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SUMMARY 

This paper summarizes existing and describes ongoing work on securit ypolicy definition and particularly 
enforcement in heterogeneous distributed systems. Based on a formal model of operating systems and 
interactions among networked nodes in a distributed system axiomatizing relations among and 
abstractions in distributed systems, arbitrary security policies can be defined over the same model; 
automated reasoning techniques can be used to dynamically derive the compliance of operations with all 
applicable security policies. A key component for enforcing such security policies in operating system 
network stacks is described along with instrumentation techniques for the Microsoft Windows NT family of 
operating systems. 

 

1.0 INTRODUCTION 

Information assurance in distributed, heterogeneous systems frequently requires that formal and informal 
security policies be enforced by technical means. The expressiveness required by security models and, 
more generally, policies [21], however, frequently exceed the capabilities of the mechanisms available in 
currently deployed networking components and general purpose operating systems.  

Extant (deployed) systems, particularly for network security policies are generally limited to simple access 
control lists and in some cases to elementary heuristics in the scope of their proactive security mechanisms 
both in case of operating system capabilities and add-on components.  

Similar limitations also exist in the capabilities of the controls themselves since existing controls are 
typically limited in their design to enforce simple access control mechanisms, e.g.~in the form of basic or 
stateful packet filtering mechanisms integrated into operating systems.  

A number of threats increasingly necessitate improvement of security policy mechanisms, controls, and 
the assurance provided by such controls even in nominally secured networks. Topologically oriented 
security mechanisms such as perimeter firewalls increasingly undermined through the use of a variety of 
wireless network interfaces including IEEE 802.11x, Bluetooth, and even IrDA/FIR frequently found on 
standard workstations that support ad hoc networking among peer nodes.  

Threats inherent in this include denial of service, eavesdropping, and active penetrations, but more 
importantly also represent a vector through which malicious code can be inserted into a network to cause 
arbitrary damage. Frequently, such access is provided deliberately by end users, e.g.~when establishing a 
piconet or point-to-point network interface connections for sharing materials written using popular office 

RTO-MP-IST-041 17 - 1 

 

Paper presented at the RTO IST Symposium on “Adaptive Defence in Unclassified Networks”, 
held in Toulouse, France, 19 - 20 April 2004, and published in RTO-MP-IST-041. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 NOV 2004 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Tempering Network Stacks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Fraunhofer-IGD Security Technology Department Fraunhoferstr. 5
64283 Darmstadt Germany 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 
See also ADM001845, Adaptive Defence in Unclassified Networks (La defense adaptative pour les reseaux
non classifies)., The original document contains color images. 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

25 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Tempering Network Stacks  

17 - 2 RTO-MP-IST-041 

 

 

productivity applications with extensive macro capabilities and therefore also vulnerability surfaces for 
malware. 

Moreover, even network traffic passing through perimeter security controls is increasingly opaque to such 
perimeter firewalls and network intrusion detection mechanisms. Reasons for this include the use of 
encrypted end-to-end channels or message formats that partially blind perimeter network security 
mechanisms nominally capable of scanning network traffic, but also the proliferation of protocols that are 
explicitly designed to circumvent network security controls such as the SOAP protocol [4,14] and 
additional layered protocols.   

These observations lead to a number of desiderata for improving network stack security. Since information 
required for reaching decisions regarding conformity of network traffic and operations is increasingly 
available only at the end nodes themselves and end nodes may also be directly exposed to hostile traffic, 
network security controls must be integrated directly into the end nodes themselves [3].  

2.0 SECURITY ARCHITECTURE BACKGROUND 

General security policies within organizations, typically created only in informal prose, must be mapped 
onto available security models and ultimately security controls, potentially losing accuracy at each of these 
steps and also potentially incomplete because of limitations of the layer mapped onto in each step. Such 
mapping errors can be detrimental both in omitting controls that policies call for and in imposing overly 
restrictive controls that limit capabilities and effectiveness of the information system.  

Moreover, demonstrating the correspondence of each mapping (e.g. document handling guidance onto 
technical access controls) is a resource-intensive effort and similarly prone to errors and oversights as the 
original mapping.  

In modeling individual nodes (i.e. operating systems and the resources controlled by these systems) and 
interactions among nodes at a level of abstraction sufficient to capture operational semantics across 
multiple general-purpose operating systems through formal concept analysis using formal logic, bijective 
mappings onto specific instances of operating systems can be considered interpretations of such formal 
theories.  

Arbitrary security policies can then be formulated within the same formal theory, interpreted as either 
permitted or required operations. Automated deduction mechanisms can therefore be used to derive 
additional statements and instances of the model.  

By including abstraction relations over entities and operations within the axiomatization of the underlying 
system, the reasoning can, moreover, occur over multiple abstraction layers, such as deriving the 
permissibility of an read operation accessing an individual block on a fixed disk by a given process based 
on abstractions tracing these entities and operations onto e.g. personnel roles and documents; this can be 
achieved by mapping an operation onto the formal model in the form of a well-formed formula, a proof of 
the validity of such a hypothesis (derived e.g. via term rewriting or automated deduction mechanisms) is 
then considered permission to perform the operation. 

The axiomatization, based on embedding algebraic (e.g. lattice) structures within the formal theory 
provides critical efficiency gains not only in a priori providing proof structuring aids but also in permitting 
the re-use of decisions. By embedding lattices over both entity and operation types and over entity 
identities, policy decisions can be reached quickly by avoiding resolution to ground termns and re-used by 
simple rewriting in later decisions. Such derived (proven) formulae can be considered part of the policy set 
with legitimate operations being described by the Lindenbaum operator over all policies with each such 
statement being assigned a lifetime providing implicit pruning and dynamism [31]. 
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In the underlying architecture, there exist a number of nodes called external reference monitors (ERM) 
which are repositories for one or more security policies, each presumably derived from a security model. 
The system on which an ERM resides is called a Policy Controller Node (PCN).  The other component of 
the framework consists of a number of nodes which are subject to the policies of one or more ERM 
[27,31].   

The policies obtained from ERM are enforced through externally controlled reference monitors (ECRM) 
and its enforcement modules (EM); a system configured with a combination of ECRM and EMs is called a 
Policy Enforcing Node (PEN). As implied by the term reference monitor, each operation of the controlled 
nodes is mediated by the ECRM and may only proceed if it is found to be in compliance with all 
applicable policies. Applicable policies (and hence the ERMs to be consulted) are determined from the 
identity of subjects and objects involved which are uniquely identified by the conjunction of a subject 
identity and a subject type constant.  

3.0 NETWORK ENFORCEMENT MECHANISMS 

In addition to other system components such as device interfaces [32], file systems [28], and process 
management required for ensuring the completeness property for reference monitors, network interfaces 
constitute one of the minimum required controls for security policy enforcement.   

The network enforcement module must satisfy a number of functional requirements, namely to control all 
in- and outbound data packets and circuit operations in such a way that data flows are presented to the host 
operating system only after having been validated; this is particularly relevant for operating systems where 
the network stack may not be capable of properly handling malformed data flows. 

Moreover, the network enforcement module must provide transparent data object labeling to permit the 
identification of higher level entities in case of data flows among nodes within the security architecture.  

To establish secure in-band communication with PCN nodes that may not be possible because of state 
space restrictions in using the host operating system network stack, the enforcement module must also 
provide a fully separated cryptographically secured communication channel. 

This paper describes one such ongoing enforcement module implementation for the Microsoft Windows 
NT family1 of operating systems. 

However, the following sections concentrate mainly on the instrumentation mechanisms and omit more 
advanced object identification and security protocol elements. 

3.1 Windows NT Family Network Protocol Stacks 
Unlike the other components such as file system handling, the networking mechanisms provided by the 
Microsoft Windows NT operating system family do not share a common abstraction for all supported 
types of network communication. 

Therefore, in addition to multiple environmental subsystems providing different access mechanisms to 
network communication subsystems, there exist several conceptually different networking application 
programming interfaces, namely 

• WinSock 

• Named Pipes 
                                                      

1 including the 3.x, 4.0, 2000,   XP, and 2003 versions at the time writing. 
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• Mailslots 

• Remote Procedure Call   

• NetBIOS 

• Telephony 

Other services such as DCOM [8] or the .NET framework [26,18] may be layered on top of these 
interfaces; while some of these interfaces have their own security and encryption mechanisms (such as 
RPC), others rely on the connection being assumed as secure and simply enforce access controls (e.g. 
named pipes and mail slots which are implemented as file systems and can use the access control 
mechanisms for file systems, see [23,24]). 

Of these mechanisms, the telephony interfaces (TAPI) are in an unique class based on the mechanism used 
by user level programs to communicate with kernel-level components. 

The TAPI user level component (TAPISRV.DLL) provides access to a number of TAPI service providers 
(TSP); while most of these map to networking subsystems discussed later in this section, this also includes 
direct access to device drivers for modem devices (which can themselves be used to establish arbitrary 
network connections including interfacing to other network protocols). 

This particular component therefore requires specific enforcement mechanism support (e.g. in the form of 
device-level enforcement for modem-type devices) to avoid the introduction of unenforceable information 
flow paths.  

In the general case, the network architecture of the Microsoft Windows NT family consists of a number of 
layers, depicted in figure 1.  

At the lowest level is the physical device. Access to individual devices is regulated by the hardware 
abstraction layer (HAL).  Network device drivers are generally realized as NDIS (Network Driver 
Interface Specification) modules consisting of the generic NDIS library and the device-specific NDIS 
miniport drivers; the library fully encapsulates the miniport drivers.  

Accessing the NDIS library is the TDI (Transport Driver Interface) mechanism. This itself consists of 
transports (or protocol drivers), supporting the various transport mechanisms such as NetBEUI (NetBIOS 
Extended User Interface) and TCP/IP, and TDI clients which provide services for sockets and NetBIOS  
calls. None of these modules can be called directly from applications since they are protected kernel mode 
interfaces. 

Upper-level APIs (application programming interfaces) such as NetBIOS and Windows Sockets are 
subsequently implemented at the user level and must use the aforementioned interface layers.  

The Windows Sockets API (or WinSock) is modeled after the original BSD Unix sockets API  [20] and 
has undergone significant revisions under various platforms before arriving in its current form [1,2]. It is 
available for both the NT-based and DOS-based operating systems from Microsoft Corporation. 

The Windows Sockets API is itself composed of several modules. From an application's perspective the 
sockets API consists of the exposed API DLL; this DLL (dynamically linked library) communicates with 
the SPI (Service Provider Interface) layer. 

This layer is controlled by the transport service provider DLL which in turn calls on a number of transport 
helper DLLs and namespace helper DLLs to perform its operations. Moreover, the transport service 
provider DLL forwards the thus generated calls to the System Support Library DLL that represents the 
interface to the abovementioned kernel components.   
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Since the Microsoft Windows NT design is predicated on a file system model and represents sockets as 
file handles, a translation mechanism is required.  This service is performed by an Ancillary Function 
Driver (AFD). 

Of particular interest in this is the ability to stack several of the transport helper DLLs so as to provide 
additional services at each level (there is no layering mechanism for namespace helper DLLs). WinSock 
here distinguishes between “base protocols” and “layered protocols”.  The former are protocols capable of 
performing actual communication with a remote endpoint, the latter must rely on base protocols for actual 
communication and only provide added value.   

Provided that all elements of such a stack are conforming to the interface specifications set forth in [1,2], it 
is possible to implement several stacked layers of such layered protocols. 

At an abstraction level below the user level API mechanisms, the protocol driver layer accepts requests 
from API-level mechanisms and translates these into respective network protocol elements. The number 
and type of protocol drivers are variable among nodes and may include but are not limited to TCP/IP, 
NetBEUI, IPX/SPX (provided in a single protocol driver instance), and AppleTalk. Typically, each 
protocol driver supports all protocols of a protocol family (e.g. IP, ARP, RARP, ICMP, IGMP, UDP, and 
TCP in case of the TCP/IP protocol driver, TCPIP.SYS). 

All protocol drivers communicate with API-level components (as well as other components such as the 
previously noted Windows Sockets ancillary function driver) using part of the TDI; which is specified in 
the form of IRP classes.  

For connection-oriented protocols, TdiDispatchCreate creates a file object (also referred to as an 
address object) by through the use of an IRP_MJ_CREATE IRP which represents the node-local 
connection endpoint. This subsequently must be associated with an opened file object representing an 
address, referred to as an connection object.    

Depending on the initiating node, subsequent IRP messages must then transition the connection object into 
listening or connecting state, which is then transitioned into an accepting state on the part of the listening 
node, which occurs using the IRP creation mechanisms TdiDispatchDeviceControl, 
TdiDispatchFastDeviceControl, and TdiDispatchInternalDeviceControl, respec-
tively. 

After a connection object has been discarded, TdiDispatchClose is used to discard the address 
object after TdiDispatchCleanup has ensured that no pending IRP messages exist for the address 
object; connectionless protocols omit the listening and connecting phase of this control flow. 

TDI also permits the use of callback mechanisms and the intermediate caching of network protocol data 
units for efficiency purposes; this requires the registration of events with TDI client interfaces. Typically, 
this results in TDI clients generating TDI_SEND IRP messages and reacting to 
TDI_EVENT_CHAINED_RECEIVE and the TDI_EVENT_RECEIVE* family of IRP messages. 

For communication with the device drivers controlling the network interface adapters, the TDI protocol 
drivers communicate by way of a library encapsulating device-specific properties.  

This library, NDIS, provides a procedural interface for the TDI as well as for the actual device drivers 
(miniport drivers), which communicate to the remainder of the operating system only through the NDIS 
library. 
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Internally, however, the Microsoft Windows NT implementation of NDIS itself uses IRP-based messaging 
for control flow. The NDIS library provides services for both connectionless (e.g. IP) and connection-
oriented (e.g. ATM) protocols as well as a number of other services [24].  

NDIS also provides several other security-relevant services that need to be addressed, such as the ability to 
forward datagrams from one network interface to another without processing by the remaining operating 
system network protocol stack or the offloading of certain network processing (specifically TCP/IP-related 
operations) to the network interface device and hence the NDIS level.  

 

Figure 1: Components involved in networking mechanisms in the Microsoft Windows NT 
operating system family. 

3.2 Protocol Stack Integration 
The provision of the semantics appropriate for a network enforcement layer requires the insertion of 
instrumentation at least at two of the protocol layers described in the preceding section, namely at the 
NDIS and TDI layers.  

3.2.1 NDIS Instrumentation 

With the exception of parts of TAPI discussed above, all network traffic within the Microsoft Windows 
NT family is transmitted by way of NDIS devices, regardless of the API and protocol used; it is also 
possible for a user level process to directly communicate with the NDIS layer (again, TAPI is an example 
of this behavior). 
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It is therefore imperative for the provision of the required interpretation semantics to intercept and 
instrument the processing at the NDIS level. For this purpose, several implementation alternatives exist, 
two of which are of sufficient generality for the purposes discussed here.  

One possible approach is the use of an NDIS Intermediate Driver, which permits the interpositioning of 
code between miniport drivers and the remainder of the NDIS library. While appealing and providing a 
well-defined interface for interposition, this approach does not provide the most general mechanism since 
NDISWAN miniport drivers are not supported in the NDIS revision (version 5.0 and 5.1, respectively) 
used by Microsoft Windows 2000, XP, and 2003. 

This would require the mandatory use of backwards-compatible NDIS version 4.0 mechanisms, which for 
obvious reasons is highly undesirable given the improvements and features added in NDIS version 5.x.  

The alternative to intermediate drivers providing the most general coverage of mechanisms supported is in 
the manual interception of control flows destined for and within NDIS.  

Since it is possible that the configuration of both protocols and network interfaces may change at any time 
during runtime (e.g. through the addition of an ad-hoc network interface), a general mechanism is required 
that supports not only bootstrapping mechanisms but also provides monitoring and dynamic interception 
of such configuration changes. For this purpose, an NDIS layer enforcement sub-module can be loaded 
and started prior to the initialization of the network subsystem. 

Since the NDIS architecture differs significantly in initialization and particular I/O flow from normal 
device I/O unter the Windows NT platform, however, the interception cannot be effected by registering 
with the I/O manager and redirecting the flow of IRP messages, but must occur directly by redirecting 
function entry points to the enforcement sub-module itself and subsequent transfer of control flow to the 
NDIS library once the required operations have been performed on the part of the enforcement sub-
module. 

To ensure that policies can be enforced uniformly, all network interfaces on a node must be intercepted 
and brought under the control of the enforcement sub-module. This occurs by intercepting the NDIS 
functions OpenAdapter and CloseAdapter and tracking the activation and deactivation of any 
(virtual) network interface; the actual interception mechanism relies on modifying the addresses contained 
in the export table of the module providing the NDIS library upon loading of the NDIS module. 

Similarly, to be able to track information and control flows — particularly for callback mechanisms — the 
enforcement sub-module must retain information on which protocol drivers are registered with (and hence 
may access) the NDIS layer. This is accomplished by intercepting the NdisRegisterProtocol 
functions for registration and, correspondingly for unloading and deregistration, the 
NdisMRegisterUnloadHandler and NdisDeregisterProtocol functions.  

The information thus obtained permits the correlation of information and subsequent coordination with 
instrumentation provided by enforcement sub-modules at the protocol driver level discussed in the 
following section. 

While NDIS is the proper location to capture all control and data flows pertaining to network traffic and 
therefore also to perform protocol-specific operations, the information available at the level of the NDIS 
library (and hence the interception mechanism) are severely limited. At the level of the NDIS library, it is 
not directly possible to identify the subject (i.e. process) a data flow is associated with since the data flow 
from a process directed towards NDIS is translated into IRP messages at the kernel level, thus obliterating 
the information on the subject.  
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Conversely, data flows directed towards subjects are not associated with processes directly, but only with 
protocol drivers. It is therefore necessary (as described in the following section) to correlate information 
regarding the subject association with a data flow by coordinating the information available at the NDIS 
level with information from higher abstraction levels to permit the employment of security controls 
available only at the lower NDIS layer. 

A similar problem exists with regard to the payload of the individual data flows processed by NDIS. At 
the NDIS level, only data already processed into protocol data units (PDU) are presented, and NDIS is 
expected to operate opaquely on the data provided in either direction. In this case, the information as to 
which protocol is associated with a PDU is obtained indirectly through the information gathered on 
registration of protocols. 

A list of known protocol drivers must be maintained (this can occur through known identifying 
characteristics within the protocol driver or indirectly through the file system enforcement mechanism 
providing an unique fingerprint for a given protocol driver by way of the ECRM), and protocol-specific 
operations must be invoked on the PDU based on the information thus obtained. 

However, since PDU may be constrained either by the respective protocol or by the network interface, it is 
not always possible to transform PDU in place. Instead, a given PDU (regardless of inbound or outbound 
processing) may result in several PDU after processing by the protocol-specific enforcement sub-module 
and, moreover, the protocol-specific enforcement sub-module can withhold the processed PDU (and hence 
process additional PDU from the same data flow) prior to emitting one or more PDU for further 
processing by the NDIS layer.  

The necessary information for identifying subjects, objects, and operations are transmitted by the TDI sub-
module as discussed in the following section. Individually, the instrumentation provided by the NDIS 
layer enforcement sub-module can monitor the activation and deactivation of protocols and adapters as 
well as monitor in- and outbound data flows, including the elimination of inbound traffic as well as 
outbound2.  

Another operation that can be performed by the NDIS layer without interoperation with other sub-layers is 
data flow normalization, i.e. providing well-defined temporal characteristics for all or selected data 
streams such as inter-PDU time intervals. This, however, requires potentially large buffers in the absence 
of flow control mechanisms that can be applied transparently to the communicating parties proper.  

3.2.2 TDI Instrumentation 

While the enforcement mechanism proper is located at the NDIS level as described in the preceding 
section, the implementation of the Microsoft Windows NT operating system family necessitates the 
addition of a further enforcement sub-module at the protocol driver level.  

The need for this additional sub-module stems from the lack of information regarding the association of 
subjects (and potentially of operations) as well as of objects of higher abstraction levels from which a 
given object or PDU is derived at the NDIS layer.  

However, as noted before, there are potentially multiple protocol drivers active within a given node, each 
of which requiring specific actions for deriving the requisite information for reaching policy decisions by 
the ECRM in conjunction with other sub-module information. For the purposes of this dissertation, the 
discussion concentrates without loss of generality on the TCP/IP protocol driver.  

                                                      
2 The NdisCancelSendPackets and NdisGeneratePartialCancelId  mechanisms are, while not strictly necessary 

for this purpose, supported only from NDIS 5.1 onward. 
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Interception of the protocol driver occurs analogous to the mechanism described for the NDIS library in 
the preceding section; entry points are dynamically redirected on initialization of the protocol driver and 
forwarded after processing. As with the NDIS layer, this facilitates dynamic addition and removal of 
protocol drivers at runtime provided that the proper enforcement sub-module for a given TDI protocol 
driver is available. 

The main operation performed at the TDI enforcement sub-module is the collection of information 
regarding subjects, objects, and data flows (the latter information is available implicitly through the 
observation of calls to the TDI); subject (i.e. process information that can be correlated with other subject 
information at the ECRM) information is implicitly available through the calling mechanism. In case of an 
outbound data flow, the information thus gathered must be made available to the NDIS sub-module to 
permit proper processing.   

While it would be conceivable to transmit this information out of band or to store it at the ECRM itself, 
both possible alternatives would require not only considerable storage, but also imply complex storage 
management since the processing order is not necessarily the same for data flows at the TDI and NDIS 
layer, and special cases such as canceled data flows would  need to be taken into account to avoid stale 
storage.   

To avoid these problems as well as performance issues arising from extraneous communication between 
sub-modules (typically in the form of IOCTL messages that require considerable processing overhead), 
data flows can be annotated in-band with the requisite information. The NDIS sub-module can extract this 
information3 and continue processing as described in the preceding section. 

Similarly, inbound data flows can be reverse-associated with the information regarding subjects, objects, 
and data flows. This requires one instance of communication between the NDIS and TDI sub-modules for 
each flow (in the worst case of connectionless protocols, this is once for each PDU, although heuristics 
and information from other sub-modules not discussed here can be established to identify virtual flows 
based on addressing information in the more general case of connectionless protocols). 

4.0 DEVELOPMENTAL ASSURANCE ASPECTS 

Overall assurance achievable by the security architecture discussed here is, to a first approximation, 
limited by the lowest level of assurance of any component.  

The set of components first and foremost also includes the host operating system in case of retrofits of 
security mechanisms as described in this paper since defects therein can potentially compromise or bypass 
any additional security controls. However, since the requirement for using systems with such limited 
overall assurance exists — primarily because of application program availability — it is imperative to 
provide sufficient levels of developmental assurance within said confines.  

This can be achieved by including the system to be instrumented in the process of formally modeling the 
enforcement module. By not relying (solely) on documentation but rather performing reverse engineering 
and evaluation of the network stack components and capturing both expected and observed behavior in the 
model (primarily using the Z notation [25,15]), certain types of flaws based on incorrect assumptions or 
documentation can be avoided or, if subsequent evaluation results in assumptions becoming invalidated, 
new information can be incorporated into the model rigorously. 

                                                      
3 There exists a mechanism for this purpose in the NDIS_PACKET_STACK structure introduced in NDIS 5.1; prior NDIS 

versions require the allocation of a new, larger packet for the integration of this data. 
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5.0 DISCUSSION AND RELATED WORK 

The mechanisms described here represent part of a larger security architecture that touches upon a number 
of fields; the discussion here is restricted to network security policy mechanisms and implementation 
strategies.  

Based on observations on the use of mobile devices, remote access mechanisms, and the performance 
requirements for choke point firewalls resulting from increasing network performance, Bellovin proposed 
the migration of firewall enforcement to the nodes to be protected while retaining a central policy 
definition for network access control [3]. Instead of relying on topological information for obtaining 
statements on the identity of an entity, Bellovin proposed to use the mechanisms for the use of public key 
infrastructures inherent in IPSec which also addressed the issue of support for virtual private networks 
found in traditional firewalls [17], although this was done earlier by Chitturi [7] in 1998 within the Fluke 
project context [10]. 

Another approach to distributed firewalling, also derived from concepts introduced by Bellovin was 
pursued by Payne and Markham at SCC. Payne and Markham realized the embedding of the firewalling 
mechanisms (EFW) on a COTS network interface card with cryptographic and limited processing 
capabilities [19,22]. A similar mechanism for EFWs was also developed by Friedman and Nagle at 
Carnegie Mellon University [11,12]. 

Policy-based network security has been the subject of intensive research; Burns et al. describe a network 
security policy architecture based on security models at moderate abstraction levels [5]; for an earlier 
survey of such mechanisms see [6]. 

The problem of insufficient instrumentation for security purposes has also been addressed by other 
researchers; Keromytis describes a data flow tagging architecture similar to the one described here for the 
OpenBSD environment, these are also used in OpenBSD to record buffer- (packet-) specific information 
such as security data that is not retained in normal data and control flows [16]; more specialized 
interposition mechanisms include, among others, work on Exokernels at MIT by Kaashoek et al. [9] and 
SLIC by Ghormley et al. [13]. 

6.0 CONCLUSIONS AND FUTURE WORK 

This paper has described an instrumentation mechanism for enforcing flexible and dynamic security 
policies imposed by a distributed security policy mechanism and a specific implementation thereof for 
retrofitting an instrumentation mechanism onto a COTS (commercial off the shelf) operating system 
without access to source code. While the modeling of the host operating system under such conditions 
requires significant resources, it also ensures that major discrepancies between intended (documented) and 
actual behavior are discovered.   

Uses of the network policy mechanisms include dynamic distributed firewalling [27] and intrusion 
detection and response [29,30] as described in earlier papers. 

Ongoing extensions to the instrumentation include the implementation of an in-line (bump-in-the-stack) 
IPSec mechanism for the Internet protocol family and further refinements of the mirror network stack 
mechanism itself.  

In addition, measurements and tuning are a major focus of ongoing work as the latency imposed by the 
mirror stack and policy enforcement can become pronounced for TCP/IP connections when used rapid 
circuit establishment and teardown occur over high speed network interfaces.  
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Threat Environment
� Proliferation of network-type interfaces (“IP over

Everything”)
− Ethernet, 802.11x, Bluetooth, FIR
− Perimeter security?
− “Firewall-compatible” network protocols

� Attack Acceleration
− Malware attacks frequently reach first peak after few

hours (SQL-Slammer: 30 minutes)
− Targeted attacks are getting easier
− Vulnerability window from initial discovery to application

of ECOs
− Quality control issues with ECOs dictate further

widening of vulnerability window
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Architectural Background
� Part of ongoing research program (COSEDA,

COmprehensive SEcurity for Distributed Architectures)
� Abstract modeling of systems (e.g. OS) in FOPC
� Axiomatization of dependencies, interrelations using

embedded lattice algebraic constructs (viz. type theory)
based on formal concept analysis

� Mappings for target platforms (interpretations)
− Generally severe limitations on achievable assurance

� Arbitrary security policies defined within same formal theory
− Multiple simultaneous theories (e.g. using algebraic

structuring of policy domains): coalition environments
− Similar use of axiomatization for abstraction and

derivation of subordinate policy elements
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Enforcement Module Placement
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Windows NT Family Network Stack
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Placement Issues under Windows NT
� Requisite information for policy decisions is not maintained

by Windows itself
− Information is scattered throughout modules in control

flow
− Information is frequently discarded after use by

individual module
� Multiple network control flows and “optimizations”

− NDIS is the only layer included in (almost) all protocols
− Backwards compatibility to DOS, OS/2 (!) implies very

limited information availability, irregular interface
− Must intercept all adapters, all protocol drivers

dynamically
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NDIS Interception Mechanism Issues
� Can intercept finalized protocol data units only

− PDU content depends on specific protocol driver used at
higher protocol stack level

− In case modification is required, this cannot always
occur in situ: PDU properties are constrained,
knowledge of higher-level protocols

� No process/user-related information available at this level
(processing via separate NDIS layer, no IRPs available)
− Must be integrated/correlated with higher level protocols

� Interactions with driver offloading
− Example: IP/TCP checksum calculation
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TDI Interception Mechanism Issues
� Transport driver interface is last layer at which process and

user-related information is available

� Interception of all transport helper (protocol driver) and
namespace helper drivers, some special cases due to
Microsoft proprietary optimizations

� Collects user and process information and makes it
available in-band or out-of-band
− Highly sensitive to optimization

� Actual policy decisions and operations occur within NDIS
module wherever possible
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Operations Supported by Instrumentation
� Control over inbound and outbound data flows based on

− Protocol-specific addressing (IP: host, port)
− User/process information
− Correlated information from other enforcement modules

(e.g. history-based)

� Protocol-specific renormalization and filtering
− IP: Enforcing standards compliance, filtering for client

stack vulnerabilities and idiosyncrasies
− “Shadow protocol stack”: Inbound flows do not reach

potentially vulnerable protocol stack
− Important for distributed firewalling
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Additional Operations
� Embedding protocol-specific security mechanisms

− IP(v4): Shadow IPSec Stack
− Rationales for shadow stack

• Assurance of original stack
• Maintenance, assurance of security policy-based

manipulation of IPSec SPD/SAD
• Reentrancy problems for policy mechanism

− Mechanism is fully transparent to upper-level device
drivers and users
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Summary and Outlook
� General mechanism for intercepting network flows with full

semantics at all protocol stack layers for Windows
NT/2000/XP/2003

� Part of overall security architecture for defining and
enforcing arbitrary security poliices
− Fine-grained information gathering and control

� Transparent layering of additional security protocols
� Modeling and specification occurs using Z notation: Also

helpful in reverse engineering
� Modeling does not terminate: There’s Always One More

Invariant
� Balancing protocol compliance and interoperability
� Significant open issues: Kernel-based IKE
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