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ABSTRACT: Simulation developers are forced to make assumptions about how their simulations will be used and 
possibly revised to support reuse.  Even when developers are aware of potential future adaptations for reuse, current 
programming languages do not support expression of design alternatives reflecting those adaptations.  One can use 
program documentation to describe them, but documentation does not support automatic simulation transformation. 
Previously we have described COERCE, a semi-automated simulation transformation technology that supports the 
capture of design alternatives and the subsequent search and exploitation of these alternatives in order to accomplish 
desired changes in simulation behavior.  In this paper, we propose capturing these design alternatives in programming 
language extensions called flexible points.  With metadata about flexible points embedded in simulation code, 
COERCE-based software tools can preprocess the code, present information about flexible points to the user, and 
support semi-automatic evaluation of the fitness of different design alternatives for the new requirements.  The 
programming language extensions we describe in this paper would advance our goal of automating simulation 
coercion to the extent possible. Semi-automated coercion of simulations, in turn, would greatly enhance user 
experience with simulation reuse. 
 
 
1. Introduction 
 
Composing simulations to build new systems is just 
one example of how reuse is becoming increasingly 
important to the simulation community.  Considering 
the high cost of building software, users would prefer 
to adapt and combine existing simulations to solve new 
problems rather than to develop new simulations from 
scratch.  In many cases, requirements and 
circumstances change so quickly that developing new 
simulations for new situations is not realistic.  Instead, 
libraries of reusable simulation components are needed 
to handle changing phenomena and new streams of 
information. 
 
1.1 Building Reusable Simulations 
 
Unfortunately, reusable simulations have proven 
difficult to develop in practice.  Parameterizing a 
simulation for every way that it could be reused is 

often impractical, both because the number of 
possibilities is infinite and because adding too many 
parameters increases complexity and interferes with 
performance.  As a result, developers must make 
assumptions about how simulations will be used, 
deciding on an appropriate level of resolution, setting 
default values for simulation constants, and selecting 
algorithms to model specific phenomena.   
 
When a simulation is reused, these decisions often 
must be examined and changed to meet new 
requirements.  For example, a first-principles physics 
model of a bicyclist may be replaced by an 
approximation to satisfy a performance requirement 
[4], or entities in a military simulation may need to be 
simulated at a different level of resolution in order to 
interoperate with another simulation [3].  Key 
decisions and assumptions in these simulations have to 
change in order for reuse to succeed.   
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Figure 1:  Refinement of a simulation design, with subsequent expansion for reuse 

This view of the simulation development process is 
depicted in Figure 1.  As a simulation is designed and 
implemented, decisions must be made that specify how 
it can be used and what it can represent.  Later, as a 
simulation evolves and is reused, possible uses that 
were eliminated during the development of the 
simulation have to be reopened and explored to meet 
new requirements. 
 
1.2 Simulation Reuse with Language Support 
 
Automating this kind of exploration should 
significantly improve the speed and convenience of 
simulation reuse.  This paper discusses a programming 
language construct designed to support this kind of 
automation.  Our construct makes it possible to capture 
important assumptions and decisions as they are 
written into a simulation, as well as alternative choices 
that could have been made and their effects.  These 
choices can later be automatically extracted and 
analyzed, making it easier to change them and thus 
adapt the simulation to meet new requirements. 
 
Consider the following scenario:  A company is 
building a simulation of the game of hockey for a video 
game to be played on handheld devices.  In the 
process, someone must decide how to model the 
movement of the hockey puck.  The easiest way to 
implement this is to ignore friction and simply assume 
the hockey puck slides over the ice with no friction.  
Of course, a more realistic model would include 

friction against the ice and air resistance.  Based on the 
marginal benefits of increased simulation fidelity and 
performance limitations of the device on which the 
game will be played, the original developer opts for the 
simple model.  However, without input from users, the 
developer does not know if this compromise will 
interfere with the experience of playing the game.  The 
developer recognizes that this decision is one that is 
liable to change in the future, and the developer makes 
a note of this. 
 
Later, the game is sent to the playtesters.  The play-
testers complain that the hockey puck behaves 
strangely:  Once the hockey puck is set in motion, it 
continues to bounce around the rink endlessly, even 
when no players are touching it.  Because this game 
was developed by a company with a large team of 
developers, the developer responsible for addressing 
the playtesters' concerns (called the QA developer) is 
not the same person who made the decision regarding 
how to model the hockey puck.  So, the QA developer 
opens up the simulation code in a specialized tool that 
provides a list of significant decisions that other 
designers and developers thought might be 
questionable.  The QA developer sees that “hockey 
puck model” is one of the decisions listed in this 
display, and that two alternatives are listed:  “Friction” 
and “No Friction.”  The "No Friction" alternative has 
been implemented and is the one that is currently in 
use.  The QA developer looks into the problem further 
and decides that there are actually two other ways that 



the hockey puck could have been simulated, either 
adding a single frictional term to the model or adding a 
more complex combination of friction against the ice 
and drag against the air.  Because the playtesters’ 
specific complaint was that the hockey puck was 
displaying perpetual motion, the QA developer decides 
that just friction alone will be sufficient to solve the 
problem.  The QA developer adds a note to the model 
indicating that either friction or both friction and drag 
could be used, and s/he adds an implementation to the 
“Friction” alternative and sets that to be the default.  
The simulation is recompiled with the friction model 
and returned to the playtesters for more examination. 
 
How could the original developer describe alternatives 
for the hockey puck model?  Similarly, how could the 
QA developer automatically extract points of interest 
and add alternatives to each decision?  The right 
language construct could allow both developers to 
write about these decision points, describe alternatives, 
and indicate the significance of each alternative.  This 
language construct, called a flexible point table, is part 
of a technology called COERCE, which is outlined in 
section 2.  Section 3 establishes the requirements for 
this language construct and examines it in the context 
of other language constructs for flexible software 
development.  In section 4, we describe the details of 
the flexible point table, and section 5 explores how it 
benefits semi-automated simulation adaptation and 
reuse.   Finally, we discuss ways to provide additional 
support for building coercible simulations in section 6 
and we summarize our contributions in section 7. 
 
2. Enabling Reuse with COERCE 
 
As just observed, simulation reuse often involves 
exploring and changing the assumptions and decisions 
that went into the original development of a simulation.  
COERCE is a technology that supports reuse by 
identifying these assumptions and decisions as flexible 
points and manipulating these flexible points to direct 
the behavior of the simulation.   COERCE has two 
aspects, coercion and coercibility.  Coercion is the 
study of how to efficiently adapt simulations to new 
requirements, which is accomplished by selecting 
flexible points and using a combination of optimization 
and manual modification on these points to change the 
behavior of the simulation.  Coercibility is the study of 
how to design and build simulations that can be easily 
coerced, which is accomplished by identifying flexible 
points and performing analyses to determine the 
significance of each flexible point. 
 
2.1 Flexible Points 
 
A flexible point is an element of a simulation that can 
be manipulated to direct the behavior of a simulation in 

meaningful and effective ways.  Flexible points 
correspond to design decisions in a simulation, 
decisions that eventually change in order to meet either 
anticipated or unanticipated new requirements.  It is 
possible to identify flexible points without detailed 
knowledge about what future requirements will be, 
although anticipating the general nature of future 
changes helps determine which flexible points will be 
most useful.   
 
At a glance, it might appear that every line of a 
simulation meets this definition of a flexible point.  
After all, every reachable non-comment line of a 
program affects its behavior.  However, the emphasis is 
on directing the behavior of the simulation, as well as 
being able to direct it in meaningful and effective ways.  
Picking a random line of code and replacing it with 
another random line of code is not a meaningful 
change, nor will it often be effective in meeting new 
requirements.  Instead, flexible points are elements that 
can be changed either by a user or an optimization 
program to yield specific effects. 
 
Examples of flexible points include constants that can 
vary, stochastic elements that can be added or 
removed, loop convergence criteria that can be tuned, 
and subroutines that can be replaced.  Due to the 
variety of flexible points, we have begun to establish a 
taxonomy for classifying them.  We expect that these 
categories can be refined further to provide a complete 
set of axes on which any flexible point can be plotted.  
Using these, COERCE-related tools (such as language 
constructs) can be described in terms of how they 
apply to different regions of the space of flexible 
points. 
 
1. Model versus model-implementation. 
There is a distinction between flexible points at the 
level of the model versus flexible points at the level of 
the simulation code.  The decision to allow agents in an 
artificial society simulation fight with each other 
provides a conceptual flexible point, while the decision 
to represent the aggressiveness of an agent with a small 
range of integers versus a large range of floating-point 
numbers is an implementation-specific flexible point.  
Both decisions could be changed to adapt the behavior 
of the simulation, but switching between different 
implementations of the same conceptual model 
generally has different effects than making changes to 
the conceptual model itself. 
 
2. Narrow versus broad. 
Many flexible points, such as the decision to use one 
random number generator instead of another, can be 
manipulated by changing a single piece of code (in this 
case, the call to the random number generator).  Other 
flexible points affect a single object in multiple places 



in the code, such as changing the type of a variable and 
then changing the type of different operations 
performed on it.  Both of these kinds of flexible points 
could be managed by automatic tools, which either 
replace contiguous sections of code or select and 
modify all references to an object.  Broader flexible 
points, which are not as easy to manage automatically, 
may still be useful to identify.  However, because 
narrow flexible points are easier to manipulate with 
automatic tools, focusing on narrow flexible points can 
lead to faster and less labor-intensive coercion of 
simulations. 
 
3. Ordered versus unordered alternatives. 
Another significant distinction in types of flexible 
points is between those with ordered and unordered 
alternatives.  It is usually not possible to say that one 
implementation of a function is "greater" than another 
implementation in the same way that one value for a 
numerical constant is greater than another.  Changing 
the values of numeric constants often has a more 
predictable, ordered, effect on a simulation than 
replacing one function with another.   
 
When working with an ordered flexible point, the user 
can apply numerical optimization techniques to find the 
best value to use at that point.  Certainly, some 
simulations exhibit chaotic behavior and phase 
transitions that make it difficult to predict the results of 
changes to ordered flexible points.  However, with 
unordered flexible points, it is almost never possible to 
use numerical methods to select a better alternative.  In 
other words, with unordered flexible points, it is still 
possible to evaluate each alternative automatically, but 
it is not possible to look at the results of evaluating a 
series of alternatives and automatically determine 
which alternative should be tested next.  Also, with 
ordered flexible points, it is possible to specify 
alternatives in terms of a range (e.g. "Any value 
between X and Y could be used here"), whereas 
unordered flexible points' alternatives must be 
specified more explicitly.  This has a significant effect 
on how the different types of flexible points can be 
described with a language construct, as discussed in 
section 3.1. 
 
4. Independent versus entangled. 
One characteristic that raises some of the most difficult 
issues in simulation coercion is how flexible points 
affect one another.  Adding or removing code at one 
flexible point may cause code in other flexible points 
to never be used, or it may break assumptions made in 
code corresponding to other flexible points.  For 
example, in the hockey puck example from section 1.2, 
the value of the coefficient of friction is a flexible 
point, but it is only a meaningful flexible point if the 

physics model flexible point is given a value that uses 
friction. 
 
Some dependencies between flexible points can easily 
be detected, such as when one flexible point changes 
the value of a variable that is used in another.  
However, other dependencies are more subtle, such as 
effects that propagate through one or more 
intermediate variables.  Indirect effects make outcomes 
harder to predict. 
 
The ability to predict the effects of changing a flexible 
point is very desirable, because users are primarily 
interested in flexible points as a means to meet new 
requirements:  It may be intellectually interesting to 
know what the effects of adding friction to a physical 
model may be, but the more common question is, "Will 
adding friction to this model cause the simulation to 
meet its new requirements?"  As a result, it is helpful to 
distinguish flexible points whose effects on the 
simulation's behavior can be described without 
reference to the current values of other flexible points. 
 
2.2 Simulation Coercion 
 
Ordinarily, when a simulation needs to meet a new 
requirement, its code must be manually edited to 
exhibit new behavior.  With coercion, a combination of 
automatic transformation and manual modification is 
used:  An expert identifies relevant components as 
flexible points, and optimization is used to find new 
values for these flexible points that help the simulation 
meet its new requirement [12] [14].  When necessary, 
the simulation code may still be changed to introduce 
new flexible points or to meet requirements that cannot 
be met through any changes to existing flexible points.  
However, even partially automating the process can 
yield considerable savings in effort, and this approach 
has been successfully applied in experiments on 
environmental models of carbon dioxide uptake in 
forests [7] and physical models of bicyclist movement 
for animation [5]. 
 
2.3 Coercible Simulations 
 
Coercible simulations are the response to the following 
question:  Given the success of simulation coercion, 
how much easier would it be to coerce simulations if 
they were designed with flexibility in mind?  [14] 
Coercing a simulation requires selecting flexible 
points, but many flexible points in simulations could be 
identified in advance.  As discussed in Section 1, 
developers are aware of making decisions that narrow 
the range of what their simulations can represent, and 
many of these decisions become useful flexible points 
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Figure 2:  The COERCE Life Cycle 

in the future.  Therefore, a significant portion of a 
simulation coercion effort can be saved by capturing 
information about flexible points as the simulation is 
constructed.  The resulting software with flexible 
points already identified is a coercible simulation. 
 
Figure 2 displays the coercible simulation life cycle.  In 
Phase I, a coercible simulation is created by identifying 
significant flexible points.  In Phase II, a coercible 
simulation is taken from the library and applied to 
solve a specific problem.  Depending on the 
application, different flexible points are selected and 
manipulated to coerce the simulation to fit into its new 
setting.  Visualization tools help the user with selecting 
flexible points and monitoring the progress of the 
coercion [6].  Then, in Phase III, the coerced 
simulation is deployed and evaluated, being coerced 
again as needed to correct problems and to keep up 
with changing requirements. 
 
3. Language Support for COERCE 
 
In effect, flexible points are the language of COERCE, 
the means by which simulation developers 
communicate information about how their simulations 
can be reused and how users communicate to one 

simulations.  Simulation developers could describe the 
flexible points in coercible simulations in the 
documentation, but formal descriptions would make it 
possible to automatically extract and change flexible 
points.  Because automation is an important goal of 
COERCE, we are proposing programming language 
constructs for embedding information about flexible 
points in the code itself. 
 

another the ways that they have adapted existing 

.1 Language Construct Requirements 

 order to design a language construct for describing 

1. Which part(s) of the code must be changed to 

2. ilable for a flexible 

3. the original intent and implementation of 

4. ible point, including 
d 
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In
flexible points, we must identify critical types of 
information that must be captured.  This information 
includes 
 

manipulate a flexible point 
Which alternatives are ava
point 
What 
a given flexible point is 
Effects of changing a flex
a. Which simulation variables are affected an

in what ways, using sensitivity analyses to 
determine the magnitude of each effect 



b. What the behavioral effects (performance 
and accuracy) of each alternative are 

c. How the effects of different flexible points 
interact with each other 

 
Of these requirements, certain ones are easier to 
capture with a language construct than others. 
 
1. Flexible point location.   
First, we need to know what code must be changed in 
order to manipulate each flexible point.  It is trivial to 
indicate the location of a narrow flexible point that 
affects only one region of code, because the language 
construct can be inserted into the code at the same 
point where the change must be made.  However, using 
a single language construct to capture multiple changes 
to the same source program is more difficult. 
 
2. How a flexible point can be changed. 
The form of this information depends on the type of 
flexible point (see section 2.1).  For a numerical 
flexible point, there may be a range of values that 
could be used in place of the current one, or an 
equation might be used to describe what values are 
valid.  For a flexible point that consists of replacing 
one section of code with another, there may be a list of 
alternate implementations that could be used. 
 
Intuitively, it may not be possible to represent both 
kinds of flexible point alternatives with a single 
language construct.  In this paper, we focus on 
representing flexible points with unordered 
alternatives.  This approach was chosen because 
previous experiments in simulation coercion have 
emphasized numerical (ordered) flexible points [7] [5], 
which can be automatically manipulated without any 
specialized language constructs.  By proposing this 
construct, we expand the study of automation in 
simulation coercion to include unordered flexible 
points. 
 
3. The original intent and value of a flexible point. 
This information is ordinarily only available if the user 
has access to the original implementation of a 
simulation.  However, it is very easy to record this 
information, and it can prove useful to future coercion 
efforts if the justification is known for why a flexible 
point originally had a specific value. 
 
4. Flexible point effects. 
This is possibly the most important information to 
know about a flexible point, although it is also the most 
difficult to describe quantitatively.  This information 
can be used to work backwards from a new 
requirement to make a change to a simulation:  For 
instance, given a requirement to make variable X 
increase, the simulationist needs only to find an 

appropriate flexible point with an alternative that has 
the effect of increasing X.  There are several aspects of 
how flexible points can affect a simulation, either by 
changing important simulation variables, changing 
behavioral properties such as performance, or by 
changing the ways that other flexible points affect the 
simulation. 
 
4a. List of affected variables. 
It is important to identify not only the variables that are 
directly affected by a flexible point, but to also identify 
which variables depend on the affected variables.  In 
other words, the difficulty comes in identifying the 
indirect effects of each alternative.  In some 
simulations, changing one flexible point may affect 
every variable in the simulation, in which case 
knowing what variables are affected is not nearly as 
useful as knowing what the amounts of those effects 
are. 
 
4b. Behavioral characteristics of alternatives. 
Many simulation changes are motivated by 
performance and accuracy concerns, rather than 
changes in what phenomenon the software is 
simulating.  As such, it is important to identify which 
alternatives will lead to faster or more accurate 
simulations.  However, as with capturing the effects of 
flexible points on simulation variables, this information 
is often hard to determine in advance:  Different 
flexible points may interact with each other, and the 
behavioral characteristics of a particular alternative 
often depend on the simulation’s current input. 
 
4c.  Relationships between flexible points. 
As noted above, selecting a specific option at flexible 
point X may have a completely different effect on 
simulation outputs or performance characteristics 
depending on which alternative is selected at flexible 
point Y.  Ideally, we would like to compute these 
relationships automatically, but the combinatorial 
number of ways flexible point alternatives could 
interact makes this computationally infeasible.  
However, if the developer knows that certain flexible 
points do not affect one another and indicates this in 
the program, then the number of combinations that 
would have to be evaluated drops considerably. 
 
As described here, capturing all of this information 
about a flexible point with a single language construct 
is extremely difficult.  However, in the following 
section, we explore one language construct that meets a 
number of these requirements to provide useful 
information about a large number of the flexible points 
that are actually encountered in practice. 
 
Specifically, we are focusing on unordered flexible 
points that are limited to a single point in the code.  



This decision was motivated by our model of 
simulation development in Section 1:  We are 
interested in capturing design decisions in a simulation 
that are likely to change in the future.  From the 
programmer’s perspective, this often amounts to the 
decision to write one block of code instead of another.  
We would like to record this information in a way that 
does not impose additional cost on running the 
simulation with its default configuration.  However, we 
would like this information to be encoded in a way that 
a support tool could apply one or more of the 
suggested changes to a flexible point and run the 
simulation automatically. 
 
3.2 Related Language Constructs 
 
Other programming language constructs have been 
used to capture information about software design 
decisions that are liable to change.  First, many 
languages contain conditional compilation features, 
such as the #ifdef statement in C and C++ [10] [13]. 
This enables a developer to include code that may or 
may not be compiled into the final program depending 
on the value of a preprocessor variable.  Conditional 
compilation is commonly used for including machine-
specific code in a portable program or including a 
debugging option with a more streamlined version of 
an application.  Because the decision to include a 
section of code is made at compile time, it imposes no 
cost on the run time performance of the system.  In 
effect, the flexible point construct that we propose here 
is an extension of existing conditional compilation 
mechanisms, with added features to describe the 
significance of each alternative and to facilitate the 
presentation of this decision point to the user in terms 
of how it affects the behavior of the simulation. 
 
Another language structure used to capture information 
about potentially changing design decisions is software 
modules.  Using the information-hiding principle, each 
module should be built around one design decision that 
is liable to change [11].  In practice, this means that 
modules are built around data structures, because even 
small changes in how data are represented have the 
potential to affect arbitrarily large sections of code.  
However, for coercible simulations, we expect to 
capture more than just information about data 
structures, because flexible points can include smaller 
details such as values for constants and conditional 
expressions.  As a result, the language construct 
proposed in this paper is complementary to an object-
oriented information-hiding design:  The 
decomposition of software into modules protects 
design decisions based on how they affect data 
representation, while the inclusion of COERCE 
flexible points highlights design decisions based on 
how they impact simulation behavior and reuse. 

 
4. Flexible Point Representation 
 
We propose a language construct called a flexible point 
table.  Our flexible point language construct can be 
viewed two ways:  Visually, a flexible point can be 
represented with a table of options, with information 
about each alternative given in each row of the table.  
In an implementation, a flexible point table can be 
encoded as an XML document with elements 
corresponding to fields of the table.  This makes it 
easier to integrate the flexible point description into a 
larger document and to automatically extract this 
information when needed. 
 
4.1 Tabular Representation 
  
As shown in Figure 3, a flexible point can be 
represented as a table of different decisions that could 
be made at a specific point in a program.  Each row of 
the table corresponds to another alternative, with 
columns for 
 
• An identifying label 
• A summary, describing its implementation and how 

this alternative affects simulation behavior relative 
to other alternatives 

• An optional implementation, which could be 
substituted for any of the other alternatives' 
implementations at this point 

 
Information that is common to all of the alternatives is 
included at the top of the table, including a label for 
this flexible point and a list of simulation outputs that 
are affected by all alternative implementations of this 
flexible point (note that this list may change as 
different alternatives are added).  In our hockey 
example, a simulation can use one of several different 
physics models, from a simple kinematic 
approximation to a detailed calculation that includes 
considerations for friction and air resistance.  Selecting 
a different physics model affects simulation outputs 
about the position and velocity of this particular object 
in the simulation, which is noted at the top of the table.  
Depending on the accuracy and performance 
requirements for the simulation, a user might prefer the 
simpler and faster model or the more detailed and 
accurate one. 
 
It is important to note that the Implementation field of 
the table is optional.  As a simulation is constructed, a 
developer is often aware of selecting one design over 
another but does not normally take the time to 
implement unused alternatives.  This way, a developer 
is free to acknowledge other options without specifying 
how they would be implemented, which still provides a 



Flexible Point: Physics Model 
Affected Outputs: xPos, yPos, xVel, yVel 

Description Alternative Implementation 

xPos += xVel / TIME_STEP; No friction Simple model, very fast but not very 
accurate.  Object moves v/t units per 
time step. 

yPos += yVel / TIME_STEP; 

xPos += xVel / TIME_STEP; Friction More complicated model, slowing the 
object by a frictional force at each 
time step. 

yPos += yVel / TIME_STEP; 
friction = g * F_COEFFICIENT; 
xFric = friction * cos(angle); 
yFric = friction * sin(angle); 
xVel += xFric / TIME_STEP; 
yVel += yFric / TIME_STEP; 

(not implemented) Most realistic model, but not yet 
implemented.  Needs information on 
cross-sectional area of object and air 
pressure, which is not available. 

Friction plus 
air resistance 

Figure 3:  A Flexible Point Table 

benefit to future users without imposing an 
unreasonable cost on the original simulation developer.  
Later, as a coercible simulation is coerced and reused, 
implementations may be filled in and new rows may be 
added as each flexible point is expanded and new 
directions are tried. 

 
5
 
In
w
 
 
 
1.  of 

2. Through COERCE, the construct provides 
op the 
process of simulation reuse. 

. The construct is easy to implement and use with 

.  Utility of the Flexible Point Table 

 order to show that this language construct is useful, 
e must demonstrate that 

 
4.2 XML Representation 
  The construct is applicable to a sig

flexible points. 
nificant set

Including the flexible point table in the source code of 
a simulation is not practical for several reasons, such as 
the width of the table and the issues of how to parse 
table elements separately from the rest of the 
simulation code.  However, the same flexible point can 
be described using XML to define elements 
corresponding to each field of the table [15].  A 
Document Type Definition for an XML 
flexiblePoint is given in Figure 4. 

portunities for automation that will accelerate 

3
existing languages and tools. 

 

 

 

le point that is presented in 
is paper is deliberately broad, designed to include 

ny element of a simulation that could be targeted as 

the

o phisticated language 
t of several constructs that together 

ange of flexible points. 

<!ELEMENT flexiblePoint (name, 
                         effects*, 
                         alternative+)> 
<!ELEMENT name (#PCDATA)*> 
<!ELEMENT alternative (name,  
                       summary, 
                       implementation?)> 
<!ELEMENT description (#PCDATA)*> 
<!ELEMENT implementation (#PCDATA)*> 
<!ELEMENT effect (#PCDATA)*> 

Figure 4:  XML DTD for a flexiblePoint 

5.1 Applicability 
 

he definition of a flexibT
th
a
part of a semi-automated coercion process.  However, a 
language construct for building coercible simulations 
does not need to describe every possible kind of 
flexible point in order to be beneficial.  In particular, 

 flexible point table can be applied to describe 
several common kinds of simulation changes. This 
makes it a useful tool in itself, as well as a stepping-

ne towards either a more sost
construct or a toolki
apture the whole rc

 



First, a flexible point table can be used to replace a 
named constant with a variable, so that alternate values 
can be tried.  Using the criteria outlined in section 2.1, 
we see that changing the value of a simulation constant 
is a particularly useful kind of flexible point: 
 
1. Constants include values in the high-level equations 

that underlie the model, as well as tuning factors in 
the model implementation. 

2. Constants are narrow in their effect on the code, 
because changing the value of a named constant 
does not change how it is referenced elsewhere in 
the program. 

3. Constants are an example of a flexible point with 

endent of 
other changes in the program. 

An
by nstant with a call to a 

Th
unc
table can indicate that a function which samples a 

rep
red ational cost of assigning a value to 

 
In 
rep ion with any other 

nction.  The physics-model example used in sections 

iven this representation for flexible points in a 

ulation, the user would 
ke to know exactly what the effect of each alternative 

 do nothing more 
an browse through the flexible points and select the 

ations with the flexible point browser 
terface. 

he flexible point table’s greatest advantage over other 

m [15].  
hen an alternative is selected, the contents of the 

element can be 
xtracted and reinserted into the original source file.  

ordered alternatives, making them amenable to 
optimization. 

4. Changing the value of a constant is a relatively 
simple change to a program, making it easier to 
understand the effects of the change indep

 
other kind of flexible point that can be represented 
this table is replacing a co

function that samples from a stochastic distribution.  
is allows the user to represent a new element of 
ertainty in the model.  Likewise, the flexible point 

stochastic distribution could be replaced by a 
resentative constant, removing uncertainty but 
ucing the comput

the variable. 

general, the flexible point table can be used to 
lace the body of any funct

fu
1.2 and 4.1 is an instance of replacing one subroutine 
with another.  Other examples could include replacing 
the arrival- or service-time functions in a queuing 
simulation, changing the constructors that initialize 
agents’ attributes in an agent-based simulation, or 
altering the model of interactions between units in a 
strategic military simulation. 
 
5.2 Opportunities for Automation 
 
G
simulation, it is now possible to automate several 
elements of the COERCE process.  First, the tabular 
representation of the flexible point can be presented to 
the user via a “flexible point browser” interface.  This 
could be added as an extension to an integrated 
development environment so that a user could change 
or add new implementations using existing source code 
editing tools. 
 
Ideally, when coercing a sim
li

is.  This way, the user would need to
th
set of alternatives that are already known to yield the 
desired result.  In practice, the complex relationships 
between flexible points make it difficult to statically 
document the effects of each alternative.  However, 
another component of the COERCE toolkit is a set of 
visualization tools [6].  This means that it would be 
possible to generate visualizations to plot the 
relationships between sets of flexible points and to link 
these visualiz
in
 
Most importantly, once multiple implementations have 
been specified for a given flexible point, it is possible 
to automatically test each implementation and evaluate 
the simulation's output relative to a specified 
requirement.  In other words, each flexible point 
becomes another possible decision variable to use in 
the optimization step of simulation coercion [14].  This 
increases the number of design decisions that can be 
automatically explored and reduces the amount of 
manual effort required to coerce a simulation.  
 
5.3 Implementation Technologies 
 
T
possible flexible point representations is its ease of 
implementation.  Numerous libraries for XML 
processing already exist (libxml for C, SAX for Java, 
numerous modules for Perl, etc.).  So, only a simple 
preprocessing step is required to extract all of the 
flexiblePoint XML documents from a larger 
source file and pass them along to an XML processor 
for parsing and display.  The XML processor then can 
use an XSLT style sheet to generate an HTML 
presentation of the flexible point in tabular for
W
corresponding implementation 
e
Then, this modified source file can be compiled 
without making any changes to the original language’s 
compiler.  
 
6. Future Directions for Coercible 
Simulations 
 
As noted in Sections 2.1 and 3.1, there is a 
considerable variety of interesting flexible points in 
simulations.  In addition, the potential amount of 
information to capture about each flexible point is 
sizeable.  The flexible point table proposed in this 
paper meets our objective of describing narrow flexible 
points with ordered and unordered alternatives, but 
some flexible points unavoidably affect multiple 
locations in the code.  Therefore, we are exploring 



additional ways to document flexible points in a 

e Flexible Point Table 

iles of a simulation. 
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AspectJ 
sult, we 

 a 
tement could be 

eclared at the top of a program and apply to the entire 

parable to the behavior of 
rogram exceptions with resumption semantics [16].  

owerful 
without 
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ditions arise in the program.  To build a 

s to be efficient 
nd effective simulation reuse, whether in the context 
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] Avdicaušević, E., M. Mernic, M. Lenic, and V. 
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coercible simulation. 
 

.1 Extending th6
 
First, it would be possible to extend our construct to 
link multiple code changes together, so that a single 
flexible point could be represented by multiple tables.  
Each table corresponding to a single flexible point 
would have the same set of rows, and one table would 
be placed at each point in the code where any of the 
options requires a change to the code.  This approach is 
the most straightforward to implement, but it raises 
certain challenges for developers, such as keeping 
track of all of the different tables spread across the 

ultiple source code fm
 

.2 Flexible Points as Cross-cutting Asp6
 
For a different approach, we have observed that a 
single flexible point that requires code changes in more 
than one module of a program is a cross-cutting 
concern, which is exactly what aspect-oriented 
programming (AOP) is designed to capture [8].  AOP 
is a programming paradigm that extends object-
oriented programming by enabling developers to 
separate concerns that apply to multiple objects in a 
system (such as security, synchronization, or input-
output) from one another.  Several different approaches 
o AOP have been developed, and examplt

approaches can be found in languages such as 
1], AspectCOOL [2], and Hyper/J [9].  As a re[

are exploring aspect-oriented language constructs to 
determine if we could leverage AOP to succinctly 
describe and manipulate flexible points that affect code 
in multiple modules. 
 
6.3 Using WHEN Statements to Describe Flexible 
Points without Lexical Information 
 
An alternative for capturing flexible points that 
transcend multiple points in the simulation code is the 
WHEN-DO construct.  The structure of a WHEN-DO 
statement would be similar to a conventional IF 
(conditional) statement: 
 
  WHEN (Boolean condition is true) 
  DO 
    (block of code to be executed) 
  DONE 
 
However, unlike an IF statement, which is bound to
single point in the code, a WHEN-DO sta
d
scope of the program.  If the WHEN clause ever becomes 
true, then normal execution is interrupted and the code 
contained in the DO block is executed. 

 
This behavior is com
p
As such, this construct provides an extremely p
way to specify interesting program conditions 

e or dependence on the location oknowledg
hose cont

coercible simulation with WHEN-DO constructs, the 
original developer could specify conditions that are 
associated with important flexible points in WHEN 
blocks.  When the simulation is coerced, future users 
could fill in the corresponding DO blocks to change the 
behavior at flexible points of interest.   
 
We recognize that without considerable attention to 
implementation issues, the WHEN-DO could have 
excessive run-time costs.  However, the fact that we 
are only interested in capturing simulation flexible 
points means that we may be able to place certain 
limitations on the permissible WHEN conditions, 
reducing the cost of testing the conditions and limiting 
the scope in which tests could ever become true. 
 
7. Conclusion 
 
The driving goal for COERCE continue
a
of simulation interoperability, multi-resolution 
modeling, or data-driven applications.  To that end, we 
will continue to propose new language constructs to 
facilitate coercible simulation development and 
develop new tools for automating the manipulation of 
these flexible points.   
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