of From Fig. 5(a) and 6(a), when the number of
the number of iterations needed to converge and processors increases, the speedup increases. The
the total time each method takes to converge actual speedup is smaller than the ideal speedup
when run in serial. In SOR method, co = 1.9 and because the communication cost is relatively
in G-S method, co = 1.0. Among the three higher when implemented and executed on a
iterative methods, SOR is clearly the fastest Linux cluster, compared with the case when
method in terms of serial time and the number of executed on a share memory platform. From Fig.
iterations. 5(b) and 6(b), it is seen that when more

processors are used for parallel computation, the
communication cost increases, as given by Eq.
(8), and the efficiency decreases.

Speed Up 50 x 50 Node Domain 5. Conclusions

5 The paper designs the parallel algorithm for
4 red-black SOR iterative method with domain

13 decomposition and compares it with the parallel
1 _ Jacobi method and G-S method. All three parallel
0 iterative methods are implemented in C and MPI

1 2 4 8 1- and executed on a Linux cluster with eight dual
Processors. _._._ processor 2.6ghz 32 bit Intel Xeons, totaling 16

processors. The computers are connected by a
(a) Speedup 1 00mbs switched Ethernet bus network. The

performance shows that, of the three iterative
Efficiency 50 x 50 Node Domain methods, SOR converges fast with a properly

1.2 •o chosen parameter eo, e.g. 9 = 1.9. The speedup
I _ - of the three methods increases but the efficiency

0.4 decreases when the number of processors
02 _ _ _increases. In addition, the speedup and efficiency
0.

0 - -- -------- plots are quite similar for 50x50 and lOOxlOO
1 2 4 8 meshes. The communication cost increases with

an increase of the number of processors so the
(b) Efficiency speedup of these methods are smaller when

executed on a Linux cluster than that when

Fig. 5. Speedup and efficiency with respect executed on SGI share memory platform.

to three methods for the 50 x 50 mesh Acknowledgements. The research is partially
supported by the Office of Naval
Research, Naval Ocean Modeling Program,

Speed Up 100 x 100 Node Domain (Award No. N0003905WXFR146).
8

5 6. References•4

12 [1] T. L. Freeman and C. Phiilips, Parallel
I Numerical Algorithms, Prentice Hall

1 2 4 a International, 1992
Processors [2] D. L. Harrar II, "Ordering, multicoloring, and

consistently ordered matrics, SIAM J. Matrtix

(a) Speedup Anal. Appl. 14(1), 259-278 (1993).
[3] R. G. Melhem and K. V. S. Ramarao,

Efficiency 100 x 100 Node Domain "Multicolor ordering of sparse matrices resulting
from irregular grid," ACM Transaction on Math.

1.2 Software, 11, 117-138,(1988).
08 [4] I. R. Yavneh, "On red-black SOR smoothing

0. ~in multigrid," SIAM J. Sci. Comput. 17(1), 180-
0.2 192 (1995).

1 2 4 8 1 - [5] D. Xie and L. Adams, "New parallel method
Processos I.-- by domain partitioning," SlAMJ. Sci. Comput.

[6] W. Niethammer, "The SOR method on
(b) Efficiency parallel computers," Numer. Math. 56, 247-254

(1989).
Fig. 6. Speedup and efficiency with respect [7] D. J. Evans, "Parallel SOR iterative methods,"

to three methods for the 100 x 100 mesh Parallel Computing, 1, 3-18 (1984).

REPORT DOCUMENTATION PAGE Form Approved
I_ OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
Petharing and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
rnformation, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
tbat notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
gontrol number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
.1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

07-06-2006 Conference Proceedings (not refereed) 1

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Parallel SOR Iterative Algorithms and Performance Evaluation on a Linux
Qlusterlust. r .5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

0603207N

6. AUTHOR(S) 5d. PROJECT NUMBER
C.bhoyang Zhang, Hong Lan, Yang Ye, Brett D. Estrade

5e. TASK NUMBER

5f. WORK UNIT NUMBER

73-7625-05

-. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Research Laboratory REPORT NUMBER
9Qeanography Division NRL/PP/732005-5175

Stennis Space Center, MS 39529-5004

0, SPQNSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Space & Naval Warfare Systems Command SPAWAR
2451 Crystal Dr.
Arlington, VA 22245-5200 11. SPONSOR/MONITOR'S REPORT

"NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

I,•. SUPPLEMENTARY NOTES

14. ABSTRACT
T•p successive over-relaxation (SOR) iterative method is an important solver for linear systems. In this paper, a parallel algorithm for the red-black SOR method
with domain decomposition is investigated. The parallel SOR algorithm is designed by combining the traditional red-black SOR and row block domain
dlecomposition technique, which reduces the communication cost and simplifies the parallel implementation. Two other iterative methods, Jacobi and Gauss-Seidel
(Q-S), are also implemented in parallel for comparison. The three parallel iterative algorithms are implemented in C and MPI (Message Passing Interface) for
§QIyinl the Dirichlet problem on a Linux cluster with eight dual processor 2.6ghz 32 bit Intel Xeons, totaling 16 processors. The performances of the three
algoritlhpns are evaluated in terms of speedup and efficiency.

.15. SUBJECT TERMS

Parallel algorithm, successive over-relaxation (SOR) iteration, Linux cluster, message passing interface (MPI)

.1. ,SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
0. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF Brett. D Estrade

PAGES
,nclassified Unclassified Unclassified UL 7 19b. TELEPHONE NUMBER (Include area code)

(228) 688-4151

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

