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1. Description of Technology 

A shaped charge jet is formed by the detonation of a high explosive that surrounds the outside of 
a hollow right circular cone of copper.  As the detonation front in the high explosive travels from 
the vertex to the base of the cone, the copper is propelled toward the central axis of the cone.  
The flow of copper toward the central axis results in the formation of a thin jet of copper (shaped 
charge jet) traveling at a high velocity along the central axis and directed outward through the 
base of the cone.  This non-molten shaped charge jet is capable of penetrating thick armor. 

It was proposed (1) that a large electric current flowing along the shaped charge jet could 
vaporize the jet and make it harmless.  In this proposal, the electric current was applied to the jet 
by two thin metal plates that are parallel with each other and separated by some distance.  A 
conductive path from one metal plate to the other is formed after the jet penetrates each metal 
plate.  A current source that is connected to the plates can now apply a current along the jet.  At 
the time of the proposal, however, a magnetic flux compressor was the only type of current 
source that could generate a large enough current in the time needed to vaporize the jet.  Since 
then, it has been shown that an electric current can enhance the inherent hydrodynamic 
instabilities in the jet and cause the jet to break into a string of particles that cannot penetrate as 
much armor as a continuous jet (2).  It has also been shown that a jet heated (by an electric 
current) to a point where it melts will break and expand into a series of rings that have little 
penetration into armor (3).  The current needed to drive the hydrodynamic instabilities or to melt 
the jet is far less than the current needed to vaporize the jet.  Because less current is needed to 
reduce the penetration of the jet into armor, it is possible to use a capacitor bank as a current 
source.  Indeed, capacitor banks have become the current source for many experiments in 
electro-magnetic armor (EMA) (4). 
 

2. Experimental Arrangement 

The experimental arrangement for many EMA experiments is illustrated in figure 1.  The parallel 
plates are connected to a remotely located capacitor bank C by the way of coaxial cables, strip 
line, or a transmission line of some design.  Also shown in figure 1 is an illustration of a shaped 
charge jet traveling downward and positioned just when the tip of jet, point A, contacts the 
bottom plate and completes a conducting path.  At this time, the current starts to flow from the 
capacitor bank and through the jet.  For a time after the initial contact, the current increases at a 
steady rate, starting from zero current.  Because the tip of the jet perforates the bottom plate 
almost immediately after the current starts, the current has little time to increase to an effective 
level, and there is little time to drive the hydrodynamic instabilities near the tip or to melt the tip.  
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In contrast, EMA affects the portion of the jet farther back from the tip such as the portion near 
point B in figure 1.  During the time that point B travels to the bottom plate, there is time for the 
current to increase to an effective level, and there is time to drive the hydrodynamic instabilities 
or melt the jet.  Thus the rate at which the current increases after the initial contact must be as 
large as possible so that the length of the jet after the tip that is not affected by the current is 
reduced. 

C

A

B
Transmission

Line

Walker
Plates

Shaped
Charge Jet

 
Figure 1.  Experimental arrangement. 

The initial rate of the current just after the initial contact dIo/dt for the circuit in figure 1 is given 
by dIo/dt = V/Lt, in which V is the initial voltage on the capacitor bank and Lt is the total 
inductance of the circuit.  A large dIo/dt would result by a large V and a small Lt.  In this circuit, 
the total inductance Lt includes the inductance in the capacitors, the connections to the plates, the 
plates, and the shaped charge jet.  As a typical example (4), if the initial voltage on the capacitor 
bank is 10 kV and if the dIo/dt is to be 20 kA/μs, Lt would then be 0.5 μH.  It is possible to 
design the capacitors and the connections to the plates so that their inductances are a small 
contribution to the total inductance.  The inductance of the parallel plates could be made small if 
their separation distance were small.  A small separation distance, however, reduces the 
effectiveness of the armor because the time that a portion of the jet is between the plates and 
being acted upon by the current is small.  This reduction in the effectiveness of the armor can be 
compensated by a larger current.  In contrast, if the separation distance is increased, the times 
that portions of the jet are between the plates and being acted upon by the current increase, which 
results in less current to destroy the jet.  Larger separation distances, however, would increase 
the total inductance of the circuit resulting in an increase of the time for the current buildup to 
become effective.  During this buildup time of the current, a portion of the jet near the tip is 
passing intact through the bottom plate in figure 1.  This buildup time for the current can be 



 

3 

decreased if a larger charge voltage is used on the capacitor bank.  Thus, the plate design 
depends on the power supply and the characteristics of the shaped charge jet. 

To design an EMA system, the first step is to identify a shaped charge jet to be defeated and then 
calculate the current and the time required to destroy the various sections of the jet.  The next 
step is to design a pulse power system that will deliver the current in the required time, given the 
requirements for the specific application of the EMA.  The requirements to be addressed here are 
the protection area and the thickness of the EMA.  Suppose that the area and the thickness of 
EMA are given for some application.  Is it better to cover the area with just one set of parallel 
plates, or is it better to divide the area into a number of parallel plates, each being connected to 
the capacitor bank by a low inductance transmission line?  Considering the inductance of the 
parallel plates in these two cases and the other requirements of the application may answer the 
question.  Therefore, a method was developed and presented here to calculate the inductance.  
Because this method is unfortunately rather long and difficult, the results of the calculations are 
presented in tables 1 through 3 for various plate parameters that are likely to be found in EMA.  
With these tables, which are presented in section 4, it is possible to quickly estimate the 
inductance of a wide variety of parallel plates and then change the design for an EMA.  Once the 
design of the EMA has been narrowed, the inductance of the plate could be calculated to further 
refine the design. 
 

3. Current Distribution 

Consider a thin rectangular plate that has a current distribution as shown in figure 2.  The lines 
radiating from the point on the edge represent a point current source on the edge.  The place 
where the lines converge to a point represents a current “sink”.  Each line is a flow line where the 
current density vector is tangential to the line.  In EMA, the source on the edge of the plate 
would be where the plate is connected to the capacitor bank, and the sink would be where the 
shaped charge jet has penetrated the plate.  The current distribution on the opposite parallel plate 
is similar:  a current sink on the edge of the plate where it is connected to the return to the 
capacitor bank, and a current source where the shaped charge jet has penetrated it.  The current 
distributions in both of the plates are a source of a magnetic field that required some energy to 
create.  This energy Wm is related to the inductance of the plates by Wm = LpI2/2, in which Lp is 
the inductance of the plates and I is the current in the circuit. 
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Figure 2.  Current distribution in a thin plate. 

Since different current distributions in the plates will produce different magnetic fields with 
different energies, the inductance of the plates will differ.  This means that the current 
distribution of the plates must be known before the inductance of the plates can be calculated.  
Unfortunately, the current distributions in the plates can be calculated only after some 
assumptions are made.  Each assumption, however, results in a different current distribution and 
a different plate inductance.  Furthermore, none of these assumptions may seem at first to be 
applicable to EMA.  Therefore, these various assumptions are presented here and discussed 
before we continue to the calculation of the plate inductance. 

This discussion serves as a tutorial for how to calculate the energy stored in a magnetic field.  
The consequences of using these assumptions are illustrated by a common problem that can be 
solved analytically for most cases.  To start, consider a problem as shown in figure 3 that shows 
a right cylinder with some arbitrary cross section oriented to be parallel with the z-axis.  The 
ends of the right cylinder lie on the z = l/2 plane and the z = -l/2 plane in which l is the total 
length of the right cylinder.  For all points in the cross section, there is a current density vector 
Jz(x,y), parallel to the z-axis and dependent only on its position on the x-y plane.  Now apply the 
general integral for the energy stored in the magnetic field which is  

 ∫ •= )()(
2
1 3 xAxJdxWm

rrrr
  , (1) 
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where the magnetic vector potential )(xA rr
 is produced by the same current density distribution 

according to 

 ∫ ′−+′−+′−

′
′=

222

3

)()()(
)()(

4
)(

zzyyxx
xJxdxA o
rr

rr

π
μ   . (2) 

This integral is taken over the same entire volume as equation 1. 

X

Y

Z

Jz(x,y)

 
Figure 3.  Right cylinder with an arbitrary cross section carrying a current. 

When the length of the right cylinder l is much larger than the maximum length across the cross 
section and when the current density is independent of the z-coordinate, equation 1 can be 
integrated over z and z' to become 

 ∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−+′−
′′′′=

22 )()(
2ln),(),(

4 yyxx
lyxJyxJydxddydxlW zz

o
m π

μ   . (3) 

With the properties of the logarithm, this integral may also be written as 

 ( )∫ ′−+′−′′′′−= 22
2

)()(ln),(),(
84

)2ln( yyxxyxJyxJydxddydxlIllW zz
oo

m π
μ

π
μ   , (4) 

in which I is the total current in the conductor.  Now apply equation 4 to a flat ribbon with a 
width w that is located on the x-axis as shown in figure 4 which gives 

 ( )∫ ′−′′−= xxxJxJxddxlIllW zz
oo

m ln)()(
44

)2ln( 2

π
μ

π
μ   . (5) 
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Now an assumption must be made that will result in a current distribution Jz(x) across the width 
of the ribbon. 

 
Figure 4.  Magnetic field lines of a flat ribbon carrying a uniform current. 

The simplest assumption is to have a uniform current density across the ribbon Jz(x) = I/w, which 
will result when the current is constant with time and when the ribbon is made of a material with 
a resistance.  After the double integral is performed, the energy stored in the magnetic field for a 
direct current ..cd

mW is 

 ( )5.1)ln(
44

)2ln( 22
.. −−= wIlIllW oocd

m π
μ

π
μ   . (6) 

The next assumption is to have the ribbon made from a material that has no resistance or a super 
conductor which changes the boundary conditions of the magnetic field on the ribbon.  In this 
case, the magnetic field inside a super conductor must be zero, which is different from the 
boundary conditions for an ordinary conductor.  On the surface of an ordinary conductor, the 
normal component of the magnetic induction field B must be continuous when we are going 
across the surface.  This condition also holds for a super conductor because it is based on the fact 
that there are no magnetic monopoles.  Since B must be zero inside the super conductor, the 
normal component of B on the surface of the super conductor must also be zero.  Therefore, the 
magnetic induction field must be tangential to the surface of the super conductor.  For normal 
conductors, the tangential component of the magnetic field H must be continuous when crossing 
the surface, provided that there are no surface currents.  For super conductors, however, there are 
surface currents that can produce a discontinuity of the tangential component of H.  The 
consequence of these boundary conditions in two-dimensional geometry is that the surface of a 
super conductor is a field line of the magnetic induction field.  To illustrate the differences 
between a normal conductor and a super conductor, figure 4 shows the magnetic induction field 
of the ribbon with a uniform current, and figure 5 shows the magnetic induction field when the 
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ribbon is a super conductor.  For a uniform current in figure 4, some of the field lines cross the 
ribbon, which would not be allowed if the ribbon were a super conductor.  The field lines in 
figure 5 were calculated from a current distribution that excludes all the field lines from the 
ribbon.  From other calculations, it was discovered that this current distribution is 

 
22)2/(

)(
xw

IxJ z
−

=
π

  , (7) 

which becomes infinite at the edges of the ribbon.  Substituting this current distribution into 
equation 3 gives the energy stored in the magnetic field for a super conductor ..cs

mW to be 

 ( ))4ln()ln(
44

)2ln( 22
.. −−= wIlIllW oocs

m π
μ

π
μ   . (8) 

Since ln(4) is 1.386…, the energy stored in the magnetic field for a ribbon carrying a direct 
current (equation 4) is close to that of a super conducting ribbon with the same width and length 
and carrying equal current (equation 6).  This is in spite of the very different current distributions 
in the two ribbons. 

Finally, it could be assumed that there is an alternating voltage source connected at the ends of 
the long ribbon and operating at an angular frequency ω.  The equation to be solved for the 
current distribution across the ribbon does not have an analytic expression, and it is necessary to 
use numerical methods to solve the problem.  The results of the numerical analysis show that the 
energy stored in the magnetic field approaches the value given by equation 6 as the angular 
frequency approaches zero.  The analysis also shows that the magnetic energy approaches the 
value given by equation 8 as the angular frequency approaches infinity.  This is the result of the 
fact that alternating currents in a conductor tend to become more concentrated toward the surface 
as the angular frequency of the currents increases.  At very high frequencies, the currents are 
concentrated very close to the surface in the same manner as a super conductor.  Thus, the 
assumption that the conductor is a super conductor gives the high frequency limit.  The 
numerical analysis also shows that the magnetic energy for the intermediate angular frequencies 
is always between ..cs

mW , the lower limit, and ..cd
mW , the upper limit. 
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Figure 5.  Magnetic field lines of a flat ribbon with a current distribution given by equation 7. 

In reviewing all of the previous assumptions, we see that none of them apply directly to EMA 
where the current is a transient or a pulse: it is not a direct current and it does not have a constant 
angular frequency.  Furthermore, the conductors in EMA are not super conductors.  It would 
seem that none of these assumptions could be applied to EMA to find the magnetic energy stored 
in the plates and then assign an inductance for them.  The examination of the flat ribbon, 
however, indicates that the magnetic energy is not very sensitive to the exact current distribution 
in the ribbon.  If this observation holds true for the plates in EMA, it is possible to find a good 
estimate of the inductance of the plates, even though the assumption being used may not be valid 
and the current distribution in the plates may not be valid.  Therefore, it will now be assumed 
that the current distribution in the EMA plates will be for direct currents.  The reason for this 
choice is because the current distribution for a direct current is easily found with the use of any 
one of a number of techniques.  Whatever technique is used, the current density is no longer an 
analytic expression and the integration of equations 1 and 2 must be done numerically. 

Performing the integrals in equations 1 and 2 numerically requires effort.  As an example, 
suppose that the overall volume is a cube that is subdivided into n3 smaller cubes, where n is the 
number of smaller cubes along each edge of the larger cube.  If the magnetic vector potential is 
to be estimated at a corner of a smaller cube at (x,y,z), the integrand in equation 2 must be 
evaluated at all the (n+1)3 corners (x',y',z') of the smaller cubes and summed.  This magnetic 
vector potential is then multiplied with the current density to become a value for the integrand in 
equation 5 at this corner.  This procedure must be repeated for each corner of the smaller cubes 
at (x,y,z).  This means that the total number of times that the integrand in equation 2 must be 
evaluated to find the magnetic energy is on the order of (n+1)6.  If the cube is divided into 100 
smaller cubes per edge, then the total number of evaluations of the integrand is about 1012 which 
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is practical on most computers.  If the cube is divided into 1000 smaller cubes per edge, then the 
total number of evaluations of the integrand is now about 1018, which is not practical even on a 
super computer.  This demonstrates that as the number of points or the number of cubes is 
increased to capture the finer details of the current distribution in the volume, the labor to find 
the magnetic energy will dramatically increase.  Because the magnetic vector potential and the 
current density distribution are known after we solve a problem, however, a single integration 
over the volume, equation 1, is needed to calculate the energy of the magnetic field.  Finding the 
magnetic energy for two infinitely thin plates, each with a current distribution, is easier.  Let the 
two plates be squares, as an example, and divide each plate into n2, where n is the number of 
squares along each side of the plate.  The number of times that the integrand in equation 2 is to 
be evaluated is now about (n+1)4 rather than about (n+1)6.  This is the consequence of the fact 
that equations 1 and 2 are now integrals over the areas of the thin plates rather than integrals over 
volumes.  Still, a method was used here to estimate the magnetic energy for a very large number 
of squares from the results using a more practical number of squares. 

The result of using the procedures based on finite differences, such as the relaxation method, is an 
estimate of the current densities at points on a regular rectangular grid on the plate.  The plate is 
now divided into smaller rectangular regions where the current densities are given at each corner.  
One of these small rectangular regions is shown in figure 6 as an example.  The origin of the 
coordinate frame for the rectangle is placed in the middle and oriented with the x-axis parallel to 
one side and the y-axis parallel to another side.  The rectangle has a half-length “a” and a half-
height “b”.  The x components of the current densities at the four corners are −−,

xJ , −+,
xJ , ++,

xJ , and 
+−,

xJ .  The y components of the current densities at the four corners are −−,
yJ , −+,

yJ , ++,
yJ , and +−,

yJ .  

The signs in superscript give the sign of the x and y directions, respectively, from the origin to the 
corner.  In order to find the magnetic vector potential produced by the current density distribution 
in this rectangle, the current density must be given at all points on the rectangle, but the current 
densities are known only at the corners.  Therefore, it is necessary to assume a continuous current 
distribution that is specified by the current densities at the corners.  Since there are four given x 
components of the current density, simply assume that 

 yxyxyxJ xxxxx ′′′+′′+′′+′=′′′ δγβα),(   , (9) 

where the coefficients α'x, β'x, γ'x, and δ'x are chosen so that ++=′ ,),( xx JbaJ , +−=−′ ,),( xx JbaJ , 
−+=−′ ,),( xx JbaJ , and −−=−−′ ,),( xx JbaJ .   

In the same manner, assume that 

 yxyxyxJ yyyyy ′′′+′′+′′+′=′′′ δγβα),(   , (10) 
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Figure 6.  Current distribution of a small rectangle on the plate. 

where the coefficients α'y, β'y, γ'y, and δy are chosen so that ++=′ ,),( yy JbaJ , +−=−′ ,),( yy JbaJ , 
−+=−′ ,),( yy JbaJ , and −−=−−′ ,),( yy JbaJ .  With these assumptions for the neighboring rectangles 

on the plate, it can be shown that the current density vector is continuous in value as one crosses 
the edge from one rectangle into a neighboring rectangle.  The partial derivatives of the current 
density vector, however, are not continuous when we cross an edge.  In addition, charge may not 
be conserved within a rectangle, but it could be conserved if δx = 0, δy = 0, and βx + γy = 0 so that 

0=⋅∇ J
rr

 everywhere.  In spite of these limitations of the assumed current distribution, it is a 
good approximation of current distributions that do conserve the charge everywhere, provided 
that the rectangle is small enough so that the conditions for its charge conservation are 
approximately satisfied.  The x-component of the magnetic vector potential for this current 
distribution is 

 ∫ ∫
− − +′−+′−

′′′+′′+′′+′′′=
a

a

xxxx
b

b

o
x

zyyxx

yxyxydxdzyxA
222 )()(4

),,( δγβα
π
μ  (11) 

and the y-component of the magnetic vector potential is 

 ∫ ∫
− − +′−+′−

′′′+′′+′′+′
′′=

a

a

yyyy
b

b

o
y

zyyxx

yxyx
ydxdzyxA

222 )()(4
),,(

δγβα
π
μ   . (12) 

Both of these sets of integrals have the same form, and they have an analytic expression which is 
given in appendix A.  This rectangle is a source of a magnetic field within which any current 
distribution will result in an energy as stated by equation 1.  The current distribution in just one 
of the other rectangles on the plate will result in only a part of the total energy for the entire 
plate.  Let the current distribution in the other rectangle be 
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 xyyxyxJ xxxxx δγβα +++=),(   , (13) 
and 
 xyyxyxJ yyyyy δγβα +++=),(   . (14) 

The energy for these two rectangles is then 

 ∫∫
+

−

+

−

+++=

dy

dy

xxxxx

cx

cx

o
sf

o

o

o

o

xyyxzyxAdydxw ))(,,(
8

δγβα
π
μ  

 ∫∫
+

−

+

−

++++

dy

dy

yyyyy

cx

cx

o

o

o

o

o

xyyxzyxAdydx ))(,,(
8

δγβα
π
μ

  , (15) 

in which c is the half length and d is the half height of the other rectangle.  It is understood that 
the two rectangles lie on parallel planes that are separated by the distance z, and the center of the 
other rectangle is located at (xo, yo, z).  It is also understood that the sides of one rectangle are 
parallel or perpendicular to the sides of the other.  These integrals are analytic, but their 
expression, also shown in appendix A, are long and complicated.  This expression is applied to 
all possible pairs of rectangles on the plates and collected as a sum for the total energy.  This 
pairing means that any two given rectangles will be paired together twice:  the first rectangle as a 
source is paired to the second as the one being in the magnetic field of the first, and then the 
second rectangle as a source is paired to the first as the one being in the magnetic field of the 
second.  Fortunately, the expression needs to be evaluated just once for a given pair of rectangles 
because it will give the same answer when the two rectangles are interchanged.  Once the 
expression is evaluated for a pair of rectangles, the result is doubled and then added to the total.  
This pairing includes each rectangle being paired with itself, since each rectangle has a current 
distribution within a magnetic field of its own creation.  Here, the expression is evaluated and 
added to the total without doubling, since there is only one pairing of a rectangle with itself.  
This pairing can be divided into three groups.  The first group has pairs of rectangles on one 
plate.  The total energy found for this pairing does not change as the distance between the plates 
change.  The second group has pairs of rectangles on the opposing plate.  The total energy for 
this second group is the same as the first.  The third group has one rectangle on each separate 
plate.  The total energy from this third group does change with the distance between the plates.  
Once the total energy, W, is found, the inductance of the plates is then calculated by Lp = 2.0 
W/I2, in which I is the current flowing through the jet. 

The explicit expression for the integral in equation 15 becomes numerically unstable when the 
distance between the two rectangles becomes large.  The reason for this instability is that many 
of the functions used in the expression increase to large values as the distance between the 
rectangles increases.  The integral, however, requires these functions to be subtracted.  
Subtracting two very large numbers that are nearly equal is a well-known source for round-off 
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error.  At these large distances, it is better and faster to numerically integrate equation 15.  Since 
the magnetic vector potential smoothly varies over the field rectangle at these separation 
distances, the numerical integration quickly converges.  As the separation distance is increased 
even more, the explicit expression for the magnetic vector also begins to suffer from round-off 
error.  At these distances, it is possible to use a multipole expansion for the magnetic vector 
potential that is stable for even larger distances, but this was not needed for these calculations. 

To validate these calculations, two 29-cm by 68.5-cm plates were mounted in parallel by 10.0-
cm-long spacers that were insulators.  The plates were 0.6 cm thick.  One lead to an inductance 
meter was attached at the mid point of the 29-cm-long edge of a plate.  The other lead to the 
inductance meter was attached to the other plate directly opposite the first lead.  Holes were 
drilled through the plates at various locations.  These holes allowed for a brass rod, 0.63 cm in 
diameter, to be inserted perpendicularly through each plate and fastened to make contact with 
each plate.  The inductance was measured for a given location of the brass rod, and then the brass 
rod was moved to another location for another measurement.  These measurements would have 
included the inductance of the plates and the inductance of the brass rod, but the inductance 
meter was adjusted to subtract the inductance of the brass rod. 

To compare the calculated inductance with the measured inductance, we chose the point where 
the inductance meter is attached as the origin of a coordinate system, as shown in figure 2, where 
the x-axis is perpendicular to the edge of the plate so that the x-axis runs along the line midway 
between the two 68.5-cm-long edges of the plate and where the y-axis is parallel to the 29-cm-
long edge of the plate.  Figure 7 compares the calculated inductance (the smooth solid lines) with 
the measured inductance (the squares) for rod locations along the x-axis or along the mid-line of 
the plates.  The results of two calculations are shown in figure 7.  One calculation assumes that 
the plates are spaced by 10.0 cm, but the plates have a thickness of 0.6 cm.  As a test for the 
effects of the plate spacing, another calculation was done for a plate spacing of 11.2 cm which is 
the inside spacing of the plates plus the thickness of both plates.  The comparison shows that the 
calculations can give a good estimate of the plate inductances.  In addition, the calculations and 
the experimental measurements are in similar agreement when the rod was placed at other 
locations away from the x-axis. 
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Figure 7.  Inductance of two parallel plates for hit locations along the mid line. 

 

4. Plate Inductances 

The inductance of the plates with different aspect ratios, different spacings, and various hit 
locations was calculated and presented in tables 1 through 3.  The procedure for these 
calculations started with choosing the aspect ratio of the sides of the plates.  Next, the location 
where the current is feeding the plate and the location of the sink or hit were chosen.  The current 
distribution was calculated by a relaxation method after the size of the grid was chosen.  Because 
this current distribution does not change as the spacing between the plates is changed, this 
current distribution is used in the calculation of the inductance for a number of spacings between 
the plates.  Keeping the locations of the current feed and the sink fixed, the current distribution 
was found on a finer grid and the inductance was again calculated for the same set of spacings.  
This procedure was repeated for a number of finer grids.  It was observed that the inductance for 
a given spacing depended on the number of grid points n along an edge of the plate as L(n) = Lo 
+ a/n + b/n2.  An example of the inductance converging to a value is shown in figure 8 where the 
plate is a 1-cm by 1-cm square with a spacing of 0.1 cm.  The current feeds are at the mid points 
of two opposing edges and the sink is in the center of the square.  In this example, the inductance 
is taken to be the extrapolated value at zero for an inductance of 1.68 nH.  All the inductances in 
tables 1 through 3 resulted in this extrapolation to zero. 
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Table 1.  1.0 cm by 0.5 cm. 

z = 0.1 x = 0.00 x = 0.25 x = 0.50 
y = 0.50 2.111 1.657 2.251 
y = 0.25 1.168 1.041 1.521 
y = 0.00 0.000 0.781 1.345 

 
z = 0.2 x = 0.00 x = 0.25 x = 0.50 
y = 0.50 2.926 2.387 3.221 
y = 0.25 1.523 1.428 2.177 
y = 0.00 0.000 1.012 1.896 

 
z = 0.3 x = 0.00 x = 0.25 x = 0.50 
y = 0.50 3.388 2.832 3.821 
y = 0.25 1.696 1.643 2.579 
y = 0.00 0.000 1.129 2.227 

 
z = 0.4 x = 0.00 x = 0.25 x = 0.50 
y = 0.50 3.681 3.130 4.231 
y = 0.25 1.795 1.779 2.851 
y = 0.00 0.000 1.199 2.449 

 
z = 0.5 x = 0.00 x = 0.25 x = 0.50 
y = 0.50 3.881 3.342 4.529 
y = 0.25 1.857 1.871 3.046 
y = 0.00 0.000 1.246 2.608 

 

Table 2.  1.0 cm by 1.0 cm. 

z = 0.1 x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00 
y = 0.50 2.0480 1.5492 1.6800 1.9744 2.5644 
y = 0.25 1.1396 0.9966 1.2400 1.5302 1.9800 
y = 0.00 0.0000 0.7280 1.0860 1.3960 1.8618 

 
z= 0.2 x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00 
y = 0.50 2.8344 2.2032 2.4700 2.9856 3.8964 
y = 0.25 1.4852 1.3606 1.7966 2.3132 3.0692 
y = 0.00 0.0000 0.9580 1.5720 2.1220 2.8748 

 
z = 0.3 x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00 
y = 0.50 3.2798 2.6284 2.9840 3.6728 4.8054 
y = 0.25 1.6532 1.5636 2.1470 2.8446 3.8290 
y = 0.00 0.0000 1.0730 1.8700 2.6080 3.5824 

 
z = 0.4 x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00 
y = 0.50 3.5626 2.9042 1.3486 4.1766 5.4778 
y = 0.25 1.7498 1.6916 2.3890 3.2326 4.3980 
y = 0.00 0.0000 1.1416 2.0740 2.9620 4.1130 

 
z = 0.5 x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00 
y = 0.50 3.7560 3.1010 3.6194 4.5616 5.9976 
y = 0.25 1.8114 1.7800 2.5662 3.5288 4.8408 
y = 0.00 0.0000 1.1874 2.2200 3.2320 4.5270 
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Table 3.  1.0 cm by 2.0 cm. 

z = 0.1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
y = 0.50 2.032 1.515 1.651 1.873 2.153 2.413 2.714 3.032 3.740 
y = 0.25 1.111 0.985 1.225 1.483 1.756 2.032 2.312 2.611 3.102 
y = 0.00 0.000 0.761 1.126 1.420 1.710 1.975 2.261 2.532 3.017 

 
z = 0.2 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
y = 0.50 2.816 2.181 2.427 2.837 3.327 3.812 4.344 4.922 5.971 
y = 0.25 1.457 1.349 1.776 2.249 2.742 3.241 3.749 4.287 5.086 
y = 0.00 0.000 0.995 1.615 2.141 2.651 3.144 3.652 4.155 4.933 

 
z = 0.3 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
y = 0.50 3.259 2.586 2.929 3.492 4.158 4.829 5.556 6.345 7.634 
y = 0.25 1.624 1.549 2.122 2.768 3.446 4.129 4.828 5.565 6.599 
y = 0.00 0.000 1.112 1.913 2.623 3.320 4.000 4.697 5.394 6.401 

 
z = 0.4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
y = 0.50 3.540 2.858 3.285 3.974 4.786 5.615 6.508 7.473 8.951 
y = 0.25 1.720 1.676 2.361 3.148 3.975 4.820 5.682 6.588 7.813 
y = 0.00 0.000 1.182 2.115 2.974 3.826 4.666 5.524 6.387 7.582 

 
z = 0.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
y = 0.50 3.731 3.052 3.549 4.343 5.280 6.243 7.279 8.394 10.028 
y = 0.25 1.782 1.763 2.536 3.438 4.393 5.374 6.377 7.428 8.813 
y = 0.00 0.000 1.228 2.261 3.241 4.223 5.199 6.198 7.205 8.558 

 

L = 29.371(1/n2)  - 8.1235(1/n) + 1.68
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Figure 8.  Convergence as a function of the inverse number of  

grid points. 

Each table is the inductance in nanohenries for plates with various aspect ratios where one side is 
always 1.0 cm.  The spacing between the plates is in centimeters.  The inductance scales directly 
with the scaling of the plates.  Thus, the inductance of 100-cm by 100-cm plates that are 
separated by 10 cm (a scaling factor of 100) gives an inductance of 108.6 nH when the hit 
position is in the middle (0.50 cm, 0.0 cm), with the coordinates shown in figure 2.  Not included 
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in the tables is the fact that the inductance of any set of plates is zero when their separation 
distance is zero.  With this fact and the use of interpolation, it is possible to estimate the 
inductance for any plate spacing spanned by the tables. 

Now consider a design example.  Assume that a 1.0-m by 2.0-m area is to be protected by EMA 
and the spacing between the plates is 0.1 m.  One option is to use two 1.0-m by 2.0-m plates and 
have the current feeds at the mid-points of the 1.0-m edge.  Thus, table 3 is to be used with a 
scale factor of 100.  The hit location with the highest inductance is always at the farthest point 
from the current feeds, x = 2.0 cm y = 0.5 cm, and z = 0.1 cm in table 3.  Multiplying the 
inductance from table 3 (3.7 nH) by the scale factor gives a plate inductance of 370 nH.  This 
inductance can be reduced by the use of two sets of parallel plates that are 1.0 m by 1.0 m, each 
with its own current feeds.  Thus, table 2 is now to be used with a scale factor of 100.  Again, 
using the farthest point, x = 1.0 cm, y = 0.5 cm, and z = 0.1 cm, for the maximum inductance 
(2.5 nH), the maximum plate inductance is reduced to 250 nH.  This reduction of the inductance 
must be weighed against the fact that another current feed must be added to the system.  A final 
option is to again use 1.0-m by 2.0-m plates but have the current feed at the mid-point of the  
2.0-m edge.  This gives the aspect ratio of 0.5 for the plates (table 1) and a scale factor of 200.  
The location of the maximum inductance would then be when x = 0.5 cm and y = 0.5 cm but 
with z = 0.05 cm for the spacing, which is not tabulated.  Using the fact that the plate inductance 
is zero when z = 0.0 cm and observing that the inductance increases roughly as the square root of 
z when z is near zero, the inductance for z = 0.05 cm is approximately 0.707 times 2.251 nH, the 
inductance for z = 0.1 cm, for an estimated value of 1.59 nH.  The calculated inductance for this 
spacing is 1.47 nH, which shows that this interpolation gives a reasonable estimate.  This gives 
the estimated maximum inductance for this option as 318 nH, while the calculated maximum 
inductance is 294 nH. 
 

5. Conclusion 

A procedure to estimate the inductance of two parallel plates that have a current distribution on 
them has been presented.  Because the equations used in this procedure are long and 
complicated, tables of inductances for a set of parallel plates are presented.  By interpolating the 
inductances in these tables and using a scaling law, it is possible to estimate the inductance of 
any set of parallel plates to within about 10%, which is a sufficient tolerance for most cases.  
These equations could be extended to find the inductance of more complicated structures, but 
they may become even more complicated. 
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Appendix A.  Integrals for the Inductance Calculation 

The integration of equation 1 for the energy stored in the magnetic field starts when the 
expression for the magnetic vector potential in equations 11 and 12 is found.  Since equations 11 
and 12 become identical when the x and y subscripts of the coefficients were dropped and when 
the limits of integration are ignored, only equation 11 is integrated here with its x subscripts 
dropped. 
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As a reminder, the rectangle is on the x-y plane with its center at the origin of the coordinate 
system.  The normal vector of the rectangle is in the positive z direction.  The rectangle is 
oriented with one set of its parallel sides perpendicular to the x-axis.  The half length of the 
rectangle along the x' axis is a’, and the half width of the rectangle along the y axis is b’.  The 
integration starts when the variables are changed to x' = x - u and y' = y - v.  After these new 
variables are substituted into the equation and after the like powers of u and v are collected in the 
numerator of the integrand, the equation becomes 
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The four double integrals can be written in a general form:  
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in which the subscripts i and j are the powers of u and v, respectively. 

Letting 222 zvur ++= , the expression for the integrals used in equation 2-A is 
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With these definitions of the integrals, equation 2-A can be written as 
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The brackets mean that the expression inside is evaluated at the limits of integration.  Normal 
notation would have only one number in the superscript and one number in the subscript, but 
here there are two.  In this case, the brackets mean the following: 
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Because of round-off error, equation 4-A should be used with caution when we are calculating 
the magnetic vector potential at a field point (x,y,z) far from the rectangle.  The source of this 
round-off error comes from the subtracted terms in the definition of the brackets equation 5-A 
such as F(x−a’,y−b’,z) – F(x+a’,y−b’,z), which means that the function I1,1(u,v,z), as an 
example, is to be evaluated at points (x−a’,y−b’,z) and (x+a’,y−b’,z) and then subtracted, that is, 
I1,1(x−a’,y−b’,z) - I1,1(x+a’,y−b’,z).  Unfortunately, the value for I1,1(x−a’,y−b’,z) is large and 
nearly equal to I1,1(x+a’,y−b’,z) at field points far from the rectangle.  Subtracting two very large 
numbers that are nearly equal is a well-known source of round-off error in computers.  
Fortunately for the far field points, the magnetic vector potential can be accurately calculated 
with the use of its multipole expansion which does not suffer from round-off error. 
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To find the energy stored in the magnetic field, equation 4-A is multiplied by the current 
distribution in the second plate, yxyxyxJ δγβα +++=),( , and integrated over the region of 
the second plate.  The center of the second plate is located at the point (xo, yo, z) and has a half 
length a and a half height b.  This multiplication would result in an awkward expression.  To 
avoid this awkward expression, the multiplication and integration of each term in the above 
function J(x,y) are performed separately.  Thus let 

),,(
2

),,(0,0 zyxAdydxzyxW
by

by

ax

ax
oo

o

o

o

o

∫∫
+

−

+

−

=
α , 

),,(
2

),,(0,1 zyxAxdydxzyxW
by

by

ax

ax
oo

o

o

o

o

∫∫
+

−

+

−

=
β , 

),,(
2

),,(1,0 zyxAydydxzyxW
by

by

ax

ax
oo

o

o

o

o

∫∫
+

−

+

−

=
γ , 

and ),,(
2

),,(1,1 zyxAxydydxzyxW
by

by

ax

ax
oo

o

o

o

o

∫∫
+

−

+

−

=
δ . 

The integration of W1,0(xo,yo,z) is given in detail, which starts with the substitution of equation  
2-A into the above integral for W1,0(xo,yo,z), but only the final results for the rest are presented. 
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All the double integrals could be written in a short form as 
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where the superscripts n and m are the powers of x and y, respectively, and the subscripts are the 
subscripts of the double integral defined by equation 3-A.  With this notation,  
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Thus, there are a total of 24 different double integrals to be evaluated.  The procedure for 
evaluating all these double integrals starts with the removal of the bracket notation in equation  
7-A and the terms written explicitly. 
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The next step is to change the variables in each term: 
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The term in front of each Ii,j(p,q,z) can be multiplied into a sum of terms such as 
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whose expressions can now be determined.  With the notation defined by equation 13-A, the 
integral 0,2

, jiS is given as an example.  Thus, 
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After the definition for bracketed terms and the definition for the double integrals are used, 
equation 11-A, this expression becomes 
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where the functions ),,(,
, zqpH mn

ji  were abbreviated to mn
jiH ,

, .  Note that equation 12-A holds for 

any values for i and j.  Thus there are a total of nine unique forms for mn
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,  in equations 6-A 

through 9-A.  The other eight forms are 
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These forms or expressions for mn
jiS ,

, are substituted into equations 6-A through 9-A with the 

appropriate values for the indexes.  After this substitution, there are a number of lk
jiH ,

,  that appear 

more than once.  After we take into account the duplicate integrals, there are 25 unique lk
jiH ,

, , 

which are given below where 222 zqpr ++= . 
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  ATTN  AMSRD ARL WM  EG  E SCHMIDT 
  BLDG 4600 
 
 6 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM  TA  M KEELE 
   P BARTKOWSKI    B DONEY 
   P KINGMAN  A BARD   J RUNYEON 
  BLDG 393 
 
 1 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM  TC  W WALTERS 
  BLDG 309 
 
 10 DIRECTOR 
  US ARMY RSCH LABORATORY 
  ATTN  AMSRD ARL WM  TE  P BERNING   
   C HUMMER (5 CYS)  T KOTTKE   
   A NIILER  J POWELL 
   G THOMSON 
  BLDG 120 
 
 
 


